IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 1

Proofs of Physical Reliability for Cloud Storage
Systems

Li Li and Loukas Lazos
Dept. of Electrical and Computer Engineering, The University of Arizona
{lili, llazos } @email.arizona.edu

Abstract—Cloud service providers (CSPs) promise to reliably store repositories outsourced by clients. Unfortunately, once files have
left the client’s control, he has no means to verify their redundant storage. In this paper, we develop Proof of Physical Reliability (PoPR)
auditing mechanisms that prove that a CSP stores an outsourced repository across multiple physical storage nodes. A PoPR
complements the existing proof-of-retrievability (PoR) and proof-of-data possession (PDP) methods that are concerned with file
retrievability, but without any verification of the fault-tolerance to physical storage nodes failures. A PoPR goes beyond retrievability by
verifying that a file is redundantly stored across multiple physical storage nodes according to a pre-agreed layout and can, therefore,
survive node failures. The verification mechanism relies on a combination of storage integrity and timing tests on the simultaneous
retrieval of a collection of file symbols from multiple storage nodes. Compared to the state-of-the-art, our approach accommodates
CSPs with heterogeneous storage devices (hard disks, SSDs, etc.) and does not assume constant data processing nor network
delays. Instead, it can operate under any delay variance, because it relies only on (loose) delay bounds. We analytically prove the
security of our construction and experimentally validate its success in heterogeneous storage settings.

Index Terms—Proof of reliability, fault tolerance, data integrity, data security and privacy, storage reliability, retrievability.

1 INTRODUCTION

WITH the continuously decreasing costs of cloud ser-
vices, outsourcing large repositories online is becom-
ing the norm. Recent studies reported that over one exabyte
of data from more than 50% of large enterprises is already
stored in the cloud [1]. However, the lack of provable reliabil-
ity and security guarantees exposes cloud users—enterprises,
government, public institutions, individuals-to legal, finan-
cial, and business liabilities [2]. As a result, sensitive data
from the healthcare, finance, defense, and other risk-averse
sectors is still maintained in-house with high costs.

To mitigate data loss and privacy risks, enterprises
negotiate contractual terms with Cloud Service Providers
(CSPs), reflected in Service Level Agreements (SLAs). An
SLA outlines data availability guarantees against Byzan-
tine failures, misconfigurations, attacks, and any other dis-
ruption. However, SLAs do not specify mechanisms for
verifying the adherence to the SLA terms [2]. Accidental
misconfigurations may lead to irrecoverable data losses [3].
Furthermore, economically motivated CSPs may choose to
circumvent the promised level of service to reduce their
storage, network, and other operational costs. Possible ac-
tions include the deletion of rarely accessed files [4]-[11],
distribution of files across fewer storage nodes [12]-[15],
and data replication to fewer geographic locations [16]-
[19]. To protect clients against SLA violations, researchers
have introduced storage integrity verification protocols [4]-
[10], [20]-[23]. The so called Proof-of-Retrievability (PoR)
and Proof-of-Data Possession schemes invoke interactive
protocols between the CSP and the client (or a trusted
verifier) to ensure data retrievability [4], [10], [22], [23] or
that it is stored redundantly [11], [19], [24]-[26]. However,

client C CSP
)
\ 1 B A+B
node 1 node 2 node 3

Fig. 1: File f is encoded to symbols A, B, and A + B and
stored in three storage nodes.

prior works on PoR or PDP only verify the existence of data
at the logical level. They offer no proof on how the data is
physically distributed across multiple storage nodes.

We address the problem of physical storage integrity ver-
ification, where the distribution of an outsourced repository
across multiple physical storage nodes is verified. To mo-
tivate the need for such service, consider the basic scenario
shown in Fig. 1. A client C' outsources a file f to the CSP, who
agrees to store f such that it is recoverable from any single
storage node failure. For this purpose, the CSP applies a
linear error correction code (ECC) C on f. In our example,
f is divided to two symbols A and B and the application
of the ECC yields one parity symbol A + B. A PoR or a
PDP can verify that the CSP stores A, B, and A + B, such
that the file is still retrievable if any one symbol is erased.
However, the PoR/PDP test cannot verify how the sybmols
are distributed across storage nodes. A dishonest CSP can
choose to store all three symbols on the same storage node
to save on network bandwidth if some symbol needs to be
repaired from the other two. Failure of that storage node,
however, renders the file irrecoverable. In this paper, we aim
at developing auditing mechanisms to verify that symbols of the
encoded file are stored across separate physical storage nodes so
that resilience to node failures is guaranteed. We refer to such

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 2

mechanisms as Proofs-of-Physical-Reliability (PoPR).

Verification of fault tolerance to storage node failures
was first introduced by Bowers et al. in [15]. The authors
proposed the RAFT protocol in which proof of physical
storage was achieved by measuring the response time of
requests on retrieving a collection of symbols. The queried
symbols were distributed across a number of drives (acting
as storage nodes) according to a known layout. If the CSP
violated that layout by storing file symbols at fewer nodes,
the response time would exceed the response deadline.
However, RAFT could only verify storage on the same class
of nodes, enterprise hard drives in particular, in which the
drive read delay (time needed for the drive to seek and
read a symbol) is relatively constant and known to the
verifier. Moreover, the network latency was assumed to
exhibit little variance, so that the response deadline could
be set proportionally to the number of symbols retrieved.
Similar assumptions were made in a follow-up work [13]. In
practice, heterogeneous storage media with varying symbol
retrieval times may store f. For instance, the read delay
of solid state drives (SSDs) is several orders of magnitude
smaller than that of rotational hard drives. Moreover, the
network delay varies from query to query.

More recently, Vasilopoulos et al. introduced the POROS
scheme for verifying cloud storage reliability [24]. The main
idea of POROS is to use a PDP scheme to verify the data
storage by the CSP and employ a timing test to detect the
on-the-fly reconstruction of redundancy. However, POROS
only verifies reliability at the logical level and does not
provide any guarantees on the data distribution across
storage nodes. Moreover, its security relies on the technical
characteristics of rotational hard drives. A follow-up proto-
col named PORTOS aims at remedying these shortcomings
by performing parallel PDP checks at several storage nodes,
which must adhere to a set of deadlines [27]. PORTOS incor-
porates time-lock puzzles that impose a minimum delay (via
computation) with every symbol retrieval. Thus, a dishonest
CSP violating the logical and physical storage reliability is
detected. Unfortunately, the security of PORTOS relies on
the assumption that the computational capability of the CSP
is known. To this date, there is no method to verifiably
measure the computational capability of a CSP.

Contribution. We make the following contributions:
e We develop an interactive PoPR protocol that allows

a verifier V' attest that the CSP stores a file f across
n distinct physical storage nodes, according to an
agreed storage layout. Our method relies on a series
of integrity and timing verification tests in which the
CSP is requested to retrieve a collection of symbols
from f in parallel.

o The PoPR protocol verifies that the CSP can tolerate
up to t storage node failures, where t is the fault
tolerance of the ECC applied to the outsourced data.

o We present two variations of the PoPR protocol that
address two key scenarios. In the first scenario, the
client (verifier) is assumed to store a local copy of
the audited file and can therefore verify the integrity
of the CSP’s replies at no additional storage cost
to the CSP. In the second scenario, no local copy is
stored at the client. We develop a novel verification
mechanism that relies on probabilistic spot checking

to verify the storage integrity.

o Compared to prior works directly related to ours
[13], [15], [24], [27], the security of our PoPR protocol
does not rely on a specific storage technology. Rather,
our scheme is compatible with a variety of storage
media such as SSDs, HDDs, etc. and can be used to
verify the distribution of data across heterogeneous
storage nodes. Moreover, we do not place any com-
putational restrictions on the CSP. Security is pre-
served even if the CSPs employs multi-core systems
to speed-up any required computation. Finally, our
protocol tolerates variance in network latency and
does not need to be invoked from locations close to
the audited data centers.

o We present a comprehensive security analysis of the
proposed protocol and show it achieves an arbitrarily
small false negative rate and a zero false positive
rate. To account for the heterogeneous storage and
network conditions, we rely on loose bounds on
processing (seek and read) delay and network la-
tency. These bounds reflect the limitations of exist-
ing technologies and can be adjusted to any future
technology updates. We validate the correctness and
soundness of our approach with testbed experiments
over heterogeneous storage nodes that exhibit drive
read delays differences by a factor of 100.

Organization. Section 2 gives an overview of the related
work. We present models and assumptions in Section 3. In
Section 4, we introduce the PoPR construction. We analyze
the security of the PoPR in Section 5. Section 6 presents
experimental results that validate the security of the PoPR
construction. In Section 7, we present a PoPR variation that
does not require the storage of a local file copy at the verifier.
We conclude in Section 8.

2 RELATED WORK

Prior art on storage integrity verification can be categorized
into three classes: (a) verification of data retrievability, (c)
verification of data replication at different geographic loca-
tions, and (b) verification of reliability. We briefly describe
the state-of-the-art for the first and second class and focus
our attention on physical reliability verification, which is
most relevant to our work.

Verification of data retrievability. In this problem, the
CSP is challenged to prove that an outsourced file f is
retrievable. Earlier works proposed interactive mechanisms,
known as proofs of data possession (PDP) [9], [28] that can
detect corruption of large portions of f. PoRs enhance PDPs
in that they provide highly compact evidence of the storage
of f in a probabilistic fashion [4], [22], [23], [29], [30]. More-
over, the privacy of f relative to the CSP and the verifier
was considered in [5]-[7]. The PoR efficiency, dynamic data
update, outsourcing, and implementation in cloud environ-
ments were investigated in more recent works [25], [26],
[31]-[35]. Interested reader is referred to a survey by Tan et
al. for a comprehensive overview of the PoR/PDP literature
[36]. Classical PoR formulations verify the existence of f
without proving the distribution across multiple storage
nodes. Without physical storage verification, a single node
failure could render f irrecoverable.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 3

Verification of storage geodiversity. An important class
of verification methods targets the attestation of file replica-
tion across geographically-separated data centers [16]-[19].
The main idea is to execute a PoR from verifiers located
close to each data center to minimize network latency. If the
verifier does not receive a response within a deadline, the
file is assumed to be absent from the particular data center.
The geodiversity verification methods cannot be used to
audit storage nodes within the same data center.

Verification of distributed storage across storage nodes.
The integrity verification of storage across multiple physical
nodes was first considered in [15] with the proposal of the
RAFT protocol. RAFT is a challenge-response protocol that
verifies the file retrievability even if up to ¢ physical storage
nodes have failed. In RAFT, symbols are requested to be
retrieved in parallel from all nodes that store the file. If fewer
storage nodes are used by a dishonest CSP, the deadlines set
by the verifier are violated because the indicated symbols
cannot be retrieved fast enough. The authors propose the
lock-step protocol for progressively revealing the order of the
audited symbols and forcing the sequential symbol retrieval.
The use of small symbols (64KB) minimizes the read delay
variance, which is key for determining the response dead-
line and guaranteeing correctness. This limits the applica-
bility of RAFT to scenarios with invariant read and network
delays. If the CSP employs some faster drives (e.g., SSDs), or
a network path with smaller latency, the timing test can be
easily defeated. With continuous advancements in storage
technology, it is difficult to produce faithful timing models
for drive read delays [37]. The key difference of our work with
RAFT is that our method can accommodate heterogeneous storage
technologies and network settings with variable delay. Moreover,
our improved PoPR protocol does not require the storage of a file
copy at the verifier, allowing the audit of large repositories.

A layout-free verification protocol that tests for even file-
symbol distribution across a fixed number of drives was
proposed in [13]. Similar assumptions were made about the
constancy of the network latency and drive read delay. Some
efforts have targeted the verification of the file storage across
a set of n servers in the presence of an external adversary
who progressively corrupts different servers [20], [38], [39].
An efficient PoR is performed to detect erasures at different
servers. These file verification mechanisms, however, cannot
be deployed to attest storage across storage nodes that are
under the control of a single entity (CSP).

More recent storage integrity verification protocols have
extended beyond retrievability to verifying storage reli-
ability. The POROS scheme proposed by Vasilipoulos et
al. [24] combines a PDP test with a timing test to verify
that a CSP stores the original file plus redundant symbols.
Simultaneously, it enables the file maintenance at the CSP
without any client interaction. The main difference between
POROS and our scheme is that POROS has no mechanism
to verify that the data is distributed across multiple physical
storage nodes. That is, it only verifies reliability at the logical
level. In fact, POROS requires all redundant symbols to be
stored at a single storage node. Two storage node failures
can render the data irretrievable. Moreover, the security of
the timing test hinges on the rotational hard drives model
for predicting the data retrieval delay, and assumes very
little variance on the network delay.

In a follow up work, Vasilopoulos et al. introduced the
PORTOS scheme to remedy all the shortcomings of POROS
[27]. In PORTOS, time-lock puzzles are used to prevent
the CSP from computing parity symbols efficiently on-
the-fly. The main idea here is to request the retrieval of
information and parity symbols stored in ¢ nodes in parallel
and verify both the integrity of the symbols retrieved and
the time of the response. A dishonest CSP who does not
store redundant symbols or does not store them according
to the layout, must solve k time-lock puzzles (where k is
the number of information symbols in the ECC encoding)
before he can compute parity symbols. This significantly
increases the response delay to an audit and eventually
leads to the violation of the timing deadline. As pointed
out by the authors, the main issue with their approach is
that time-lock puzzles must be tuned to the computational
capacity of the CSP. To this date, there is no method that
can securely verify the computational capacity of a cloud
provider. Moreover, the repair process is inefficient as the
CSP must solve k puzzles every time a single symbol has
to be recovered, thus inducing unnecessary computational
burden to an honest CSP. In our work, we do not make any
assumptions about the computational capacity of the CSP.

Summary of differences with most relevant work:
Our PoPR construction is directly comparable to the RAFT
scheme [15], the scheme in [13], POROS [24] and PORTOS
[27]. With respect to the first three schemes, we do not
require that the CSP uses HDDs with fixed seek and read
delays. Our scheme can verify the storage integrity across
n storage nodes, even when these nodes are heterogeneous
(e.g., mix of HDDs and SSDs). Moreover, our scheme can
tolerate variable network delay. Compared with PORTOS,
we do not place any computational bound on the CSP. Such
bounds are difficult to derive and verify in practice. There
are other subtle differences with prior works that make our
approach more practical. For instance, RAFT requires that
the client stores a copy of the outsourced file for verification,
whereas in our case, the client does not need to keep a
local copy. In fact, the audit process can be outsourced to a
third-party verifier. In addition, the POROS scheme cannot
guarantee the storage reliability beyond two storage nodes
(all parity symbols are stored on a single node).

3 MODELS AND ASSUMPTIONS

We consider a setting in which a client C' outsources a
repository f to the CSP. The CSP and C' agree on an SLA
which specifies that storage of f must survive the failure of
any do storage nodes. We refer to dy as the fault-tolerance
degree of the PoPR. The client periodically audits the CSP
with a challenge) to prove that f is stored in at least dgy
storage nodes. The CSP must reply with a valid response R
within a specified deadline.

3.1 Notation

Table 1 presents the most commonly used notation through
the rest of the paper. We use boldface letters to denote any
vector of symbols or vectors. For instance, a vector x may be
partitioned to x = {x1,X2,...,X)} sub-vectors, with each
sub-vector x; consisting of x; = {z1, z2, ...,z } symbols.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 4

TABLE 1: Commonly Used Notation.

n The number of storage nodes
SN; The i'" storage node
f={f,f,....fh} A file f partitioned into n subfiles
f; ={fi1, fi.2,---, fiky | The ith subfile f; containing k symbols
fij The ;% symbol in the ‘" subfile
c The verifiable version of f
S; The set of symbols stored at SN;
Q A challenge constructed by the verifier
X; The set of symbols challenged from SN;
aj; The index of the j** symbol in x;
Yi The cardinality of x;
i The response generated by the CSP on x;
R={ri,...,rn} The set of responses
t; The response time of r;
7(yi) The deadline set for r;, based on y;
T7(P) Per symbol processing delay
TI(HIZL, Téf 3 The upper and lower bounds of T(*)
TNV) Network latency
T,QX)Z, TIEIJI\;) The upper and lower bounds of T(N)
n,n Random nonce

3.2 CSP Model

Storage model. Without loss of generality, we analyze the
audit of single file f out of an entire repository. Multiple
files can be audited independently, using separate audits.
The file f is stored at a collection of heterogeneous storage
nodes in a remote data center. To efficiently and reliably
store large files, f can be partitioned to ng subfiles of equal
size. Each subfile f; is encoded into a verifiable version c;
that incorporates redundancy through the application of a
linear error correction code (ECC) C of length n, rank %,
and minimum distance d over a finite field F,, an (n, k,d),
code for short. The order of F, is ¢ = 2¢, so code C
operates on /{-bit blocks, referred to as symbols. This is
a common practice in most cloud systems [40]-[42]. The
encoded file ¢ = {cy,ca,...,c,_} is stored according to a
layout L that satisfies the agreed fault-tolerance degree dj.
We note that dg < d, i.e., the required fault-tolerance degree
cannot exceed the code distance. For simplicity, we map
symbol redundancy to storage node redundancy by storing
c at n nodes in the layout shown in Fig. 2. The symbols
¢, = {¢i1,¢2,...,¢in}t of each subfile ¢; are dispersed
across the n storage nodes. Therefore, each node S'N; stores
one symbol from each subfile. The set of symbols stored
at SN; denote a file sector s; = {c14,¢24,...,¢n,i}. The
storage layout £ is known to the verifier.

The CSP uses a parallel I/O system to retrieve symbols
from different storage devices. The degree of parallelism
equals the number of nodes used to store f. Symbols on
the same storage device are retrieved serially.

Timing model. The proposed PoPR method is an in-
teractive timed challenge-response protocol that measures
the response time between the submittal of a challenge @
by the verifier V' and the reception of the response R. The
response time is composed of the processing delay 7*) for
constructing R and the network latency 7(™) for Q and R.

Processing delay per symbol TF): The processing delay
consists of the read delay for retrieving a symbol from
a physical storage device and the computation time for
compiling a response.

T7P) — 7R) 4 7(C) 1)

Fig. 2: The storage layout for encoded file c.

Here, we do not assume any particular model for the
read time T(*¥) and computation time T(“). This generalizes
our method to any storage technology. The only assumption
made is that the processing delay to retrieve and compute
on one symbol (unit of data) is unknown but bounded.
Upper and lower bounds are defined by

T < T < T, @
where Tr(nli? and T\{5) denote the slowest and fastest delays

for processing one symbol, respectively. The time bounds
combine both data retrieval and computation.

We emphasize here that the CSP could use a multi-core
system to speed up computation and minimize 7(“). Even
if the CSP has unbounded computational power (7(©) = 0),
the processing delay is still bounded by the delay 7*%) for
serially retrieving symbols from a physical storage device.
The latter delay cannot be sped-up due to the physical
hardware limitations and also due to the serial retrieval
process imposed by our protocol. Note that the time bounds
need not be tight. For instance, the upper bound can be
set based on the fastest data access rate known by today’s
technological standards plus some error margin, whereas
the CSP can commit to a slowest processing rate. Looser
bounds ensure correctness at the expense of longer response
times and the retrieval of more symbols.

Network latency T™): To make our protocol practical for
any network setting, we do not adopt a precise model for
the network latency. Similar to the processing delay, we con-
sider the network latency (transmission plus propagation
plus queuing delay) for sending and receiving (round trip
time) one unit of data to be unknown but bounded by

7)

) <) < () 3)

max?

where TI(n]an) and T{Y) denote the lower and upper bounds
on the network latency. These bounds are conservative es-
timates based on statistical estimates and need not be tight.
For instance, given a sample distribution of network delays,
the lower and upper bounds can be set to several standard
deviations away from the expected value or the min and

max of the samples plus/minus some error margin.

3.3 Adversary Model

The adversary is an untrusted CSP who alters the pre-agreed
storage layout £ to store data on fewer storage nodes.
This strategy reduces the network overhead for maintaining
storage, which is a significant data center cost [41]. The CSP
is considered to be rational in that he will alter the stor-
age layout only if he could successfully pass the verifier’s

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 5

challenges. Moreover, he is cheap and lazy in the sense that
he will not attempt to alter the stored symbols or split a
symbol among multiple drives. The symbol obliviousness
abstraction allows us to consider symbols as the smallest
atomic unit. No restrictions are placed on the way that the
symbols of f are redistributed by the CSP. Some could be
replicated and stored in multiple storage nodes, whereas
others could be deleted. Finally, the CSP does not gain any
advantage by re-arranging the layout £ without reducing
the number of storage nodes.

4 THE PoPR CONSTRUCTION

In this section, we describe our PoPR construction which
verifies the storage of f according to the layout L. For
simplicity, we focus on a single file f, but our methods
extend to a file repository in a straightforward manner.

4.1 PoPR Overview

Consider a client that wants to outsource a file f to the CSP.
The proposed PoPR construction consists of two phases:
the setup phase and the verification phase. In the setup
phase, the client transforms f to a verifiable version c. The
transformation includes the partition of f to subfiles of size k
symbols and the application of an (n, k, d), code C that can
tolerate up to d symbol erasures. The symbols of each subfile
are then distributed to n physical storage nodes (one symbol
per node for each codeword) to tolerate up to d storage node
failures. This creates a storage layout arrangement £ that is
agreed between the client and the CSP.

In the verification phase, the verifier performs an in-
tegrity and timing test to validate the number of nodes
that store c. Initially, the verifier constructs a challenge @
by choosing the number of symbols to query from each
storage node. He also chooses the corresponding deadlines
that the CSP’s responses from each node are expected. The
deadlines assume that the CSP will retrieve the indicated
symbols in parallel, because they are stored at n nodes. If
the CSP violates the agreed layout £ and stores symbols to
fewer nodes, he would fail to meet all the deadlines because
more symbols have to be retrieved from fewer drives. The
integrity test ensures that the CSP constructs his response
by indeed retrieving the designated symbols.

To demonstrate the main idea, consider the 2-replication
of f at two storage nodes SN; and SN,. That is, copy s;
of f is stored at SN; and a second copy s, is stored at
SN,. To verify the physical storage of s; and s at two
separate nodes, the verifier selects at random two sets of
symbols to be challenged from each storage node. Let x;
and xy denote the collection of challenged symbols at SN;
and SNy, respectively. The verifier issues a challenge () that
defines the symbol indices for x; and x» and a random
nonce 7. Upon receiving challenge @), the CSP retrieves x;
and x2 to construct a response R = {ry,r2}. The CSP does
not wait until both x; and x5 are retrieved, but sends to the
verifier each of 7 and 77 as soon as they become available.
The verifier validates the integrity of the responses and
compares the response times ¢1 and ¢, with preset deadlines.

The sizes of x; and x3 are selected in such a way that if
x1 and X are retrieved in parallel, the CSP response times

fl l

1. File Partition

2. ECC Application

Cng,ly-+ - Cnen

3. Layout Arrangement

ﬁlslz{cl.l.AA~¢C7l<.1}l lszi{ﬂl,zv--w(ﬁnc,z}l AR lsn:{cl,n,«wﬂacng,n}

Fig. 3: Setup phase.

satisfy the selected deadlines, whereas serial retrieval from
the same storage node violates them. The key step is to tune
the sizes of x; and x3 in such a way that even if a single
faster storage media is used, at least one of the deadlines is
violated. This idea directly extends to the n storage nodes.
We now describe the setup and verification phases in detail.
We provide a basic protocol that assumes that f is stored
at the verifier. We then construct a protocol that does not
require the maintenance of a local file copy at the verifier.

4.2 Setup Phase

In the setup phase, the client encodes f to a verifiable
version c by applying the following steps:

1) File partition. The file f is divided to n, subfiles
fi.f5, ..., f,,. Each subfile has k symbols. If f is not
a multiple of £, then it is padded.

2) ECC application. Each f; is encoded to c;
by applying an (n,k,d),; code C, with ¢; =
{Ci,h Ci 2y .-

3) Layout arrangement. A layout £ = {sy,s3,...,Sp}
is created by arranging c to n sectors, with each sec-
tors; = {c14,¢2,i, .-, Cn. i} hosting one symbol per
encoded subfile c;. Each sector hosts ns symbols.

4) File upload. The encoded file ¢ and the layout £ are
provided to the CSP. The CSP stores ¢ according to
L in n storage nodes.

5 Cing-

The steps of the setup phase are shown in Fig. 3. At the end
of the setup phase, both the client and the CSP agree on
L. Note here that for simplicity, we have assumed that the
number of nodes used to store c is equal to the code length.
However, this is not a requirement. A smaller number of
nodes can be used for storage at the expense of storage
reliability. In practical scenarios, the code length n should
be selected to be equal to the number of storage nodes used
at the CSP to guarantee resilience to up to d failures.

4.3 Verification Phase

The verification phase is an interactive protocol between the
verifier and the CSP that verifies the storage layout £ at the
CSP. This is achieved probabilistically, by auditing a subset
of symbols from each node. The verification phase consists
of the construction of challenge () by the verifier and the
response R by the CSP.

Construction of Challenge ().

1) Deadline selection. The verifier specifies the num-
ber yi,y2,...,yn of symbols to be queried from
each storage node (sector). The verifier also selects
n deadlines 7(y1), 7(y2), - - -, T(Yn)-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 6

2) Initial symbol. The verifier selects a random nonce
n and n random indices a1,1,01,2,...,01,,, With
a;; € [1,n;s]. The random index a,; specifies the
first symbol ;1 = ¢4, ,),i to be queried from s;.

3) Query construction. The verifier applies a public
pseudo-random function ¢ : {0,1}* x {0,1}* —
[1,n4], such as a strong universal hash function, y;
times to find the last symbol to be retrieved from
sector s;. Here a;41; = ¢(c(aj7i)7i7 1), i.e., the index
of the next symbol to be retrieved is computed based
on the previously retrieved symbol and 7.

4) Challenge construction. The verifier selects
a random nonce 7 and computes hash
values h(c(ayi‘i)ﬂl’ 7). The challenge @

consists of {ai1,a1,2,...,a1,n}, h(c(a,, ,),1:7),
h(c(ay%g),% 77/)7 B h(c(ayn,n)nn 77/)/ m, and 77//
where h(-) is a secure hash function, and 7’ is
a nonce. The verifier sends @ to the CSP and
initializes n clocks t1, to, ..., t, to zero.

As an example, consider a file f stored in two storage
nodes SN; and SN;. Let the sectors s; and s; store 9
symbols each. In step 1, the verifier specifies the number
of symbols that need to be retrieved for the timing test
to be equal to 3 symbols from each sector. In step 2,
the verifier selects two random indices from 1 to 9. Say
a1,1 = 2 and az; = 3. The verifier selects a nonce 7
and computes ¢(c(4, ,),i»7)- Let the indexes computed via
pseudo-random function ¢ be as; = 5 and az; = 9 for
sector s; and az 2 = 7 and a3 2 = 8 for sy. The symbols to
be retrieved form s; are x; = {¢2,1,¢5.1,¢9,1} and from sy
are Xp = {c3,2,¢7,2,¢32}. The challenge @) consists of the
initial indices {2, 3}, the hashes of the ending symbols with
random nonce 7', i.e., {h(co.1,7’), h(cs 2,n')}, n, and 7'. The

symbol selection process for x; is shown in Fig. 4.
S1 X1

C2.1
#(c2,1,m) (Cs1

N

C6,1
o(es.m)| [erq

8,1

C9,1

Fig. 4: Sequential symbol retrieval for x;.

The construction of) achieves several critical properties
for the security of the PoPR. First, each set x; retrieved
from a sector s; is randomized with every challenge. This
is achieved by randomly selecting the initial index a; 1,
incorporating the nonce 7, and applying ¢. This property
ensures that symbols in each x; are not sequential to account
for possible reduction in data access times in sequential
reading. Note that this is not necessary from a security
standpoint because delay bounds are used for data access,
but it nonetheless improves the margin of detection. More-
over, the sequence of queried symbols cannot be precom-
puted based on the initial index due to 7.

A second important property is that the next symbol
to be retrieved depends on the previous one through the

pseudo-random function ¢. This forces a serial retrieval pro-
cess so that the data processing delay is cumulative. Finally,
¢ hides the number of symbols that are to be retrieved from
every storage node. The end of retrieval process for SN;
is reached when the hash of the retrieved symbol matches
h(c(ayi,i)’i,n’). This condition can only be tested if all y;
symbols have been retrieved. Hiding the length of each
challenge is a prerequisite for the success of the timing test,
as we show in Section 4.5.

Construction of the Response R and Verification

1) Symbol retrieval. The CSP retrieves the symbols
in each x; in parallel from each node, starting
from c(,, ,),; and ending at Clay,; i)y Symbols at
different storage nodes are retrieved in parallel. For
each retrieved symbol c¢(q;,)i, the CSP computes
h(c(a; .),i»m') and compares it with h(C(ayi,i),m n)
provided by the verifier to determine the query end.

2) Response. Upon the collection of all
symbols in x;, the CSP computes r; =
h(h(c(alyi),iv 77/)7 h(c(ag,,y),iv 7/)) LR h(c(ayiwq;),ia 77/))
The CSP sends each r; to the verifier, as it becomes
available.

3) Verification. The verifier records the arrival times
for each response r; and performs an integrity and a
timing test. The CSP passes verification if both tests
are passed.

The response R consists of n individual responses
T1,72,...,Tn. Bach response is constructed independently
of the others. The symbols within the same storage node are
retrieved sequentially, whereas the symbols across storage
nodes are retrieved in parallel. The response r; for a sector
s; consists of a hash of all hashed symbols in x;. Precompu-
tation of the response is prevented by including the random
nonce 7’ with every individual hash computation and by
hiding the indices of symbols in each x;. The indices are
also randomized with every repetition of the protocol. The
responses r; arriving at the verifier are checked for their
integrity and timeliness by performing an integrity and
timing test. These tests are meant to verify that the indicated
symbols were retrieved and that the responses for each
sector satisfied the specified deadlines.

4.4 Integrity Test

The integrity test checks the correctness of the response R
returned by the CSP. This is necessary to ensure that the CSP
indeed retrieved the intended symbols and did not create
responses based on random symbol values. The verifier
performs the integrity test according to the following steps:

1) Response reception. The verifier receives R =

{ri,rh,...,r.} from the CSP.

2) Response reconstruction. The verifier
retrieves each symbol ¢,) in x; from
the local copy f and computes 7, =
h(h(c(al,i),ia 77,)7 h(c(ag,i),ia 77/)) ERE h(c(ayiwi),ia 77/))/
fori =1..n.

3) Integrity check. The CSP passes the integrity test if
ri=mr;, fori=1.n.

Note that the verifier can store f and recreate c on
demand, since c is just an encoding of f with a public code.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 7

The verifier can store the encoded version c¢ to avoid this
computation step at the cost of a storage overhead of 7/k.
The accessibility of c allows the verifier to check the cor-
rectness of each r; and hence guarantee that actual symbols
were retrieved once a correct r; is received. In Section 7, we
construct an integrity test that eliminates the storage of f at
the verifier, at the expense of increased storage at the CSP.
We emphasize that the integrity test does not verify
the retrievability of f at the CSP, but is limited to the
retrieval of the x;’s. A PoR test can be performed separately
for verifying the file retrieval. However, if the number of
retrieved symbols in all x; exceeds the number of symbols
required for a PoR test [23], no separate PoR test is necessary.

4.5 Timing Test

The timing test verifies that the CSP conforms to the agreed
storage layout. To perform a timing test, the verifier must
select the lengths yi,v2,...,yn of the n challenges and
also set the deadlines 7(y1),7(y2),...,7(yn) for receiving
responses 71,72, ...,y so that the deadlines are met only
if the challenged symbols are retrieved in parallel from n
storage nodes. If a dishonest CSP cheats by storing the
symbols of ¢ on fewer nodes, at least one of the n deadlines
is violated. We first demonstrate how to select the challenge
lengths and deadlines for two storage nodes and then ex-
tend to n nodes.

Selection of challenge lengths and deadlines. Consider
the storage of ¢ at SIV; and SN; according to layout L. Let
the CSP be challenged to retrieve x; of length y; from SN;
and x3 of length y, from SNy, in parallel. For a CSP that
retrieves x; and x in parallel from two storage nodes, the
verifier should receive the responses r; and 7 no later than

ty < T, + 1))
ta < pT)L+ T, ®)

where Ti{5) is the upper bound on the per-symbol process-

ing time (data retrieval plus hashing) and TN is the upper
bound on the network latency for receiving the challenge
and sending each response of fixed length (size of a hash)
back to the verifier. The upper bounds in (4) and (5) are
based on the upper bounds in (2) and (3). The verifier sets

the respective deadlines for receiving r; and r to

(1) = nTEL + T, (6)
T(y2) = T + T (7)

The deadlines reflect the worst-case estimates on the re-
sponse time of 7y and ry, assuming the longest processing
delay and network latency. Note that we do not assume a linear
model for symbol processing. The per-symbol processing delay
may vary with every symbol retrieval. However, any per-
symbol delay is upper bounded by T(E), and hence, the
inequalities (4) and (5) hold.

If a dishonest CSP stores x; and x» at a single storage
node, both x; and x have to be retrieved sequentially
because of the challenge construction. Recall, that the pre-
vious symbol has to be retrieved before the next symbol in
the challenge is determined. Without loss of generality, let
the challenged symbols be stored in SN;. The adversary

Verifier Honest CSp Verifier Type I Ady. Verifier Tipe 2 Ad.
0
Q
o)
| fg

I) =]

0 B J_ (v, i

r|d

) Late b=

(a) (c)
Fig. 5: Timeline for responses r; and ry when (a) x; and x»
are stored at SNN; and SNy, respectively (honest strategy),
(b) x; and x5 are stored at SN; and x; is retrieved first
(strategy 1), and (c) x; and x5 are stored at SN; and x3 is
retrieved first (strategy 2).

is presented with three choices. Retrieve x; first and then
Xy (strategy 1), retrieve X, first and then x; (strategy 2), or
retrieve x; and x5 in an interleaving fashion (strategy 3).

Using the worst-case estimates for the honest strategy
(storage of x; and x, at SN and SN, respectively) and
the best-case estimates for the dishonest strategies, we can
derive the deadlines for which the timing test fails, when
the storage layout is violated. For strategy 1,

(1 + 92) T + T3 > 7(12) ®)
which, combined with (6), yields
Y1 > ya(To/1E) — 1) + TRR-Tai)/rE). 9

That is, the best-case response time of r; from a dishonest
CSP should be longer than the worst-case response time of
rp from an honest CSP. Following a similar approach for
strategy 2, the verifier can detect that x; and x» are stored
at the same storage node if

1)+ @ -T) .

min

Y2 > v (max/T“f) (10)

For strategy 3, suppose the adversary retrieves x; and
X2 in an interleaving fashion and that the last retrieved
symbol belongs to x3. The response time for x; will be
longer than if x; was retrieved first entirety but it may
meet the deadline. Meanwhile, the response ry cannot be
constructed before both x; and x5 are retrieved, because
the last retrieved symbol belongs to x. In this case, strategy
3 becomes equivalent to strategy 1, in that it cannot speed
up the delivery of r,. Similarly, if the last retrieved symbol
belongs to x1, strategy 3 becomes equivalent to strategy 2.
This shows that interleaving the symbol retrieval cannot si-
multaneously reduce the response time for both challenges.
Therefore, we only analyze strategies 1 and 2.

The timing diagrams for the honest response strategy,
strategy 1, and strategy 2 are shown in Fig. 5. In strategy
1, the CSP misses the deadline for ry whereas in strategy 2,
the CSP misses the deadline for r;. Inequalities (9) and (10)
form the following system:

y1 > o (Tea/TiE) —
yo > 1 (Twa/T5) —

min

1)_|_(T(N> T(N)) (P)

max min min ?

1) + @R-18)/T) ()

min *

Adding the two inequalities in (11) on both sides, we have
y1+y2 > (T/78) = 1) (Y1 +y2) + 2000-T0i)/15) (12)

Note that Ta/7") — 1 and (T -T45)/75) are both posi-
tive. Hence, the system has positive solutions of y; and y»
only when

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 8

T8 (g1 + o)

The bound of T.52/7(%) in (13) can be approximated to two
and become independent of the sizes y; and y2 when the
minimum time to process y; + y2 symbols is significantly
larger than the time difference between the maximum and
the minimum network latency. This is satisfied if y; and y»
are large or the network latency shows little variance, such
that the processing delay dominates the overall response
time. In any case, and without using the aforementioned
approximation, the verifier can pick a size y; and then solve
(13) for ys such that the CSP will violate one of the two
deadlines in (6) and (7), independent of his retrieval strategy.

However, the inequality in (13) cannot always be satis-
fied. One way to observe this is to have T > 2Tr£1]2 That
is, the fastest processing time is at least twice the slowest
processing time. In this case, there are no feasible sizes y;
and yo that simultaneously satisfy the two inequalities in
(11). To address this case, we propose a probabilistic solution
that relies on repeated challenges.

Probabilistic Detection of Storage Layout Violations.
When the processing and network delay bounds do not
satisfy (13), the verifier can choose to satisfy one of the
two inequalities by choosing a value for y; and calculating
y2 (or vice versa). It is straightforward to show that a
dishonest CSP who stores c at a single storage node can
evade detection by serving the shortest challenge first.

For instance, consider for simplicity that the network de-
lay is negligible, so that its impact on (11) is eliminated. Let
TE) = 11ms and Témz = lms, so that the two inequalities
in (11) cannot be simultaneously satisfied. Let the verifier
choose y2 = 10 symbols and compute y; = 200 to satisfy
the first inequality in (11). The respective deadlines are set
according to (6) and (7) to 7(y1) = 11T (L) — 2200ms and
7(y2) = yoTihk = 110ms, respectively. Let the dishonest
CSP store both y; and y» at a single storage node SN; that
operates with the lowest processing delay T 151}2 If the CSP
serves y; first followed by y», the response time for y; will
be att; = yi7, rgfrz = 200ms < 7(y1). However, the deadline
for y, is violated since to = (1 +y2)TI(niI2 = 210ms > 7(y2).
If the CSP serves the shortest challenge first (i.e. x2), both

T
7 < 2 <1 (13)

min

Tiax — T >

deadlines are met since t; = (y; + yg)TI(nli? = 210ms
< 7(y1), and tg = ygTéug = 10ms < 7(y2).

The key to detecting storage layout violations is to hide
the lengths of y1 and yo so that the CSP has to randomly choose
which challenge must be served first. This yields a probability of
violating the timing test equal to 1/2. To drive the probability
of detection to any desired value, the verifier performs
repeated independent challenge-response tests with hidden
challenge lengths. Because tests are independent (the se-
quence of symbols challenged at each round is pseudo-
random) and the lengths of the challenges randomly satisfy
one of the two inequalities in (11), the probability that a
dishonest CSP passes « tests is /2, which is a negligible
function. The problem of detecting storage layout violations
reduces to the problem of hiding the challenge lengths.

Hiding the challenge lengths. In the construction of
challenge (), we showed that the length of x; remain hidden
until the last symbol from each set is retrieved. This is

because the next symbol to be retrieved depends on the
previous one and the nonce 7 through the pseudo-random
function ¢. This recursive relationship guarantees that the
CSP cannot determine the length of each challenge by the
time it receives (). Moreover, the end of the challenge
is determined only after the last symbol is retrieved and
hashed with 7’ so that it can be compared with the hash
value provided by the verifier.

Extending the Timing Test to n Storage Nodes. Con-
sider now the general case where c is stored at n nodes,
but the CSP violates the layout agreement by reducing the
storage nodes to m < n. Let W denote the deleted set of
nodes and £ the remaining set. Consider the challenge x; to
one remaining storage node SN; and the challenge x; to a
deleted node SN; To construct the responses r; and r; and
pass the timing test, the CSP can employ any of the three
strategies presented for the case of two storage nodes. That
is, the CSP can choose to serve x; first, followed by x;, serve
x; first followed by x; or interleave the retrieval of symbols
from each query. We emphasize that regardless of strategy,
the CSP must retrieve all symbols in x; serially from all
nodes storing x;, due to the dependence of the next symbol
from the previous one through the function ¢. We also note
that the interleaving retrieval strategy would naturally lead
to higher delay because of the coordination/communication
that is necessary to interrupt one retrieval process and ini-
tiate another among nodes that are connected via network
controllers!. For now, we focus on the case where the deleted
date is moved to the fastest storage node. We express the
deadline inequalities that need to be satisfied, such that the
verifier detects a layout violation for x; and x;. If the CSP
chooses to retrieve x; first followed by x; then y; and y;
have to satisfy inequality (14).
< (i +)T + T

min min
N
1) + TR -T3)/ T8,

min

T(P) +TW)

max max

= y; > y;(Thak/TE) —

min

(14)
If the CSP chooses to retrieve x; first followed by x; then y;
and y; have to satisfy inequality (15).

y, TP 4 7(N)

max max

= y; > yi(Thk/TE) —

)+<T<N> T““)/ Py (15)

max min mm

In a system where every storage node could be a deleted
one, the inequalities for all 4, j € N, i # j are written as:

N
yi > (TS — 1) + (@R -1 /1)
Yi

>y (B2/r0) — 1) + @ty 40
Similar to the case of two storage nodes, (16) has a valid
solution, only when condition

T

max min

< (1
P
T T (i + 9)
is met for all pairs of storage nodes and respective chal-
lenges y; and y;. In this case, a single test is sufficient to

T _ ()
max (17)

1. The coordination/communication delay cost for interleaving be-
tween storage nodes can be minimized if they are directly accessible
by the CPU. In this case, an interleaving strategy could possibly pass
verification even if fewer storage nodes are used. However, this sce-
nario has limited value for the CSP because he is no longer motivated
to reduce the number of storage nodes to save on the network repair
bandwidth.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 9

determine the compliance of the CSP. When (17) can’t be met
for all pairs of y; and y;, a probabilistic detection approach
has to be taken, where o independent tests are performed
with hidden challenge lengths. A simple way to select the
challenge lengths in this case would be use (18) in ¢/2 of the
tests and (19) in the other half. So that, for each pair of y;
and y;, there must have one inequality in (16) being met.
Hence, the probability that a dishonest CSP passes «a tests
remains to be no higher than 1/2°.

w 18)

min

Y1 = Yo
Y; > yifl(IE]Pa))(/T(P) 1) + (TIEIZZ})(T(N))/

Yn = Yo
{yz 1> i (T9/TE) — 1) + (T =T /7P (19)
Although for most applications the number of storage nodes
is expected to be relatively small, when the number of
storage nodes increases, selecting the challenge lengths ac-
cording to (18) or (19) could be problematic due to the
increase in y; by a factor of (T52%/7Y) — 1). An alternative
audit approach is to perform pairwise challenges on storage
node pairs and set the value of y in each challenge according
to (11). For example, when there are 3 storage nodes, SNy,

SNy and SN, with Tibh = 100 and T = 7)) =
instead of setting y; = 10, yo = 100 and y3 = 1000

according to (18), the verifier can form 3 pairs, (SN, SN3),
(SN1, SN3) and (SNg, SN3), and then according to (11), set
y1 = 10 and y2 = 100 in the challenge on SN; and SNy, set
y1 = 10 and y3 = 100 in the challenge on SN; and SN3,
and set y» = 10 and y3 = 100 in the challenge on SN; and
SN3. Using this method, one verification on all n storage
nodes requires () challenges. Once the value of y; is set,
the corresponding deadline 7, is set according to (20).
T(yi) = 4 TL) + TN

max max

(20)

To demonstrate the deadline selection for more than two
storage nodes, suppose there are three storage nodes and
TEk = 70ms, T ﬁnﬁ = 50ms, T\ = 8ms, and Ténn) = 6ms.
Based on these values, (17) can be met for any positive y;
and y;. One such selection is y; = y2 = y3 = 18. On the
other hand, if T2, = 70ms, Tlgfg = 5ms, T\ = 8ms and
Tglvn) = 6ms, there are no positive values of 1, y2, and y3
that satisfy (17). For the latter scenario, the challenges on
pairs (SN1, SN3), (SNa, SN3), and (SNy, SN3) have to be
repeated with hidden challenge lengths as discussed before.

Interleaved retrieval strategy. To increase the chances
of passing verification, the CSP could consider distributing
the symbols of deleted nodes to the remaining nodes and
retrieve the symbols in an interleaved fashion. For instance,
assume that the CSP distributes the symbols stored at SN; to
the m remaining storage nodes. When challenged to prove
the storage of x;, the CSP serially retrieves those symbols by
interrupting the retrieval process at each of the remaining
m nodes. We have argued that the required coordination
and queuing of retrieval requests would make the retrieval
process for x; and the rest of x;’s far slower, but it has
the advantage that fewer symbols need to be retrieved from
each node compared to storing all deleted symbols of SN;
to a single node SIV;.

Though impractical, suppose there is a system that has
zero additional time cost on coordinating the retrieval pro-
cess in the m remaining nodes and also interrupting current
retrieval for the rest of the challenges. It is straightforward
to prove that when the symbols of a deleted node are
distributed to m or fewer nodes, there is one node that stores
at least vi/m symbols from any challenge x;, with length y;. This
fact can be used to modify the inequality in (14) to achieve
detection, even under zero coordination cost. The bound in
(14) can be adjusted to

1
—yi)Tt + Ty

min min

WIS+ TG0 <

= i > m(y; (Tﬁi/TIE,i? 1)+ (T-TD/rE). @D)
The inequality in (21) allows the verifier to adjust the
challenge lengths and deadlines to achieve detection. In a
system where every storage node could be a deleted one,
the inequalities for all i, j € NV, i # j are written as:

Yj
Yi

Taking a closer look at (22), we note that the lengths y; and
y; are increased by a factor of m compared to (16), thus
increasing the communication overhead.

1) + (T2 -T)/ 1)

min

1) + @ER-T5) /1),

min

> m(y; (T /T2 —

> m(y; (TS/TE) — (22)

5 SECURITY ANALYSIS

In this section, we analyze the security of the PoPR protocol.
We prove that (a) an honest CSP will always pass verifica-
tion (correctness), and (b) a dishonest CSP fails verification
with high probability when the storage layout is violated.

Proposition 1. (Correctness) An honest CSP that satisfies the
storage layout always passes verification.

Proof. An honest CSP stores c according to the agreed
layout £. When challenged with @), the CSP retrieves the
symbols indicated in () from each storage node and con-
structs the responses 7;, ¢ = 1..n. Because the honest
CSP stores c, the responses provided by the CSP satisfy
the integrity test. For the timing test, the CSP retrieves
the symbols stored at each of the n nodes in parallel,
starting from ¢4, 1)1, C(a1),2) -+ C(ay.,),n and ending at

Clay, 1),17 Clagy 2),25 > Clay,, n)om- The processing delay Ti(P)

of node SN; is u <pper -bounded by TZ-(P) < Tk and the
network delay 7,7 is upper-bounded by Ti(N) <).
Therefore, each response r; arrives at the verifier no later
than yiTi(P) + Ti(N) < 7(y;). That is, an honest CSP meets
the deadlines for each storage node SN;. O

Proposition 1 shows that our PoPR protocol achieves
a zero false positive rate as long as the processing and
network delays stay within the predefined bounds. Note
that these bounds can be set loosely to guarantee that an
honest CSP will always succeed in the timing test, despite
any delay variance.

Proposition 2. (Security) A CSP that violates the storage layout
by deleting at least one stom<ge node is detected with probability

N
one when TSo /) < 2(1 — (TH~ T,im))/Tfnf’j(y,ﬁy,-)) and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 10

probability 1 — 1/2> otherwise, where o is the number of challenge
rounds executed by the verifier.

Proof. When TS2/1() < 2(1 — (DO -T3) /T;Q(y#yj)),
the verifier can select y; and y; to satisfy both inequalities
in (16), Vi, 7,7 # j. Without loss of generality, assume that
the CSP has deleted all symbols from SNV; and distributed
them on remaining storage nodes. Let SN; be any one of the
remaining storage nodes. To compute the responses, picks
one of the two strategies, either retrieving x; first and then
x; or retrieve x; first and then x;. Recall that all y;’s satisfy
the inequalities in (16). If the CSP chooses to serve x; first,
the deadline 7(y;) is violated. That is,

P N
ty =(yi +y))1" + 1,
>(yi + ;)T + 1)

min min

> (g (B0 = 1) + LTI 1) +) T
@)

min

T + T = 7(y)

max max

(23)

If the CSP retrieves the symbols in x; first, r; will arrive
on time but r; will violate deadline 7(y;). That is,

t; =(y; + yj)T(P) + T(N)
>(y; + y)TE) 4 7V

min min
. (P) /o (P) __
> (yl + Yi (deX/Tmm
)

min

1) + -8/ T

min min

=i T + Tk = 7(1)

max max

(24)

Hence, the deletion of a storage node is always detected.
When T952/75) > 2 (1 — (TS-T0D/T8) (4, +4,)), the
verifier can select y; and y; such that only one of the inequal-
ities in (16) is satisfied. Without loss of generality, suppose
that SIV; is deleted and symbols of SN, are redistributed
on the remaining storage nodes. Let SN; be one of the
remaining storage nodes. Let also the Verlfler select y; and y;
such that y; > y; (T80/T5) — 1) 4 (T4 - ~T8)/1) . Without
knowing if y1 > yo, the CSP chooses to serve x; or x; at
random. Following the probabilistic detection of the storage
layout violation analysis of Section 4.3, if the CSP serves the
shortest query first, the responses r; and r; will not violate
their respective deadlines. Serving x; first, however, will
lead to the violation of the deadline for 7;, according to (24).
Since the verifier chooses to satisfy one of the inequalities
in (16) at random and the query lengths remain hidden
from the CSP until the last symbol has been retrieved, the
probability that the CSP violates a deadline equals !/2. As
all challenges are constructed independently, a verification
phase consisting of o independent challenges detects a
layout violation with probability 1 — 1/2=. O

Proposition 2 shows that the verifier can drive the prob-
ability of detecting a violation in the storage layout to any
desired value using repeated queries, irrespective of the
delay bounds. For certain bound relationship, the detection
probability becomes one with only a single query.

6 EVALUATION

In this section, we experimentally demonstrate that our
PoPR construction can detect a dishonest CSP that violates
the pre-agreed layout by storing the outsourced file to fewer
nodes. We show that such a CSP will violate at least one
deadline set by the verifier.

Setup: We considered a setup with three storage devices
acting as the cloud storage nodes: a Seagate HDD; with
1.5TB capacity, a Hitachi H DD, with 320GB capacity and
a Kingston SSD; with 120GB capacity. All three drives
were mounted on a PC equipped with Intel® Core i7-
3770 Processor (4 cores, 8 threads), 8GB memory, running
Ubuntu 14.04 LTC. The PC acted as an in-house CSP server.
Initially, the verifier was implemented on the same PC to
minimize the network latency. Parallel data retrieval from
multiple storage nodes was implemented using a PHP
program with the multi-threading extension pthreads. We
also implemented the verifier on a laptop equipped with
an Intel® Core i7-6820HQ Processor (4 cores, 8 threads),
16GB memory running macOS Sierra 10.12.4. The laptop
remotely challenged the server via an SSH connection,
which was implemented using a PHP program with the
secure communications library phpseclib. The code used for
the experiments is available at [43].

Metrics: We evaluated our PoPR protocol for both cor-
rectness and soundness stated as follows.

Correctness: An honest CSP that stores a file f according
to a pre-agreed layout should always pass the timing test.

Soundness: A dishonest CSP that stores a file f to fewer
storage nodes should always violate the timing test.

To evaluate these two properties, we measured the re-
sponse time of an honest and a dishonest CSP under various
storage node configurations. The main metrics for the re-
sponse time is its distribution over repeated challenges, and
the gap between the response time and the deadlines set by
the verifier. Before performing the timing test experiments,
we profiled the storage nodes and the network to establish
relevant bounds for the processing and network delays, so
that the corresponding deadlines could be set accordingly.

6.1 Processing Delay Bounds

We first studied the processing delay 7*") for retrieving
symbols of various sizes and computing their hash values.
These experiments were performed to obtain the bounds of
the processing delay for varying technologies. Figures 6(a),
6(b), and 6(c) show the processing delay of HDD, HD D,
and SSDj, respectively, as a function of the number of the
randomly retrieved symbols. The variance is also shown.
For HDD, and HDD,, TP) grows linearly to the number
of retrieved symbols. This indicates a relatively constant
processing rate, independently of the symbol size. For
SSDy, TWH) grows sublinearly for sizes less than 128KB
and is almost linear for 256KB. The two HDDs have similar
average processing rate, which varied about 10%.

To further understand the variation in 7Y, we mea-
sured the average, minimum, and maximum delay ratio
between HDD; and SSD;. We omitted HD D, from our
comparison, because its profile is similar to that of HDD;.
Figure 6(d) shows the processing delay ratio as a function of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019

11

40 40
—1KB —1KB —1KB
~ ||~ 32«B) —~ |- 32kB
g .- 64KB g |}-64kB g |64k
— 20t —-128KB \)20 L|I—=-128KB ~ 4 ||—=-128KB I
g —256KB g —256KB g —256KB -
& &~ | e T e o
0 : : : : : 0 : : : : : 0 ‘ : : : :
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
of symbols processed # of symbols processed # of symbols processed
(@) b C
2 0.1
‘ : r, from honest hdd,
—1K 0.08 4 =49.6ms ‘T r, from honest hdd,
- 32k 15 X X 2 P r1lr2 from dishonest hd':l1
TR = 0.06)E
iosd 2 I | I T E L‘Qﬂn =73.9ms
© —1 X :
56K 1’“1 l ! 9o ;
‘ 0.02 H ‘
: : ; ; ; 0.5 : : ; : 0 HH‘ \‘H ‘HH‘ il
0 100 200 300 400 500 600 0 100 200 300 400 500 0.2 0.4 0.6 0.8 1.4
of symbols processed # of symbols processed response time (sec)
(d) (e) (®)

Fig. 6: (a) TP at HDD;, (b) TP at HDDs, (o) TP) at SSD;, (d) Processing delay ratio between SSD; and HD D, (e)
Processing delay ratio between H DD, and HD D, (f) Probability distribution of ¢; and ¢, when storing ¢ at two HDDs

(honest CSP) and only HDD; (dishonest CSP).

the number of symbols. We observe that the ratio decreases
with the symbol size and increases with the number of
symbols retrieved. The processing delay of SSD; was up to
80 times smaller than that of /D D;. The processing delay
ratio between the two HDDs is less than two times with
an average that is independent of the number of symbols
retrieved, as shown in Fig. 6(e).

We use the results of Fig. 6(d) to select the bounds for
the timing tests. The longest processing delay was 76.33ms
(13.1 symbols/sec) whereas the smallest processing delay
was 0.73ms (1,364 symbols/sec). Among the two HDDs,
the recorded smallest processing delay was 46.33ms (21.58
symbols/sec). On the SSD, the recorded longest processing
delay was 2.7ms (370.37 symbols/sec). For the experiments
involving only HDDs, we set Téﬁg = 45ms (22 symbols/sec)
and T\\0) = 85ms (12 symbols/sec) . This allowed us to test
the case where T4 /T8 < 2 (1 — (-1)/T[(‘f‘z(yi—&-yj)).

For the experiments involving both HDD and SSD, T; 15112 was
set to 0.73ms (1,368 symbols/sec). Note that in a real scenario,
the bounds could be set according to current specifications. The
verifier does not have to probe the CSP to estimate the processing

delay and the network latency.

6.2 Network Latency Bounds

When the verifier was implemented on the same PC as the
in-house CSP server, we measured the network latency by
recording the round trip time (i.e., system delay) for sending
a challenge and receiving a 256-bit hash value from the
CSP. The hash was precomputed and stored at the CSP.
The results of 1,000 repeated measurements are shown in
Fig. 7(a). The network latency varied from Tél]:]n) = 5.06ms
to Ti\h3 = 10.54ms. We observe a considerable variation in
the network latency, despite having the verifier on the same
platform as the CSP. This latency is primarily attributed to
how the operating system handles the request. Compared
to the processing delay, the network latency in this scenario
is equivalent to the retrieval of up to 14 symbols when the
fastest SSD speed is considered.

n
(=3
=]
=]

-
(4.}
o
=]

. .. 1289.2ms

milliseconds
milliseconds

-
(=3
<]
=]

500
0 200 400 600 800 1000 1200

observation index

(a) (b)
Fig. 7: T for 1,000 observations when (a) the verifier and
the CSP are implemented in the same machine and (b) the
verifier uses SSH to the in-house CSP.

5
0 200

400 600 800
observation index

1000 1200

When the verifier was implemented on a laptop con-
nected to the in-house CSP via an SSH connection, the
network latency was recorded as the round trip time be-
tween sending the challenge () and receiving a 256-bit hash
over the SSH connection. The results of 1,000 measurements
shown in Fig. 7(b), indicate a T, éﬁ) = 626.3ms and a T\ng =
1,915.5ms. Here, the major component of the latency is the
slowdown imposed by the SSH protocol.

6.3 Homogeneous Storage - Two HDDs

In this set of experiments, we considered the scenario where
cisstored at HDD; and H D D,. Although the same storage
technology is used, the results in Section 6.1 verify that some
variation exists in the processing delay between the two
drives. For these experiments, the symbol size was set to
64KB and the verifier ran at the same host as the CSP. The
network and processing delay bounds were set based on
the results of Sections 6.1 and 6.2 to Téﬁ;) = 5ms, Tég))(=
10.6ms, Tlgfg = 45ms, and Tr(ni,)(= 85ms. For these values,
inequality (17) is satisfied for any positive y; and y2, hence
both inequalities in (11) can be simultaneously satisfied. The
verifier set y; = y2 = 9 symbols and also set the deadlines
for r1 and 73 to 7(y1) = T(y2) = leél’;,)(+ T&’Q = 775.6ms.

Figure 6(f) shows the distribution of the response time
t; for retrieving 9 symbols from H DD, the response time
to for retrieving 9 symbols from HDD,, and the response
time for retrieving 18 symbols from H D D; only, across 100

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 12

4

3t

N

gap (sec)

o

"o 20 40 60 8 100
symbols challenged on HDD1 and HDD2
Fig. 8: Gap as a function of the # of the challenged symbols.

challenges. The latter case corresponds to a dishonest CSP
who stores all symbols on H D D;. The solid line represents
the deadline of 775.6ms for any 9-symbol retrieval. The
dashed line represents the fastest response recorded for any
retrieval of 18 symbols on the dishonest H D D;. Finally, the
dotted line represents the slowest response recorded for any
retrieval of 9 symbols on H D D;. We observe that responses
from the honest case always meet the deadline, indicating
that our scheme achieves correctness. On the other hand,
a dishonest CSP who stores data on a single storage node
always misses the deadline, indicating that our scheme
satisfies the soundness property.

The difference between the slowest response recorded
from an honest CSP (dotted line) and the deadline (solid
line) is 49.6ms. This difference is a measure of correctness
and we call it the false positive margin f,. Moreover, the
difference between the fastest response by a dishonest CSP
(the dashed line) and the deadline (the solid line) is 73.9ms.
This difference is a measure of soundness for the PoPR
and we call it the false negative margin ji,,. As long as the
deadline is set between the dotted and the dashed line, the
correctness and soundness properties are guaranteed. We
define the gap A = i, + iy, to represent the overall margin
for selecting the deadline. A larger A implies a more robust
scheme to any detection errors due to inaccuracies in the
selection of the bounds or clock measurements. Figure 8
shows the gap, A, as a function of the number of symbols
challenged on each hard drive. We observe the gap grows
linearly with the number of symbols challenged.

6.4 Heterogeneous Storage - One HDD and One SSD

In this set of experiments, the encoded file c was stored at
one HDD; and one SSD;. The symbol size was fixed to
64KB. The verifier set T(P) = 0.73ms and T; IS,’ZL = 85ms.

Due to the large difference between ﬂgfrz and T, no so-
lution could simultaneously satisfy both inequalities in (11).
We further considered two scenarios for the network latency.
In the scenario where CSP and verifier resided on the same
platform, the verifier set 1 r(n]l\g = 5.0ms, and Tr(njz})(= 10.6ms.
The verifier chose to satisfy the second inequality in (11), by
setting y; =1,200 symbols and y» = 10 symbols. The dead-
lines for r; and r, were set to 7(y;) = leéﬁ))arTéfX)Z =102s
and 7(y2) = széfZ,)(+ Téﬁ% = (0.86s.

We first show that an honest CSP satisfies correctness by
meeting the deadlines for the responses r; and r,. Figure 9
shows the distribution of the response time for retrieving
10 symbols from HDD; in the honest case across 1,000
challenges. The response time for retrieving 1,200 symbols
from SSD; is not shown because it is very small compared

to the deadline (the deadline is 102s whereas the response
time is less than one second). We note that the CSP always
meets the deadline and passes the PoPR challenge.

We then considered dishonest CSP who stores all 1210
symbols (10 from r; and 1,200 from r3) at the SSD drive
which is the fastest. We retrieved 1,210 symbols from SSD;
across 1,000 challenges and show the recorded response
times in Fig. 9. We observe that when x, is served after
x; the dishonest CSP always misses the deadline, indi-
cating that the soundness property is guaranteed. More-
over, the false positive and false negative margins where
tp = 94.1ms and p, = 485.7ms, respectively, showing an
acceptable margin of operation for possible variations in the
clock measurements.

0.25 T
r, from honest hv:ld1

0.2 r, from dishonest ssd,

0.15 By = 94.1ms-:L

o
o

. 1 =485.7ms
I

probability

0.05

0 _ I i
0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
response time (sec)

Fig. 9: PDF of t2 when c is stored at HDD; and SSD;
(honest CSP) and only SSD; (dishonest CSP) (symbol size
64KB, SSD: 1200 symbols, HDD: 10 symbols).

To demonstrate the superiority of our PoPR approach
compared to prior works, we evaluated if a dishonest
CSP is detected in the heterogeneous storage scenario for
schemes relying on the fixed retrieval delay assumption. In
our comparison, we considered the RAFT protocol because
it is the only one that targets physical storage reliability
without any computational constraints on the CSP. We set
the symbol size to 64K B and considered two queries x;
and x, constructed according to RAFT, with y; = 100 and
y2 = 100 symbols. The dishonest CSP stored all symbols at
the SSD and first retrieved x;, followed by x3. The deadlines
for each response were set according to the longest recorded
delay on the HDDs as 71 = 7 = ¥y X Trﬁax,HDD =
100 x 76.33ms = 7.633s. Figure 10 shows the distribution
of the response time for x; and x5 over 100 challenges®. We
observe that the dishonest CSP always meets the deadlines
for both x; and x, by a wide margin (over seven seconds),
indicating that the CSP can easily defeat the RAFT protocol,
using a faster storage media than the one assumed.

Note that if the verifier treats the timing test of RAFT
assuming that the SSD storage technology is used, an honest
CSP will fail the test if it uses a slower media for storage.
We repeated our previous experiment by storing c at one
HDD and one SSD, set y; = 100 and y» = 100 as before,
but setting the deadlines according to the recorded longest
processing delay no the SSD as 7y = 75 = y1 X T}h,\ g5p =
100 x 2.7ms = 0.27s. Figure 11 shows the distribution
of the response time for responses r; and ry over 100
challenges. We observe that although the response from the
SSD consistently meets the deadline, the response from the

2. The time distributions for r1 and 7 are concentrated around
0.2sec and 0.3sec, respectively. They are shown as spikes because their
variance is quite small relative to the deadline order of magnitude.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 13

e
o

jr1 from dishonest ssd

Z o008 r, from dishonest ssd
2 0.06
- Deadline for 7, and 7y
© 0.04
=%
0.02
oll
0 1 2 3 4 5 6 7 8

Response time (sec)

Fig. 10: PDF of responses r; and 72 when all symbols are
stored at the SSD, but deadlines are set according to an HDD
model.

HDD always misses it, thus correctness is not achieved. This
clearly demonstrates that RAFT is not technology-agnostic
and the exact media where parts of c are distributed must
be known for a successful test.

Deadline for r; and 7o 4 from honest hdd

r, from honest ssd

sulmwlhe.

Fig. 11: PDF of responses 1 and 72 when all symbols are
stored at the SSD, but deadlines are set according to an SDD
model.

probability
o ©O o o
88 =

S 9 9 ¢
Q
o N

[} 1 2 3 4
Response Time (sec)

0.25 =
r, from honest hdd1
0.2 r, from dishonest ssd,

£ :
5015, =51.1ms '
5 Hy T
S 04 T =141.6ms
= ' n
Q H

0.05

0 -, il H
0 1 2 3 4 5 6

response time (sec)

Fig. 12: Probability distribution of ¢t when storing c at
HDD; and SSD; (honest CSP) and only SSD; (dishonest
CSP) for network latency realized via an SSH connection
(symbol size 64KB, SSD: 3000 symbols, HDD: 10 symbols).

We further evaluated how the verifier designs the chal-
lenge, when the network latency is significant. To add
latency, the in-house CSP was remotely accessed via an
SSH connection. The related network latency bounds were

set to TI;]XI) = 0.6s and T\hy = 1.9s. To satisfy the sec-
ond inequality in (11), the length of the challenge to the
first storage node had to be increased from 1,200 symbols
to 3,000 symbols, while y, remained to be 10 symbols.
Note that these values are quite large due to the extreme
value of the network latency considered here (in the order

of seconds). The respective deadlines were calculated by

the verifier to 7(y1) = nTSEL + 1) = 256.9s and
Ty, = szrgZi + T) = 2.8s.

Figure 12 shows the distribution of the response time
for retrieving 10 symbols from HDD; in the honest case
and the response time of retrieving 3,010 symbols from

SSD; in the malicious case, across 1,000 challenges. The

[
q

z =)
E 2
E 0.8 %
- -
206 8
§ d § -©-strategy 1: half half
3 @ ~strategy 2: all on SSD
< 0.4 <04
2 4 6 8 10 12 e 2 3 4 5 6 7 8

« a

(a) (b)
Fig. 13: Probability of detection as a function of the num-
ber of challenges/challenge rounds («) for (a) two storage
nodes, and (b) three storage nodes and different redistribu-
tion strategies.

response time for retrieving 3,000 symbols from S5 D; is not
shown because it is very small compared to the deadline. We
observe that when the CSP serves the long challenge first,
it always misses the deadline for the short challenge. This
choice occurs with probability 1/2 because the challenge
lengths are hidden. Figure 13(a) shows the detection prob-
ability as a function of the number of challenge rounds «.
As low as six challenges are sufficient to drive the detection
probability close to one. We observed that when x3 is served
after x;, 7o from the honest case always meet the deadline,
whereas that from the dishonest CSP misses the deadline.
Moreover, the false positive and false negative margins are
tp = 51.1ms, and p,, = 141.6ms.

6.5 Heterogeneous Storage - One SSD and Two HDDs

In the last set of experiments, we considered a CSP with
three storage nodes. We deleted the data from the slowest
HDD and implemented two data redistribution strategies.
In strategy 1, the data from the deleted HDD was equally
distributed to the remaining HDD and SSD, whereas in
strategy 2, all data was stored at the SSD, which is the
fastest drive. The processing delay and network latency
bounds were set based on the results in Sections 6.2 and
6.1 to Téfg = 0.73ms and T\\5% = 85ms, Trglvn) = 5ms and
T = 10.6ms.

Because of the bound difference and the geometric in-
crease in the number of symbols to be challenged with the
number of simultaneously challenged nodes, we opted to
perform pairwise tests on (SN;, SN3), (SN1, SN3), and
(SN3, SNs). For the first pair, we set y; = 1,200 and
y2 = 10, which satisfy (15). The deadlines for each pair
were set accordingly to 7(y1) = leéQ(+ 1) = 102.01s
and 7y, = yo Tk + TSY) = 0.86s. The same deadlines
were set for the remaining two pairs. The verifier cycled
through challenging all three pair combinations and issued
the respective challenges.

Figure 13(b) shows the detection rate as a function of
the number of challenge rounds «. For either redistribution
strategy, a few challenge rounds is sufficient to drive the
detection probability close to one. Moreover, we observe
that the detection probability under strategy 2 is always
lower than strategy 1. This is intuitive because only one
node stores deleted data in strategy 2. Redistributing the
deleted data to a single node reduces the detection proba-
bility under pairwise tests, because the node violating the
test is included only in two out of the three pairs.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 14

7 PoPR WITHOUT LocAL COPIES

In the basic PoPR protocol, the verifier maintains a local
copy of f to perform the integrity test. However, when a
large repository is outsourced, maintaining a local copy for
verification purposes is costly. In this section, we modify the
basic PoPR protocol to achieve the same security properties
in terms of physical storage verification, without storing f at
the verifier. The improved PoPR does not require the knowl-
edge of f by the verifier, thus allowing the outsourcing of the
verification service to a third party without compromising
the client’s privacy. These additional properties come at the
inevitable expense in storage overhead for hosting the veri-
fiable version of f at the CSP and increased communication
cost for executing the challenge/response protocol.

Without a local copy of f, the verifier faces two main
challenges: (a) the integrity test on a response r; to a
challenge x; cannot rely on the knowledge f and (b) the
mechanism for hiding the length of x by retrieving symbols
sequentially has to be redesigned. To tackle these two chal-
lenges, we present a solution that relies on the insertion of
pseudo-random symbols called “verification symbols” that
can be regenerated at the verifier from a single random seed.
The idea of “spot-checking” verification symbols has been
adopted in several PoR protocols (e.g., [4], [20], [23]), but our
goal here is more challenging because the length of x must
remain secret and the retrieved symbols must be revealed
sequentially.

7.1 Setup Phase

During the setup phase, the client encodes f to a verifiable
version c. To generate c, the client relies on a secret master
key K, which is the only information stored for verification.

1) Key generation. Using the master key K of length
7, the client generates secret keys K, Keye, and
K ver-

2) File partition. The client divides f to n, subfiles
fi,f5, ..., f,,. Each subfile is k symbols long.

3) ECC application. The client encodes each subfile f;
to v; by applying an (n — v, k, d)4 ECC code C. The
encoded version of f is denoted by v.

4) Encryption. The client encrypts each symbol in v;
with a semantically-secure encryption function E
using key K. The encrypted file is denoted by
m. The encryption is used to destroy the symbol
dependency created by the application of the ECC
and make parity and information symbols indistin-
guishable.

5) Verification symbol generation and insertion. For
each subfile m;, the client applies a pseudo-random
function ¢ : {0,1}7 x [1,7] — {0,1}* to gen-
erate 7 pseudo-random verification symbols w =
(W1, W2,...,Wy), where w; = ¢(Kyer, i). The sym-
bols are appended to each m; and create m;. The
subfile m/ has a total of n symbols.

6) Permutation. The client creates c; by apply-
ing pseudo-random permutation IIp : {0,1}7 X
[1,n] — [1,n] to each m,;. The permutation re-
ceives as input key K7 and the subfile index ¢ and
is used to randomize the locations of the parity,
information, and verification symbols.

fr—]

2. File Partition
W] -

L[]
3. ECC Application

wl [T~ 11T
4. Symbol Encryption using Enc()
g W

5. Verification Symbol Generation and Insertion

w7k

“[TTEE ~TTEA - -<[TTHE

6. Permutation usingﬁ};‘\i:i;ft* \\\;: T

“ITE7 @ @

7. Layout Arrangement

c| | l [1

Fig. 14: Setup phase of the Improved PoPR.

7) Layout arrangement. A layout £ = {s1,s3,...,S,}
is created by arranging c to n sectors, with each
sector s; hosting one symbol per c;.

8) Distribution. The client provides ¢ and £ to the
CSP. If the verifier is implemented by a third party,
the client provides K1, Kepne, and K, to the veri-
fier.

The key differences between the setup of the basic PoPR
and the PoPR without a local copy are steps 4, 5 and 6.
In Step 4, each encoded subfile is encrypted with K., to
destroy the symbol dependency between information and
parity symbols. This is necessary because the CSP knows
that the integrity of information and parity symbols cannot
be checked by the verifier, as the latter no longer stores f. To
enable integrity verification with minimal storage cost, in
step 5, pseudo-random verification symbols are generated
and inserted to the file. The symbols are permuted using
a pseudo-random permutation in Step 6. At step 6, infor-
mation, parity, and verification symbols are indiscernible
to the CSP and their locations within each sector remain
unknown. The integrity test solely relies on the responses
for the verification symbols alone. However, the timing test
relies on the response time for all the symbols.

7.2 \Verification Phase

In the verification phase, the verifier constructs a challenge
@ which is sent to the CSP. The CSP must respond with a
valid response R within the defined deadlines similar to our
basic PoPR. However, constructing (), R, and checking the
integrity of 12 are more complicated due to the absence of a
local copy f at the verifier.

Construction of the Challenge Q.

1) Deadline selection: The verifier specifies the num-
ber of symbols yi,y2,...,Yyn to be queried from
each storage node (sector). The verifier also selects
n deadlines 7(y1),7(y2),.-.,7(yn). The deadlines
are set according to the description in Section 4.5,
similar to the basic PoPR scheme.

2) Index permutation. The verifier selects a random
nonce 7 of length 7 and applies a pseudo-random
permutation Ilg : {0,1}7 x [1,ns] — [1,ns] to the
indices of each sector s;. The permutation receives
as input the nonce 7 and the sector index i, and
creates a new arrangement on the indices of the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 15

symbols in s; denoted by Ilg(n, 7). The nonce and
the sector index randomize Il(7, i) per sector and
per challenge construction.

3) Terminating symbol selection. The verifier
selects a random nonce 7' and n random
verification ~ symbols ¢, 1)1, Clay,)25+

C(a,, »)ms One from each sector, where (a;;) is
the index of the j'* symbol in x;. Verification
symbol ¢(q, ;) denotes the last symbol
in x; for sector s;. The verifier computes
h(c(am,l)vl’ n/)’ h(c(ay2,2)72’ 77/)’ Tt h(c(ayn,n)»”’ n/)
for each terminating symbol, where h(-) is a public
secure hash function.

4) First symbol selection. For each sector s;, the veri-
fier traces the index of the (y; — 1)th symbol preced-
ing c(a,, ;)i in permutation Il (n,). This becomes
the first symbol c(,,) in x; for sector s;.

5) Challenge construction. The challenge) consists
of the indices of the first symbol to be queried per
sector (@1,1,01,2 - - .,a1), the hash of the last sym-
bol to be queried from each sector with 7/, namely
h(c(aybl)’l’ n/)’ h(c(ayzﬂ)’z’ n/)’ o h(c(ayn,n)’”’ nl)’
n, and 7’. The verifier sends) to the CSP and
initializes n clocks ti,t2,...,t, to zero. Ilg is
publicly known.

The PoPR without a local copy has some notable dif-
ferences with the basic PoPR. First, the next symbol to be
retrieved by the CSP is no longer a function of the previous
one, as in Step 3 of Section 4.3, because f is not known at
the verifier. To overcome this, the verifier applies a pseudo-
random permutation on the symbol indices for each sector
to create a random symbol order. Moreover, the symbols
in a query x; are selected in reverse. The verifier selects
one verification symbol Cay, ;)i at random to serve as the
terminating symbol for the query. The x; includes y; — 1
symbols preceding ¢(q,,) in the permutation (if the first
symbol is reached, the verifier wraps around cyclically) plus
the terminating symbol. The terminating symbol must be a
verification symbol so that its hash value with 7’ can be
computed at the verifier (verification symbols can be regen-
erated using K., and ¢, whereas information symbols are
no longer stored). The use of the hash of the last symbol
forces the CSP to retrieve every symbol in x; and hash it
with 1’ to determine if the end of the query is reached. This
property preserves the secrecy of the query length and also
leads to serial symbol retrieval.

Figure 15 shows a toy example on the construction of
x; for a sector s; = {c11,...,¢91} with nine symbols.
Here, c3,1 and cg ;1 are verification symbols and y; = 3.. The
verifier first applies a pseudo-random permutation I1g (7, 1)
on the indices of sy, creating a new arrangement s). Next,
the verifier picks verification symbol c3 ; to be the terminat-
ing symbol in x;. The two symbols prior to ¢z on s} are
included with the query resulting in x; = {c5,1,¢1,1,¢2,1}-
In the challenge @, the verifier includes the index of the first
symbol in x3, which is (5, 1), the hash of the last symbol
h(cz,1,1"), and nonces n and 7'.

Construction of the Response R

1) Permutation recovery. The CSP computes I1g(n, %)
for each sector s;.

s1 |€1,1]€2,1]¢3,1[C4,1|C5,1]C6,1]C7,1[C8,1]Co,1]
Mg(n, 1)

s1 [C6,1]c3,1]c7,1[¢c8,1]C5,1|C1,1]€a 1] Ca1[Co 1]

<" Te- - &7

o il

Fig. 15: Construction of challenge x; for s;.

2) Symbol retrieval. The CSP retrieves the symbols in
each x; starting from c(,, ,,; according to permuta-
tion I1g(n, ¢). Symbols at different storage nodes are
retrieved in parallel.

3) Query end. With every retrieved symbol c(q;).

the CSP checks if h(c(q; ,),i:1") L h(c(a,, y.ism') to
identify the query end.

4) Upon the retrieval of all symbols in x; and their cor-
responding hash values the CSP computes response

h(h<c(a1,z‘),ia 77/)7 h(c(az,i),iv "7/)’
ce h(c(ayi,i),ia 77,)>

The CSP sends r; to the verifier as it becomes
available, and then sends the individual hash val-
ues h(c(alﬁi),iv 77/)7 h(c(agyi),iv 77/)7 B h(c(ayi,l),m 77/)
to the verifier.

5) Verification. The verifier records the arrival times
of each response r; and performs the timing test on
each r;. The verifier further collects the individual
hash values and performs an integrity test. The CSP
passes verification if both the timing and integrity
tests are passed.

ry =

Following with our example in Fig. 15, to construct R,
the CSP uses the public permutation Il and 7 to obtain sf.
The CSP starts the symbol retrieval from cs ;, hashing every
retrieved symbol with 7/, until the hash matches h(cz1,7’).
The CSP returns r1 = h(h(cs1,7n'), h(c11,m'), h(c2,1,1))
to the verifier, followed by the individual hash values,
h(es,1,m'), ke, m'), hicaa,m').

Integrity Test. The integrity test checks the correctness
of the response % returned by the CSP. This is necessary to
ensure that the CSP indeed retrieved the intended symbols
and did not create responses based on random symbol
values. The integrity test is as follows:

1) Response. The verifier receives R = {r{,r5,...,7,}
from the CSP. For each ri, the verifier also
receives the individual hashes h(c(,, . ;:7')
h(c’(a2 ,;),i’nl)’ . .,h(c’(au_ ,;),1‘777/) for each retrieved
symbol.

2) Response check. The verifier first checks if

?
T'Ii = h<h(cza111),i'n/)’ h(czaz:i),i’ 77/)’ AR h(czayi,i),ﬂ 77/))

to verify that the same symbols were used in the
construction of r} and the individual hashes.

3) Verification symbol generation. The verifier regen-
erates all the verification symbols in each x; by
using ¢, Kyer, I1F, Ilg, and the respective nonces.

4) Verification symbol check. The verifier checks if the
has of each verification symbol with 7" matches the
individual hash returned by the CSP.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 16

5) Test success. The CSP passes the integrity test if all
returned values are correct in steps 1 and 4, and for
all sectors.

For the example in Fig. 15, the verifier first checks if

vl = h(h(ch 1), h(ch1,n'), hlch 1))
He then regenerates c;; and checks if h(chq,7) L
h(cz,1,1'). If both checks are passed, the integrity test for
T is passed.

Timing test. The timing test verifies that the storage
layout is not violated and the symbols are retrieved in
parallel from multiple storage nodes. The steps of the timing
test are the same as those of the basic PoPR, outlined in
Section 4.5, and are not repeated here. The only difference is
in that the symbols to be retrieved can be computed without
having to retrieve each symbol. However, the CSP has to
retrieve each symbol and compute its hash value with 7’
to find out whether the last symbol has been retrieved.
Skipping the retrieval of several symbols in x; is not helpful
because the CSP may skip the terminating symbol and fail
both the integrity (due to missing verification symbols) and
timing (due to increasing the retrieval time) tests.

7.3 Security Analysis

Due to space limitations, we only provide a sketch of the
security analysis for the PoPR without local copies. For the
correctness property, it is straightforward to show that an
honest CSP who maintains the agreed layout £ will pass
both the integrity and timing tests. For the integrity test, the
CSP computes the correct hash values upon retrieval of the
symbols. For the timing test, the deadlines are met because
the symbols are retrieved in parallel according to L.

For the security property, the analysis of the basic PoPR
described in Section 5 (Proposition 2) holds when the CSP
violates the agreed layout £ by storing the symbols of the
verifiable file version c to fewer storage nodes. If the CSP
attempts to retrieve all the symbols indicated in () to avoid
failing the integrity test, the timing test will fail because
of the cumulative processing delay in symbol retrieval.
However, the probabilistic nature of the integrity test gives rise
to two new misbehavior strategies. Without loss of generality,
let the CSP be bound to fail the timing test for sector s;,
because s; stores the symbols of a deleted sector s;. In
strategy 1, the CSP replies with a random 7} to meet the
deadline for x; and then continues to retrieve all symbols
in x; to reply with the correct individual symbol hashes. To
pass the response check in Step 2 of the integrity test in this
case, the randomly selected r; must be equal to the hash of
the individual hashes with 7, which occurs with negligible
probability when secure hashes are used (equal to a collision
probability for a hash function).

In strategy 2, the CSP retrieves only a subset of the
symbols in x; to reduce the processing delay and meet
the deadline for x;. For the retrieved symbols, the correct
individual hash values h(c(q, ,,i,7') are submitted and used
in the computation of r;, whereas random values are used
for the symbols that were not retrieved. Under strategy 2,
the CSP will pass the response check of Step 2 because
the hash of all the hashes will match with the returned 7.

The security of the protocol depends on the omission of
verification symbols from the response. If the hash of one
verification symbol is omitted, a violation is detected during
the verification symbol check (Step 4) of the integrity test.
The CSP’s success probability here can be made arbitrarily
small by inserting enough verification symbols at the ex-
pense of additional storage overhead at the CSP.

Note that the use of a verification symbol as a terminat-
ing symbol reveals the role of that symbol as a verification
symbol. When many challenges are executed, a subset of
verification symbols can be tagged by the CSP. The tagged
verification symbols will not be omitted under strategy 2 to
increase the CSP’s chances in passing the integrity test. To
address this problem, the verifier can limit the terminating
symbols to a subset of verification symbols. We call these
terminating verification symbols as guards. Therefore, there
will always be verification symbols that remain unknown to
the CSP and hence lead to detection of integrity violations.
We emphasize that knowing the location of guards does not
reveal the length of each challenge, because the guards are
hashed with a fresh nonce with every challenge. Therefore
the identity and location of the guard is hidden until the
guard is retrieved.

File confidentiality. A desirable property of our PoPR
construction is that the auditing process can be outsourced
to a third-party verifier while preserving the confidentiality
of the outsourced file. As the integrity and timing tests rely
only on the use of the verification symbols, knowledge of
K is sufficient to construct challenges and perform the tests.
The information symbols in f need not be known at the
verifier and are not revealed by the responses of the CSP (the
information symbols are hashed with 1’ in each response).

8 CONCLUSION AND OPEN PROBLEMS

We developed two Proof of Physical Reliability (PoPR)
auditing mechanisms which prove that a CSP stores an out-
sourced repository across multiple physical storage nodes.
Our mechanism relies on a combination of storage integrity
and timing tests to verify the parallel symbol retrieval
from multiple storage nodes. The basic PoPR construction
requires the storage of a local file copy at the verifier to
perform the physical storage verification and comes at no
storage overhead to the CSP. We further proposed a PoPR
construction for large repositories that does not require any
storage at the verifier beyond a single cryptographic key.
The later scheme comes at the expense of additional storage
for the CSP. Compared with the state-of-the-art, we showed
analytically and via experimentation that our approach
accommodates CSPs with heterogeneous storage devices
(hard disks, SSDs, etc.) and does not require constant data
access nor network delays. Instead, it can be configured to
operate under any delay variance, because it relies only on
(loose) delay bounds.

The present work does not jointly consider the require-
ments for concurrently proving the logical and physical re-
liability. A PoR and a PoPR test each independently impose
the retrieval of a subset of symbols that are being outsourced
to the CSP. One possible extension of this work is to consider
the joint design of PoR and PoPR tests, such as that the
two can be executed under a single setup and interactive

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019 17

verification phase. Moreover, our PoPR construction relies
on a pre-agreed storage layout. Construction a PoPR scheme
for heterogeneous storage nodes that does not require agree-
ment to an a prior layout remains an open challenge. Finally,
the use of loose bounds on the processing and network
delays comes at the expense of higher communication over-
head for performing PoPR audits. A verifiable processing
and network delay estimation method could reduce this
overhead without jeopardizing security.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their in-
sightful comments. This research was supported in part

by

the US National Science Foundation under grant

CNS1813401. Any opinions, findings, conclusions, or rec-
ommendations expressed in this paper are those of the
author(s) and do not necessarily reflect the views of the US
National Science Foundation.

REFERENCES
[1] Nasuni, “The state of cloud storage: 2015 industry
report,” http://wwwé.nasuni.com/rs/445-ZDB-645/images/

(2]

(3]

(4]
(5]

6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

[14]

[15]

Nasuni-White-Paper-2015-State-of-Cloud-Storage.pdf, 2015.

Forrester, “Study: Cloud service agreements omit key
considerations new ISO/IEC 19086-1 standard guides
organizations to structured, effective agreements,”

http:/ /download.microsoft.com/download/7/7/E/
77E57C7E-4458-47 A7-8646-8AA6F2BC7EED /Cloud_Service_
Agreements_Omit_Key_Considerations-Forrester_Paper.pdf,
2016.

M. Krigsman, “The Linkup: When the cloud
fails,” http:/ /www.zdnet.com/blog/ projectfailures /
mediamax-the-linkup-when-the-cloud-fails /999.

A. Juels and B. S. Kaliski Jr, “PORs: Proofs of retrievability for large
files,” in Proc. of the 14th ACM CCS Conference, 2007, pp. 584-597.
C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” IEEE Trans-
actions on Computers, vol. 62, no. 2, pp. 362-375, 2013.

Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote data
integrity checking protocol with data dynamics and public veri-
fiability,” IEEE Trans. on Knowledge and Data Engineering, vol. 23,
no. 9, pp. 1432-1437, 2011.

Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 5, pp- 847-859, 2011.

C. Erway, A. Kiipgii, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proc. of the 16th ACM CCS Conference,
2009, pp. 213-222.

G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proc. of the 4th Securecom
Conference, 2008, pp. 1-9.

R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP:
Multiple-Replica Provable Data Possession,” in Proc. of the ICDCS
Conference, 2008, pp. 411-420.

B. Chen, A. K. Ammula, and R. Curtmola, “Towards server-side
repair for erasure coding-based distributed storage systems,” in
Proc. of the 5th ACM Conference on Data and Application Security and
Privacy, 2015, pp. 281-288.

Z.Wang, K. Sun, S. Jajodia, and J. Jing, “Disk storage isolation and
verification in cloud,” in Proc. of the IEEE GLOBECOM Conference,
2012, pp. 771-776.

Z. Wang, K. Sun, J. Jing, and S. Jajodia, “Verification of data
redundancy in cloud storage,” in Proc. of the 2013 International
Workshop on Security in Cloud Computing, 2013, pp. 11-18.

A. Albeshri, C. Boyd, and]. G. Nieto, “Enhanced GeoProof: im-
proved geographic assurance for data in the cloud,” International
Journal of Information Security, vol. 13, no. 2, pp. 191-198, 2014.

K. D. Bowers, M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest,
“How to tell if your cloud files are vulnerable to drive crashes,” in
Proc. of the 18th ACM CCS Conference, 2011, pp. 501-514.

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

M. Gondree and Z. N. Peterson, “Geolocation of data in the
cloud,” in Proc. of the Third ACM Conference on Data and Application
Security and Privacy, 2013, pp. 25-36.

K. Benson, R. Dowsley, and H. Shacham, “Do you know where
your cloud files are?” in Proc. of the 3rd ACM Workshop on Cloud
Computing Security, 2011, pp. 73-82.

G. J. Watson, R. Safavi-Naini, M. Alimomeni, M. E. Locasto, and
S. Narayan, “LoSt: Location based storage,” in Proc. of the 2012
ACM Workshop on Cloud Computing Security, 2012, pp. 59-70.

B. Chen and R. Curtmola, “Towards self-repairing replication-
based storage systems using untrusted clouds,” in Proc. of the third
ACM conference on Data and application security and privacy, 2013,
pp. 377-388.

K. D. Bowers, A. Juels, and A. Oprea, “Hail: A high-availability
and integrity layer for cloud storage,” in Proceedings of the 16th
ACM Conference on Computer and Communications Security, New
York, NY, USA, 2009, pp. 187-198.

C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure
and dependable storage services in cloud computing,” IEEE Trans-
actions on Services Computing, vol. 5, no. 2, pp. 220-232, 2012.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner,
Z. Peterson, and D. Song, “Remote data checking using provable
data possession,” ACM Transactions on Information and System
Security (TISSEC), vol. 14, no. 1, p. 12, 2011.

M. Azraoui, K. Elkhiyaoui, R. Molva, and M. Onen, “StealthGuard:
Proofs of retrievability with hidden watchdogs,” in ESORICS
2014, 19th European Symposium on Research in Computer Security,
September 7-11, 2014, Wroclaw, Poland, Wroclaw, POLAND, 2014.
D. Vasilopoulos, K. Elkhiyaoui, R. Molva, and M. Onen, “POROS:
proof of data reliability for outsourced storage,” in Proceedings of
the 6th International Workshop on Security in Cloud Computing, ser.
SCC "18, 2018, pp. 27-37.

F. Armknecht, L. Barman,]J.-M. Bohli, and G. O. Karame, “Mirror:
Enabling proofs of data replication and retrievability in the cloud,”
in 25th USENIX Security Symposium (USENIX Security 16). Austin,
TX: USENIX Association, 2016, pp. 1051-1068.

B. Fisch, “Tight proofs of space and replication,” in Advances in
Cryptology — EUROCRYPT 2019, 2019, pp. 324-348.

O. M. Vasilopoulos, Dimitrios and R. Molva, “Proof of data relia-
bility for real-world distributed outsourced storage,” in to appear in
the Proc. of the International Conference on Security and Cryptography,
2019.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable Data Possession at Untrusted Stores,”
in Proc. of the 14th ACM CCS Conference, 2007, pp. 598-609.

Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of Retrievability via
Hardness Amplification,” in Proc. of the 6th Theory of Cryptography
Conference on Theory of Cryptography (TTC 2009), 2009, pp. 109-127.
H. Shacham and B. Waters, “Compact Proofs of Retrievability,” in
Proc. of the Asiacrypt Conference, 2008, pp. 90-107.

J. Li, X. Tan, X. Chen, D. S. Wong, and E. Xhafa, “OPoR: En-
abling proof of retrievability in cloud computing with resource-
constrained devices,” IEEE Transactions on Cloud Computing, vol. 3,
no. 2, pp. 195-205, April 2015.

Y. Li, A. Fu, Y. Yu, and G. Zhang, “IPOR: An efficient ida-based
proof of retrievability scheme for cloud storage systems,” in 2017
IEEE International Conference on Communications (ICC), May 2017,
pp- 1-6.

A. Fu, Y. Li, S. Yu, Y. Yu, and G. Zhang, “DIPOR: an ida-based
dynamic proof of retrievability scheme for cloud storage systems,”
Journal of Network and Computer Applications, vol. 104, pp. 97 — 106,
2018.

M. B. Paterson, D. R. Stinson, and]J. Upadhyay, “Multi-prover
proof of retrievability,” Journal of Mathematical Cryptology, vol. 12,
no. 4, pp. 203-220, 2018.

F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter,
“Outsourcing proofs of retrievability,” in fo appear in the IEEE
Transactions on Cloud Computing, 2018.

C. B. Tan, M. H. A. Hijjazi, Y. Lim, and A. Gani, “A survey on
proof of retrievability for cloud data integrity and availability:
Cloud storage state-of-the-art, issues, solutions and future trends,”
Journal of Network and Computer Applications, vol. 110, pp. 75-86,
2018.

F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting
internal parallelism of flash memory based solid state drives in
high-speed data processing,” in Proc. of the IEEE 17th International

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, DECEMBER 2019

Symposium on High Performance Computer Architecture, 2011, pp.
266-277.

[38] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard,
“A cooperative internet backup scheme,” in Proc. of the USENIX
Conference, 2003, pp. 3-27.

[39] T. S. Schwarz and E. L. Miller, “Store, forget, and check: Using
algebraic signatures to check remotely administered storage,” in
Proc. of the 26th IEEE International Conference on Distributed Com-
puting Systems, 2006, pp. 12-12.

[40] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure Coding in Windows Azure Storage,” in
Procedings of the USENIX ATC Conference, June 2012.

[41] M. Sathiamoorthy, M. Asteris, D. S. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing Elephants: Novel
Erasure Codes for Big Data,” CoRR, vol. abs/1301.3791, 2013.

[42] M. N. Krishnan, N. Prakash, V. Lalitha, B. Sasidharan, P. V. Kumar,
S. Narayanamurthy, R. Kumar, and S. Nandi, “Evaluation of Codes
with Inherent Double Replication for Hadoop,” in Proc. Usenix
HotStorage, vol. abs/1406.6783, Philadelphia, PA, Jun. 2014.

[43] L.Li, “Github repository,” https://github.com/liliarizona/PoPR_

paper, 2018.
Li Li is a PhD candidate in Electrical and Com-
) puter Engineering at the University of Arizona.
B 1 She obtained a M.S. degree in Electrical and

Computer Engineering from the University of Ari-

"”’ zona and a B.E. degree in Electronics Informa-

- tion Engineering from Huazhong University of

Y Science and Technology, China. Her research in-

{ terests are in the areas of proofs of data integrity
&‘ 4" incloud storage systems.

Loukas Lazos is an Associate Professor of
Electrical and Computer Engineering at the Uni-
versity of Arizona. He received his Ph.D. in Elec-
trical Engineering from the University of Wash-
ington in 2006. In 2007, he was the co-director
of the Network Security Lab at the University of
Washington. Dr. Lazos joined the the University
of Arizona in August 2007. His main research
interests are in the areas of network security,
user privacy, wireless communications, network
performance analysis, and network visualization.
He is a recipient of the NSF CAREER Award (2009), for his research
in security of multi-channel wireless networks. He was the general co-
chair for the ACM WiSec 2012 Conference and served as the TPC
co-chair for the IEEE CNS 2018 Conference, the Communication and
Information System Security Symposium at GLOBECOM 2013, and
the 4th IEEE International Workshop on Data Security and Privacy in
Wireless Networks (DSPAN) 2013. He has served on organizing and
technical program committees of numerous international conferences
and on panels for several funding agencies.

18

