Finding and Visualizing Time Series Motifs of All
Lengths using the Matrix Profile

(blinded)

Abstract— Many time series analytic tasks can be reduced to
discovering and then reasoning about conserved structures, or
time series motifs. Recently, the Matrix Profile has emerged as the
state-of-the-art for finding time series motifs, allowing the
community to efficiently find time series motifs in large datasets.
The matrix profile reduced time series motif discovery to a process
requiring a single parameter, the length of time series motifs we
expect (or wish) to find. In many cases this is a reasonable
limitation as the user may utilize out-of-band information or
domain knowledge to set this parameter. However, in truly
exploratory data mining, a poor choice of this parameter can
result in failing to find unexpected and exploitable regularities in
the data. In this work, we introduce the Pan Matrix Profile, a new
data structure which contains the nearest neighbor information
for all subsequences of all lengths. This data structure allows the
first truly parameter-free motif discovery algorithm in the
literature. The sheer volume of information produced by our
representation may be overwhelming; thus, we also introduce a
novel visualization tool called the motif-heatmap which allows the
users to discover and reason about repeated structures at a glance.
We demonstrate our ideas on a diverse set of domains including
seismology, bioinformatics, transportation and biology.
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I. INTRODUCTION

In recent years, the Matrix Profile (MP) has emerged as a
promising data structure to support time series data mining. The
MP is a simple data structure that contains the nearest neighbor
information for all subsequences of a given length in a time
series. In the past three years it has been shown that the MP can
be used to facilitate the discovery of motifs [21], discords
(anomalies) [25], chains (evolving patterns) [24], shapelets [21],
snippets [7], regimes [25], and more. However, we argue that
the MP has a strong assumption that limits it practicality by
requiring the user to specify the subsequence length ahead of
time. A data scientist may have a good intuition as to what this
subsequence length should be, based on their experience or a
first principles model of the system being examined. However,
in many cases, particularly for exploratory data mining, the user
may have no idea as to the subsequence lengths at which patterns
are conserved in the data necessitating the need for variable-
length motif discovery.

Consider the one-hundred second excerpt of an EOG
(Electro-oculogram; the movement of an eye) dataset from a 66-
year old healthy male recorded during a sleep study show in Fig.
1. Here we are tasked with identifying regions corresponding to
the “blinking of the eye” in an attempt to remove these regions
from a companion EEG dataset (not shown). Because eye blinks
are not only unique to the individual but also sensitive to the
sensor placement, we cannot use a single “one-size-fits-all”
template. But, given that blinks are typically well-conserved, at
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least during a single sleep session, we can perform motif
discovery to identify an appropriate template. However, the
suggested subsequence length for motif discover is not readily
apparent. We may attempt to rely on the current sleep study
literature in which case [16] suggests “a duration of 1.5 to 2.5
seconds” as the subsequence length. In Fig 1.bottom.left we
show that using 2.5 seconds does indeed discover a highly
conserved motif that corresponds to an eye blink. Moreover,
searching for more examples of this pattern in the full night of
sleep data, we find hundreds of additional examples of this
shape.

A sleep technician might very well be justified in terminating
her search. However, as Fig 1.bottom.right shows, this time
series has a second type of eye-blink artifact with a subsequence
length of five seconds which may not have been considered by
the sleep technician due to the high frequency of the 2.5 second
motif. The fact that eye blinks can be polymorphic seems
underappreciated, but [1] cautions EOG signals can have “more
than one category... classified by shape.” Missing this second
blink artifact would have drastically corrupted the downstream
analytics performed on this dataset.
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Fig. 1. top) One hundred seconds of EOG data. bottom.left) A search for the top
2.5-second motif reveals a highly conserved pattern eye-blink-artifact.
bottom.right) A search for the top 5-second motif reveals another highly
conserved pattern, that has no overlap with the first.

This very basic problem exemplified in an EOG dataset is
ubiquitous in nearly all domains as the user’s choice limits what
regularities can be found in the dataset. In the EOG dataset
shown in Fig. 1, the two motif patterns differ by a factor of two;
however, as this paper will show, other datasets may contain
motifs which can differ by up to two orders of magnitude.

A possible, yet inelegant, solution to this problem is trial and
error over different lengths. Beyond being frustratingly time
consuming and awkward for the user, there is still a real danger
of missing an interesting pattern. Though the definition of a time
series motif is fairly robust to minor changes in length
[13][14][25], there will be some length at which there is a “phase
change”, that is, the location of the motif will “jump” to a
different place in the time series. For example, in Section III.A



we introduce a dataset with a maximal motif for m; = 68, and
a non-related/nonoverlapping maximal motif for m, = 610.

In this work we solve this motif-length sensitivity problem
by introducing the Pan Matrix Profile (PMP), a data structure
that contains a// MP information of a time series with length n
for all lengths in a fixed range r. In addition, we introduce
SKIMP (Scalable KlInetoscopic' Matrix Profile), an algorithm
to compute the PMP with time complexity O(n?r) and space
complexity O(nr). Though untenable for large datasets which
require an exact solution, SKIMP is computed in an anytime
fashion allowing for fast approximate solutions [26]. In almost
all cases, running SKIMP to even one one-hundredth of its full
convergence time will produce results that are almost
indistinguishable from the final product.

Using SKIMP, we believe that all algorithms that exploit the
MP could be made length-agnostic, that is to say, we can have
length-agnostic chains [24], snippets, regimes, etc. However, for
clarity and concreteness, in this work we confine our claims to
motif and anomaly discovery and leave all other considerations
for future work.

The practical application of SKIMP is in facilitating
interactive time series analytics on practical problems in
bioinformatics, seismology, medicine and industry.

The rest of this paper is organized as follows. In Section II
we introduce the relevant notation, background material, and
define the PMP data structure. Section III introduces a family of
algorithms to compute the PMP and several algorithms to
exploit and visualize it. We conduct an extensive empirical
evaluation in Section IV. We defer a discussion of related work
to V, so the readers intuitions for the issues at hand are more
fully developed, before offering conclusions and directions for
future work in Section VL.

II. NOTATION AND BACKGROUND

A. Time Series Notation

We begin by introducing all the necessary definitions,
starting with the data type of interest, time series:

Definition 1: A time series 7 is a sequence of real-valued
numbers ¢;: T=t, t, ..., t, where n is the length of T:

We are typically interested not in global, but local properties
of a time series. A local region of a time series is called a
subsequence:

Definition 2: A subsequence 7j,, of a time series 7 is a
continuous subset of the values from 7 of length m starting from
position i. Formally, T}, = t;, ti+1,..., ti+m-1, Where 1 < i< n-m+1.

Given a query subsequence T, and a time series 7, we can
compute the distance between 7, and all the subsequences in T
with length m. We call this a distance profile:

Definition 3: A distance profile D; corresponding to query
T:» and time series T is a vector of the Pearson correlation
between a given query subsequence 7}, and each subsequence

I A kinetoscope is a sequence of images. As we will show, SKIMP can
be visualized as producing a sequence of motif-heatmaps.

in time series T with length m. Formally, D; = [d;,, di>, ..., din-
m+1], where d;j (I < j <n-m+1) is the distance between 7;,, and
Tjm.

We assume that the distance is measured by Euclidean
distance between z-normalized subsequences [25][21]. Once we
obtain D;, we can extract the nearest neighbor of 7;,, in 7. Note
that if the query T is a subsequence of 7, the i location of
distance profile D; is zero (i.e., d;;= 0) and close to zero just to
the left and right of i. This is called a trivial match in the
literature (See Definition 7). Most of the community follow the
suggestion in [4] to avoid such matches by ignoring an
“exclusion” zone of length m/2 before and after i, the location of
the query [21].

We wish to find the nearest neighbor of every subsequence
in 7. The nearest neighbor information for subsequences with
length m is stored in two meta time series, the matrix profile,
and the matrix profile index:

Definition 4: A matrix profile P of time series T is a vector
of the Euclidean distances between every subsequence of 7,
and its nearest neighbor T;,, in T. Formally, P, = [min(D)),
min(Dy), ..., min(Dy-m+7)], where D; (I <i < n-m+I) is the
distance profile D; corresponding to query 7;,, and time series 7.

The i-th element in the matrix profile P tells us the Euclidean
Distance from subsequence 7}, to its nearest neighbor in time
series T. However, it does not tell us the location of that nearest
neighbor; this is stored in the companion matrix profile index:

Definition 5: A matrix profile index I of time series T is a
vector of integers: I=[1}, I, ... I.m+1], where [;=j if d;; = min(D;).

Fig. 2 illustrates the relationship between distance matrix,
distance profile (Definition 3) and matrix profile (Definition 4).
Each element of the distance matrix d; ; is the distance between
TimandTj, for1 < iandj < n—m+ 1 of time series T.
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Fig. 2. The relationship between the distance matrix, distance profile, and matrix
profile. A distance profile D; is a column (also a row) of the distance matrix. The
matrix profile stores the minimum (off diagonal) value of each column of the
distance matrix; the location of the minimum value within each column is stored
in the companion matrix profile index.

Fig. 3 shows a visual example of a distance profile and a
matrix profile created from the same time series 7. Note that as
we presented it above, the matrix profile uses the z-normalized
Euclidean distance [21]. However, this is logically equivalent to
the Pearson correlation, and we can convert between them with
ease. Some communities prefer to work with Pearson correlation



(especially seismologists [11]) while our work remains agnostic
to such considerations.
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Fig. 3. top) A distance profile D; created from 7;,, shows the distance between
T and all the subsequences in 7. The values in the dark zone are ignored to
avoid trivial matches. bottom) The matrix profile P is the element-wise minimum
of all the distance profiles (D; is one of them). Note that the two lowest values in
P are at the location of the 1% motifin 7.

Definition 6: A Pan Matrix Profile (PMP) of a time series T
is a matrix whose rows are the matrix profiles P; of some time
series T. The PMP is accompanied by a PMP index, recording
the location of the nearest neighbor for each MP in the PMP.

To avoid extracting redundant motifs we must understand the
issue of trivial matches:

Definition 7: (Trivial matches): Given a time series 7' of
length n containing subsequence T}, ,,, if T, ;,, scores highly on
any scoring function, then T;, where je[min(1,p—m/
2), max(p + m/2,n)] will almost certainly score high on the
same function. These spurious high scoring subsequences are
trivial matches.

To avoid the false positives of trivial matches when finding
the top-K matches to a query, we discard some of the patterns
using the concept of an exclusion zone, a standard practice [4].

IITI. COMPUTING THE PAN MATRIX PROFILE

Before introducing algorithms to compute the PMP, we
introduce motif-heatmaps, a technique to visualize the PMP.

A. Visualizing the PMP with Motif Heatmaps

While many algorithms treat the classic MP as a “black box”
[24], it can be very helpful to visualize the MP for exploratory
data analysis. At a quick glance, the MP can be used to visualize
the frequency and fidelity (how well-conserved), and the
location of motifs in a time series (Fig. 3.bottom).

We would like to achieve a similar visualization for the
PMP. To achieve this, we propose mapping each MP to a one-
dimensional row of a bitmap image, recording y-axis heights as
a color gradient using a heatmap.

We illustrate this, in Fig. 4 using a text string analog. Given
the text string:

T: d3icdmyl9gicdmnul9a

we compute its “Matrix Profile” at every subsequence length
from 1 to 5. Here the colors are discrete because subsequences
T;m and T, either match or they do not. Corresponding to
locations at the apex of each dark triangle, we have maximal
motifs of length four beginning at location 3 (i cdm) and length

two beginning at location 8 (19) which correspond to locations
11 and 17, respectively.
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Fig. 4. A binary valued visualization of the PMP where subsequences either
match (black) or don’t match (white) for subsequence lengths m = 1,2, ...,5.
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In a real-valued time series case, the colors of the PMP can
take on subtle graduations of color or grayscale to indicate the
degree of similarity.

Though motif-heatmaps perform a similar role as the
ubiquitous dot-plots used in bioinformatics, they are not directly
comparable, as dot-plots are only defined for discrete data,
although a handful of papers have suggested discretizing real-
valued time series to avail a dot-plot.

B. Computing the PMP

We begin with a concrete statement of the problem we wish
to address:

Problem Definition: Given a time series T of length n, and
a fixed range of subsequence lengths i with lower bound L,
upper bound U, and step size S, we wish to produce the pan
matrix profile PMP whose rows consist of matrix profiles P;:

PMP = [P, Py PU]T

In addition, we wish to produce a matrix PMPI whose rows
consist of the matrix profile index /;:

PMPI = [I, Ip4s - IU]T

Before outlining our solution to this problem, we dismiss
two apparently promising directions. Since the matrix profiles
P; and P;,; will be highly related, we may attempt to “cache”
some calculations used to compute one in order to reduce the
number of computations required to compute the other;
however, to produce meaningful results we use z-normalized
Euclidean distance (or equivalently, Pearson correlation)
[4][14][25][21] which makes such caching impossible. In
addition, given a matrix profile P;, it is impossible to predict or
even produce an upper or lower bound for matrix profile P;
since max(D;) for P;,; may be significantly greater than its
value in P; as shown in Fig. 5 for a toy dataset with embedded
noisy sine waves.

Thus, we believe there is no direct way to exploit the
redundancy of adjacent matrix profiles to reduce computation.
However, as we will show, we do exploit this redundancy to
order our calculations, and achieve a faster convergence in the
early stages of our anytime algorithm [21][26].
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Fig. 5. A real-valued visualization of the Pan Matrix Profile of a time series T
with length 5000 with a magnified “detached motif,” P; < P;,, for some index.

Calculating the PMP for a time series T for a range of
subsequences 1 reduces to the calculation of r matrix profiles
Py, P,, ..., P.. This can easily be calculated using the brute force
algorithm outlined in TABLE 1.

TABLE 1: A BRUTE FORCE ALGORITHM TO CREATE THE PMP
Input: T:

Time series

L: Subsequence length lower bound
U: Subsequence length upper bound
S: Subsequence length range step size
Output: PMP: Pan matrix profile
R=L:8:U0 // [L, L+S, L+2S, ..., U]
PMP = [] // |T| x |R| matrix of zeros

for r in R
PMP. = BuildMP (T, r) // (Definition 4)
return PMP

a s w N

In this algorithm we begin by explicitly specifying the range
R of subsequence lengths we wish to explore (line 1) and then
calculate the matrix profile B. for consecutive subsequence
lengths L + iS fori = 0, ..., (U — L)/S (lines 3-4). In line 4 we
use the . MP, currently SCRIMP or STOMP [25][21]. Using this
algorithm, we can generate the complete PMP shown in Fig. 6
with maximal motifs at subsequence length m; = 68 and m, =
610. An approximation of the PMP is depicted in Fig. 6 after 16
iterations, that is, after calculating Py, P,, ..., P;¢, about 2% of
the exact PMP has been calculated.
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Fig. 6. The PMP of a time series T with length n = 8330 where we consider
susbequence lengths bounded by lower bound L = 1, upper bound U = 800,
and step size S = 1. The slice m = 610 corresponds to matrix profile Py,
which has minimal values at t;, = 7157 and t, = 7757. Note that this example
is based on real data shown in Section IV.B.

Until relatively recently, computing this would have
required R invocations of an O(n?r) algorithm. As we will
show in our experimental section, R could be over 10,000,
making this algorithm completely untenable. The STOMP
algorithm [25] is able to compute a single MP in just O(n?)
time, giving us an overall O(n?R) algorithm to compute the
PMP. This may be tenable for small datasets, especially if we
avail the GPU or multicore versions of STOMP that now exist
[25]; however, it is clearly limiting given the typical sized
datasets that modern data analysts need to deal with.
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Fig. 7. An approximation of the exact PMP depicted in Fig. 6. After calculating
16 matrix profiles Py, P,, ..., Py or performing 2% of the required work, a little
over 2% of the exact PMP has been calculated.

Though we strongly suspect that O (n?R) may be optimal for
the task-at-hand, our key insight is while it may take O(n?R)
time to converge to the exact answer, by carefully ordering the
computations, we can typically allow it to converge to 99% of
the exact answer, after doing less than 1% of the computations.
By computing the PMP with a novel anytime algorithm, we can
increase the size of datasets considered by at least two orders of
magnitude.

Before continuing, it is important to ward off a possible
misunderstanding. There already exist anytime algorithms to
compute the MP, in particular STAMP [21] and the more
recently introduced SCRIMP [25]. However, these algorithms
only compute a single MP. To ensure fast convergence of the
PMP we must optimize anytime performance at a higher level.

C. SKIMP: An Anytime Algorithm to Compute PMP

We are finally in a position to introduce SKIMP, which we
outline in TABLE 2. Unlike brute-force search, SKIMP
recursively subdivides the range into equally spaced regions
with increasing granularity (line 1-2). This has a similar effect
to iterating through a balanced binary search tree on the range
r=1[12,..,(U — L)/S] using breadth-first search.

TABLE 2: THE SKIMP ALGORITHM

T: Time series

L: Subsequence length lower bound
U: Subsequence length upper bound
S: Subsequence length range step size
Pan matrix profile

Input:

Output:  PMP:

1 T = BuildBalancedBST(L,U,S)

2 | R = BFS(T)

3 PMP = [] // |T| x |R| matrix of zeros

4 for r in R

5 PMP, = BuildMP (T, r) // (Definition 4)
6 return PMP




As the initialized PMP (line 3) is approximated for each
subsequence 7 in R (line 4-5), we see a “blocky” approximation
of triangles being progressively refined exemplified in Fig. 8.
The example shown is slightly cleaned and contrived for clear
display in this limited format of presentation, but [27] contains
videos of this process created on several real-world datasets.
This process is reminiscent of the classic idea of progressive
refinement of raster images [17]; however, in that case, the
limiting factor was bandwidth, while for us it is CPU time.

0.5% of the work done h h
1% of the work done 1 |h h

100% of the work done . “

Fig. 8. A visual trace of the PMP shown in Fig. 6 approximated using known PMP
values. fop) After four iterations a single motif has been located. middie) A new
motif with a significantly smaller subsequence length is located while the initially
discovered motifis refined. bottom) The complete PMP as shown in Fig. 6.

As we will show in Section IV, SKIMP’s approximation of
the PMP depicted in Fig. 6, and many other real-world datasets
converge significantly faster than brute-force search, typically
achieving 99% accuracy in less than 1% of the work.

D. Ranking Motifs of Different Lengths

Given that SKIMP will allow us the possibility to find motifs
of any length in the range r, it is natural to ask how we can rank
motifs of different lengths. In many cases, we envision that a
higher-level algorithm will make requests for motifs of different
lengths, based on its own criteria (which could possibly include
out-of-band information), thus absolving us of the responsibility
to address this question. Nevertheless, it is an interesting
question to answer. For a handful of user cases, especially on
relatively small datasets, we envision this being an interactive
process. Thus, we have built an interactive and visual tool to
allow a user to explore and discover multiple length motifs.
Nevertheless, we clearly need an algorithm that allows us to
meaningfully rank motifs of different lengths.

The question largely reduces to how we trade-off fidelity vs.
length. For example, which of the following pairs of strings
should we adjudge more similar, {rat|rod} or
{rhinoceros|rhinovirus}? A naive application of string
edit distance would rank the former more similar, however most
people would find the latter pair more similar. Normalizing by
dividing by the length of the strings achieves this [20].

However, a linear trade-off for fidelity vs. length is not
appropriate for time series. Using the Euclidean distance, we
normalize all MPs by dividing by the square root of the
reciprocal of the length of the subsequence [13]. Of course, if
we work in the correlation space, this is a non-issue.

E. Computing PMP with Unbounded U

The PMP allows for the first truly parameter-free algorithm
for finding time series motifs (we could envision several
algorithms to find motifs from the PMP, in Section III.C we gave
one such example). While L is bounded by the shortest logical

subsequence length, and S simply affects the desired level of
granularity, the reader may argue that the value of U is a
parameter and could be as long as n/2. However, U is only a
parameter in a very weak sense, so long as it is larger than the
length of the longest motif in the data, its value is
inconsequential. For example, in our termite DNA example in
Section IV.B the longest motif has length 610. As we did not
know this in advance, we set U to a very conservative 2,400.
This clearly worked, but one could argue that about 75% of the
computations (from 618 to 2,400) were wasted. Can we prevent
such wasted computations?

If we assume that we have a test to detect when the first row
(from L upwards) of the PMP is devoid of meaningful motifs,
then a simple algorithm suggests itself. We can compute this test
on the MP; with i = L, then iteratively double i, computing
then testing MP; until the test fails. We can then use 7 as the value
of U, and simply call the SKIMP algorithm.

Note that since we have already computed log,(U) of the
IRl = (U—L)/S MPs that SKIMP will compute, we can
slightly modify SKIMP to ingest these MP and avoid
recomputing them.

This idea is predicated on the assumption that we have a test
to detect when the first row of the PMP is devoid of meaningful
motifs. One way to achieve this, is to set a threshold for the
correlation. We can calculate the maximum correlation for each
subsequence and if the correlation falls below the threshold then
we stop calculating the PMP for the larger subsequence length
as outlined in TABLE 3.

TABLE 3: FINDING A SUITABLE UPPERBOUND FOR U

Input: T: Time Series
t: Threshold
Output:  S: Maximum subsequence length

// 8 is the shortest sensible motif

c = maximum (PCmatrixProfile (T, k))
k =k * 2 // iteratively double

1
2
3 while(c >= t) // t is set with domain knowledge
4
5
6 | return k

Using this algorithm Fig. 9 indicates a suitable upper bound
at subsequence length 660 when using a maximum correlation
threshold of t = 0.988 on a mtDNA sequence of Coptotermes
suzhouensis (a termite) depicted in Fig. 14. Gratifyingly, we see
dip just after 612, the objectively correct location [12].

10 500 660 1000 1500 2000 2400

Fig. 9. The maximum correlation for different subsequence length from a
mtDNA sequence of C. suzhouensis depicted in Fig. 14. Setting the threshold to
0.988 stops calculation of PMP for lengths greater than 660.

This opens the question of how we can set £. While this is a
domain dependent value, it seems to be robust within a single
domain. For example, t = 0.988 worked well on the termite
DNA, the soybean DNA (Fig. 18), and all other DNA data we
considered.



F. Extracting the Top-K motifs

An almost trivial application of the PMP is our algorithm for
extracting the length agnostic top- K motifs as outlined in
TABLE 4.

TABLE 4: DISCOVERING TOP-K MOTIFS (ANOMALIES)

Input: PMP: Pan Matrix Profile
T: Time series
k: Number of motifs
Output: TM:  top-K motifs
1 ™ ~ {}
2 while |TM| < k
3 [idx, s] = maximum (PMP)
4 if TM is not covering T[idx:idx + s]
5 TM « T[idx: idx + s]
6 Apply exclusion zone // Definition 7
7 | return T

Given a time series T, the corresponding PMP for some
range, and a user-defined value for the number of motifs k, our
algorithm returns the subsequences T; ,,, which correspond to the
top- k motifs of the PMP. To extract the top-k motifs, we
repeatedly search the PMP for its minimum value (line 3) and
then add the corresponding subsequence to our top-k motifs TM
only if TM does not span the subsequence (lines 4-5).
Afterwards, we apply an exclusion zone using the recovered
subsequences to ensure we do not find a trivial match (line 6).
Using this algorithm, we discovered the top-2 motifs for the
mitochondrial DNA sequence shown in Fig. 14 T;;13 615 and
T7002,70 and their respective nearest neighbors T;44g¢15 and
T6900,70 Which is in near perfect agreement with the ground truth
noted in [12] and will be illustrated in Fig. 14.

G. Anomaly Detection

The previous algorithms for detecting subsequence length
agnostic top-k motifs can be easily modified to detect anomalies
with variable lengths. By “inverting” the PMP, PMP' =1 —
PMP the top- k motifs produced by the algorithm would
correspond to the top- k anomalies. We exemplify this
algorithm’s ability to perform anomaly detection on an
automated pedestrian counting system developed in Taipei to
better understand pedestrian activity within the municipality.
This information examines how people use different city
locations at different times of day to better inform decision-
making and infrastructure planning. We extract data from the
Xindian District Office as shown in Fig. 10.

Dec,2015 Mar,2017

Fig. 10. Pedestrian count data from Taipei Xindian District Office metro station
starting on December 2015 and ending at March 2017.

Fig. 11 shows one fairly typical week of this behavior.
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Fig. 11. One fairly typical week data of the pedestrian counting data of Taipei.

After computing the PMP for this data from L = 20 points
(~one day) to U= 200 points (~10 days), we can then extract the
top-k anomalies using the modified version of the top-k motifs
algorithm described in Section F.

Fig. 12 shows the top-4 anomalies that exist in this dataset
with the anomaly shown in red.
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top-4 July 7, 2016
Fig. 12. The top-4 anomalies (red) detected for the data shown in Fig. 10.

Note that these four anomalies represent four different
lengths. The first anomalies length is 27 points (~one day). We
found the ground truth for this event which is described by [26]
as "On September 26/27, 2016 ... Typhoon Megi ... (made)
landfall on Taiwan’s southeast coast" The second and third
anomalies belong to Republic day/New year's day and Chinese
New Year's Eve with a length of 59 (~2.5 days) and 185 points
(~one week). The last anomalies' length is 32 points (~1.5 days)
which is reported by [5] as "The storm is predicted to make
landfall on the island nation on July 7."

If we set the length of classic anomaly detection algorithm
to one dayi, it fails to find Chinese New Year's Eve or Republic
Day/New year's day. In contrast, if we set the length of classic
anomaly detection to one week, we cannot detect the other
anomalies are that are present in Fig. 12. This strongly motivates
the need for computing similarity search for variable length.

IV. EXPERIMENTAL EVALUATION

To ensure that our experiments are reproducible, we have
built a website [27] which contains all data/code/raw
spreadsheets for the results, in addition to many experiments that
are omitted here for brevity. Unless otherwise stated, all
experiments were run on a Dell XPS 8920, with Intel Core i7-
7700 CPU @ 3.6GHz and 64GB RAM.

A. A Benchmark for the All-Length Motif Problem

To concretely ground our ideas throughout this paper, let us
consider a motivating problem introduced to us by (blinded).
They are interested in finding motifs in time series from a large
industrial distillation column. The apparatus is massive with
great thermal and mechanical inertia, so that it suffices to sample
it once per minute (1/60 Hertz). When doing analytics, it is
common for them to consider data from the previous year; thus,
we have a time series with n = 525,600 points. Let us call this
dataset DisCol. Occasionally, DisCol is searched for motifs
which are used in downstream analytics to perform root-cause
analysis. Though most patterns last for about a day, the fast
cooling process of the apparatus by a summer rain shown can
induce patterns lasting for only a few hours; thus, there is great
uncertainty in the potential length of motifs motivating the
desire to identify motifs between the length of one hour (L = 60



minutes) and one day (U = 1,440 minutes), a range of |R| =
1,380 values.

Prior to the introduction of the Matrix Profile, the only exact
algorithm to find all such high-dimensional motifs was brute
force search, which would take O(n*?) time. The factor r
appears both as the subsequence length (more conventionally
denoted m), and the number of times we must run the motif
search. Concretely, on our desktop, this would require about 48
years. Using the recently introduced STOMP algorithm, which
can find motifs of a fixed length in time independent of that
length, this can be reduced to O(n?r) time, or about 23 hours.
However, since STOMP is a batch algorithm, it is natural to ask
how quickly we can converge to an acceptable approximation of
the final PMP.

We have created a proxy for the data in question by editing
together some publicly available industrial benchmarks from a
similar process. In Fig. 13 we show how fast SKIMP converges
on this dataset.
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Strawman: Brute-Force Algorithm (TABLE 1)

SKIMP: Aftera few iterations, the current estimate of the PMP
coverges to a close approximation of the true PMP (TABLE 2)
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Fig. 13. The root-mean-square error of our approximation of the fully converged
PMP when using SKIMP and the brute-force algorithms. When compared to the
ten hours required to fully compute the PMP using the brute-force algorithm
(TABLE 1), SKIMP required less than 41 min, or 3% of the required effort to
achieve an approximation with less than 10% error. A video showing the
convergence of the PMP approximation using SKIMP is available at [27].

In an ideal case, there should exist an approximation of the
PMP which converges to the exact PMP using a small fraction
of the effort required to compute the complete PMP. In less than
3% of the required effort, SKIMP was able to approximate the
full PMP with less than a 10% root-mean-square error. Though
it may seem as if the root-mean-square error plot depicted in Fig.
19 converges slower than the plots depicted in Fig. 13 and Fig.
20, this plot is significantly shorter (by an order of magnitude)
but still only requires a handful of iterations before converging
to the complete PMP.

B. DNA-Based Benchmarks for the All-Length Motif Problem

To demonstrate the utility and correctness of time series
motif length discovery, we exploit a technique long used by the
time series data mining community. By converting discrete
DNA sequences to real-valued time series, we can explore the
time series space of the DNA sequence and then attempt to
confirm our findings with molecular biologists. In Fig. 14 we
show the complete mitochondrial DNA sequence of
Coptotermes suzhouensis, a subterranean termite pest of wooden
structures as a real-valued time series and its corresponding
PMP as a motif-heatmap in Fig. 15.

Coptotermes suzhouensis
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Fig. 14. The mitochondrial DNA sequence of five randomly chosen insects,
including the 16,326 bp mitochondrial DNA sequence of Coptotermes
suzhouensis (blue).

These results are suggestive of a strongly conserved motif of
a length of about 610 in the center of the sequence. In a recent
paper announcing the complete mitochondrial genome of this
insect, the authors noted that the mitogenome had two repeat
units, A and B. Unit A is just 66 bp long, however “The B
repeats consisted of one complete unit Bl (562 bp) and a partial
unit B2 (38 bp)” [12]. The reader will appreciate that 562 + 38
sums to 610, which is just 0.03% less than our suggested motif
length of 612 for this dataset.

2400

1200

0

i
0 8000 16000

Fig. 15. A motif-heatmap of (the time series representation of) the mitochondrial
DNA sequence of Coptotermes suzhouensis in Fig. 14 from L= 10 to U = 2,400.

Moreover, if we zoom in as shown in Fig. 16, the A motif is
also clearly visible.
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Fig. 16. A zoom-in of the center bottom of Fig. 15 shows that the motif heatmap
also discovered the much shorter A motif.
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The reader may wonder if DNA time series is “too easy”
given the level of conservation observed. To address this, we can
revisit our termite example. This time, before converting the
DNA string to time series, we randomly changed every base
with a one in sixty-four probability, simulating a high mutation
rate. As the motif heatmap in Fig. 17 reveals, this level of noise
makes no appreciable difference in our ability to find the motifs.
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Fig. 17. (contrast with Fig. 15) A motif-heatmap of (the time series
representation of) the mtDNA of sequence Coptotermes suzhouensis after 1-in-
64 bases were randomly changed.

Above we have demonstrated our technique on an insect
which was chosen to be visually clear in two-column format, but
it is arguably too simple to really challenge our algorithms. In
order to stress test SKIMP, we can turn to plant mtDNA. It has
long been noted that “Unlike the relatively simple mitochondrial
genomes of animals, the genomes of nonparasitic flowering
plant mitochondria are large and complex.” [1]. Thus, we
consider the mitochondrial genome of Soybean (Glycine max)
[3]. Because it is 402,540 bp long and has repeats that differ over
three orders of magnitude in length, it is difficult to do it full
justice in this paper. In the accompanying web materials [27],
we show a video of our methods applied to it, and here we
content ourselves with a figure that allows us to see only the
longer motifs.

From the literature we know that repeats in plants may be as
long as 10,000, thus we consider L = 1,000, U = 10,000,
with § = 1. To run this dataset to convergence requires about
42 days, however, as the video at [27] shows, in about half a day,
the basic shape of the final motif heatmap has already emerged.
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Fig. 18. bottom) The mtDBA of Soybean in a time series representation. fop) The
motif-heatmap of Soybean. The location and length of two motifs are
highlighted. As [3] discovered, the (location//ength) of the first occurrence of R2
is (33,155/4,692), which is very close to our result of (33,129/4,800). Similarly,
[3] notes the (location/length) of R1d is (255,146/6,502), we discovered a motif
the exactly the right location 255,146, with a slightly different length 6,850.

This experiment offers strong evidence of the utility of our
anytime approach. In addition, SKIMP was able to approximate
the PMP with less than 10% root-mean-square error when
performing less than 4% of the required effort as shown in Fig. 19.

Note that such DNA repeats could also be visualized using
dot-plots. However, recall that dot-plots require O(n?) space,
whereas motif-heat maps require only O(nr) space, and their
long aspect ratio is amenable to panning interactions when
dealing with long sequences. More importantly, dot-plots are
only well defined for discrete strings while motif-heat maps
facilitate the visualization of real-valued data.

C. All-Length Motifs in Seismology

In this section we consider motif discovery in seismic data.
It may not be obvious, but two earthquakes from the same
location, even if recorded decades apart, will have similar
waveforms. The waveform similarity results show that the

waveform from the source to station is affected by the same
process (i.e., seismic refraction, reverberation, and reflections).
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Fig. 19. The change in the root-mean-square error when approximating the PMP
after performing a fraction of the work required to compute the PMP to
convergence on the mtDBA Soybean time series representation. Using less than
4% of the time required to compute the entire PMP, SKIMP found an
apporximation to the PMP which had a root-mean-square error of less than 10%.
A video showing the converging of SKIMP is available at [27].

Seismologists can exploit different aspects of seismograms
(e.g., seismic wave amplitude at various stations) to calculate the
magnitude of earthquakes. One simple method of calculating
earthquake magnitudes is to use the duration of the earthquake
signals, and then apply a formula to map it to magnitude [2][11].
One problem of using this method is that although the onset of
the earthquake signal is usually clear, the tail of earthquake
signal cannot always be determined clearly as the signal
saturates in the background seismic noise. Moreover, for distant
events, the exact timing of the onset may also be difficult to
determine. This process is usually performed by visual
inspection of the earthquake waveforms and thus requires
human effort [2] and can contain bias/error from using different
analysts.

Here we tested the PMP as an alternative way of estimating
duration magnitude for local earthquakes. We picked four
earthquakes from seismicity in the central San Andreas fault
near Parkfield, CA and tested our approach using the data
recorded at a PGH station from the northern California seismic
network. We considered 260 seconds of the gain controlled
seismic data at 20 Hz.

’ 250 Seconds 20,000

Fig. 20. Concatenated seismic waveform (after applying a gain control) recorded
at PGH seismic station and resampled at 20 Hz for four earthquakes located near
the Central San Andreas fault, near Parkfield, CA. leff) the full dataset.

It is important to note that we only processed the data by
deleting irrelevant sections, bringing four events within a 260
second time span, to allow us to create intuitive plots.

A classic equation to map duration to amplitude is [11]:
My = 2.0(logT) + 0.0035T — 0.87 + stacor (1)

Here M, is the earthquake magnitude calculated based on
duration, T is the earthquake waveform duration, and stacor
(station correction term) is a constant that depends on the
station’s characteristics (instrument, near the station structural
properties) and methods [11]. In this case, we do not have the



stacor parameter, and therefore, we cannot calculate the
absolute magnitude from the PMP. However, if we take the
difference between magnitude of two events, the stacor term
cancels, and we can test if the PMP approach can estimate the
difference between two earthquake magnitudes. With this in
mind, we computed the PMP as shown in Fig. 21.

2,000 | 860 at 20 Hz is 43 seconds
410 at 20 Hz is 21 seconds
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Fig. 21. A motif-heatmap of the PGH (Parkfield, CA) seismic data. The events
shown originate from two distinct locations where Event-1 and Event-3 are from
one origin and Event-2 and Event-4 are from another.

We ran our top-k motifalgorithm with k = 2. The algorithm
indicated a length of ~43 seconds for Event-1 and Event-3 and
~21 seconds for Event-2 and Event-4.

By plugging these values into (1), we estimated the
magnitude difference between earthquakes to be 0.70. The
Northern California Earthquake Catalog Search (NCSN) catalog
[13] reports the local magnitude of Event-1 (event ID number
21476722) is 2.00 and Event-2 (event ID number 21432310) is
1.25. Thus, the values from the NCSN catalog indicate the
difference between magnitudes to be around 0.75, in close
agreement with our estimate of 0.70.

Fig. 22 shows SKIMP approximating the PMP spanning a
range of subsequence lengths from 10 to 2000 which reduced
the approximation’s error to less than 10% while performing
only 15% of the required time and effort.
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Fig. 22. The root-mean-square error of our PMP approximation using the SKIMP
and brute-force algorithms on seismic waveform data. SKIMP achieved a root-
mean-square error of less than 10% when using only 15% of the time and effort
required to fully compute the PMP. A video showing the convergence of the
PMP approximation using SKIMP is available at [27].

Note that our method is fully automated and can be used at
large scale. In contrast, traditional methods are subjective and
require significant human effort. For example [2] noted, “The
estimate of event duration is visually defined by the analysts
from P-onset time until the point when the signal envelope
decays down to the pre-event noise level. Nevertheless, (because
of human subjectivity) definition of event duration is not
homogeneous at each observatory.”

D. Reducing Space Requirements

Recall our motivating problem was DisCol. For this dataset
we wish to support length agnostic motif search in the range of
one hour to one day, at one minute steps, which requires storing
1,380 Matrix Profiles and Matrix Profile Indices for the PMP.

Naively, the memory requirement for this is as follows: for
the Matrix Profiles, 527,040 %X 1,380 X 4 bytes = 5.81
gigabytes and for the Matrix Profiles Indices, 527,040 X
1,380 X 4 bytes = 2.90 gigabytes, totaling 8.72 gigabytes. This
is not untenable for modern machines, but it is uncomfortably
large. Can we improve this?

The first observation is that we do not need the Matrix
Profiles Indices to create the motif heatmaps. So, as each one is
computed in line 4 of TABLE 2, we can flush them to disk, just
in case one of them is later requested by some downstream
algorithm.

The second observation is that if our main task is to produce
a motif-heatmap, then we do not need to keep all 527,040 values
of each Matrix Profile, as this would give us a finer resolution
that we could possibly display. We have at most 7,680 pixels
(the 8K standard) of width to specify. Thus, we can aggregate
chunks of values, map them to a single pixel, and then flush the
original higher resolution Matrix Profile to disk in case one of
them is later requested by some downstream algorithm.

Given this basic approach, there is no real memory
bottleneck for computing the PMP.

V. RELATED WORK

The literature on time series motif discovery is large and
growing, see [21] and the references therein. However, to the
best of our knowledge, there are no other algorithms that can
approximately or exactly discover all motifs of arbitrary lengths.

The work closest in spirit to ours is VALMOD [13]. The idea
of VALMOD is to compute the MP for the shortest length of
interest, then use the information gleaned from it to guide a
search through longer subsequence lengths, exploiting lower
bounds to prune off some calculations. This idea works well for
the first few of the longer subsequence lengths, but the lower
bounds progressively weaken, making the pruning ineffective.
Thus, in the five case studies they presented, the mean value of
U/L was just 1.24. In contrast, consider that our termite example
in Fig. 15 has a U/L ratio of 240, more than two orders of
magnitude larger. Thus, VALMOD is perhaps best seen as
finding motifs with some tolerance for a slightly (~25%) too
short user-specified query length, rather than a true “motif-of-
all-lengths” algorithm. Also note that apart from the shortest
length, VALMOD only gives some information for the other
lengths, unlike PMP, which contains exact distances for all
subsequences of all lengths.

In a sequence of papers, Lin and colleagues introduce a
series of tools to allow interactive discovery of variable-length
time series patterns [22]. However, this work is not directly
comparable to PMP. First, because they use a discretized
representation of the data (for efficiency), they are always
condemned to finding approximate answers. Second, the system
only returns information about a small subset of the patterns,
whereas PMP contains exact distances for all subsequences of



all lengths. Finally, there are many parameters to be set and
choices to be made in the grammar inference algorithm.
However, like us, the authors see great value in attempting to
visualize the results of the motif search.

Unsurprisingly, given the explosion of interest in deep
learning, there is at least one paper on “deep” motifs [9].
However, in spite of the title of the work, the
algorithms/representations presented are what the data mining
community would call (semi-supervised) clustering, not motif
discovery.

Note that our ability to find motifs without specifying their
length ahead of time, removes the final parameter in time series
motif discovery. While progress in data mining is often
measured only in time or accuracy, we would argue that this is
a significant milestone. The first paper to propose time series
motif discovery required the user to set five parameters (length,
SAX cardinality, SAX dimensionality, mask size, iterations) [4].
Mueen managed to reduce this to just two (length, number of
reference points) [14], and the original Matrix Profile reduced it
to just one (length) [21]. Every reduction in the number of
parameters seems to have been accompanied by a dramatic
increase in the number of practitioners exploiting motif
discovery. We hope that this final reduction will continue this
trend.

VI. CONCLUSIONS

We have introduced the first practical technique to find
motifs and discords [21] for all lengths. Given the glut of
information that this provides, we have also introduced a novel
visualization that allows a practitioner to understand the
location, length, and fidelity of all motifs in her dataset. We have
shown that these new tools allow us to find useful conserved
structures and anomalies in domains as diverse as
bioinformatics, transportation, and seismology.

In future work plan to investigate the implications of our
ideas for other algorithms that exploit the matrix profile,
including chain discovery [24] and segmentation.
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