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Abstract Copy Number Aberrations, gains and losses of genomic regions, are a
hallmark of cancer and can be experimentally detected using microarray compar-
ative genomic hybridization (aCGH). In previous works, we developed a topology
based method to analyze aCGH data whose output are regions of the genome where
copy number is altered in patients with a predetermined cancer phenotype. We
call this method Topological Analysis of array CGH (TAaCGH). Here we combine
TAaCGH with machine learning techniques to build classifiers using copy number
aberrations. We chose logistic regression on two different binary phenotypes related
to breast cancer to illustrate this approach. The first case consists of patients with
over-expression of the ERBB2 gene. Over-expression of ERBB2 is commonly
regulated by a copy number gain in chromosome arm 17q. TAaCGH found the
region 17q11-q22 associated with the phenotype and using logistic regression we
reduced this region to 17q12-q21.31 correctly classifying 78% of the ERBB2
positive individuals (sensitivity) in a validation data set. We also analyzed over-
expression in Estrogen Receptor (ER), a second phenotype commonly observed in
breast cancer patients and found that the region 5p14.3-12 together with six full
arms were associated with the phenotype. Our method identified 4p, 6p and 16q as
the strongest predictors correctly classifying 76% of ER positives in our validation
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data set. However, for this set there was a significant increase in the false positive
rate (specificity). We suggest that topological and machine learning methods can be
combined for prediction of phenotypes using genetic data.

1 Introduction

The cancer genome is characterized by chromosome instability and the formation
of chromosome aberrations [41]. Copy number aberrations, that is amplifications
and deletions of genomic regions, are particularly relevant in tumor development
because they may house proto-oncogenes and tumor suppressor genes. Aberrations
containing these genes can be used as prognosis tools [1, 11, 13, 43] but they
may be difficult to identify because they are usually accompanied by many
passenger aberrations and because they may be hidden by experimental noise.
Experimentally the number of copies of the genome can be measured using array
comparative genomic hybridization platforms (aCGH) and sequencing (DNAseq)
[34]. A number of statistical methods have been proposed to detect copy number
changes, these include [6, 12, 18, 23, 28, 29].

In previous works, we proposed a topology based method to identify candi-
date driver chromosome aberrations, called Topological Analysis of array CGH
(TAaCGH). TAaCGH is different from other methods in that it: (1) does not
perform a single segmentation of the data but a sequence of segmentations, (2)
uses relationships between consecutive probes to determine significance of genomic
fragments, (3) identifies copy number changes associated with a specific phenotype,
and (4) allows to detect single [3, 15] and some co-occurring copy number
aberrations [2].

The next step in the development of TAaCGH is determining to what extent the
identified genomic regions can be used as patient classifiers. In genetic association
studies, machine learning techniques like logistic regression, random forests or
support vector machines are often used for classification and feature selection
[20, 24, 25, 48, 50]. However, several issues arise that make predictive models
challenging for microarray data. For example, data usually consist of a much
larger number of co-variates (genotypes) than observations (patients) and copy
number data contain numerous highly correlated neighboring probes (co-variates).
Additionally, some traits are known to be regulated by many interacting genetic
regions located across the genome. Adding a complexity penalty to the loss
function (regularization) or using methods such as group Lasso [32] that takes
into consideration the correlation among features when assigning the penalties, are
some of the approaches used to address these issues; but many of these approaches
continue to be affected by correlation bias [48].

In this analysis we introduce a predictive model for binary traits using the
output of TAaCGH [3] as a starting set of candidate co-variates. We tested this
approach on two data sets consisting of breast cancer patients with different clinical
characteristics. Data from [21] was used as a training set and data from [10] as



Prediction in Cancer Genomics Using Topological Signatures and Machine Learning 249

a validation/test set. Here we report our results on two clinical characteristics:
over-expression of ERBB2 (denoted by ERBB2+) and of the estrogen receptor
gene (ER+). In the ERBB2+ study, TAaCGH found the region 17q11-q22 to be
significantly associated with this phenotype, but not with other molecular subtypes
like luminals or basals. The region of the genome originally consisted of two
sections, when using them as co-variates on data from [21] only, one section was
enough for prediction; shrinking the relevant area to 17q12-q21.31 and obtaining
a sensitivity of 64% (specificity =96%). When tested in the validation set [10]
we obtained sensitivity of 78% (specificity = 90%). These results suggest that this
section of the genome, which contains the gene ERBB2, discriminates better the
true negatives than the true positives. This is most likely due to the fact that over-
expression of ERBB2 is not always regulated by a copy number change [9, 51].
In the case of ER+, TAaCGH found section 5p14.3-12 and arms 4p, 5q, 6p, 10q,
16p and 16q in the training set. These regions were validated by either SIRAC
[29] or through our validation data set [10]. Our logistic regression study identified
4p, 6p and 16q as the best predictors. Interestingly none of these arms contains
the Estrogen Receptor gene (ESR1) suggesting that copy number changes do not
regulate the expression of this gene in breast cancer. This model for ER+ had
a sensitivity of 79% (specificity =79%). When we validated the model on [10],
we obtained a sensitivity of 79% (specificity =52%). Reduction on the specificity
might be due to biological differences or differences in the structure between the
training and the validation data sets. Based on our results, we suggest that the
proposed version of TAaCGH, extended via topological signatures as classifiers,
can further provide a framework for other one-class classification methods, and that
its expanded capabilities may be useful for analyzing other phenotypes and genetic
interactions.

2 Methods

2.1 Data

Array Comparative Genome Hybridization (aCGH) data measure the difference in
the number of DNA copies between a test and a reference sample for regions along
the genome. These data are therefore commonly presented as a log-transformed
ratio of the two quantities. A log-transform value greater than a threshold > 0
indicates an amplification of the genome, while negative numbers signal deletions.
Since the physical position along the genome is known for each probe; the log, ratio
is mapped back to the genome defining what we call the patient’s CGH profile.
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2.1.1 Simulation Data

We used simulations to estimate the statistical properties of TAaCGH and of our
proposed classification method. We simulated a series of experiments on data
sets containing 100 profiles (50 tests and 50 controls); each profile was aimed at
recreating a section of the genome with 50 probes. Copy number values for probes
in the control group and for probes in the test group that did not belong to a
chromosome aberration were drawn from a normal distribution N(u = 0, ocyr1).
The value of o¢cy; € {0.2, 0.6} was fixed in any given simulation. Each simulated
copy number aberration was determined by three parameters: the mean and standard
deviation from a normal distribution N(u, o) and the length A, in probes, of the
aberration. For the first, we considered 4 = 1 and o as the test group, having
aberration’s length A € {5, 10, 25}. Additionally, and motivated by the fact that
the predictor variable is not always present in the test group, we also allowed the
number of aberrant profiles within the test group to vary. We called this parameter
mix. In our simulations mix € {20, 40, 60, 80%}. In each simulation we tested
for specificity and sensitivity of the method for a predetermined combination of
parameters ., o, A, mix.

2.1.2 Horlings Data Set

As in previous studies, we used the data set published by Horlings and colleagues
[21, 22]. BAC Microarrays covered the entire genome with a spacing average of
1Mb and each BAC clone was spotted in triplicate on every slide (Code Link
Activated Slides, Amersham Biosciences). This sample contained a total of 66
patients, 14 were ERBB2+ and 38 were ER+-. Both phenotypes were determined
by clinical diagnosis. The control set consisted of: patient profiles belonging to the
remaining cancer patients with ERBB2— (for the ERBB2+ phenotype), and patient
profiles for the ER— (for the ER+ phenotype).

2.1.3 Climent Data Set

This data set [10] was used as a validation set. Arrays were printed on UCSF Hum.
Array 2.0, similar to the Horlings data set, had an average coverage of the genome
of 1Mb. Preprocessing of the data can be found in [3]. The data set contained
161 patients diagnosed with a stage I/Il lymph node-negative breast cancer and
with available ER status. Since the ERBB2 status was not reported in the original
publication, we classified 9 patients as ERBB24-, those having a copy number
change > 1 (in log scale) at the clone DMPC-HFF#1-61H8 which contains the
ERBB?2 gene. The ER+ set consisted of 101 patients and the ER— set consisted of
60 patients.
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2.2 Computational Topology Methods
2.2.1 Foundations of Topological Data Analysis

Our approach is based on the methods developed in persistent homology which we
briefly review. A key concept is the mapping of the data into a point cloud, from
which simplicial complexes can be derived; And by doing so, obtain structures that
capture the shape and geometry of the data.

Let P C R? denote our point cloud and d(p, p’) the pairwise distance between
points p, p’ in P. This data structure, consisting of a point cloud P and pairwise
distances is used as an input for what is called the Vietoris-Rips (VR) filtration. The
VR-filtration of a point cloud is determined by the filtration parameter (commonly
denoted by €) that defines the sequence of simplicial complexes that are used for
analyzing the data. Therefore, for any value of the filtration parameter ¢ > 0, we
define VR K p to be the simplicial subcomplex of the complete complex K p that
contains only simplices whose vertices are less than € apart. Formally, let ¢ C P be
a subcollection of points (pi, ..., pm). Restricting the indices i and j to {1, ..., m},
o isasimplex in VR:Kp if d(p;, pj) < e foralli, j.

If 7 is a face of the simplex o, then the set of all pairwise distances between
vertices of T belongs to the set of pairwise distances of ¢’s vertices, so VR, is a
simplicial complex. Practically, in order to construct a filtration we need to ensure
that for § > €, we have VR Kp — VR;s K p because if all pairwise distances are
less than €, they are also less than §.

Next, define the function gygp : Kp — R as follows: gyr(o) =

max {d(p, q)} for any simplex o in Kp; g is monotone since for o < 7, we
p.q 1 o

get gyr(0) < gyr(t) simply because the maximum is taken over a larger set. The
sublevelset of g at the natural number n is defined by S, (g) = {0 € K | g(o) < n}.
The Vietoris-Rips filtration around P C R? is the sublevelset filtration of gz.

Assuming that pairwise distances between points in P are denoted by 0 < €1 <
.-+ < en, we get the filtration

(VREIKPL)(VRQKPL) ~-~L>(VRENKp=Kp. (1)

Since the complete complex K p contains as many simplices as there are subsets
of P, its cardinality is 2#”. The Vietoris-Rips filtration is never constructed all
the way up to ey. A description of efficient algorithms for constructing Vietoris-
Rips filtrations may be found in [52]. Most persistent homology software packages
(Perseus [35, 38], Gudhi [47], Eirene [19], Ripser [5]) are based on these algorithms.

This construction has many advantages since it only requires knowledge of
pairwise distances that are easily computable for many data sets. Once an increasing
family of simplicial complexes around the data points has been built one can record
the change of topological features such as connected components, holes, etc., as the
filtration parameter is increased, see Fig. 1. Formally, to each simplicial complex K
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Fig. 1 Two stages of the Vietoris-Rips filtration of the (blue) point cloud as the radius of filtration
increases are shown in the first two pictures. This illustrates that no single filtration value captures
both the smaller and larger loops

one can associate a collection of homology groups, H;(K), where the range of d is
determined by the highest dimension of simplices of K.

Homology of a simplicial complex can be computed in the following way. Notice
that the vertices of any simplex o can be represented as a d-tuple (vo, ..., vg) in
ascending order of vertices. A d-dimensional chain is a R-linear combination of
simplices and they form so-called d-dimensional chain group C4(K p) of K p. Next,
the boundary 9,4 of o is a d — 1-chain formed by a collection of (d — 1)-dimensional
proper faces of o obtained by removing a single vertex. Since d; defines a linear
transformation C4(Kp) — Cy_1(Kp) the subspace determined by its kernel is
called the d-dimensional cycle group Z;(K p), while (d — 1)-dimensional boundary
group By_1(K p) is the image. The d-dimensional homology group of a simplicial
complex K p is defined as Hy(K) = éj Eg, that is elements of homology are cycles
but two cycles that differ by a boundary are considered to be the same.

Persistent homology is to filtrations what homology is to simplicial complexes
[39]. Homology is functorial; that is, it assigns algebraic objects to simplicial
complexes, and algebraic maps to maps of simplicial complexes. In particular, the
inclusions between complexes of a filtration induce maps between these homology
groups of each level of the filtration. All together, from the filtration (1) we obtain
the persistence module:

1—2 2—3 ¢(N*1)‘>N
d

[
— Ha(VR, Kp) 2> Hy(VR,Kp) 2 - “—  Ha(VR,Kp)

The p-persistent d-dimensional homology group of the subcomplex VR,, K p
is the quotient of cycles Z;(VR.,Kp) in VR, Kp by the boundaries
Bd((VRémﬂ,Kp) in (VRem+pr:
¢" " P(Z4(VRe, K p))

H?(VR. Kp) = .
a(VRen Kp) "= tP(Zy(VRe, Kp)) NBy(VRe, ,Kp)
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The intuition behind this construction is simple: any element x in the d-dimensional
homology group of VR, K p includes into the d-dimensional group of VR, , ,Kp
by a sequence of maps on homology induced by inclusions. In general, VR, , ,Kp
contains more simplices than VR, Kp, so the inclusion of x might be filled out
by higher dimensional simplices in which case it becomes a boundary, and dies.
In this way, we assign to each element x of Hy(VR., Kp) a unique interval
[by, dy) where the birth b, < m denotes the first time x appeared in homology
and the death d, > m the time it became trivial in homology. The collection
of persistence intervals for all homology generators is called the d-dimensional
persistence diagram of the filtration (1). The difference (dy — b,) quantifies the
persistence of x across the filtration. The d-dimensional Betti number of VR, K p
counts d-dimensional persistence intervals which contain the value m.

The collection of homology groups and their ranks, however, are not completely
useful by themselves when analyzing data. Hence persistence-based summaries of
data are required. Summaries include bar codes or persistence diagrams [39], Betti
curves [3], and persistence landscapes [7].

In this paper we combine the zero-dimensional persistence with the sliding
window approach. The zeroth Betti number, By, counts the number of connected
components of a topological space. The Betti curve gives us a way to keep track of
the number of connected components through the filtration. We will consider Sos
across the filtration as described in Eq. (1), to obtain the Betti curve fo(€). Betti
curves play a central role in the method TAaCGH (see Sect. 2.2.2).

2.2.2 Topological Analysis of Array CGH (TAaCGH)

TaACGH is designed to identify chromosome aberrations associated with a given
phenotype and its key steps (I, II) are illustrated in Fig.2. To achieve this goal
the input data needs to include two sets of profiles, one for each phenotype.
TaACGH subdivides chromosomes into overlapping sections that are circularized
and analyzed independently of each other. A point cloud is associated with each
section of the aCGH profile by means of a sliding window algorithm that maps
consecutive copy number measurements along the genome onto a single point.
The process is described in Fig.3 [15]. In our previous studies we investigated,
through computer simulations, how the size of the window affects our results; we
found that a window of size =2 captures the information given by larger window
sizes while being computationally more efficient. Furthermore, pairs of consecutive
points estimate the norm of the first derivative of the aCGH profile. Next, TaACGH
uses the standard filtration algorithm to associate a sequence of Vietoris-Rips (VR)
complexes to the point cloud. Traditionally, persistent homology has focused on
topological features of the point cloud that persist through the filtration [16];
TAaCGH, on the other hand, uses information of all features that are born during
the filtration even if they do not persist. An example is shown in Fig.1 where
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Topological data Analysis for array CGH (TAaCGH)

Find the set of chromosome arms A with a significant
displacement in the Center of Mass (CM) as described in
(Arsuaga et al. 2015)

Find the set of sections from the genome with a statistically
significant difference for the average B0 curves between the
test and the control group as described in (Dewoskin et al.
2010). Keep subset K with mutually exclusive sections.

ldeogram of sections in a chromosome arm

™ : section from K ,_I:‘_‘,—E:_‘ ,_C:_‘ ,_E\‘,__'E::E:_'
CIH NI TN P~ T NITTNTN >

lll. Classify all patients as positive (1) or negative (0) for each
of the significant arms a € A and sections k € K . Register as
1Y and I3,

Classify patient for arm a Classify patient for section k
b ]
= 2
-1 ou
o ° 8 - Z (30): - .;g; p)
=} epsilon
o 2 4
o 8 i
i e
CI’ I T w -
Test Control
44 CM for Test and Control resp. %0 o5 10 15 20 25 £
~__ 95% Cl for Test and Control resp. — g;{'““ﬂ either B35t or BSH!
*  CM for patientin arm a ﬁo.k curve for patient

IV. Use machine learning to classify all patients as positive or

negative for the phenotype

If logistic regression with main factors:

logit = Intercept + Z W, Igf + Z wkf,fji
aeA keK

Fig. 2 Topological data Analysis for array CGH data (TAaCGH) full methodology to classify a
patient for a binary phenotype. TAaCGH finds regions in the genome relevant to discriminating
between different phenotypes. Each patient is evaluated for those regions in the genome and
the information from all of them is used to derive a classification model using machine learning
algorithms



Prediction in Cancer Genomics Using Topological Signatures and Machine Learning 255

Log, Ratio }»
o ¥
Log, Ratio (0

§ 10 15 20 25 30

\n_ . ' —abed X

0

Bp position Log; Ratio £

Fig. 3 Algorithm to transform an aCGH profile into a zeroth Betti curve. (a) A simulated aCGH
profile with 30 probes consisting of gains in copy number in the second half of the region. Probes
are plotted in consecutive order along the genome according to their base pair (bp) position and
against their Logy Ratio from aCGH. A selected pair of consecutive probes has been labeled as
{pi, pi+1} in blue with coordinates (18,1.08) and (19,1.04) respectively. (b) Point cloud associated

with the profile from A with a window size equal 2. The set {LogzRatio;}!_, will define a point

cloud with n points (here n = 30) formed by coordinates (LogaRatio;, LogrRatio; 1), thus
mapping Logy Ratio information from two consecutive points in A to one point in B. The last and
first probes will be considered within one window (Log; Ratio,, LogaRatio). With this point
cloud design, two consecutive gains will map to the diagonal in the first quadrant while noise will
cluster around the origin. The blue diamond corresponds to the pair of probes {p;, pi+1} in A with
coordinates (1.08, 1.04) which correspond to the LogyRatio from p; and p; ) respectively. (c)
Zeroth Betti curve from the point cloud in B applying at each step an incremental value of 0.3 for
the filtration parameter €

the data set has two holes at different scales, one of which would traditionally be
dismissed.

In order to retain the information about the birth and death of topological features
throughout the filtration TAaCGH uses Betti curves. In the algorithm, the Betti
curve for each patient (see C in Fig. 3) is calculated using the software jPlex [44],
the average of all Betti curves for patients in each group computed, and the a
verage Betti curves compared [15]. Sections of the genome for which statistically
significant differences are found are considered aberrant. However, comparing Betti
curves does not capture all aberrations. For instance, the only difference between
a point cloud associated with a gain or loss of a whole chromosome arm and the
control arm is that the first is shifted from the origin. To detect this sort of large
scale aberration we included a test that identifies the displacement of the center of
masses of the point clouds between the two populations [3] (See step I in Fig. 2).

2.2.3 Using Machine Learning for Patient Classification
Predicting the phenotype for each patient from the copy number aberration profile

is a supervised classification problem, and to address it we followed steps III
and IV described in Fig.2. In genomic problems often the number of training
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examples is small compared to the number of features. Additionally, copy number
data contain highly correlated probes. Thus, starting with a subset of aberrant
sections that are relevant to the phenotype under study is helpful for building
reliable machine learning models. TAaCGH uses as initial co-variates those arms
and aberrant sections classified as significant on steps I and II in Fig.2. Next,
TAaCGH determines whether or not a given aberration is present in a selected
patient. The process is repeated for all patients in a training set and for all the
significant sections as well as chromosome arms with displacement in the center
of mass (step III). This creates a set of binary variables as candidate predictors
for the classification model. The algorithm to generate the model can be chosen
from a variety of machine learning techniques, including logistic regression, random
forests, neural networks, and support vector machines. In this paper, we chose to
illustrate TAaCGH using logistic regression (step IV). We explain the algorithm in
detail next.

During section detection TAaCGH uses an overlapped design (see chromosome
ideogram in step II of Fig. 2). For any given set of significant overlapping sections,
we consider the subset K of non-overlapping ones that covers the exact same regions
as the original set. We denote the resulting Betti curves as ﬁ({ 2‘” s ,Bg ,’(’l ,withk € K
after averaging the S curves for section k for both patient groups (Test and Control).
Next, we classify patients according to the “similarity” between their Betti curve
and the Betti curves of the Test and Control groups (ﬁ({ o, ﬁc"l) (see blue and
red curves in Fig.4) while leaving out the patient i that is bemg classified. The
“similarity” between Betti curves is measured as follows:

G G \2
SS¢ = _(Box — BSx) )
€
wn wn
o o
=T [ =
o o
© - © -
o o |
m o | m o | '|
wn - w —.l
L
o - o 4™
1 I I | | 1 1 I I | | 1
0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 25
Epsilon Epsilon

Fig. 4 Bo curve from a patient against averaged By curves for Test and Control groups for the
significant section in chromosome 17q for ERBB2 phenotype. The blue solid line is (,BOT #1) and
the red dashed line is (,BC” 1. Left: Black pointed line for the Bo,x curve from patient 8 belonging
to ERBB2+ who will be classified for this section of 17q as positive. Right: Black pointed line for
the Bo x curve from patient 37 who does not belong to ERBB2+ and that after this procedure will
be classified as negative for this section in arm 17q
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where G € {Test, Control}. Indicator variable IkS ; registers the presence or

absence of an aberration in section k for the ith patient: IkS ; = 1if assigned to the
test group (aberrant) and O otherwise:

1, if S < SSCI!

IS
“ o, i ssPer = ssCrt

i =
s

3)

Figure 4 illustrates the process of assigning the value to }; S . Both panels show
averaged Betti zero (Bg) curves for Test (blue) and Control (red) groups. Panel on
the left shows the B curve for a patient (black) that is classified as belonging to the
Test group (1 ,f ; = 1) and panel on the right shows the By curve for a patient that is

classified as belonging to the Control group (/, ,f ; =0).

Our choice of similarity metric in Eq. (2) is derived from the test statistic used in
TAaCGH to detect aberrant regions [3]. According to computer simulations in [14]
this metric, the square of the L2 norm, achieves the best results in terms of detection.
Other metrics explored in [14] include a metric focusing on relative differences
between Betti curves and a weighted metric granting a heavier influence to persistent
features (see Table 6 for more details).

One proceeds similarly when using the center of masses (CM) to classify patients
(See IIT in Fig.2). If we denote by A the set of all significant arms detected by
TAaCGH and a € A. The confidence interval for the CM of the Control group is
computed using the mean and standard deviation estimated by TAaCGH. If the value
of the center of masses of the patient’s point cloud, xl‘.‘ , falls outside the interval, then
the value of the binary variable / aC M — 1fori; and = 0 otherwise. More specifically,

e If the CM for the arma € A is a gain

oM _ 1, ifx{ > pu+140//n,withn —1d.f. @
@ 0, Otherwise

e If the CM for the arm a € A is a deletion
oM _ 1, ifx{ <pu—tq0//n,withn —1df. 5)
o 0, Otherwise

where x{ = ) x{'/n, and n, is the number of probes in arm a.
probes
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We use this information to build a logistic regression model to classify patients
for the phenotype given by:

. i S CM. .
logit; = ln(l _ m) = Intercept~|—]§wklk’i +aEZAwala’i i=1,....,n (6)

were n is the number of patients. Using the predicted value of ;, we selected a
threshold of 7r; > 0.5 as our classification criterion for occurrences.

The output of TAaCGH can be directly used to create the full model. However
a refinement called, model selection is necessary to prevent overfitting. In the work
presented here we used two common stepwise methods called forward addition and
backward deletion, both available in R [42]. Forward addition starts with the null
model and adds covariates until the best model is found. Backward deletion on the
other hand starts with the full model and removes covariates until the best model
is found. At each step, stepwise methods use a specific criterion to measure the
change in the goodness of fit by adding or removing a covariate. The most common
criteria are the Akaike Information Criterion (A/C) and the Bayesian Information
Criteria (B1C), both defined below. Both criteria consider a penalty associated with
the number of covariates included in the model discouraging overfitting. In the
following expressions

AIC := 2k —2In(L)
BIC := In(n)k — 2In(L)

k is the number of parameters in the model, n is the number of cases in the data set
and L is the maximum of the likelihood function for the model. Smaller values of
AIC or BIC indicate a better fit of the model. BIC uses a heavier penalty in the
inclusion of parameters than AIC. Though, the difference between the two criteria
lies in their objective. AIC looks for the best model for the sample size at hand,
while BIC assumes there is a true model, independent of n, that generated the data.
In this case, one must be careful when the sample size is too small (n/k < 40), since
BIC selects the true model if n is large enough and can be quite biased otherwise
[8]. As our data sets are small, we focused on AIC but also visited BIC.

Once the model is selected, we measure its goodness-of-fit using sensitiv-
ity = TP/(TP + FN) and Specificity = TN/(TN + FP) where TP, FP, TN and FN are
the number of True Positive, False Positive, True Negative and False Negative
predictions respectively. These and other common terms used in machine learning
are available in Table 7 in a form of a Confusion Matrix.

To estimate the bias and confidence intervals for the coefficients in the regression
model we used the Jackknife method. Jackknife estimates the coefficients while
leaving one (or more) patient(s) out of the sample and recomputes the coefficients
of the model. In this work, we used Jackknife delete-one estimation. By repeating
this process multiple times, one obtains a set of coefficients from which to estimate
the standard error and bias of the coefficients proposed in the model. The Jackknife
estimation of the coefficients is then the average of the coefficients across all



Prediction in Cancer Genomics Using Topological Signatures and Machine Learning 259

repetitions. In other words, if é[,-] are the coefficients obtained in the logistic
regression after omitting the ith observation, then the Jackknife estimator for the
coefficients is:

R 1 < A
Ojack = " 21:9[51 @)
i=

the standard error is then estimated by [17]:

n
A n N N
SE@sack = _ | D01 = Osacc)'/? ®)
i=1

3 Results

3.1 Computer Simulations of TAaCGH

An exhaustive simulation study to estimate the statistical properties of TAaCGH was
presented in [3]. Here we extended this study by applying TAaCGH to data sets in
which the percentage of Test cases presenting an aberrant chromosome was variable
(mix). We performed two studies to estimate the effect of mix on the detection of
copy number aberrations. First we tested the detection of copy number aberrations
by the Betti curves (Step II in Fig. 2) and then tested the performance of TAaCGH
to classify each profile for a specific section (Step III in Fig.2). As expected, our
results show that mix plays a crucial factor in detection (Fig.5). When the sample
included at least 60% aberrant profiles in the test group, the sensitivity was 100%.
However when mix decreased to 40 and 20% then the sensitivity also decreased to
83.3% and 41.7% respectively. When the effects of the ratio between the mean value
of the aberration (u) and the standard deviation (o) in the data set were explored in
[3], sensitivity was found to be close to 100% in a scenario where mix was 100%
(with a minimum of A = 5 aberrant probes). In a mixed environment we expect
that the noise will have a larger impact in the detection of aberrations. Sensitivity
on all experiments (u = 1,0 = 0.2) was 95.8%. From them, only 1 experiment
failed to be detected (with mix = 20%). The sensitivity value dropped to 66.7%
when (4 = 1, 0 = 0.6); in this case, all experiments with a mix = 20% failed to
be detected. Yet, all experiments with a mix of 60 or 80% were fully detected. The
size of the aberrant region A also played an important role, having a sensitivity of
75, 81.3 and 87.5% when the value of A increased from 5 to 10 and 25 probes (out
of 50). As before, experiments with mix of 60% or more were fully detected even
when only 5 probes were aberrant. Results are shown in Fig. 5.

In the second set of simulations we tested the performance of our method at
classifying each profile (Step III in Fig. 2). In this case, mix of aberrant profiles in
the Test group had a strong impact in the goodness of fit. For instance, when o = 0.2
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100% 100%
83.3% . .
. 100% 100%
66.7% .
41.7% = [
83.3% 100% 100% 100%
20% mix 40% mix 60% mix 80% mix

BHp=1,0=0.2 Bp=1,0=0.6

Fig. 5 Sensitivity from simulations on detection using By curves for a different mix of cases with
aberrations in the test group. Solid blue is the percentage of cases when detection was successful
with (u = 1, 0 = 0.2), and patterned purple is the percentage of cases from the simulation when
detection was successful for (u = 1,0 = 0.6)

Table 1 Sensitivity (TPR) and specificity (SPC) for patient classification with By curves

M=1 20% mix 40% mix 60% mix 80% mix 100% mix
c=02 50% 70% 56% 80% 65% 88% T18%  94% 98%  97%
c=06 49% 55% 54% 64% 60% 11% T3% 15% 76%  79%
Total 50% 63% 55% 3% 63% 80%  T6%  T18% 87%  88%
TPR  SPC TPR  SPC TPR  SPC TPR  SPC TPR  SPC

and all patients were aberrant (mix = 100%), the sensitivity (and specificity)
were 98% (and 97%) respectively. Even though our model had 100% detection
for significant sections when mix was 60% or more, sensitivity (and specificity)
decreased to 65% (and 88%) for the same parameters. As expected, the difference
between the mean (w) of the aberration and the standard deviation (o) in the data set
also had an impact in the performance. For instance, when all samples in the Test
set were aberrant, the sensitivity (and specificity) went from 81 (and 94) to 70%
(and 75%) when o changed from 0.2 to 0.6. By looking at the difference between
sensitivity and specificity, one can tell that the method is better at classifying the
negatives than at detecting the positives. This difference is even more dramatic for
a smaller standard deviation (¢ = 0.2). Results are summarized in Table 1.

Additionally we explored the performance of a single binary predictor (denoted
by I) in two-class classification, where I = 1 indicates the presence of the attribute
related to the predictor variable and I = 0O the absence of it. Whether the case
belongs or not to the phenotype of interest is denoted by the also binary variable Y.
We identified three interlinked factors with a considerable impact in sensitivity and
false positive rate F PR = 1—specificity:

1. The penetration of the predictor (I %), defined here as the percentage of cases
for which the predictor variable is equal to 1 (/ = 1). In Fig.6 we compare
sensitivity and FPR for different levels of penetration: % = 20%, 1% =35% and
1% =50%.
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Fig. 6 Sensitivity against false positive rate for different binary predictors (/) in an univariate
classification model. Three different scenarios for penetration of the predictor: /% = 20% is
shown in green dotted lines, 35% in purple dashed lines and 50% in black solid lines. The chart
also shows how sensitivity and FPR behaves for 2 different levels of the false omission rate (FOR),
5 and 30%. Each trend was created by decreasing by 10 points Diff = PPV — FOR until Diff = 0.A
desirable target for combinations of FPR and sensitivity is shown with a green square. Suitable
predictors fall in the green square

2. The False Omission Rate (FOR = FN/(FN + TN)), which is the relative
abundance of cases with the phenotype of interest (Y = 1) within the group of
cases lacking the attribute from the predictor (/ = 0).

3. The Difference in relative abundance of cases with the phenotype of interest (Y =
1) between the group of positive (I = 1) and negative (I = 0) predicted values,
defined as Diff = PPV — FOR where PPV =TP/(TP + TN).

Figure 6 shows the trade between sensitivity and false positive rate for differ-
ent binary predictors when used as the only variable in a classification model.
Sensitivity increases as the penetration of the predictor (/%) increases. However,
the difference (Diff) in the relative abundance of the response variable with the
phenotype of interest between the two groups (I = 1 and I = 0) needs to be
large for the model to be useful. For instance, when the penetration is 1%=20%,
the difference should be of 40% points to make it to the green square, which is
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a reasonable target combination of sensitivity and FPR; and when penetration is
1% = 50% a difference of 80 points is needed.

3.2 A Logistic Model for ERBB2+ Breast Cancer

Over-expression of the gene ERBB2 at chromosome 17q, is in many cases a
consequence of a copy number gain at the location of the gene. TAaCGH identified
four sections in chromosome 17¢g, ranging from 17ql11.1 to 17q22 (25.4 to 57.3
Mbp) [3], that were significant for ERBB2+4- patients. As two of the four sections
overlapped, thus redundant, we selected only those two that were mutually exclusive
and covered the whole region. We denoted them as 17¢g.s2 to refer to section 2 of
chromosome 17¢ ranging from 32.5 to 43.3Mbp, and 17q.s4 to refer to section
number 4 ranging from 44.1 to 57.3 Mbp. Each patient was classified as aberrant
or non-aberrant for both sections and associated with the indicator variables / 1S7 .52

and / IS7W 4 described in step III of Fig.2. Stepwise logistic regression (Sect.2.2.3)
was used to determine whether both sections contributed to patient classification
for the phenotype (Full model available in Table 9). After model selection, only
1 137 .52 Was kept. This selection is in agreement with the metrics provided from our
simulations and available in Table 8. More importantly, section 17¢q.s2 contains the
probe associated with the ERBB2 gene and the region of analysis is reduced to
17q12 to q21.31 (32.49 to 43.3Mbp). Lastly, we used Jackknife delete-one logistic
regression to build the following model for the ERBB2+ class phenotype:
T

zn(1 )= =23+ By, 0, 9)

— T

The bias and 95% confidence intervals for this model are given in Table 2.

Predictions with the logistic regression model for ERBB2 produced a sensitivity
of 64% (specificity = 96%), which was expected considering that only one predictor
is being used. The model assigned all individuals being positive in the predictor to
one of the classes of the binary response phenotype (Table 3). It is possible that
the low detection of positives is related to a high mix of non-aberrant profiles (see
Fig. 7).

We used the Climent data set [10] as validation set. Using the leave-one-out
approach, each patient in the Climent data set was classified for the section (17¢.s2)
used in the model produced with Jackknife with Horlings data set. This resulted
in a sensitivity of 78% (specificity =90%). As before, the model is assigning all

Table 2 Horlings Jackknife coefficients for ERBB2+

Bias se Clipwer Clypper
Intercept —1.457611 0.544941 —2.433660 —2.174616
1157‘1_s2 1.779060 1.174625 3.533827 4.092198
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Table 3 Frequencies for ERBB2 against significant sections for TAaCGH with S

ERBB2 ERBB2
Horlings 0 1 Climent 0 1
N N
17,520=0 50 5 FOR =9% It7,50=0 159 2 FOR = 1%
S S
I =1 2 9  PPV=82% IFy0=1 17 7  PPV=29%
N — — N — —
If,=0 44 5 FOR=10% Iy =0 152 5  FOR=3%
gsa=1 8 9  PPV=353% I} ,=1 24 4 PPV=14%

Left: Results for Horlings data set. Right: Results for Climent data set. False Omission Rate
(FOR =FN/(FN + TN)) and Positive Predictive Value (PPV =TP/(TP + FP) are displayed at the
right of each contingency table
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Fig. 7 Two profiles from phenotype ERBB2+ with copy numbers for arm 17 with ERBB2 gene
located at 38.2 Mbp. Section 17g.s2 delineated by dashed red lines and section 17¢q.s4 delineated
by pointed black lines. Left: a clearly non-aberrant profile with ERBB2+ phenotype (patient 153).
Right: an aberrant profile (patient 308)

positive individuals from the predictor as positive for ERBB2. Again, the section in
arm 17q discriminates better ERBB2 negatives than positives. In the validation data
set the sensitivity increased from 64 to 78%. However, this might be due to the small
number of ERBB2 positives in the data set (see Table 3). The complete confusion
matrix for both data sets is available in Table 10.

3.3 A Logistic Regression Model for ER+ Breast Cancer

Estrogen Receptor positive tumors are histochemically characterized by a high level
of receptors for the estrogen hormone. The abundance of this receptor is regulated by
the gene ESR1, located in chromosome 6q [4]. In the clinical data from the Horlings
data set, status for ER was available and we used TAaCGH to find those aberrant
regions associated with it. TAaCGH found section 5p14.3-12 to be significant by
Betti curves and arms 2p, 4p, 4q, 5q, 6p, 10q, 14q, 16p and 16q to be significant by
the center of masses (see Table 5). We then classified all patients for section 5p14.3-
12 and arms 4p, 5q, 6p, 10q, 16p and 16q, corresponding to regions validated with
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Table 4 Confidence Intervals for the final model with logistic regression in ER+ for Horlings
data set

Bias se Clipyer Clipper
Intercept 3.689472 1.2639078 1.588530 2.189342
i —3.344529 1.3628681 —3.668999 —3.021145
5 —3.967659 0.9211887 —1.762679 —1.324782
M —1.168885 1.1641565 1.788329 2341724

16g
Predictions with the logistic regression model gave a sensitivity of 79% (specificity = 79%)

the Climent data set; and associated them with their indicator variables IL&M s ISSP,
ISCqM , IﬁcpM 1 1C02/1 i 1%’;’ and / 1%2/1 (Step III from Fig. 2). We finally proceeded to step
IV and used the indicator variables as co-variates in modeling. We first created the
full model for which results can be found in Table 11. As described in the methods
section, the data set used to build the model had a smaller number of ER negatives
(28) than positives. Following the widely adopted guidelines of a minimum of 5 to
10 Events Per predictor Variable (EPV) [40, 49], we set up to use no more than 3
predictors (EPV =28/3). Thus, we applied stepwise model selection to reduce the
number of predictors resulting in the same model with both AIC and BIC criteria.
Results are shown in Table 12. The selected model consists of three covariates:
1 &M , I6CPM and / 1%24 . Interestingly, the covariates selected using stepwise regression
were in full agreement with the numbers associated with the relevant factors found
through our simulations. Table 15 shows that the strongest predictor is 7, 4C M since
it is the one with the highest difference between PPV and FOR and is the second
with the smallest penetration of the predictor. We then used Jackknife delete-one to
estimate the bias and confidence intervals:
T
4p,i

1n(1 ,-) =19—(3.3)IM _ (1.5)15,,’% + (2.1)11%% (10)

with the bias and confidence intervals shown in Table 4 for o« = 0.05.

Next we used our model on the validation data set which, as indicated in the
methods section, consists of 101 patients with phenotype ER positive from a total
of 161 for which the phenotype was available. It resulted in a sensitivity of 79%
(specificity = 52%). However, there was a considerable drop in the specificity of
the model, perhaps due to the very different frequencies that can be observed
in Table 14, or because of a mix with aberrant profiles in the negative Estrogen
Receptor group. The complete confusion matrix for both data sets is available in
Table 13.
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Table 5 Results from ER phenotype in Horlings data set and validation with SIRAC, GISTIC [6]
and Climent data set after applying TAaCGH for By

ER positive
Arm TAaCGH SIRAC GISTIC TAaCGH
5p 5pl4.3-12 5p15.33-13.2
16p 16p Arm (+) 16p Arm (+)
16q 16q Arm (—) 16q12.1(—) 16q Arm (—)
16q22.1-23.3 (—)
Horlings Horlings Horlings Climent data set
data set data set data set (Validation)

ER negative
Arm  TAaCGH SIRAC GISTIC TAaCGH
2p 2p Arm (+)
4p 4p Arm (—) 4p15.31 (—) 4p15.2(57%) (—) 4p Arm (—)
4q 4q Arm (—)
5q 5q Arm (—) 5q33.1 (—) 5q32(50%) (—) 5q Arm (—)
6p 6p Arm (+) 6p33-21.1 (+)
10p 10p15.1-14 (+)
10q 10q Arm (—) 10q23.33-24.2 (—) 10923.32(43%) (—)
12q 12q13.12-13.2 (—)
14q 14q Arm(—)

Horlings Horlings Horlings Climent data set

data set data set data set (Validation)

When known, gains are marked with a plus sign (4) and deletions with (—). GISTIC does not
signal amplifications and deletions by phenotype. Instead, for the regions considered aberrant by
GISTIC, the percentage of cases for the phenotype is provided if it is higher than 35%

4 Discussion

In this paper we have used topological signatures to build regression models on
a binary response variable. In our proposed approach, we first use TAaCGH to
identify regions of the genome that are associated with selected phenotypes. For
instance, in previous studies we identified copy number changes associated with
specific breast cancer molecular subtypes [3]. In this study, we expand this analysis
by first estimating the statistical properties of TAaCGH when the number of aberrant
profiles in the test set changes (i.e. mix percentage). As expected the sensitivity and
specificity of TAaCGH decreases, especially when only 20% of the Test sample has
the aberrant region and the copy number value is not very different from the standard
deviation (© = 1 and 0 = 0.6). Second, we developed new algorithms to determine
whether a patient has an aberration or not. In our proposed method, we compare the
Betti zero curve of the patient with those of the Control and the Test group after the
patient was removed from the corresponding category. We found that when (i« = 1
and o = 0.2) and all profiles in the test group are aberrant the sensitivity is 98% but
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it decreases steadily as the proportion of aberrant profiles decreases. For instance,
for mix with 60% aberrant profiles the sensitivity was found to be 65%. Detection
also decreases as the standard deviation gets closer to the value of the copy number.
For example, for values © = 1 and 0 = 0.6 detection is only 76%. On the other
hand, the method has strong specificity. To build the logistic model, we followed
standard protocols on statistical genetics and associated a binary variable to each
chromosome aberration, with a value equal to 1 if the aberration was detected by
TAaCGH in the patient profile and O otherwise.

At the introduction of this paper we mentioned some challenges for modeling
microarray data such as a large number of co-variates in comparison with the
number of samples and highly correlated neighboring probes. TAaCGH reduces
dimensionality by creating sections from the genome and by transforming the data
within those sections into a point cloud. The structure of the point cloud encodes the
correlation between neighboring probes, however, by using topological signatures
of the point cloud we strongly believe that are reducing the correlation bias. In this
paper, we do not focus on the detection of genetic interactions across the genome
associated with a particular phenotype. In [2] we illustrated how the first homology
group can be used to detect these interactions.

Models were fine tuned using two standard stepwise protocols from model
selection: forward addition and backward deletion. In consideration of the size
of our data sets, AIC criterion was used during the process. Bias and confidence
intervals for coefficients were estimated using Jackknife. The method was tested on
two breast cancer examples: ERBB2+ patients and ER+ patients.

ERBB2+ tumors are characterized by over-expression of the gene ERBB2.
Over-expression of the gene ERBB2 is commonly associated with a copy number
gain in the region containing the gene in the arm 17¢. We showed that TAaCGH
detected this region in ERBB24- patients [3]. This region originally consisted of
four significant overlapping sections, but we kept only the two mutually exclusive
ones covering the same region (See chromosome ideogram in Fig. 2). After logistic
regression we were able to reduce the region to only one (17q12-q21.31) where the
probe for the ERBB2 gene is located. This single co-variate classified successfully
78% of the ERBB2+ patients (sensitivity) from our validation data set. Increasing
the complexity of the model, like including co-ocurring aberrations, could improve
further the sensitivity.

We expanded our previous results to include cancer positive for Estrogen
Receptor (ER+). These tumors grow faster than other tumors but may be susceptible
for treatment [37]. Using TAaCGH, we identified the full set of co-variates and
confirmed with the displacement of the center of mass most regions reported in
the initial study by SIRAC [29]: 4p, 5q, 6p, 10q and 16q. Our method did not
confirm 10p15.1-p14 nor 12q13.12-q13.2. We also detected and validated with our
independent data set two additional regions that have been reported as relevant for
breast cancer elsewhere: a section from chromosome 5p (p14.3-p12) previously
reported with association with ER [27, 46] detected with Sy homology, and arm
16p [31, 33] detected by the displacement of the CM which is a common CNA
associated with breast cancer [33].
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TAaCGH also detected 2p, 4q and 14q; three arms not reported by SIRAC or
GISTIC, nor confirmed by the Climent data set, but reported in the literature as
connected to breast cancer like 4q25-26, 4q33-34 [45], oncogenes BCL11A[26] at
2pl6.1, MYCN [30, 36] at 2p24.3 and RADS51L1 from 14q24.1 Complete results
are available in Table 5. Interestingly, Arm 6q containing gene (ESR1) was not
significant with TAaCGH nor reported by SIRAC; suggesting that copy number
changes do not regulate the expression of this gene in breast cancer.

Some CNAs that are common to ER+ and ER— might not be detected by
TAaCGH, as the method focuses on what makes them different. Some of these
however can be detected with other methodologies, such as GISTIC [6]. For instance
1q23.3 was detected as amplification by GISTIC. The aberration was present in 68%
of the ER+ patients. However, it was also present in 68% of the ER— patients which
might explain why it was not detected by TAaCGH. Complete results for GISTIC
in Horlings data set are available in Table 16.

After determining whether patients had an aberration or not we built the logistic
model using only 4p, 6p and 16q after stepwise selection. The model correctly
classified 76% of ER+ cases in our validation set (sensitivity). However, there was
an unexpected drop of 27 points in the specificity between the validation set and the
training data set for which the specificity was originally 79%. From our simulations
we learned that having mix with less than 60% of aberrant profiles and a high
standard deviation could be one of the causes for low detection. Interestingly, in
a previous study Tolosi and Lengauer [48] achieved 69.6% accuracy with Climent
data set (the data we use for validation) using Lasso Logistic Regression with
supervised Feature Clustering to control for correlation bias. In their final model
they use 195 clusters of probes. Our method resulted in a similar accuracy of 68.9%
using 3 sections and a simpler model.

In conclusion, by using the topological signature associated with a phenotype,
TAaCGH provides a innovative approach to reduce the high dimensionality charac-
teristic in genomics and detect genome fractions that are relevant for differentiation.
The classification expansion of TAaCGH to determine patients as positive or
negative for specific aberrant regions, allows us to use the signal from the fragments
as input for modeling and prediction. More importantly, the new classification
capabilities of TAaCGH provide a framework to use in combination with other
machine learning tools beyond logistic regression like random forests and support
vector Machines, among others. Eventually, the choice of the modeling tool depends
on the data at hand. Our previous work [3] illustrates a phenotype with four different
cancer molecular subtypes. We are currently exploring a natural extension in which
we are combining the topological signatures, both of copy number for single
aberrations, detected by Bp, and of co-occurring aberrations detected by B; [2],
together with other clinical and genotype variables as input for prediction methods
(algorithms).
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5 Software

TAaCGH can be obtained by contacting Javier Arsuaga directly: e-mail:
jarsuaga@ucdavis.edu.
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Appendix

See Tables 6,7, 8,9, 10, 11, 12, 13, 14, 15, and 16.

Table 6 Four different metrics comparing the average Betti curves from the patients in the
control group (B, Cirly against the average for the test group (ﬂOT ¢ty using filtration parameter €
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After simulations for these metrics, DeWoskin [14] found that the best results are provided by
S§S81. §S; corresponds to the square of the L, norm, SS, measures the difference between the
areas of both curves, SS3 uses relative differences before finding the area under the curve and
§84 is similar to S5, but assigns heavier weights as the filtration parameter increases
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Table 7 Confusion Matrix: true negatives (TN), false negatives (FN), false positives (FP) true
positives (TP), specificity (SPC), sensitivity (TPR), false omission rate (FOR) and positive
predictive value (PPV)

True condition True condition
Predicted Negative =0 Positive = 1
Negative=0 TN FN FOR
true negative false negative = Pre dictel(zll\ll\legative = TNF-}—\IFN
Positive=1  FP TP PPV
false positive true positive = Pre dicteEPPositive = FPTl-PTP
SPC TPR Diff
= Condition Negative ~~ Condition Positive PPV —FOR
Table 8 Three factors with Horlings 7% FOR Diff Climent 7% FOR Diff
heavy impact in the relevance g g
of the variables to become tlizgsa V1% 9% 73 Iz, 13% 1 28%
good predictors s s
117‘1_3,4 26% 10% 43 117‘1_3,4 15% 3 14%

The indicator variables listed corresponds to the
validated (with SIRAC and Climent data set) sig-
nificant sections and arms after applying TAaCGH
to the Horlings data set (left) for ERBB2+ phe-
notype. The same metrics are provided for the
variables from the Climent data set (right). [%:
The penetration of the predictor; that is, the per-
centage of cases equal to 1. False Omission Rate
(FOR =FN/(FN 4 TN)) tells the abundance of pos-
itive cases from the response variable (phenotype)
within the set of cases where the characteristic from /
is absent (I = 0). The Difference (Diff) between the
Positive Predictive Value (PPV =TP/(TP + TN))) and
FOR: Diff = PPV — FOR, represents the difference in
the abundance of the positive response variable (Y =
1) between the two groups formed by the values of
the predictor (%Y = 1 when I = 0 vs %Y = 1 when
I=1)

Table 9 Full logistic

’ Coefficients Estimate Std. error Z-value Pr(>lzl)
regression model for ERBB2

phenotype: sensitivity = 64% Intercept ~ —2.4830 05279 —4.704 2.56e—06
specificity = 96% 15,5 32795  1.0224 3208 0.00134
I$ 09136 09269 0986 0.32428

17¢.54
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Table 10 Accuracy and confusion matrix for the final logistic regression model for ERBB2+
phenotype created with Horlings as training data set and tested with the Climent data set

Horlings
Predicted ERBB2—
Negative TN =50
Positive FP=2

SPC =96.2%

ACC =89.4%

Climent
ERBB2+ ERBB2—
FN=5 TN =159
TP=9 FP=17
TPR =64.3% SPC=90.3%
ACC=89.7%

ERBB2+
FN=2
TP=7
TPR=77.8%

True negatives (TN), false negatives (FN), false positives (FP), true positives (TP), specificity
(SPCO), sensitivity (TPR) and accuracy (ACC = (TP + TN)/total)

Table 11 Full logistic
regression model for ER+
phenotype: sensitivity = 84%,
specificity =75%

Table 12 Logistic regression
model for ER+ after forward
and backward stepwise
selection

Coefficients
Intercept

Coefficients

Intercept
cM

T 16g

Estimate
3.7001
—3.3548
0.1725
—0.6384
—1.5036
—1.3610
—0.3021
1.8620

Estimate
1.8842
—3.3343
—1.5420
2.0582

Std. error

2.2017
1.0639
0.7881
0.9797
0.7977
1.0661
0.9322
0.9510

Std. error

1.0225
0.9377
0.7234
0.9258

Z-value  Pr(>lzl)
1.681 0.09284
—3.153 0.00162
0.219 0.82670
—0.652 0.51466
—1.885 0.05944
—1.277 0.20174
—0.324  0.74589
1.958 0.05025

Z-value  Pr(>lzl)

1.843  0.065359
—3.556  0.000377
—2.132  0.033038

2.223  0.026214

Table 13 Accuracy and confusion matrix for the final logistic regression model for ER+
phenotype created with Horlings as training data set and tested with the Climent data set

Horlings
Predicted ER—
Negative TN =22
Positive FP=6

SPC =78.6%

ACC=178.8%

Climent

ER+ ER—

FN=8 TN =31

TP =30 FP=29

TPR =78.9% SPC=51.7%
ACC=068.9%

ER+
FN=21

TP =280

TPR =79.2%

Notation: True negatives (TN), false negatives (FN), false positives (FP), true positives (TP),

specificity (SPC), sensitivity (TPR) and accuracy (ACC = (TP + TN)/total)
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Table 14 Frequencies for ER against significant CM and sections for TAaCGH with Sy

ER ER

Horlings 0 1 Climent 0 1

IZCPM =0 7 22 FOR = 76% IZCPM =0 34 68 FOR =67%
IZCPM =1 21 16 PPV =43% IZCPM =1 26 33 PPV = 56%
prM =0 2 26 FOR =93% prM =0 16 57 FOR =78%
prM = 26 12 PPV =32% prM =1 44 44 PPV =50%
I@M = 3 14 FOR = 82% I@M =0 18 40 FOR = 69%
I@M = 25 24 PPV =49% I@M =1 42 61 PPV =59%
I5,=0 18 13 FOR =42% I5,=0 32 33 FOR=51%
L,=1 10 25 PPV =71% I,=1 28 68 PPV =71%
15‘;1” =0 4 15 FOR = 79% 15‘;1” =0 16 47 FOR =75%

IEM =1 24 23 PPV =49% M =1 44 54  PPV=55%

Sq Sq
IEM =0 7 25 FOR=78%  IgM =0 35 75 FOR=68%
=1 21 13 PPV =38% gM=1 25 26 PPV=51%
G = 3 8 FOR=73%  IGl =0 24 46 FOR=66%
Gy =125 30 PPV =55% G =1 36 55 PPV=60%
Iy =0 4 12 FOR=75% I} =0 16 43 FOR=73%
Iy =1 24 26 PPV =52% Iy =1 44 58  PPV=57%
Ifg =0 20 17 FOR=46%  I{) =0 5 32 FOR=87%
I =1 8 21 PPV =72% Igh=1 55 69  PPV=56%
cM cM
Iaf=0 11 4 FOR=27% I =0 22 21 FOR=49%

11%34 =1 17 34 PPV =67% 11%34 =1 38 30 PPV = 68%

Left: Horlings data set. Right: Climent data set. Notation: False Omission Rate
(FOR = FN/(FN + TN)) and Positive Predictive Value (PPV = TP/(TP + FP)
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Table 15 Three factors with heavy impact in the relevance of the variables to become good
predictors

Horlings Climent

1% FOR Diff 1% FOR Diff
M 56% 76% -33 I 37% 67% —11%
i 58% 93% —61 i 55% 78% —28
M 74% 82% -33 M 64% 69% —10
i3, 53% 42% 29 i3, 60% 51% 20
M 71% 79% -30 M 61% 75% -20
15 52% 78% —40 15 32% 68% —17
IG5 83% 73% —18 G 57% 66% -5
ey 76% 75% -23 ey 63% 73% -16
I 44% 46% 26 I 77% 87% -31
Gy 77% 27% 40 Gy 73% 49% 19

The indicator variables listed corresponds to the validated (with SIRAC and the Climent data set)
significant sections and arms after applying TAaCGH to the Horlings data set (left) for the positive
Estrogen Receptor (ER+) phenotype. The same metrics are provided for the variables from the
Climent data set (right). Notation: /%: The penetration of the predictor; that is, the percentage of
cases equal to 1. False Omission Rate (FOR = FN/(FN 4 TN)) tells the abundance of positive cases
from the response variable (phenotype) within the set of cases where the characteristic from I is
absent (/ = 0). The Difference (Diff) between the Positive Predictive Value (PPV =TP/(TP 4 TN))
and FOR: Diff = PPV — FOR, represents the difference in the abundance of the positive response
variable (Y = 1) between the two groups formed by the values of the predictor (%Y = 1 when
I =0vs %Y =1whenl =1)
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Table 16 Regions detected
as amplified or deleted by
GISTIC [6]; a standard
methodology used to detect
anomalies in copy number

Arm

1q

3p
3q
4p
5q
7q
8p
8q
10q
12p
13q
17q
17q
18q

Aberration type
Amplification

Deletion
Deletion
Deletion
Deletion
Amplification
Deletion
Amplification
Deletion
Amplification
Deletion
Amplification
Amplification
Deletion

ER negative
1923.3 (68%)
1q41 (54%)
3p14.3 (57%)
3q27.2 (46%)
4p15.2 (57%)
5932 (50%)
7q34 (46%)
8p23.2 (57%)
8q24.11 (64%)
10923.32 (43%)
12p13.33 (36%)
13q14.11 (64%)

17q24.3 (36%)
18q12.2 (36%)

ER positive
1923.3 (68%)
1q41 (66%)

8p23.2 (47%)
8q24.11 (68%)

13q14.11 (61%)
17q23.1 (45%)
17q24.3 (39%)

GISTIC does not compare between two phenotypes, therefore it
doesn’t provide what differentiate them. However, it is informa-
tive to look at those not detected with our method because they
could be common ground for different cancer phenotypes. In an
effort to associate the aberrations from GISTIC to a phenotype,
we computed the proportion of aberrant profiles within ER+ and
within ER— for each of the regions detected by GISTIC. Here
we report only aberrant regions when present in at least 35% of
the cases
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