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Abstract

We embed an approximate dynamic program into a branch-and-bound framework to solve sequential resource allo-
cation problems in population disease management. The proposed algorithm is capable of providing an optimality
guarantee and getting bounds on the optimality gap of healthcare interventions. A numerical study on screening
and treatment policy implementation for chronic hepatitis C virus (HCV) infection provides useful insights regarding
HCYV elimination for baby boomers.
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1. Introduction

Healthcare decision models in population disease management problems are commonly formulated using Markov
decision processes (MDPs), which are challenging to solve due to large state-space and action- and time-dependent
transition probabilities [1]. In our previous research [2], we proposed a Multi-Fidelity Rollout Algorithm (MF-RA) to
derive sequential policy for screening and treatment with budget constraints; while MF-RA is capable of efficiently
identifying good sequential policies (population computation is quadratic in the number of decision periods), the
optimality of the derived policy is not guaranteed. In this paper, we design an algorithm that provides an optimality
gap on intermediate solutions and achieves an optimality guarantee on the final healthcare intervention solution
when the gap is zero. Accordingly, decision makers are able to examine the trade-off between policy quality and
necessitated computational effort. Our approach is illustrated by a numerical example of screening and treatment
policy implementation for chronic hepatitis C virus (HCV) infection over a budget planning period.

Our proposed Rollout Algorithm with Branch-and-Bound (RA-BnB) is set in a branch-and-bound framework and
incorporates the idea of approximate dynamic programing in MF-RA. MF-RA constructs promising policy paths by
exploiting a low fidelity model and incorporating it into the Markov disease progression model. In RA-BnB, the
non-promising policy paths may be pruned in early iterations by finding a good incumbent solution quickly (via the
idea in MF-RA). That is, if we eliminate those paths that are known to be sub-optimal, then the resulting promising
paths will consist of sequential policies that are likely to lead to the optimal solution. Also, an optimality gap can
be easily retrieved with a good incumbent solution and an easily calculated upper bound.

One stream of literature closely related to ours is the literature on finding optimal intervention using dynamic
programming. Dynamic programming is widely used to solve chronic disease management problems when chronic
disease models are formulated using MDPs. Policy and value iterations, and linear programming have been commonly
used to solve MDPs with small sizes of the state and action spaces [1]. Some research makes use of structural
properties of individual-level models to ensure the existence of control-limit optimal policies [3, 4]. Population-level
disease management typically involves a resource-limited setting, which results in an exponential growth of problem
size due to sequential resource allocation. Approximate dynamic programming (ADP) approaches can be applied
to reduce the curse of dimensionality and computational effort [5]. As an example, ADP was used to determine
treatment allocation under different classes of policies regarding discontinuation of treatment for HIV control [6].
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We use one of the ADP approaches called a rollout algorithm to estimate future disease progression and population
evolution [7].

Another stream of literature related to ours is the application of the branch-and-bound approach. Branch-and-
bound has been used in many applications, e.g, data analysis [8], multi-objective functions [9], vehicle routing [10],
video search [11], and scheduling [12]. Linear programming and various approximate and heuristic algorithms (e.g.,
genetic algorithm) are also used to find feasible solutions [13, 14, 15]. In this research, we develop an approach to
embed an approximate dynamic program (rollout algorithm) in a branch and bound procedure.

Our contribution improves the existing MF-RA algorithm [2] by adding an optimality guarantee and optimality
gap to allow decision makers to trade off computation with solution quality in large-scale dynamic resource allocation
problem, which provides insights on long-term population disease management. Moreover, we provide numerical
results using HCV elimination as an example. In particular, we evaluate the performance of long-term disease
control under different annual budgets by quantifying the improvement of quality-adjusted life-years (QALYs) and
computation time.

2. Resource Allocation Problem in Population Disease Management and RA-BnB

2.1. Basic model

We consider a disease with multiple health conditions in a closed population. As in [2], we divide the population
in a healthcare management system into different groups based on the intervention they need or health conditions
they are in. The group is indexed by g € G, where G is the set of all groups. Let G C G denote the set of groups
waiting for interventions. The individuals in the same group g € G are eligible to receive the same intervention. We
define a group-based health category s € Sgs = UgegSy, where S is the set of all group-based health categories
and S, is the set of group-based health categories in group g. Let N; be the population size in each category s at
the beginning of time ¢, where ¢ is the time index, and let Ny be the 1-by-|Sgg| row vector of population size. The
decision variable :E,(f) is the fraction of budget for implementing intervention policy in group ¢ during time period t.

A specific example is chronic HCV screening and treatment, which is in general cost-effective depending on
treatment efficacy, drug cost, patients’ initial disease stage and adherence to treatment, and care delivery strategy
in the healthcare system [16, 17, 18, 19, 20, 21]. In the progression of chronic HCV infection, time period ¢ is set to
correspond to three months (a quarter). We use A, B, C, D, and M to denote five groups (G = {A,B,C, D, M}),
where group A indicates individuals have no knowledge of their HCV status, group B indicates those are identified
HCV+, group C indicates those who are either screened healthy or recovered from HCV, group D indicates those
who have untreatable HCV, and group M indicates those who are dead. Screening for population in group A and
treatment for population in group B are recommended interventions for reducing the disease burden (G = {4, B}).
Five sets of group-based health categories include target screening S4 (includes categories: healthy, no fibrosis, portal
fibrosis with no septa, portal fibrosis with few septa, numerous septa without cirrhosis, compensated cirrhosis), target
treatment Sp (includes categories: no fibrosis, portal fibrosis with no septa, portal fibrosis with few septa, numerous
septa without cirrhosis, compensated cirrhosis), disease-free S¢ (includes categories: healthy, recovered with history
of mild fibrosis, recovered with history of moderate fibrosis, recovered with history of advanced fibrosis), end-stage
liver disease Sp (includes categories: decompensated cirrhosis, hepatocellular carcinoma, liver transplant, after
liver transplant), and dead Sps (includes one dead category). The total set of 20 group-based health categories is
Sus = Ugeap.c.pm Sg- In this HCV example, N is a 1-by-|20| row vector of population size for each s € Sys.
The decision variables are xg) and acg), where :cg) is the fraction of budget allocated to HCV screening tests for
group A with health categories s € S4 during time period ¢, and xg) is the fraction of budget allocated to treatment
for group B with health categories s € Sp.

The following objective function sums discounted QALY over the entire lifetime horizon of the population given
population size and intervention

nr+1 nr+1

QALY (Nl, {xgt)}geg te{l nT}) = Z (]_ —+ 5)7(t71)Ntu/ — Z Z (1 + 6)*“*1)7‘”9]\&57 (1)

t=1 t=1 seSys

where N is the 1-by-|Sgg| initial population size vector in the beginning of the first time period, {xét)

}geé,te{L...,nT}
is the complete policy, i.e., budget allocation policy over np time periods in the entire lifetime horizon, u is a 1-by-

|Srrs| row vector of health utility multipliers (and u’ its transpose), the utility multiplier «® in u is the health utility
multiplier per time period corresponding to each group-based health category s € Sgg, and ¢ is the discount rate.
Interventions are assumed to not decrease QALYs (either improve or keep the same QALYSs).
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As in [2], we consider the problem of maximizing the overall discounted QALY for the population during budget
planning under a lifetime horizon through healthcare interventions. The QALYs maximization problem is,

QALYs maximization problem

t
max QALY (N1, {xg)}geé,te{l,...,nT}> (2)
st. Ny = NP, ({@ﬁ}g@) L Vte{l,...,nr} (3)
el <1, vee{l,... nr} (4)
9€g
0<aP <1, vgeg,te{l,...,nr}. (5)

In the objective function (2), calculating QALYs involves associating health categories with utility multiplier and
the population size. Given population size in each group-based health category s € Sys and health intervention
policy in each group g € G, our transition matrix captures the dynamics of the disease progression and population
evolution in Constraint (3), where P, is the |Sgg|-by-|Sks| matrix of transition probabilities in time period ¢ based
on intervention policies :vs(,t), Vg € G and natural history of the disease. The natural history of disease progression
and intervention policies drive the population evolution. The disease has a chance to progress every time period, as ¢
ranges from 1 to np. The disease progression probabilities and mortality in the transition probability matrix P; may
be age- and gender-dependent, and thus P; may be updated as the population ages. Constraint (4) indicates that
the total budget in each time period ¢ cannot exceed available budget during time period ¢. Constraint (5) indicates
that the fraction of budget for group g is between 0 and 1.

The amount of budget allocated to each group g € G is Jiét)Bt, where By is the available budget during time

period t. Note that the budget xgt)Bt may be allocated again within the group g € G based on its priority allocation
rules. For example, in HCV management case, given fractions of budget for screening mg) and treatment xg), the
budget allocation rules within groups A and B are different. Since the health status is unknown for candidates in
group A, it is reasonable that the screening budget is uniformly allocated to screening fractions in each group-based
health category s € Sa, e.g., population fraction in moderate-fibrosis health category who is offered screening is
the same as population fraction in mild-fibrosis health category who is offered screening. However, the treatment
allocation rule in group B prioritizes patients with more severe liver damage, e.g., the patients with moderate fibrosis
have higher priority for treatment than the patients with mild fibrosis. Budget allocation rules within each group
g € {A, B} determine the population size of receiving intervention in each group-based health category s € Sy USg

and thus trigger the population evolution by transition probability P, (xf:), xg)).

The success of implementing branch-and-bound to solve the QALYs maximization problem depends on efficiently
determining a good feasible solution and providing upper bounds in the search space. In the following subsections,
we introduce how to efficiently compute upper bounds and an incumbent. We then present the details of the RA-BnB
algorithm.

2.2. Upper bound computation

At time period ¢, given previous allocation policies before time period ¢, {mg,)} and an initial

geG.t'efl,...t—1}"
population size N1, an upper bound on the objective function in QALYs maximization problem can be derived by

solving the following upper bound optimization problem,

Upper bound optimization problem

ALY (N { <t’>} { <t">} 6
max Q ( L% geG.tre{l, . t—1} g geG 4 elt,...n7} (6)

st. 0<a2l) <1vgeq, vt" e {t,...,nr} (7)
and (3).
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In the upper bound optimization problem, Constraint (4) in the QALYs maximization problem is eliminated. Since
the QALYs maximization problem is a more restricted version of the upper bound optimization problem, its optimal
value is less than or equal to the optimal value of the upper bound problem. Eliminating Constraint (4) essentially
allows allocation of the same amount of budget B; to every group g € G. The complexity of evaluating different
budget allocation policies among different groups is therefore eliminated. In addition, the QALY function (1) is

monotonically non-decreasing in x_((; ) due to the model structure, where interventions have a non-negative impact on

QALYs. Thus, we can easily solve the upper bound optimization problem by setting xgt ) to its maximum value of

one, i.e., the optimal budget allocation in the upper bound optimization is x_Ef")“b =1,Yg € G and Vt" € {t,...,nr}.
Therefore, an upper bound of overall QALYs can be obtained by running only one lifelong-time population disease

model.

2.3. Low fidelity approximation

The Low Fidelity Approximation algorithm is similar to the rollout algorithm MF-RA in [2]. It constructs a
promising policy path by iteratively applying low fidelity models until the end of the planning horizon. The low
fidelity model is based on a common feature in disease progression models; that death is an absorbing state. Treating
each individual dynamics as an absorbing Markov chain under a stationary intervention policy, we can quickly
calculate the matrix of expected number of time periods spent in each state until absorption, beginning at time

period t,
1

B ({),0) = (a({),)) (8)

where I is the appropriately sized identity matrix and Q; is the submatrix of the transition probability matrix P,
obtained by eliminating the row and column associated with the mortality state.
The approximated QALYs from time ¢ with starting population N; to the time that the entire population has

reached the mortality state under stationary policy {xét)} : is expressed as the Low Fidelity Model (LFM),
gc

i (Nt7 {xét)}g@) N.E, ({xg)}geg) o
Y S NuE ({wét)}geg) v

s€ESys vESHSs

where E;"" is the s, vth element of the matrix E;, representing the expected number of time periods spent in state v,
starting in state s until absorption. For details of the Low Fidelity Approximation algorithm which iteratively uses
LFM to develop promising sequential policies, the reader is referred to the work in [2].

The Low Fidelity Approximation provides an incumbent solution which is easily computed. The incumbent
solution and the QALY's upper bound calculated in Section 2.2 are incorporated into a branch-and-bound framework
which is detailed in the following section.

2.4. RA-BnB algorithm

We introduce a decision period index d to distinguish the policy-changing periods from time period t used for
disease progression. Suppose each decision period d contains np time periods and let np denote the number of
decision periods. The number of time periods is n = npnpg. Decision variables mgd) € [0,1] denote the fraction of
budget used for intervention in group g during decision period d, d € {1,2,...,np}. The reformulation indicates

that during decision period d, the percentages of budget allocated to each intervention policy, xgt), vVt € Ty are the
same, where Ty = {np(d — 1)+ 1,...,npd} is the set of time period indices in decision period d. That is, we keep
the same percentages of budget for each intervention policy in every np time periods.
( )We discretize the continuous solution space into finite policies by discretizing the budget into mp pieces, so
d

2y~ is uniformly discretized and has mp + 1 possible values, i.e., x_gd) e {0, miB, ey m%:, 1}. We therefore have

mp = C(|G| + mp — 1,|G| — 1) different combinations? of budget allocation policies since the sum of the fractions

of budget for each group equals one in each time period. Let xéd,)ch___ k, denote the kqth, kq € {1,...,mp}, budget

1) (d-1) (d)

allocation policy in group g given prior policies Tohrs s Typy kg For the sake of clarity, let X kg =

2C(x,y) is often read as “x choose y” meaning the number of ways y can be chosen from z.
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Step 1: Branching If d = 1, X(1) = {xgl),Vk;l e {l,...,mp}}. If d > 2, discretize each policy x,

{xf,lh_”’kd, . ’xl(g.,kl,m,kd} denote the set of the ksth combination of discretized budget in decision period d for all

groups in QN .
To illustrate, the example in Figure 1(a) has four decision periods, np = 4, and each contains one time period,
np = 1, so there are four total time periods, n = 4. The budget in the first decision period is discretized into two

pieces, mp = 2, and therefore there are three possible values of a:gl),)cl for each group g € {4, B}, i.e., .I‘S’)kl € {0,0.5,1},

and xg)kl € {0,0.5,1}. Since the total budget allocation must equal one, we have three candidate budget allocation

policies, i.e., mp = C(2+2—1,2— 1) = 3 with x") = {0, 1}, x{") = {0.5,0.5}, and x{" = {1,0}.

RA-BnB uses a breadth first search strategy for the rollout approximation which explores all discretized policies
in the dth decision period before proceeding to the discretized policies in the (d 4+ 1)th decision period. In the
decision period d, m, combinations of budget allocation policies following policies in the (d — 1)th decision period
are generated. For each discretized policy, the Low Fidelity Approximation attempts to determine good feasible
solutions, and the upper bound of overall QALYs over the lifetime horizon is also calculated. For convenience,
let QU(Ny, {xgl), e 7Xl(€(i)...., kd}) denote the function for solving the upper bound optimization problem in Section
2.2, and lem k, be the corresponding returned value, i.e., the solution of upper bound optimization problem; let

QF (N, {x,(cll), e ,x,(c‘?m)kd}) denote the function for running Low Fidelity Approximation in Section 2.3, and Qﬁl_“kd

the corresponding returned overall QALYs. Note that both returned overall QALYs Qf, ... k, and QY. k, are calcu-
lated by the QALY function (1).

RA-BnB

Given: the initial population size N1, transition probability matrix P, budget By, health utility multipliers u,
number of pieces in discretized budget m g, number of time periods between policy changing n g, number of decision
periods np, number of time periods in lifetime horizon ny = npnpg, and d = 1.
(tfjl?k?d—l € X(d_l)
into mp different combinations and store them in X(@ i.e.,

x(@ — {Xéd)

(d-1)
Lyeska * Bheryenk

CeXU and kg € {1, ,mp}}.

d—

Step 2: Upper Bound Update Evaluate QY (Nl, {xéll), cee Xl(j),...,kd }) and compute upper bounds of overall QALYss,

QkUl k, for all the newly generated policies. Set ngd) to the maximum value among all le Ky

wStep 3: Elite Set If d = 1, E(@ = X(@_ If d > 2, sort all Q,lcjl.__kd and select the top (d — 1)mp policies and store them

in the elite set E(9). The number of policies in the elite set increases with d and is proportional to combinations
of budget allocation policies m,,.

Step 4: Low Fidelity Approximation Compute Qél_”kd by evaluating

170

175

Qr (Nl, {x,(fll), . ’nglf);u'7kd})7 Vx,(;f),wkd € E@ for each ng?’m’kd as follows:

Step 4-1: Set d + d + 1.

Step 4-2: Polic~ies Discretization Discretize budget and obtain mp budget allocation policies in decision period
7 (d)
d, xp, kg Vkze{l,...,mp}.

Step 4-3: Low Fidelity Model Identify the promising policy x%ld in decision period d by selecting the maximum
approximated QALYs among mp LFM functions calculated by Equation (9). Ak, is the index of the
derived budget allocation policy for k4th policy, i.e., X;:?m k> €valuation.

Step 4-4: Population Update Update population size N ; by Equation (3). If d< np, proceed to the next decision
period d < d + 1 and go to Step 4-2. If d = np, continue to Step 4-5.

Step 4-5: Promising Policy Identify complete sequential promising policy x%jd 1), x%jd 2), cee Xglkﬂ; )

sponding QALYs Qfl,__kd.

and corre-



Step 5: Incumbent Update Set Q([fi) to the maximum value among all Qﬁl,,, k, and label the corresponding policy as

XP 1 QY > QY set @* = Q1Y and X* = X?. Calculate optimality gap,

Q- Q" (10)

Step 6: Fathoming Update X9 by discarding all policies whose upper bounds are less than Q*.

X@ = x(@\ { (d),---, QY (Nl, {xl(cll), . 7Xl(€(f),...,kd}) < Q*}

Step 7: Stopping rule If

180

185

190

195

200

205

(d) _ *
U—Q <,
Q* - Qno budget

where § is stopping threshold for a scaled performance measurement, then terminate the algorithm and output
the complete sequential policy X*; otherwise, update population size by Equation (3), and proceed to Step 1
for the next decision period, d = d + 1.

Theorem 1. RA-BnB guarantees optimality (w.r.t. the level of discretization) when the gap is zero.

Proof. For each generated policy in the dth decision period, QkUl %, is determined by evaluating (1) with the given
policy decisions ki, ---,kq and setting future policy decisions equal to one, for kg1, - ,kn,. Since the d + 1

decision period has a policy less than or equal to one, le,,,kdkdﬂ < QkUl,,,kd, and thus Qgi) is monotonically non-
increasing over iterations. In addition, @Q* is monotonically non-decreasing since the incumbent solution improves
over iterations. Using the property of the bounds,

Q < Qopt < Q(d)
when Q* = Q;}i), the derived incumbent solution is therefore an optimal solution, Q@* = Qpt. O

2.5. An Example Problem
We solve an example problem to illustrate the working of the RA-BnB. We again ube the example in Figure 1. In

the first decision period (Figure 1(a)), the set of discretized policies in Step 1 is X(1) = {x; o gl),xd }+. In Step 2,
RA-BnB computes the upper bound for these discretized policies, i.e., QY, QY, QY, and Selects the largest as the

upper bound, i.e., ( ) = max{QY,QY,QY}. In this example, we assume QY is the largest. In Step 3, the elite

set of potential pohc1es is selected, set EM) = XU = {x § ) él), 31)}. In Step 4, Low Fidelity Approximation is
implemented for the policies in E(), obtaining QF, QL. and Q%. In Step 5, the maximum value among the results

is Q(Ll) = max{Q¥, Q% QL}. In this example, we assume QI is the maximum, and the corresponding policy is
X(Ll) = [x(ll) fl),x(Al,fol) . Then we update the incumbent solution, i.e., @* = (Ll). In the example in Step 6,
QY > Q*, QY > Q*, and QY < Q*, so the right branch is pruned and xX® = x@® \ {Xél)} = {x?),xg)}. In Step 7,
i Qu-Q"
Q* _Qnu budget
Figure 2 presents an illustration of the Low Fidelity Approximation in Steps 4-1 through 4-5, using xgl) as

an example. Our goal is to construct the incumbent solution Xgl), xfl), xfj’l), xffl), and value Q¥ from promising

policies during decision periods 2 to 4 given xgl). As shown in Figure 2( ), set d=1+1=2in Step 4-1 and

Low Fidelity Approximation enumerates 3 policies, i.e. xﬁ, x@, and x1 3, as in Step 4-2. Step 4-3 calculates the

corresponding approximate QALYs of low fidelity models i.e., LF' My, LFMQ, and LF Ms. In this example, LF M3

has the maximum value among LF My, LFMs, and LF Ms; X:(LQ% is selected as the allocation policy at the second

decision period, i.e., XE421) = X§2% In Step 4-4, the population size is evolved to Ny using selected policy x( ) As

shown in Figure 2(b), Low Fidelity Approximation then proceeds to the 3rd decision period. In this example the
most promising policy in Step 4-3 for the 3rd decision period is Xf:))),?), SO xffl) = x§3§3 Repeating the same Steps

4-2 through 4-4 derives the policy xfﬁ in the 4th decision period and Step 4-5 identifies the promising policy XE421)7

SRCHINCO)
Xa1s X1
In the second decision period (back to Figure 1(b)), RA-BnB discretizes the policies which follows the policies in

XM e, x(1 %, xg and x% following xgl), and xgi, ng% and x2§ following x( )

> §, we go to Step 1 and proceed to the second decision period, d = 2 (Figure 1(b)).

The set of policies in the second



Figure 1: Illustration example of RA-BnB
(a) First decision period (d = 1) (b) Second decision period (d = 2)
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Figure 2: Illustration example of Low Fidelity Approximation in the first decision period in RA-BnB
(a) Second decision period (d = 2) (b) Third and fourth decision periods (d = 3 and d = 4)
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decision period is X(2) = ﬂ, 52%,xf§,x§2%,xé 27x2 3} In Step 2, upper bounds are computed for all the newly

generated policies in X? | i.e., QY}, Q%, Q%, QY, QY,, and QF;. Suppose QY is selected as the largest upper bound,
ie., Q( =max{QY,...,Q%} = Q%. In Step 3, QY,,...,QY; are sorted and the top 3 policies are put into the elite
set E?. Say QY > Q% > QY > QY > Q% > QY, then E? = {x(2%,x1 37x2 1} In Step 4, the Low Fidelity
Approximation is implemented, yielding QL, QF, and Q%. In Step 5, the policy with maximum overall QALY

is Q(L2 = max{QL,, Q%, QL } = QL thus X(Q) [xgl),x%, %)7 532)} If Q(2) > Q(l) Q* = Q(Z) = QF, and
X* = X(2) In Step 6, if QY, < Q* and Q%; < Q*, two branches xf% and x(2) are pruned. Update X by discarding

(2)
all policies whose upper bounds are less than Q*, i.e., X(2) = X(2)\ {x2 2 x2 3} In Step 7, suppose % <4,
(2) (3 (4

RA-BnB is thus terminated. The output sequential policy is X* = [xgl) X195 X9 X 4| With corresponding QALY's
Q" and the optimality gap is Q(Lf) - Q.

3. Case Study: HCV Birth-Cohort Screening and Treatment Strategies

We apply RA-BnB to obtain an optimal screening and treatment policy under budget constraints for chronic
hepatitis C birth-cohorts. Birth-cohorts consist of all Americans aged 40 — 69 years in year 2015 (born between
1945 — 1975). We consider three birth-cohorts separately, i.e., 40 to 49, 50 to 59, and 60 to 69. The HCV population
evolution model is based on a validated HCV progression model in our previous research [2, 17, 18, 19, 21]. There
are two intervention policies, i.e., HCV screening in a target population group with unknown disease status, and
HCV treatment in the identified HCV+ population group. To show that RA-BnB is capable of providing insights on
HCV care management, we conduct separate analyses using $1 billion, $4 billion, and $8 billion annual budgets. The
budget planning horizons for 40 — 49, 50 — 59, and 60 — 69 birth-cohorts are 30, 20, and 10 years, respectively. The
model cycle period ¢ is three months and policy can be changed every two years, e.g., year 1, 3, 5, ..., 29 for a 30
years budget planning horizon. Since budget is set to zero after the budget planning horizon, the numbers of valid
budget allocation decision periods are 15, 10, and 5 for the three different birth-cohorts. The budget is discretized

'gV‘ =2and mp=C(2+10—1, 2—1) =11). We use a stopping threshold of zero

(6 = 0) in RA-BnB. All numerical computations were carried out on a Intel corel7 processor at 3.6GHz with 16GB
RAM and Matlab R2015b.

Table 1 provides the CPU time required by RA-BnB and the number of policies pruned over iterations for age
40 — 49, 50 — 59, and 60 — 69 birth-cohorts. The performance measure (Qy)—Q*)/(Q*_meudget) gradually reaches 0
in all nine cases, indicating that the output incumbent policy is the same as the optimal policy, and thus RA-BnB
is able to find the optimal budget allocation policy. In the 40 — 49 birth-cohort, even though it takes about 9 hours
under the $1 billion case in 15 iterations to find the optimal policy, the incumbent lower bound and upper bound are
very close after the 8th iteration. If the stopping threshold is 6 = 0.005, RA-BnB terminates in about 1.5 hours. On
the other hand, in paper [2], we showed that for each budget scenario, enumerating all policies for a 30 years budget
planning horizon with 15 decision periods necessitates about 1.5-10° years, which implies that to obtain the optimal
policy for 30 years using a grid search approach is practically impossible. Figure 3 shows the upper bounds and
incumbent lower bounds over fifteen iterations for the 40-49 birth-cohort. The upper bound and incumbent lower
bound are reasonably close in the first few iterations.

Due to the optimality guarantee, we are confident that RA-BnB can provide useful insights for policymakers.
Using the 40 — 49 birth cohort as an example, Figure 4 shows the size of infected population over time under no
budget, $1, $4, and $8 billion per year. It is observed that when there is no budget, the infected population size
slightly decreases every year mainly due to background death until the 30th year. In the $1 billion/year case, the
infected population size is significantly reduced in the first few years; however, there are still more than 200,000
HCYV infected patients in the 11th year, and HCV could not be eliminated until the 30th year. On the other hand,
in the $4 and $8 billion/year cases, it takes about 19 and 11 years to eliminate the hepatitis C infection, respectively.

Using the 40 — 49 birth-cohort as an example, Figure 5 shows the optimal fraction of population for treatment
and screening. The result in Figure 5(a) indicates that when the budget is limited to $1 billion/year, the fraction
of population in target group A receiving screening is 0, i.e., all the budgets are allocated to treatment group, in
the first nine years due to immediate increase in health utility. After the 9th year, both fractions keep increasing,
i.e., some budget starts to be allocated toward screening. The reason is that without prior screening, the patients
in compensated cirrhosis health category in group A are unaware of their health condition, resulting in entering to
untreated health categories in group D such as decompensated cirrhosis, hepatocellular carcinoma, or requiring liver
transplant, which incur huge health utility loss. Figures 5(b) and (c) show that screening begins earlier when the

to ten budget pieces (mp = 10,



Table 1: CPU seconds for allocation problem (30-year with 15 decision-periods budget planning for 40-49 birth-cohort, 20-year with 10
decision-periods budget planning for 50-59 birth-cohort, 10-year with 5 decision-periods budget planning for 60-69 birth-cohort)

1 billion/year 4 billion/year 8 billion/year
Birth Iterations | Time # Performance | Time # Performance | Time # Performance

cohort (s) prune measure (s) prune measure (s) prune measure
1 1 0 0.6 1 1 0.04 1 2 0.55

2 5 0 0.3 4 53 0.03 4 51 0.01

3 47 700 0.09 26 417 0.02 25 388 0.004

4 264 6,660 0.03 128 2,655 0.02 102 1,909 0.0005

5 592 15,987 0.02 408 10,240 0.01 388 10,950 0

40-49 6 1,070 30,345 0.013 742 20,150 0.006 - - —
7 1,637 45,311 0.008 927 25,692 0.002 - - -

8 3,011 82,664 0.005 | 1,098 31,051 0.0002 - - —

9 6,213 160,492 0.0027 | 1,210 34,892 0 - - -

15 32,667 826,991 0 — - — . —

1 0 0 0.3 1 0 0.4 0 2 0.1

2 3 33 0.3 6 43 0.1 3 56 0.04

3 27 588 0.24 35 644 0.05 16 397 0.02

4 133 4,559 0.13 130 2,911 0.03 57 1,577 0.006

5 278 9,971 0.09 307 7,608 0.014 190 7,228 0.0005

50-59 6 493 19,511 0.03 757 19,098 0.005 191 7,260 0
7 526 21,044 0.0027 | 2,114 68,823 0.0012 - - —

8 528 21,111 0.0008 | 2,370 78,163 0.00002 - — -

9 530 21,131 0.0002 | 2,546 84,562 0 - - -

10 549 21,131 0 — - — - —

1 0 6 0.13 0 1 0.3 0 5 0.09

2 1 46 0.13 2 85 0.06 2 56 0.02

60-69 3 4 173 0.12 7 340 0.02 4 159 0.002
4 11 538 0.09 13 591 0.005 16 833 0

5 20 538 0 28 591 0 - - —

Note 1: ‘=’ indicates that the optimal policy is obtained due to incumbent lower bound = upper bound.

Figure 3: Upper bound and incumbent lower bound over 15 decision periods for 40-49 birth-cohort
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Figure 4: HCV control over 30 years with 15 decision periods for 40-49 birth-cohort
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Figure 5: Optimal fraction of population for treatment and screening for 40-49 birth-cohort
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%0 total budget is larger. All the individuals in group A and group B are able to receive interventions after the 19th
and the 11th year as the infected population size in groups A and B become stable (refer to Figure 4).

4. Concluding remarks

The success of the proposed RA-BnB algorithm, when applied to long-term budget allocation, can be attributed

to the good qualities of a well-designed incumbent solution and upper bound, mitigating the curse of dimensionality.

25 The numerical results show that $1 billion annual budget to address HCV is likely insufficient to have the desired

impact on reducing the disease burden. To eliminate HCV for baby boomers, the government should consider
increasing budget as well as implementing more effective screening and treatment interventions.
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