Rosetta Custom Score Functions Accurately Predict AAG of
Mutations at Protein-Protein Interfaces Using Machine Learning
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Protein-protein interfaces play essential roles in a variety of
biological processes and many therapeutic molecules are
targeted at these interfaces. However, accurate predictions of
the effects of interfacial mutations to identify “hotspots” have
remained elusive despite the myriad of modeling and machine
learning methods tested. Here, for the first time, we
demonstrate that nonlinear reweighting of energy terms from
Rosetta, through the use of machine learning, exhibits
improved predictability of AAG values associated with
interfacial mutations.

Protein-protein interactions mediate many essential biological
processes. Cellular signaling, spatial and temporal regulation,
and metabolism are deeply rooted in the formation of higher
order protein quaternary structures.! Complex formation is
governed by the complementary structural and chemical
features displayed by residues at the protein-protein interface,
and mutations of these residues are highly correlated with
dysfunction and disease.2 Moreover, the development of new
biomaterials and catalysis strategies are largely dependent on
the binding affinity of the involved protein partners.3 4
Therefore, a computational model capable of rapidly and
accurately predicting the energy differences (AAGs) associated
with mutations would aid in the identification of protein-
protein hotspots, providing insight in disease and design.> ©

To date, several approaches have been developed towards
the accurate prediction of protein AAG values. These include
the use of statistical and contact potentials’-19, design of novel
sampling schemes,11. 12 generation of weighted energy or score
functions,3-16 and employment of supervised machine learning
techniques.17-21 Additionally, within the Rosetta Modelling
Suite, new sampling schemes, designed to mimic protein
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motions observed in solution, have afforded increased
predictive accuracy.l’ 22 Though these methods have shown
some notable success, there is still a need for a single,
generalizable, and facile approach capable of accurately
predicting AAG’s of mutations at protein/protein interfaces.

To this end, we envisioned that reweighting of energy terms
from Rosetta through machine learning will provide a platform
with improved AAG prediction accuracy. The full-atom score
function in Rosetta has been repeatedly improved through the
introduction of new energy terms and optimization of term
weighting. Although Rosetta-based simulations can generate
accurate structural models, correlations between the canonical
score functions and experimental data remain relatively poor23.
This suggests that that while the underlying set of terms may
produce models with small RMSDs relative to experimental
structures, energetically, they require differential weightings
for specific applications like AAG prediction. Therefore, we
designed the first reported Custom Score Function (CSF, named
SRS2020), which is a score function devised purely through the
reweighting of Rosetta energy terms for optimal prediction of
an experimentally measurable variable of interest. This method
allows for the traditional Rosetta score function to be used for
structural refinement, while SRS2020 can be used to more
accurately predict AAGs. This notion is not entirely novel as
protein and small molecule design strategies in Rosetta have
used supplementary criteria in the form of classifiers and filters
to perform selection based on criteria not encompassed within
scoring?4. However, the approach presented herein is simpler in
that it requires no additional terms to be constructed.

To test the utility of this approach, we focused on simulating
the SKEMPI 2.0 database (https://life.bsc.es/pid/skempi2/) which is
the largest curated database of protein-protein interfacial
mutants. This database includes 348 different protein-protein
complexes, and AAG values for 6193 unique interfacial
mutations of this protein set.2> 26 After removing complexes
where the mutation location could not be accurately assigned
due to ambiguities between the number of protein subunits and
the generalized version of our computational protocol



Please do not adjust margins

COMMUNICATION

Structure
Preparation

L=

Structural
Sampling

Ca RMSD vs Energy

Journal Name

Gradient Based
Optimimion

Minim zatlon
and Scoring

Custom Score Function

Fig. 1 Schematic of computational workflow for developing a custom score function to predict AAG values of mutations at protein/protein interfaces.

employed within PyRosetta.?’ First, wild-type complexes are
cleaned (removal of solvent, ligands, or ions), renumbered, and
subjected to initial minimization. Subsequently, mutations are
introduced, and both the wild-type and mutant complexes are
subjected to another round of structural optimization followed
by the computation of Rosetta energies which in turn are fed
into a variety of machine learning protocols. Sampling was
varied both in the initial, structural stage where only wild-type
complexes were considered, as well as in the mutational stage
where both the wild-type and mutants were sampled under a
uniform scheme. In the structural sampling stage, we assessed
the impact of relaxing the input structure compared to using the
structure directly from the SKEMPI 2.0 server. Additionally, we
tested the impact of local and global sampling during the
mutational sampling stage, where either only the mutant
residue was packed, or repacking was performed on the entire
complex. Lastly, we computed energies for each sampling
combination using both REF2015,28 the most recently published
score function, and BETA_NOV16,2° the newest score function
available in Rosetta.

We first focused on assessing the performance of the
traditional Rosetta score function in predicting mutational AAGs
from the SKEMPI 2.0 database. As expected, differences in
sampling impacted the correlation of Rosetta total energy

scores with AAG. Initial minimization of wild-type complexes,
prior to mutational sampling, was found to improve correlation
between total Rosetta Energy Units (REUs), and experimental
AAG values for both the REF2015 and BETA_NOV16 score
functions. This was unsurprising as it is widely recognized that
structures determined from crystallographic data require initial
relaxation prior to sampling within Rosetta to produce more
correlative  simulations.3®  Although we observe an
improvement in the predictive capacity following minimization
during initial structural sampling, which is likely due to the
approximate five REU reduction in the average residue score,
we observe only a minimal change in conformation (ESI, Fig. S1).

Across all sampling and scoring schemes, we see a maximum
average RMSD of 0.45 A compared to input structures from
SKEMPI 2.0. Additionally, score values derived from local
packing only at the mutation site prior to minimization showed
a higher predictive capacity than global repacking following
mutation. A Wilcoxon t-test was performed to identify Rosetta
energy terms that differed between these simulations. The
difference in predictability between these models is likely due
to the drastic differences in Lennard-Jones, Dunbrack, and
solvation terms produced by these simulations (see ESI). Lastly,
it is notable that the most recent score function, BETA_NOV16,
afforded a higher correlation with experimental data than the
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Fig. 2 Models for predicting interfacial AAG, REF2015 (red), BETA_NOV16 (purple). Rosetta total score in Rosetta energy units, or REU (A), multiple linear regression (MLR) of Rosetta
energy terms (B), polynomial support vector regression (SVR, C), and gradient boosted random forest (GBT) regression (D). MAE: Mean absolute error in kcal/mol.
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benchmarked REF2015 score function. This may be due to
increased accuracy in weightings or the additional terms added
in the BETA_NOV16 score function.

We sought to improve the predictive power of the models
generated by both the REF2015 and BETA_NOV16 score
functions using machine learning. Given the results of the
structure preparation comparisons, we elected to focus
exclusively on improving the predictability of simulations where
structures are initially relaxed and only locally sampled
following mutation. Multiple linear regression (MLR) is a basic
machine learning technique that uses several explanatory
variables to predict a single output. Here, those variables are
the Rosetta energy terms generated during simulation which
will be reweighted to optimize the correlation to experimental
AAG. As illustrated in Fig. 2, even this simple MLR approach (Fig.
2B) results in an improved correlation with experimental data
compared to the traditional score functions (Fig. 2A). Using both
five and ten-fold cross validation, we determined that using an
MLR improved testing set correlation by a factor of at least 1.58
(ESI, Table S1, S2). We also observed, again, that application of
the BETA_NOV16 score function displayed a higher
predictability than the REF2015 score function. Interestingly,
the most important terms in the MLR scoring correlated well
with the terms that differed between sampling schemes (ESI,
Table S3). While this improvement was encouraging, the
usability of this reweighted score function is still poor as the
Pearson correlation coefficient was only 0.51 and the mean
absolute error (MAE) was 1.28 kcal/mol.

In order to further improve our AAG predictions, additional
inputs were considered, as well as the introduction of more
complex machine learning algorithms. Inputs were extracted
from simulated structures as the change in energy following
sampling. Several different values were computed to capture
global vs. specific and local vs. distal differences. Global terms
correspond to the change of the total values of the decomposed
Rosetta energy terms across the whole mutant and wild-type
complexes. Specific values refer directly to the differences
between the decomposed Rosetta energy terms of only the
mutated and wild-type residues. To distinguish local and distal
terms, an 8 A contacting shell was created around the mutation
site. This was used for the calculation of local and distal terms,
which correspond to the change in total decomposed scores
within or beyond this sphere. In addition to alternative inputs,
we employed more sophisticated machine learning algorithms:
Kernel Ridge Linear Regression (KRR, see S10, S11), support
vector regressions (SVRs), and Gradient Boosted Random
Forrest Regression (GBT). Our reasons for choosing these
methods are outlined in ESI. Training and testing sets were
specifically designed to ensure that no mutational redundancy
existed between the sets. Curation of training and testing sets
in this manner allows for the greatest predictive power of
generated models3!. Additionally, more rigorous investigation
describing the robustness of our models as a function of training
and testing sets is found in ESI Table S9.

SVRs were performed using various kernels, including
Polynomial (degrees 2, 3, 4, and 5), radial base function, and
Sigmoid. Using these algorithms, correlation to AAG from

This journal is © The Royal Society of Chemistry 20xx

Tablel. Machine Learning Models Using the SKEMPI Database

Method R Value MAE
FoldX 0.34 1.33
Pred1 0.45 1.14
BeAtMusSiC 0.46 1.09
Pred2 0.54 1.07
MLR 0.31 1.18
SVR 0.53 1.09
SRS2020 0.65 0.92

Alternative methods for predicting AAG using the SKEMPI database. R value is the
Pearson correlation coefficient and MAE is mean absolute error in kcal/mol.

similarly to many other literature models.1* (Fig. 2C and Table
1) SVR analysis also demonstrated that the BETA_NOV16 score
function performed better than the REF2015 score function
(Fig. 2C). For GBT, we found that after an exhaustive grid search
of tuneable parameters, this technique was the most predictive
of all models tested as it produced the highest correlation as
well as lowest MAE. Interestingly, GBT models were invariant to
which Rosetta score function was used for simulation as
BETA_NOV16 and REF2015 score functions tested identically.
To further identify any potential differences between these
two models, feature importance analysis was performed. The
two models were extremely similar with the only notable
differences coming from a slight enrichment in the importance
of solvation and hydrogen bonding terms in the BETA and REF
GBT models respectively. In both models, terms corresponding
to phi-psi or rotameric preferences (Fig. 3, Struct. category)
were found to be most important. These terms were followed
by solvation (Solv.), van der Waals (Atr. and Rep.), the single
value of Rosetta total energy (REU), electrostatic (Elec.), and
hydrogen bonding terms (H-Bond). Considering that the
database is primarily comprised of mutations to alanine, the
typical reduction in size and increase in hydrophobicity
associated with these changes likely explains the importance of
solvation and nonpolar, attractive interactions over hydrogen
bonding or electrostatics. Further analysis of how SRS2020
predicts specific subsets of SKEMPI2.0 data is found in ESI.
After identifying that the GBT-based CSF derived from
BETA_NOV16 optimized structures was our best model, we
have named it SRS2020 (information on using this code can be
found on our github https://github.com/Sam-Giannakoulias/RML_ddG/
or automated prediction can be performed with our Jupyter
web app deposited there. Table 1 compares our results to other
machine learning models utilizing a subset of the SKEMPI
database to predict AAG. All values in this table represent five-
fold cross validation of the exact same subset of single
alternative methods and are thus directly comparable. In
addition to these baseline comparisons, a more extensive set of
benchmarking, including comparable performance against
standard hold-out sets such as S487 can be found in Tables S10-
163139, SRS2020 represents not only the first reported CSF but
is the most accurate predictor of AAG in both correlation and
MAE, highlighting the potential utility of CSF-based approaches.
SRS2020 was trained and regressed from the largest protein
interaction data set available in the literature and has proven
robust to alterations in sampling and scoring, demonstrating
the strength of CSF approaches for specific applications.
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Fig. 3 Important features in GBT models derived from REF2015 (red) and
BETA_Nov16 (purple). Feature importance (%) determined as described in ESI.

Furthermore, while our algorithm may be slower than GPU

accelerated

approaches, the freedom from sampling

optimization removes the need to find the perfect simulation
and results in an incredibly rapid approach. Prediction of the
AAG values upon mutation for interfacial residues can be
computed in <60 s on a single intel core i5 8th generation CPU.

We intend to extend this methodology to encompass more

complex sampling methods, such as the ensemble-based
Backrub approach.33 Although this CSF contains no additional
energy terms or metrics, one can also easily introduce a variety
of bioinformatics terms to further strengthen these models.
Additionally, even more complex machine learning methods
such as Extreme Gradient Boosted Random Forrest Regressions
(XGBoost) or neural networks (NNs)32 may be employed to
further improve AAG prediction. Finally, we hope to extend the
SRS2020 model beyond the prediction of interfacial AAG and
use it to design protein-protein interfaces as well as peptides or
peptidomimetics targeting such interfaces.
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