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ABSTRACT

We propose a method for analyzing extremal behavior through the lens of a most efficient basis of vectors.
The method is analogous to principal component analysis, but is based on methods from extreme value
analysis. Specifically, rather than decomposing a covariance or correlation matrix, we obtain our basis vectors
by performing an eigendecomposition of a matrix that describes pairwise extremal dependence. We apply the
method to precipitation observations over the contiguous United States. We find that the time series of large
coefficients associated with the leading eigenvector shows very strong evidence of a positive trend, and there is
evidence that large coefficients of other eigenvectors have relationships with El Niflo-Southern Oscillation.

1. Introduction

There is great current interest in understanding pat-
terns and trends of extreme weather events. Of partic-
ular recent interest has been the quantification of the
influence of anthropogenic climate change on specific
individual extreme weather events (National Academies
of Sciences, Engineering, and Medicine 2016). Climate
change affects extreme weather locally through ther-
modynamically driven processes as well as nonlocally
through changes in the statistics of the large-scale me-
teorological patterns conducive to extreme weather.

This work proposes a new tool for exploring patterns
and trends of extreme weather; specifically, we propose an
extremes analog to principal component analysis (PCA).
Toillustrate the method, we apply it to 3-day precipitation
data from continental U.S. (CONUS) weather stations
during hurricane season and investigate overall trends of
extreme precipitation as well as relationships to El Nifio—
Southern Oscillation (ENSO). However, the method is not
specific to precipitation studies and could be applied to
explore any climate variable of interest.
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PCA (also, empirical orthogonal function analysis)
is a popular tool in climate science that reduces a large
set of variables into a smaller, more interpretable, set
(Wilks 2011, chapter 12). High-dimensional dependence
is viewed through the lens of the ordered basis of
eigenvectors of the covariance matrix. PCA is best suited
to variables that are approximately Gaussian and whose
dependence follows the elliptical contours of a Gaussian
density. Because short-term precipitation is positively
skewed and almost always contains a substantial fraction
of values that are exactly zero, PCA is more often ap-
plied to monthly or season precipitation (e.g., Uvo 2003;
He et al. 2017), although some PCA studies of shorter
duration precipitation have been performed (e.g.,
Widmann and Schir 1997).

More importantly, because it arises from the covari-
ance matrix, standard PCA is poorly suited to study
extreme behavior of any variable of interest. The co-
variance matrix describes dependence at the center of
the distribution and may not accurately capture depen-
dence in the joint tail. Also, when studying extreme
behavior, there is almost always a direction of interest;
for example, in our study we seek to learn about large
precipitation events, and are uninterested in this study in
small precipitation events. Covariance measures linear
dependence in both directions from center, and depen-
dence among stations for low precipitation likely differs
from that for high precipitation, as high precipitation is
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often very localized, whereas lack of precipitation is
generally more widespread.

Extreme value analysis is the branch of statistics
specifically aimed at describing the tail of the distribu-
tion. Extreme value theory classifies the upper tail of
a distribution as ‘“bounded” (having a finite upper
bound), “light” (infinite upper bound and essentially
decreasing like an exponential function), or “heavy”
(infinite upper bound and decreasing like a power
function). To focus on the tail, extremes methods use
only a subset of the extreme data and the rest are dis-
carded. When studying extremes for a single climate
variable, fitting the generalized extreme value (GEV)
distribution to the block maxima or fitting the general-
ized Pareto distribution (GPD) to large values over
some threshold have become a common practice in cli-
mate science (Wilks 2011, section 4.4.5).

Our method begins with the notion of tail dependence,
and a few studies in atmospheric science have investi-
gated tail dependence in the bivariate case. Timmermans
et al. (2019) use an extremal dependence measure to
compare extreme precipitation in gridded data products
for the continental United States, Weller et al. (2013) use
the same measure to compare the precipitation extremes
in the observational record to those produced by re-
analysis, and Kuhn et al. (2007) use a related measure to
describe the extremal dependence in precipitation ex-
tremes at different locations in South America. Ben
Alaya et al. (2018) use bivariate extreme value theory to
model the relationship between two components under-
lying a calculation of probable maximum precipitation.
There has also been an abundance of work developing
spatial models for extremes and applying them in various
settings; Davison et al. (2019) give a recent summary.
Spatial extremes models are parameterized by making
simplifying assumptions about the spatial behavior of
dependence and are well suited for modeling aggregated
effects across multiple locations of extreme events.
Spatial extremes models are typically used to model
local or regional extremes, but have not been applied on
the continental scale. Furthermore, these models be-
come difficult to fit as the number of locations increases.

The method we propose here differs in that it is pri-
marily for exploration of extremal behavior when the
dimension is very large: our application looks at over 1000
station locations spread over the continental United
States. Our method is rooted in multivariate extreme
value theory; specifically, our approach relies on the
framework of multivariate regular variation. There are
other representations for multivariate extremes such as
the multivariate extreme value distributions (de Haan
and Ferreira 2006, chapter 6) and the multivariate GPD
(Rootzén and Tajvidi 2006), but all have very closely
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related dependence structures. Similar to traditional
PCA, we will summarize the tail dependence informa-
tion in a matrix of pairwise extreme dependence metrics.
We then perform an eigendecomposition of this tail
pairwise dependence matrix (TPDM; Cooley and Thibaud
2019), and view extremal dependence through the lens of a
resulting eigenbasis.

2. Extremal dependence and eigendecomposition
a. A framework for multivariate extremes

The foundation of our method is the framework of
multivariate regular variation. Essentially, a random
vector that is multivariate regularly varying is one that is
heavy-tailed in all its dimensions. Importantly, the def-
inition of multivariate regular variation only describes
the upper tail; thus, like the GEV and GPD univariate
extremes models, the framework focuses on extreme
behavior and does not characterize the full distribution.
The probabilistic behavior of a multivariate regularly
varying random vector is most easily described after
polar transformation, as the magnitude and direction of
the vector are approximately independent for large
observations.

Let X be a regularly varying random vector taking
values on [0, ©)”. We work on the p-dimensional positive
orthant, as this allows us to focus on the large values and
ignore the small values, which are of no interest. A
formal definition of regular variation requires ideas of
convergence; more details can be found in Cooley and
Thibaud (2019), and Resnick (2007) gives comprehen-
sive treatment of regular variation. For our purposes
here, it suffices to say that we assume if A is a set con-
sisting of large values (sufficiently far away from the
origin), then

ar * VdrdH(w). 1)

P(X € A)x J
(r,w)eA

Here, the symbol « denotes ‘“‘approximately propor-
tional to,” a > 0, r refers to the magnitude or radial
component of the location, w is a location on the unit
sphere S = {w € R4 ||w|| =1}, and H is a measure on
the unit sphere S. The heavy-tailed nature of the distri-
bution is shown in that r in the integrand has power-law
behavior given by a. As « decreases, the tail becomes
heavier, and « is the reciprocal of &, the shape parameter
of GEV distribution in Coles (2001) and elsewhere.
Figure 1 illustrates regular variation’s polar represen-
tation in two dimensions.

Assuming (1), the probabilistic behavior of extreme
events is characterized by the tail index a and the
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F1G. 1. Illustration of the polar form of regular variation in two
dimensions. As points become large, the magnitude given by the
radial component r becomes independent of the direction or an-
gular component w € S. Dependence information is contained in
the measure H that lives on S and can be thought of as a (perhaps
unnormalized) distribution of the angular components.

angular measure H, which describes tail dependence. In
two dimensions as in Fig. 1, dependence increases as the
mass of H concentrates in the center of S, as this implies
that when the magnitude of X is large, both components
tend to be large since values of w near the center of S
have roughly equal values.

Asymptotic independence is a fundamental notion of tail
dependence. Let x;(p) and x,(p) denote the pth quantile of
random variables X; and X, respectively. Note that X; and
X> are asymptotically independent if lim,, .1 P[X5> > xx(p)|
X1 > x1(p)] = 0, and asymptotically dependent if this limit is
greater than zero. If X; and X, are jointly regularly varying
and asymptotically independent, then the mass of H exists
only on the axes. The standard regular variation frame-
work we use here is most often used for describing de-
pendence in the asymptotically dependent setting and can
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be extended to calculate probabilities associated with
jointly extreme events for asymptotically independent
regularly varying random variables (Resnick 2002). We
will comment about asymptotic dependence for the pre-
cipitation data we analyze in the discussion in section 4.

In relatively small dimensions, the angular measure
H can be modeled either parametrically or nonpara-
metrically. However, in large dimensions there are nei-
ther applicable models nor sufficient information in the
subset of extreme events to fit . Rather than com-
pletely model the high-dimensional angular measure,
in the next section we summarize the dependence
contained in H via the TPDM, a matrix of bivariate
tail dependencies.

In the remainder of the paper, we will refer to the
““scale” of the components X;,i =1, ..., p. Formally, we
say X; has scale b if lim,_,.P(X; > x)/x”“ = b. If X, is
regularly varying with unit scale, then b.X; will have scale
b. In standard PCA, scale is described by variance, but
variance speaks about the scale of the random variable
from its center (mean), whereas scale here describes
behavior in the random variable’s tail.

The regular variation framework described above
requires that each of the variables is heavy-tailed with a
common tail index «. Often in extremes studies, the data
do not exhibit this property. Transforming the marginal
distributions is common to extremes studies and can be
defended by theoretical results [Resnick 1987, proposi-
tion (5.10)]. Furthermore, transforming the data is not
uncommon outside of extremes: in standard multivari-
ate analyses, data may be transformed to be approxi-
mately Gaussian, and modeling dependence via copulas
requires transformation to uniform marginals. Figure 2
shows data from two stations on the original scale, and
after a transformation has been applied so that the
marginals are regularly varying with & = 2. Also shown
is a simple estimate of H, that is, a histogram of the

Histogram of arcsin(w)
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40 60 80 0.0 05 10 15
x1 arcsin(w)

F1G. 2. llustration of marginal transformation: (left) original precipitation data from two stations, (center) the data after transformation so
that each marginal is regularly varying with @ = 2, and (right) a histogram of the angular components of the largest 2% of the data.
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angular components corresponding to exceedances of
the empirical 0.98 quantile.

b. Tail pairwise dependence matrix

We assume X = (X, ..., X,,)T is a p-dimensional
regularly varying random vector with index a = 2 and
angular measure H. The TPDM, 3y, is the matrix whose
(i, j)th element is

a'ijzjwl.wjdH(w), Lj=1,...,p. 2)
: S

In the bivariate case o;; was defined by Larsson and
Resnick (2012) and referred to as the extremal depen-
dence measure.

Although it focuses on extremal dependence due to its
reliance on H, the construction of TPDM is similar to
that of standard covariance matrix and consequently it
has similar properties. Thus, if X; has scale b then the ith
diagonal element o;; is b?, and o;; = 0if and only if X;
and X; are asymptotically independent. Important for
PCA, 3.x is symmetric and positive definite, thus its ei-
genvectors are real and eigenvalues are positive. If the
marginal distributions are transformed to have a com-
mon scale of one, then the TPDM is like a correlation
matrix with diagonal entries of one. An additional
property not shared generally by covariance/correlation
matrices is that the TPDM is also completely positive:
there exists a p X g, with ¢ = p, nonnegative matrix B
such that 3, = BB'. Although we do not use this
property in this work, complete positivity yields a con-
struction method for generating a random vector with a
given TPDM (Cooley and Thibaud 2019).

To estimate the TPDM, letx,,t =1, ..., samp be the
transformed observations for all stations on day t.
Elements of the TPDM are estimated using pairs of x,’s

elements. Define the radial component r,; = | /x7; + xij,

and let (wy;, w;j) = (x:;, X.)/r. ;. We estimate o as the
following:

Msamp

— 9,1
0= 2N 0x tzzl wtyiw[’].]l(rt’ij > ro’l.].), 3)

where rg; is some high threshold for the radial compo-
nents, and 7;; ¢y is the number of observations whose r;;
is greater than the corresponding high threshold. The
indicator function I forces estimation to be based on the
pairs with the largest radial component ry,;. Choosing it
involves the usual difficulties often found in choosing a
threshold in an extreme value analysis. The estimate &
should be relatively constant for sufficiently high thresh-
olds; however, assessing when such a level has been
achieved is often done via diagnostic plots. When p is
large, viewing p-choose-2 diagnostic plots is not feasible.
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We suggest viewing diagnostic plots for a number of the
possible &7, and then choosing ry; to correspond to a
common high quantile above which the examined &;;
appeared to be relatively constant.

One issue with this pairwise estimate is that the esti-
mated 3y is not guaranteed to be positive definite. Once
an initial matrix is estimated via (3), we use the nearPD
function in the R package Matrix to implement the
Higham (2002) method to find the positive definite
matrix nearest to the estimated Xy in terms of the
Frobenius norm. In this study, we were motivated to
perform the pairwise estimation because of the spatial
extent of the CONUS study region and the localized
behavior of extreme precipitation; when studying pre-
cipitation for a small region of Switzerland, Cooley and
Thibaud (2019) thresholded in terms of the entire vector
of observations.

¢. PCA decomposition for extremes

Critical to ordinary PCA is the fact that the eigen-
vectors of the covariance matrix form an orthonormal
basis for the p-dimensional reals, and this basis is or-
dered in importance by the eigenvalues that yield the
amount of variance explained by each eigenvector.
Ciritical to our method will be obtaining an ordered or-
thonormal basis for the p-dimensional positive orthant.
To have a basis, one must first have a vector space.
Cooley and Thibaud (2019) create a vector space for the
p-dimensional positive orthant by applying the trans-
formation x = 7(y) = log{1 + exp(y)} componentwise to
the vector y € R”. The important characteristic of this
transformation is that 7(y) =~ y for large y, and therefore
the transformation has negligible effect on large values.
Vector addition and scalar multiplication of a vector are
defined via this transformation, and regular variation is
preserved by this particular transformation.

Further, Cooley and Thibaud (2019) show that ap-
plying this transformation to the eigenvectors of the
TPDM yields an orthonormal basis for the positive or-
thant. This basis is ordered by eigenvalues that yield the
scale explained by each eigenvector. Let 3y = UDU",
where D is a diagonal matrix of eigenvalues with A; =
Ap = 0, and U is a matrix with columns w;, i = 1,...,p
being the corresponding eigenvectors. The eigenvectors
for the positive orthant are e; = 7(u;).

Let x, be the realization of the regularly varying ran-
dom vector X with TPDM X y at time #. Let

Tt
v=Ur71(x). @)
Then v,, a vector in the p-dimensional reals, is the vector

of principal components for x;; that is, it is the vector of
coefficients of the eigenbasis:
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X, =v,°€® - Oy ce, (5)

where O and @ are the transformed multiplication and
addition of Cooley and Thibaud (2019).

The PCA decomposition becomes useful from the
knowledge that most of the information in x, is con-
tained in the leading terms of (5). In a standard PCA
study, the leading eigenvectors are often visualized and
interpreted. Orthogonality implies that the eigenvectors
contain no redundant information, and interpretation is
done sequentially. Here, each eigenvector is the direc-
tion of greatest scale remaining after the scale accounted
for by the previous eigenvectors has been removed.
Time series of the leading principal components v,; can
be investigated to find behavior in the often large-scale
effects described by the corresponding eigenvectors.

3. Analysis of U.S. extreme precipitation
a. Data description

We obtain daily precipitation data over the U.S.
continent between 1950 and 2016 from the Global
Historical Climatology Network (GHCN)-Daily dataset
(Menne et al. 2012). We limit our investigation to the
months of August, September, and October, which
roughly corresponds to the height of hurricane activity
in the Atlantic, although it is important to note that we
analyze all extreme precipitation regardless of whether
it was associated with a hurricane event. We select sta-
tions which have fewer than 5% missing values during
this period. There are 1140 stations and 6164 days in the
analyzed dataset.

b. Data preprocessing

We choose to analyze data that correspond to a 3-day
moving average of the daily precipitation amounts. That is,
let z,; denote the observed precipitation on day ¢ at station
i, and let xf;’“g) = Z;; + Z+14 + Zr+2,- The superscript sim-
ply denotes that xO"® is on the original scale before further
transformation as explained below. Selecting a 3-day
moving average to analyze alleviates some of the prob-
lem of a single extreme precipitation event being partially
recorded over two separate days; that is z,; and z,.;,; are
actually due to the same event. It also may help alignment
problems between stations, for instance where z,; and z,41;
are due to the same event. However, taking a 3-day moving
average does induce dependence in the xi?“g) terms, which
must be accounted for in the subsequent analysis. Our
3-day average was motivated by the duration of the
events we wish to explore, but the extremal PCA analysis
could be applied to data of any duration of interest.

As explained in section 2a, the regular variation
framework leading to the TPDM assumes each univariate
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marginal distribution is regularly varying with a = 2.
Since this is not true of our data, further transformation is
required. We transform to obtain x,; = G {F ,v[xf";"g)]},
where G(x) = exp(—x~?) is the cumulative distribution
function (cdf) of a Frechét random variable with scale
1 and @ = 2 and F; is an estimated marginal cdf from
the data at location i. Choosing to additionally have a
common scale is analogous to performing standard
PCA analysis on the correlation matrix instead of the
covariance matrix. Whether it makes more sense to
work with data with a common scale depends on one’s
aim (Wilks 2011, section 12.1.4), but a consequence of
our doing so is that “‘extreme’” precipitation is defined
relative to the climate of the location.

The simplest method for obtaining F; is to use a rank
transform; however, extremes studies that aim to es-
timate probabilities of multivariate extreme events
beyond the range of the data require a parametric
model (usually GPD) to be fit to the upper tail. Here, a
parametric tail model is not required. Due to the
dependence induced in ngl?“g) by the 3-day moving
average, a simple rank transform would ignore this
dependence. In the online supplemental information,
we provide the details of a method where we take the
average of three linearly interpolated cdf estimates
obtained from three lag-3 subsequences of xff;“g). We
show that applying this estimate F; better retains
clustering in the generated x, .

As in a traditional PCA analysis, the transformed
datax,t=1,..., 6164 are treated as independent and
identically distributed, and the estimated TPDM Sy is
obtained as described in section 2b. After viewing sev-
eral diagnostic plots, we choose 7y ;; to correspond to the
0.98 quantile.

c. Interpretation of eigenvectors

The eigenvectors u;, i = 1, ..., p obtained through
standard eigendecomposition of 3y, are transformed
to e; = t(u;), which form an ordered orthonormal basis
for R”.. We will concentrate our attention on the first
six basis vectors, and e;, i = 1, ..., 6, are shown in
Fig. 3. Just as eigenvalues in standard PCA corre-
spond to the amount of variance explained by each
principal component, Cooley and Thibaud (2019)
show that the scales of the regularly varying principal
components are given by the eigenvalues, and the first
six explain 41 % of the total scale. Asin standard PCA,
the orthogonality of the basis vectors makes inter-
pretation of e; more difficult as i increases, and e; can
be thought of the direction of maximum scale after
accounting for the information contained in the pre-
vious basis vectors. Note in Fig. 3 that e; > 0, and the
origin in this vector space is log(2). Therefore, we will
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FIG. 3. Plots of the eigenvectors e, .
stations are shown in black. Of particular interest are e, which gives a continental signal and whose values are all
positive [>log(2)], e, and ey, which give signals on the East Coast, with e, more narrowly defined, and es, which
contrasts the Northeast with the Southeast.

refer to a value as “positive” if it is greater than log(2), and
“negative” if it is less than log(2). Positive values are col-
ored red and negative values are colored blue in Fig. 3.
The first basis vector e; has all positive values, which
is due to TPDM’s property of complete positivity.
Another noticeable feature is that there is little vari-
ation among the values over the contiguous United
States. In section 3d, we will see that during an ex-
treme event, this “continental’” signal has a large
positive coefficient, resulting in elevated values for all
stations, and that subsequent eigenvectors further
allocate the extreme behavior to more local regions.
The second basis vector e, shows large negative
values on the eastern third of the country and moder-
ately positive values in the midcontinent. If paired
with a negative coefficient, this basis would allocate
extreme behavior to the east. Vector e; shows a strong

€6

log2 0.74

.., e6. Each colored dot corresponds to a station location and areas lacking

negative signal on the West Coast. This may seem
counterintuitive at a first, since August—October is a
season where the precipitation is typically not extreme
on the West Coast. However, recall that the TPDM is
estimated after each marginal is transformed to have a
common scale, and thus extreme is defined relative to
the climate for this region during this period.

The fourth basis vector e, shows a narrower East Coast
signal compared to the pattern of e,, with the transition
between negative and positive roughly coinciding with the
location of the Appalachian mountains. Vector es shows a
contrast between the upper Midwest and south-central
United States, while es shows a contrast between the
Southeast and the Northeast. Since we were motivated by
hurricane season, our subsequent analysis will focus on the
East Coast, thus we will be particularly interested in ey, e;,
e4, and e.
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d. Time series of coefficients, partial basis reconstruction

Figure 4 gives the time series of the principal com-
ponents v,; fori =1, ..., 6. Note that the scales of these
plots decrease according to their eigenvalues, which are
respectively 297.1, 47.9, 44.1, 29.5, 25.4, and 22.3.

For illustration, we examine the eigenbasis reconstruc-
tion as in (5) for the 3 days beginning 16 September 1999,
when Hurricane Floyd made its landfall in Cape Fear,
North Carolina, and then moved northward roughly fol-
lowing the coast. The first six coefficients vy, ... , v, for
this time are marked with a red X in Fig. 4, and the ob-
served precipitation (after transformation) is shown in the
top-left panel of Fig. 5. The coefficient v,; has a large
positive value of 99.9, which taken by itself would give
large values across the continent. Coefficients v,, and v, 4
have values of —145.4 and —86.9, which have the largest
magnitudes in these respective time series. These negative
values, when combined with v, ;, allocate the precipitation to
the East Coast and diminish the signal for the rest of the
country. The coefficients v, 3 and v,s have moderate values
as the observed precipitation for this day generated little
signal either on the West Coast or in the upper Midwest/
south-central regions. The coefficient v ¢ has a large positive
value of 100.1 since the signal due to Hurricane Floyd was
seen in the Northeast rather than the Southeast.

Figure 5 shows panels of the reconstruction of the
Hurricane Floyd event via (5). It shows that the complete
reconstruction matches the observations. The truncated
reconstruction with 2, 6, 10, and 20 eigenvectors shows
the increased resolution of the event as the number of
eigenvectors increases. It is noteworthy that even with 20
eigenvectors included, one still does not see the fine detail
of the very high levels of rain in North Carolina. Because
very extreme precipitation tends to have a limited spatial
effect, it is not surprising that it would require a large
number of eigenvectors to see detailed effects such as this
event’s precipitation levels in North Carolina.

e. Further analysis of basis coefficients

One of the advantages of PCA is that the decomposition
allows one to examine and test the time series of the
principal components for temporal trends and also for
relationships with large-scale oscillations such as ENSO.
We begin with a 0.95 quantile regression of the first prin-
cipal component, which tests to see if there is a linear trend
in time in the continental signal. We chose 0.95 as it is high
enough to be commonly considered “‘extreme” but low
enough that an adequate amount of data remains to esti-
mate parameters with acceptable levels of uncertainty. The
estimated slope of the 0.95 quantile is 0.0019 units per year
with a 95% confidence interval of (0.0011, 0.0027). Both
a standard test (which does not account for temporal
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dependence) and a block-resample permutation test (which
does) give p values of less than 1/1000, and thus there is very
strong evidence for an upward trend in the large values of this
continental signal. The fitted 0.95 quantile regression line is
shown in the v,; panel of Fig. 4.

To assess relationships between the principal compo-
nents and ENSO, we obtain a yearly index by averaging
NOAA'’s Oceanic Nifio Index (ONI)! data for August,
September, and October. We then shade the principal
component time series plots (Fig. 4) according to whether
ENSO is in its low (blue; <0.5°C), high (red; >0.5°C), or
neutral (gray) phase. Examining the plot of the second
principal component, we were struck by the appearance
that many of the large negative values (corresponding to
large precipitation events on the East Coast) appeared to
occur in the La Nifia (low ENSO) phase. Setting a
threshold at the overall negated 0.95 quantile, we found
that the proportion of days that exceeded this threshold
during the La Nifia phase was 0.067, which was greater
than the 0.043 found when in its neutral or high phase.
A test of whether these proportions are equal returns a
p value of 0.0003, giving strong evidence that ENSO affects
this East Coast signal. We further tested if the distribution
of (negative) exceedances of this threshold differed with
ENSO phase. A likelihood ratio test of Hy, the negatively
large values follow a common GPD over all phases versus
H : the distribution of these values is different in that the
low phase rejects H, with a p value of 0.0475, providing
some suggestion that not only do the exceedance rates
differ, but also the tails themselves might differ. Although
ours is a study of extreme precipitation and not exclu-
sively hurricanes, these results about principal compo-
nent 2 (PC2) are in accordance with other studies (e.g.,
Gray 1984; Patricola et al. 2014) showing that El Nifio
inhibits the Atlantic tropical cyclone activity.

Figure 6 shows a bivariate scatterplot of PC2 (East
Coast signal) and PC6 (Northeast-Southeast contrast).
As alarge negative values of PC2 indicate a large event
on the East Coast, we focus on the left side of the plot.
First, it can be seen that these two principal components
are not asymptotically independent as there are many
points with large negative values for PC2 and large
values (both positive and negative) for PC6. The points
are colored to indicate ENSO phase, with blue indicat-
ing low, red indicating high, and green indicating neu-
tral. Upon visual examination, we noticed that many of
the points with large negative value for PC2 and large
positive value for PC6 (indicating a large value in the
Northeast) appeared to occur in the low ENSO phase. To
perform a statistical test, we considered values in the two

! See https://www.esrl.noaa.gov/psd/data/correlation/oni.data.
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FIG. 4. Time series of the principal component scores v,; for i = 1, ..., 6; that is, the
coefficients corresponding to the first six eigenvectors. The date corresponding to Hurricane
Floyd, 16 Sep 1999, is marked with a red X. The shading corresponds to ENSO phase with
blue, red, and gray indicating low, high, and neutral values, respectively. The dashed line for
v, corresponds to the estimated 0.95-quantile regression line.
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FIG. 5. Representations of the data for 16 Sep 1999, the date corresponding to Hurricane Floyd. Shown are a plot of the
transformed data, a complete basis reconstruction, and truncated reconstructions with 2, 6, 10, and 20 eigenvectors.

boxes shown that capture areas where both principal
components are large in magnitude. A chi-square test of
equivalence of proportions of ENSO phases in the two
boxes yields a p value of 0.0215. Thus, there is evidence
that the proportion of events in the upper box (indicating a
Northeast event) occurring during the low ENSO phase is
greater than the proportion of events in the lower box
during a low ENSO phase. We are unaware of any previ-
ous investigation that suggests that hurricane-season ex-
treme precipitation in the Northeast United States is
linked to La Nifia conditions.

4. Discussion

We have presented a method for exploring extreme
behavior of high-dimensional data by decomposing the

data via a basis arising from a matrix summarizing
pairwise extremal dependence. The method is analo-
gous to PCA, but tailored for extremes. The exploratory
nature of the method differs from previous atmospheric
science extremes work, which has primarily aimed to
quantify risk (e.g., provide an estimate of a 100-yr event)
or to model phenomena (e.g., fit a max-stable process to
weather stations’ annual maxima). We apply the method
to U.S. precipitation data and find strong evidence for a
positive trend in the coefficients of the first principal
component and find evidence for relationships between
other principal components and ENSO. The method is
general and can be used for any variable of interest.
Our exploration of the behavior of the principal
components led us to perform several hypothesis tests. It
could be argued that the hypothesis tests we conducted
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FIG. 6. Bivariate scatterplot of PC2 and PC6. Since negative
values of PC2 correspond to large events on the East Coast, we
focus on this portion of the plot. Recall that positive values of PC6
correspond to large events in the Northeast and negative values
correspond to large events in the Southeast. The ONI indicates
ENSO levels, with high values and low values corresponding to El
Niflo and La Nifia, respectively.

suffer from test selection bias since we chose to perform
them after examining the data (which the PCA method
allows us to do in a novel way). For example, the test
shown in Fig. 6 was one of a possible 15 (6-choose-2)
tests pairing the first six principal components; if one
were to perform all 15 tests, some multiple testing cor-
rection should be applied to the p value. Furthermore,
the boxes indicated in Fig. 6 were chosen based on
viewing this data and are unique to this pair of principal
components, thus adding to the possibility of test se-
lection bias. It is clearly important to keep in mind
the possibility of test selection bias when interpreting
the p values of these tests. However, in an exploratory
analysis such as this, it is natural to pose questions based
on what one discovers from the data exploration, so test
selection bias is perhaps unavoidable. The real value of a
test like the one illustrated in Fig. 6 is to suggest further
avenues for exploration that could perhaps lead to a
confirmatory analysis.

An interesting aspect of applying this method to
CONUS precipitation data is that extreme precipitation
islocalized in its spatial extent. As seen in Fig. 5, the area
where Hurricane Floyd’s most extreme precipitation
occurred is quite small. Thus, it is not surprising that the
first six eigenvectors only explain 41 % of the total scale
for precipitation, and that it requires a large number of
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eigenvectors to recreate the small-scale features of an
extreme event. Similar behavior is found when tradi-
tional PCA is applied to data with localized dependence,
and PCA is often most useful in such cases because the
large-scale behavior can be more difficult to visualize
directly from data that appear to be dominated by local
behavior. Still, we recognize that interpretation is chal-
lenging. By aggregating the localized signals from storms
across more than 60 years of data, we are able to find
evidence for large-scale trends and relationships with
ENSO. But the leading eigenvectors we analyze do not
yield information about the spatial extent of individual
storms. If one needed to do a risk assessment associated
with individual storms, a different type of extreme value
analysis would be required.

Clearly, precipitation is not asymptotically dependent
at continental scales. As asymptotic independence is a
degenerate case in the regular variation framework that
underlies the TPDM and our PCA decomposition, one
might conclude that our method is ill-suited for this
study. If one were interested in modeling extreme pre-
cipitation events across CONUS (a dubious proposi-
tion), one would absolutely need a model that could
capture the nuanced tail dependence in order to accu-
rately estimate probabilities in the joint tail. Here, our
aim is to explore patterns in extreme precipitation, and
the lens of the most efficient basis provided by our PCA
decomposition provides a new avenue for exploration.

In this study we chose not to detrend the data.
Consequently, this allowed us to quantify the signifi-
cance of the trend found in the coefficients for the
‘““continental” signal v,;. Our estimation of the TPDM,
like the estimation of the covariance matrix in tradi-
tional PCA, assumed that the data were independent
and identically distributed. An alternative modeling
strategy would be to first detrend the data prior to esti-
mating the TPDM. This of course would have involved
selecting a detrending method (parametric or nonpara-
metric), but had the trend been estimated on the “‘conti-
nental” scale, the extremal PCA analysis on the detrended
data would likely have not seen a trend in the leading co-
efficients v, ;. As with traditional PCA, but also time series
analysis or geostatistical modeling, a researcher must often
choose what to include as a nonstochastic factor (i.e., a
trend), and what to leave in to as a stochastic component.

Formal detection and attribution analyses of long-
term trends in nonextreme climate variables have used
PCA methods to identify large-scale patterns of change
(sometimes called fingerprints) and to test whether
these trends are attributable to anthropogenic or natural
forcings (e.g., Santer et al. 2004). Extensions of these
methods to temperature and precipitation extremes
have transformed extreme variables so that standard
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PCA could be performed (Min et al. 2011, 2013; Zhang
et al. 2013). The PCA method for extremes presented
here may offer an alternative method for the formal
detection and attribution of observed trends in extreme
temperature and precipitation without making such
transformations. Similar to such analyses of changes in
nonextreme climate variables, comparisons of the ob-
served patterns of extreme PCA components to those of
climate model simulations with and without various
natural and anthropogenic forcings would be straight-
forward, and well-established methods of assessing sig-
nificance could then be applied. We plan on investigating
such approaches in our future research.

Links to R code and data for replicating the results in this
paper are available at https://www.stat.colostate.edu/~
cooleyd/, as are functions to apply the methods to new
datasets.
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