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Abstract—Given images of translucent objects, of unknown shape and lighting, we aim to use learning to infer the optical parameters

controlling subsurface scattering of light inside the objects. We introduce a new architecture, the inverse transport network (ITN), that

aims to improve generalization of an encoder network to unseen scenes, by connecting it with a physically-accurate, differentiable

Monte Carlo renderer capable of estimating image derivatives with respect to scattering material parameters. During training, this

combination forces the encoder network to predict parameters that not only match groundtruth values, but also reproduce input

images. During testing, the encoder network is used alone, without the renderer, to predict material parameters from a single input

image. Drawing insights from the physics of radiative transfer, we additionally use material parameterizations that help reduce

estimation errors due to ambiguities in the scattering parameter space. Finally, we augment the training loss with pixelwise weight

maps that emphasize the parts of the image most informative about the underlying scattering parameters. We demonstrate that this

combination allows neural networks to generalize to scenes with completely unseen geometries and illuminations better than traditional

networks, with 38.06% reduced parameter error on average.

Index Terms—subsurface scattering, inverse scattering, differentiable rendering, inverse transport networks

✦

1 INTRODUCTION

Translucent materials are everywhere around us, ranging from

biological tissues to many industrial chemicals, and from the

atmosphere and clouds to minerals. The common cause of the

characteristic appearance of all these classes of materials is sub-

surface scattering: As photons reach the surface of a translucent

object, they continue traveling in its interior, where they scatter,

potentially multiple times, before reemerging outside the object.

The ubiquity of translucency has motivated decades of re-

search across numerous scientific fields on problems relating

to subsurface scattering. Broadly speaking, we can break these

problems down into two categories. The first category is forward

scattering problems, which attempt to predict the appearance of a

translucent object, assuming that the optical parameters control-

ling scattering of light at its interior are known. Computer vision

and computer graphics offer an array of algorithms for solving this

problem, known in this literature as volume rendering, including

Monte Carlo rendering algorithms that can reproduce translucent

appearance in a physically-accurate way [1].

The second category, and the focus of this paper, is inverse

scattering problems: Given images of a translucent object, they

attempt to predict its underlying scattering parameters. Inverse

scattering is an active research topic in many sciences outside

of computer vision and computer graphics, including medical

imaging, remote sensing, and material science. The fundamental

challenge in inverse scattering is the extremely multi-path and

multi-bounce nature of light propagation inside scattering vol-

umes. The complexity of volume light transport makes inverse

scattering a difficult problem even in the case where an object
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is characterized by a single set of, spatially-constant, material

parameters (homogeneous scattering).

Among existing approaches for inverse scattering, many are

based on simplifying assumptions about volume light transport,

such as single scattering (all photons scatter once) and diffu-

sion (all photons scatter a very large number of times). These

assumptions limit the applicability of these methods to very

optically-thin and thick materials [2], [3], excluding large classes

of important turbid materials. Alternatively, recent years have seen

the development of general-purpose inverse scattering techniques,

which combine analysis by synthesis and Monte Carlo volume

rendering in order to accurately estimate material parameters

without the need for simplifications [4], [5], [6], [7], [8]. Despite

their broad applicability, these techniques can be prohibitively

computationally expensive: processing measurements of a new

material often requires performing hundreds of expensive Monte

Carlo rendering operations.

We investigate the use of deep learning techniques for inverse

scattering problems, as a means to address the computational

challenges of analysis by synthesis, while maintaining its broad

applicability. We are inspired by recent successes of such tech-

niques in other inverse rendering problems [9], [10], such as in-

ferring shape, reflectance, and illumination from images [11], [12],

[13], [14]. Despite these successes, the use of neural networks for

inverse scattering remains unexplored, and we take first steps in

this direction.

We begin by proposing a physics-aware learning pipeline that

we term inverse transport networks (ITN), which aims to combine

the computational efficiency of learning-based approaches with

the generality of analysis by synthesis approaches for inverse

scattering. Taking inspiration from recent work on combining

physics and learning [11], [12], [13], [14], [15], these neural

networks are trained to produce output parameters that not only

match groundtruth values, but also reproduce the input images

when used as input to a forward physics-based renderer. To be
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able to train these neural networks efficiently, we pair them with

a new efficient and physically-accurate Monte Carlo differentiable

rendering engine [5], [6], [7], [16]. We further tailor these neural

networks towards inverse scattering, by taking into account results

from the radiative transfer literature, characterizing the conditions

under which different scattering materials can produce similar

translucent appearance [17], [18]. We introduce ways for making

our networks robust to these ambiguities, including the use of non-

linear material parameterizations, and weight maps emphasizing

pixels where these ambiguities are weaker. We demonstrate the

effectiveness of our networks in experiments on synthetic and

real datasets, where we show that our networks can use a single

uncalibrated (completely unknown shape and illumination) image

input, to produce material parameter estimates that are on average

38.06% more accurate than those produced by baseline regression

networks. Furthermore, images rendered with our predictions are

on average 53.82% closer to the groundtruth. We release all of

our implementations and datasets, to facilitate reproducibility and

follow-up research [19].

2 RELATED WORK

Subsurface scattering. Forward scattering, also known as volume

rendering, algorithms in computer vision and computer graphics

are predominantly based on the radiative transfer framework [20].

Existing techniques include Monte Carlo volume rendering and

photon mapping algorithms [1]. Inverse scattering techniques in-

clude approaches relying on single-scattering approximations [2],

[21], [22], [23], which are appropriate for optically thin media;

as well as diffusion-based approaches [3], [24], [25], [26], [27],

[28], [29], [30], suitable for optically thick media. Intermediate

cases, so-called turbid scattering, can be tackled using techniques

based on combinations of analysis by synthesis and differentiable

Monte Carlo rendering, as discussed below. Recently, deep learn-

ing techniques have been used to accelerate forward scattering

simulation [31], [32]. To the best of our knowledge, we are the

first to consider deep learning techniques for the inverse scattering

problem.

Analysis by synthesis in physics-based vision. Analysis by

synthesis is a core methodology for recovering physical scene pa-

rameters from images, which conceptually comprises three steps:

(i) formulate an approximate image formation (or forward render-

ing) model as a function of the scene parameters; (ii) analytically

derive an expression for the derivative of the forward model with

respect to those parameters; (iii) use gradient-based optimization

to solve an analysis-by-synthesis objective comparing measured

and synthesized images. This approach has been used to recover

shape [33], [34], material [35], [36], [37], and illumination [38],

independently or jointly [39], [40], [41], [42].

Differentiable rendering. Analysis by synthesis requires formu-

lating a new forward model, as well as analytically computing its

derivatives, specifically for each reconstruction problem. Differ-

entiable renderers such as OpenDR [43] have been proposed to

remove this obstacle, by providing a general-purpose framework

that can be differentiated with respect to arbitrary scene parame-

ters. To ensure analytical differentiability, these approaches use

approximate forward models, ignoring complex light transport

effects such as inter-reflections and subsurface scattering. This

makes these methods inapplicable to situations where these effects

are dominant. Differentiable Monte Carlo rendering algorithms

overcome this limitation, by estimating derivatives of images

while accounting for all light transport effects. These algorithms

were first introduced in the context of differentiation with respect

to scattering parameters, and used for accurate inverse scatter-

ing [4], [5], [6], [7], [8]. Since then, they have been extended to

allow differentiation with respect to, and recovery of, arbitrary

scene parameters, including surface reflectance [44], [45], geome-

try [46], and visibility and pose [16], [47], [48].

Combining deep learning with rendering. Recently, a number

of works have proposed using renderers not for analysis-by-

synthesis, but as parts of learning architectures. The most popular

approach is to replace the decoder network in an auto-encoder

pipeline [49], [50] with a rendering layer that takes as input

the parameters predicted by the encoder and produces as output

synthesized images. This encoder-renderer architecture was first

proposed by Wu et al. [51], who used a non-photorealistic renderer

to achieve categorical interpretability. The same conceptual archi-

tecture was later used, together with approximate (direct lighting)

physics-renderers for inference of physical scene parameters such

as surface normals, illumination, and reflectance [11], [12], [13],

[14], [15], [52], [53], [54], [55], [56], [57], [58]. Inspired from

these works, we apply the encoder-renderer architecture to the

problem of inverse scattering, using for the first time a physically-

accurate Monte Carlo differentiable renderer instead of an approx-

imate one. Finally, differentiable Monte Carlo rendering has also

been combined with neural networks in the context of discovering

adversarial example scenes for classification tasks [16].

Compared to this prior work, we show a new use of differ-

entiable renderers, as regularization during the training of neural

networks for inverse scattering tasks. Despite their low dimen-

sionality, these tasks remain challenging due to the complexity of

subsurface light transport. Inverse scattering is of high relevance

to several other sciences (medicine, remote sensing, material

science). By combining neural networks with differentiable ren-

dering, we take first steps towards developing robust, physics-

aware, learning-based approaches for this problem.

3 BACKGROUND ON INVERSE SCATTERING

Problem setting. We are interested in the problem of homoge-

neous inverse scattering: Given an image of a translucent object,

of potentially unknown shape and lighting, we aim to determine

the optical material parameters that control the scattering of light

inside this object. These parameters are:

• The extinction coefficient σt is the scalar optical density

of the material, controlling the average distance between

consecutive volume events.

• The volumetric albedo α is the scalar probability of

whether photons are scattered or absorbed at volume

events.

• The phase function fp is the spherical probability distri-

bution controlling the direction scattered photons continue

to travel towards.

The phase function is typically assumed to be only a function

of the inner product between incoming and outgoing directions.

The first moment of the phase function, or average cosine,

c̄ = 2π
∫ 1
−1 cfp(c) dc, −1 ≤ c̄ ≤ 1, is commonly used

to characterize a material as predominantly forward-scattering

(c̄ > 0), backward-scattering (c̄ < 0), or isotropic (c̄ = 0). From

the above parameters, we can also derive the scattering coefficient

σs = α · σt and absorption coefficient σa = (1− α) · σt, which
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describe how much light is scattered and absorbed, respectively,

at each scattering event. In general, all these parameters can

be spatially varying, but in our setting we assume they are

constant everywhere inside the object (homogeneous scattering).

Throughout the paper, we will be using different subsets of the

above parameters, as well as certain non-linear functionals, to

characterize scattering. We will be denoting each material as π,

with the corresponding parameterization inferred from context. We

discuss specific parameterizations in Section 5.

The primary difficulty of the inverse scattering problem lies

in the complexity of the underlying volumetric light transport

physics: Each photon propagating inside a scattering medium un-

dergoes a random walk, controlled non-linearly by the medium’s

parameters. These random walks, described by the radiative trans-

fer equation [20] typically involve more than one bounce. In turn,

a radiometric detector capturing an image of such an object ac-

cumulates a large number of photons, each performing a different

random walk. As a consequence of this extremely multi-path and

multi-bounce light transport, images of translucent objects are

highly non-linear functions of the underlying material parameters.

We will represent this complex image formation process using the

operator T (π), where π are the material parameters. We note that

T is also a function of other scene parameters, such as shape and

illumination; we omit this dependence for notational simplicity,

and to focus on the material parameters we are interested in

recovering.

In certain cases, we can simplify this image formation model

by assuming that each photon only bounces either once or a

very large number of times inside the object. These approxi-

mations, known as single scattering and diffusion respectively,

are of limited applicability, as they are only accurate for very

optically thin [2] or thick [3] materials. Additionally, the diffusion

approximation cannot be used near thin geometric features such

as sharp edges.

Analysis by synthesis. The shortcomings of these approxima-

tions have motivated the development of general-purpose inverse

scattering techniques that accurately model the full complexity of

volumetric light transport [4], [5], [6], [7], [8]. These techniques

operate within the framework of analysis by synthesis, also known

in computer graphics as inverse rendering. Given image measure-

ments I , we search for parameters π that, when used to synthesize

images, can closely match the measurements. This approach can

be succinctly written as the following optimization problem:

π̂ = argmin
π
‖I − T (π)‖2 . (1)

This procedure can be used for inverse scattering in objects

of arbitrary known shape and lighting. This is thanks to the

advent of graphics algorithms that can accurately simulate the

full complexity of volumetric light transport. Besides traditional

forward rendering algorithms that synthesize images as functions

of material parameters π [1], recent years have seen the develop-

ment of differentiable rendering algorithms that compute image

derivatives with respect to these parameters, ∂T (π) /∂π [4],

[5], [6], [7], [16]. Differentiable rendering algorithms can greatly

accelerate analysis by synthesis, by enabling the use of gradient

descent algorithms for solving the optimization problem (1).

Despite these advances, performing inverse scattering by anal-

ysis by synthesis remains challenging in many situations. First,

solving optimization (1), even with gradient descent, is compu-

tationally intensive, requiring performing hundreds or thousands

of expensive rendering operations. Second, the use of gradient

descent means that the analysis by synthesis optimization is

susceptible to local minima in the loss function of Equation (1).

This issue is particularly pronounced in inverse scattering, where

the highly-nonlinear function T (π) results in large classes of

different material parameters π that can produce similar images

I . These scattering parameter ambiguities are known as similarity

relations [17], [18]. Third and last, performing inverse scattering

requires accurate calibration of ancillary scene parameters such as

shape, illumination, and camera pose, which is not possible except

in controlled lab environments.

We aim to overcome these challenges by investigating the

use of data-driven algorithms for the inverse scattering problem.

In particular, in Section 4, we discuss how to alter the training

procedure of neural networks, to produce networks that, at test

time, can use a single uncalibrated input image to produce material

estimates π that are close to those we would obtain from analysis

by synthesis. Then, in Section 5, we discuss design choices,

inspired from the physics of scattering, that help these networks

overcome ambiguities due to similarity relations.

4 INVERSE TRANSPORT NETWORKS

Supervised learning provides an alternative to the analysis by

synthesis methodology for inverse rendering problems, and has

previously been successful for tasks such as reflectance, illumi-

nation, and shape inference [11], [12], [13], [14]. These prior

successes motivate us to investigate the use of learning techniques

for the inverse scattering problem.

Supervised learning assumes availability of a training set

of image measurements {Id}
D

d=1 and corresponding groundtruth

material parameters {πd}
D

d=1. Given a training dataset, learning

techniques use empirical risk minimization to train a parametric

regression model N [w], e.g., a neural network, that directly maps

images to parameters:

ŵ = argmin
w

∑D
d=1 ‖πd −N [w] (Id)‖

2
. (2)

The trained network N [ŵ] can be used to efficiently obtain

parameter estimates π̂ for new images I , through forward pass

operations: π̂ = N [ŵ] (I). This is in contrast with analysis

by synthesis, which requires solving the expensive optimization

problem (1) for every new input image. Additionally, the trained

network can be used with images where other scene parameters

are completely uncalibrated.

These advantages of supervised techniques come with the

caveat that it is difficult to guarantee the accuracy of the estimates

π̂ obtained for images of scenes that are not well represented in

the training set. Given the highly nonlinear mapping T from scene

to images in the case of subsurface scattering, it is challenging to

train networks that generalize well to scenes of, e.g., very different

shape or illumination

In order to combine the complementary advantages of learning

and analysis by synthesis, we propose to regularize the training

loss function (2) with a term that closely resembles the loss

function (1) of analysis by synthesis:

ŵ = argmin
w

∑D
d=1

[
‖πd −N [w] (Id)‖

2

︸ ︷︷ ︸

supervised loss

+ λ ‖Id − T (N [w] (Id))‖
2

︸ ︷︷ ︸

regularization

]
. (3)
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Fig. 1: Inverse transport networks: (a) Traditional autoencoders

use two networks, encoder and decoder, to learn to predict pa-

rameters from images. (b) Inverse transport networks replace the

decoder with a differentiable Monte Carlo renderer, to improve the

generalization and physical accuracy of the predictions. During

training, the renderer is provided with the material parameter out-

put by the encoder network, as well as with groundtruth geometry

and illumination, to perform forward and backward evaluations

of an additional appearance-matching regularization term used to

learn the network weights. During testing, the encoder network is

used on its own, without the renderer: It takes as input a single,

fully uncalibrated (unknown geometry and illumination) image,

and produces as output a set of material parameters.

The regularization term in Equation (3) forces the neural network

to predict parameters πd that not only match the groundtruth,

but also can be used with forward rendering to reproduce the

input images. This has two desirable effects: First, the parameters

predicted by the network are likely to be close to what would have

been obtained from analysis by synthesis, as the regularization

term in Equation (3) is equivalent to the analysis by synthesis

loss (1). Second, the regularization term forces the neural network

N [ŵ] to be approximately equal to the inverse of the volumetric

light transport operator T , that is, N [ŵ] ≈ T −1. Given that

T models the physics of subsurface scattering for scenes of

arbitrary geometries and illumination, we expect the resulting

neural network to generalize well to novel scenes. We refer to

networks trained using the loss (2) as regressor networks (RN),

and to networks trained using (3) as inverse transport networks

(ITN), based on their above-discussed property.

Relationship to prior work. Regularization similar to Equa-

tion (3) has previously appeared in two general forms. The first

is autoencoder architectures [49], [50] that, in addition to the re-

gressor (encoder) network N [w] mapping images to parameters,

use a second decoder network D [u] that maps the parameters

back to images. Then, the regularization term in Equation (3) is

replaced with ‖Id −D [u] (N [w] (Id))‖
2
, and both the encoder

and decoder networks are trained simultaneously, potentially with-

out access to groundtruth parameters (self-supervised learning).

These architectures are of great utility when inferring semantic

parameters (e.g., a class label) of a scene, where there is generally

no analytical model for the forward mapping of these parameters

to images. However, when the unknowns π are scattering material

parameters, autoencoder architectures do not take advantage of

the rich knowledge we have about the physics governing the

forward operator T . Additionally, the forward mapping D [u] may

not generalize to novel scenes, as it is specific to the training

dataset. Figure 1 compares the autoencoder and inverse transport

architectures.

There are also networks that use regularization terms where

the light transport operator T is replaced with an approximate

rendering model [11], [12], [13], [14], [15]. These approximations

generally use direct lighting models, where photons are assumed

to only interact with the scene once between emission and detec-

tion (e.g., direct reflection without interreflections). Unfortunately,

these networks have limited applicability to the case of inverse

scattering, where the underlying physics are characterized by

extremely multi-path, multi-bounce light transport. Inspired by

these prior works, our ITNs are physics-aware learning pipelines

that can be used even in the presence of these higher-order

transport effects that are dominant in inverse scattering.

Training ITNs. The optimization problem (3) for ITN training is

computationally challenging: Evaluating the operator T requires

solving the radiative transfer equation [20]. In theory, training

could be performed using algorithms such as REINFORCE [51],

which do not require differentiating the regularization term and

only employ graphics rendering algorithms for forward evalua-

tions of T . However, such algorithms are known to suffer from

slow convergence.

Instead, we aim to optimize the loss (3) with state-of-the-art

stochastic gradient descent algorithms [59]. This requires using

differentiable rendering algorithms to estimate derivatives of T
with respect to material parameters π in an unbiased manner.

For this, we rely on prior work [4], [5], [6], [7] that devised

Monte Carlo rendering algorithms for simulating these derivatives

by simulating the full volumetric light transport in a physically-

accurate way. These algorithms have subsequently been general-

ized to scene parameters such as reflectance [44], [45], geome-

try [46], and pose [16], [47], [48]. For completeness, we provide

below an overview of the differentiable rendering formulation at

the basis of our work. We note that, because we optimize over

only material parameters, our differentiable rendering formulation

is significantly simpler than that required for dealing with global

geometry changes, and which has been developed extensively in

recent works [16], [47], [48].

Figure 1 provides an overview of our pipeline at training

and test time: During training, the network is connected to the

differentiable renderer. The network takes as input a single, high-

dynamic-range image, and produces as output a set of scattering

material parameters. During training, the network is connected

to the differentiable renderer. The renderer takes as input the

parameters produced by the network, as groundtruth geometry and

illumination, to compute values and gradients of the regularization

term in Equation (3). As we discuss in Section 6, because we

train the network using synthetic input images, the geometry and

illumination are readily available. During testing, the network is

used on its own, without the renderer. As our objective is to use

the network on testing images that are completely uncalibrated,

no geometry or illumination information is given as input to the

network during either training or testing.

Differentiable Monte Carlo volume rendering. To keep the

paper self-contained, we provide a brief overview of forward

and differentiable rendering in the context of subsurface scat-

tering. Our discussion largely follows [7]. The starting point for

both types of rendering is the path integral formulation of light

transport, which expresses the images captured by a radiometric
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Fig. 2: Monte Carlo rendering: (a) Monte Carlo forward

rendering estimates radiometric measurements by randomly sam-

pling light paths and aggregating their radiance contributions.

By evaluating additional terms for each path, we can use the

same procedure to estimate derivatives of measurements with

respect to physical scene parameters. (b) Example renderings of

the derivatives of a scene with subsurface scattering with respect

to different material parameters. The top row shows derivatives

estimated by our differentiable renderer, and the bottom row shows

derivatives estimated using finite differences.

detector as integrals over the space of possible light paths [1]:

T (π) =
∫

P
f [π] (x̄) dx̄. (4)

The above integration is performed over the space P of all possible

light paths of the form x̄ ≡ (x0,x1, . . . ,xK), for any K > 1
and with xk ∈ R

3 (for k = 0, 1, . . . ,K). For each such path,

x0 is located on a light source, xK on a sensor, and intermediate

vertices xk light-scene interactions via reflection, refraction, and

subsurface scattering. The throughput function f [π] describes the

amount of radiance contributed by a path as a function of the scene

geometry, material, illumination, and detector.

By differentiating Equation (4) and rearranging throughput

terms and their derivatives, we can obtain a similar path integral

expression for the derivatives ∂T (π) /∂π of images with respect

to the scattering parameters π:

∂T (π) /∂π =
∫

P
f [π] (x̄)S [π] (x̄) dx̄. (5)

Compared to Equation (4), the path integral for this case includes

the score function S [π], that sums derivatives of the per-vertex

throughput with respect to π.

Monte Carlo rendering algorithms evaluate the integrals of

Equations (4) and (5) using Monte Carlo integration: (i) paths

{x̄n : n = 1, . . . , N} are drawn from a probability density p over

the path space P; (ii) their throughputs fs [π] are computed; and

(iii) unbiased and consistent estimators of Equations (4) and (5)

are formed as

〈T (π)〉 = 1
N

∑N
n=1 f [π] (x̄n) /p (x̄n) , (6)

〈∂T (π) /∂π〉 = 1
N

∑N
n=1

f [π](x̄n)S[π](x̄n)
p(x̄n)

. (7)

We use our own implementation of differentiable rendering: We

integrated the Stan Math Library [60] for automatic differentiation

of throughput terms, with the Mitsuba engine [61] for physically

accurate Monte Carlo rendering. We use Mitsuba’s volumetric

path tracing algorithm to sample paths for forming the estimates

of Equations (6) and (7). Even though our focus is on inverse

scattering, our implementation is a general-purpose differentiable

renderer that can compute derivatives for scene parameters such

as normals, reflectance, and illumination. We verified correctness

of our derivatives by comparing derivatives computed using finite

differences. An example comparison is shown in Figure 2. Note

that the finite-difference gradients required more than two million

samples-per-pixel, compared to 16384 samples-per-pixel used by

the differentiable renderer. This shows the critical performance

advantages of using differentiable rendering instead of numerical

differentiation, which have also been well-documented in the

past [4], [5], [6], [7], [16], [47], [48]. Our differentiable renderer

implementation is available on the project website [19].

Stochastic optimization. In addition to physical accuracy, Monte

Carlo differentiable rendering provides computational advantages

in the context of gradient-based optimization. In particular, train-

ing deep neural networks strongly relies on the ability to perform

backpropagation in a stochastic manner, by computing derivatives

of the loss function (2) using random subsets of the training set

(minibatches). Changing the minibatch size allows controlling the

tradeoff between the cost of gradient computations and the number

of iterations for convergence [62], [63].

Monte Carlo differentiable rendering offers control over a

similar capability: We can reduce the number of sampled paths

to accelerate derivative computation, at the cost of increased

variance. As the Monte Carlo derivative estimates are consistent

and unbiased, we can use this to take advantage of the same

convergence guarantees and tradeoffs as with stochastic back-

propagation. Therefore, our Monte Carlo differentiable rendering

engine is particularly well-suited for training of neural networks

using state-of-the-art stochastic gradient descent algorithms [59].

Post-learning refinement. Our focus is on using inverse transport

networks as an inference algorithm that can be used in place of

analysis by synthesis optimization when the latter is not possible,

e.g., when dealing with uncalibrated scenes of unknown geom-

etry and illumination. We mention though, that inverse transport

networks can be useful even when these scene parameters are

calibrated and analysis by synthesis can be performed. In par-

ticular, the trained network N can be used to produce a first

estimate of the unknown parameters π underlying an input image

I . This estimate can be used to warm-start subsequent analysis by

synthesis optimization, by serving as initialization for the gradient

descent minimization of the analysis by synthesis loss (1) for

the image I . The effect of this warm-starting procedure is that

the analysis by synthesis optimization can converge much faster

than if we had skipped the network-based estimation stage and

used a random initial point. We expect the ITN architecture to

be particularly effective for this kind of analysis by synthesis

acceleration, given that the regularization term in its training

loss function (3) encourages the network to produce estimates

that are close to the analysis by synthesis solution. Additionally,

the ITN-based initialization can help the analysis by synthesis

minimization avoid local minima due to similarity relations.

5 OVERCOMING SIMILARITY RELATIONS

Similarity relations describe classes of material parameters that

produce very similar appearance under certain geometry and

lighting conditions [17], [18]. These relations are derived from the

radiative transfer equation, and are well-studied in the subsurface

scattering literature. We focus on first-order similarity relations,

which are the most commonly-used class of material ambiguities:

Two materials π and π
′ are considered similar if they satisfy,

σa = σ′

a, σs · (1− c̄) = σ′

s · (1− c̄′). (8)
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These ambiguities can be problematic for both analysis by syn-

thesis and supervised learning techniques for inverse scattering.

In the following, we discuss two strategies for ameliorating the

negative effect of similarity relations.

Material parameterization. As discussed in Section 3, there are

several redundant parameters that are typically used to characterize

the space of scattering materials. Prior work has considered param-

eterizations in terms of non-linear functionals of these parameters

that, when used with analysis by synthesis, reduce estimation er-

rors due to similarity relations [18]. We take advantage of this prior

work, and use these parameterizations in the loss functions (2)

and (3). We parameterize the material space as π = {σa, σs, σ
r
s},

where σr
s is the reduced scattering coefficient,

σr
s = σs · (1− c̄). (9)

Intuitively, the robustness of this parameterization is due to the fact

that the reduced scattering coefficient exactly matches the second

similarity relation equation (8). The same parameterizaion also

arises when deriving the reduced scattering properties of diffusion-

based subsurface scattering [3]. Throughout the rest of the paper,

we refer to this as the similarity-aware parameterization. In

Section 6, we compare this with other naive parameterizations

in the context of supervised learning for inverse scattering.

Per-pixel weight maps. Similarity relations are derived under the

assumption that photons perform a large number of scattering

events inside an object. As a consequence, their accuracy is

strongly-dependent on scene conditions such as illumination and

shape. Specifically, at thin parts of the object or parts of the

surface with sharp geometric features (e.g., geometric edges), two

materials will have different appearance even if their scattering

parameters satisfy the similarity relations. The importance of thin

geometric features for translucent appearance is well-documented

in the literature, even beyond similarity considerations. These

features has been shown to provide rich information about the

scattering parameters of an object [64], and to be important for

the perception of translucency by humans [65], [66], [67].

Motivated by the above, we modify the regularization term in

the training loss (3), to use a per-pixel weight map,

∑

i,j

∥
∥
∥w

ij
d (Iijd − T (N [w] (Id))

ij
)2
∥
∥
∥ . (10)

where the superscript ij indicates indexing an image at pixel

coordinates [i, j], and summation is done over all pixels. For each

image Id in the training dataset, the per-pixel weights are selected

to emphasize pixels corresponding to parts of the object with thin

geometry, where similarity relations are not accurate.

Determining optical thickness, that is, the average distance

light travels inside the object, requires knowing the groundtruth

shape and illumination. In lieu of these, we use a simple algorithm

for generating a weight map from only the input image Id: Consid-

ering that, in a textureless homogeneous material, all image-space

edges correspond to geometric discontinuities, we first process the

image Id with an edge detector, then assign to each pixel [i, j] a

weight wij
d equal to its distance from the nearest edge. Figure 3

shows example weight maps created this way. As this weight map

is computed from only the input image without requiring any

additional information, we additionally provide it as an input to the

network during both training and testing. Despite its simplicity, the

figure and the results of Section 6 show that our algorithm is robust

enough to produce meaningful weight maps resulting in significant

performance improvements for a large variety of geometries.

Fig. 3: Weight maps: We use per-pixel weights equal to each

pixel’s distance from the nearest image edge, in order to emphasize

image pixels where similarity relations are violated.

6 EXPERIMENTS

We evaluate the performance of different neural networks through

experiments on simulated datasets and real images. We show

additional results in the supplement.

Network details. We compare neural networks trained with five

different loss functions. First, a regressor network (RN), trained

using the purely supervised loss (2), and the naive parameter-

ization π = {σt, α, c̄}. Second, an RN using the similarity-

aware parameterization of Section 5, π = {σa, σs, σ
r
s}. Third,

an inverse transport network (ITN), trained using the regularized

loss (3), and the naive parameterization. Fourth, an ITN that uses

the regularization (3) and the similarity-aware parameterization.

Fifth and last, an ITN that uses the weighted regularization (10)

and the similarity-aware parameterization.

All networks take as input a single high-dynamic-range image.

For all networks, we use a state-of-the-art architecture for inverse

rendering problems relating to homogeneous reflectance [11],

[13]: Each network is composed of seven convolutional layers,

and the size of the output channel for each layer is reduced to half

the size of its input. The kernel size for the convolutional layer is 3

by 3, with a stride of 2 and padding of 1. Each convolutional layer

is followed by a rectified linear unit (ReLU) and a max-pooling

layer. A fully-connected layer is used at the end. We visualize this

architecture in Figure 4. We select this architecture as it reflects

the state-of-the-art in the supervised deep material task that is

closest to ours: inferring homogeneous BRDF parameters (as far

as we know, there is no prior work on estimating homogeneous

subsurface scattering). The use of this architecture ensures that

the RN with the naive parameterization can serve as meaningful

baselines for evaluating the importance of our various innovations

(similarity-aware parameterization, regularization using the differ-

entiable Monte Carlo renderer, and weight map).

When training ITNs, we use as initialization an RN trained for

a few epochs. We set λ in Equation (3) so that the supervised and

regularization terms have approximately the same magnitude. All

networks are trained using Adam [59] for 50 epochs, with a batch

size of 60 and learning rate of 10−4. Our trained networks are

available at the project website [19].

Datasets. For our quantitative comparisons, we use a synthetic

dataset containing images of translucent objects with varying ge-

ometry, illumination, and material parameters. We use ten different

object shapes, selected to have a variety of thin and thick geo-

metric features, each placed under ten different illumination con-

ditions created using the Hošek-Wilkie sun-sky model [68]. For

each shape and illumination combination, we render images for

different parameters π that include σt ∈
[
25mm−1, 300mm−1

]
,
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α ∈ [0.3, 0.95], and Henyey-Greenstein phase functions fp
with parameter g ∈ [0, 0.9]. We use the Mitsuba physics-based

renderer [61] to simulate 30,000 high-dynamic range images under

these settings. This dataset is available at the project website [19].

We focus on evaluating the ability of the different networks

to generalize to scenes containing new shapes and illuminations.

For this, we separate our rendered images into training and testing

sets that do not contain any overlapping shapes or illuminations. In

particular, we use the images for six shapes and four illuminations

as the training set, and use images under the remaining shape

and illumination combinations for testing (Figure 4). This yields

a training set of 6,000 images and a testing set of 7,000 images

(we exclude a few thousand images available in the dataset that

mix training illuminations with testing shapes, or vice versa). Our

use of a training set that is relatively small compared to testing,

and a testing set that contains only completely unseen shapes and

illuminations, both reflect our goal to evaluate the generalization

properties of the five networks we consider.

Finally, we note that, even though all networks are trained

on grayscale images, they can handle color images by processing

each color channel independently. Throughout this paper and in

the supplement, we visualize results using color images, synthe-

sized by combining grayscale images from our dataset that have

the same illumintion and shape cnditions, but different material

parameters. These color images are processed by the networks in

the above-described channel-by-channel manner.
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Fig. 4: Datasets and architecture: (a) We render 30,000 images

for the task of homogeneous inverse scattering. These are split

into training and testing sets of different shapes, illuminations, and

materials. Rendered grayscale images under the same illumination

and shape but with different material parameters are combined to

form color images. (b) We use these datasets to train and evaluate

regressor and inverse transport networks of the same architecture.

Quantitative Evaluation. We evaluate the five networks in two

ways: First, we consider how accurately they predict material

parameters for images in the testing dataset. Accuracy is quantified

using the L2 error between groundtruth and predicted parameters.

Second, we examine how well images rendered with the predicted

parameters match the appearance of the input images. We compare

rendered and input images using L2 error and MS-SSIM [69] (a

benchmark perceptually-motivated image similarity metric).

TABLE 1: Network performances: Average MSE for individual

scattering parameters, as well as L2 and 1 − MS-SSIM image

appearance errors, for five different networks.

network
parameters appearance

σt α c̄ L2 1 - MS-SSIM

RN+naive 90.81 0.180 0.400 0.314 0.069

RN+similar 77.45 0.141 0.374 0.180 0.036

ITN+naive 71.23 0.093 0.253 0.222 0.031

ITN+similar 64.62 0.116 0.273 0.144 0.032

ITN+similar+map 60.32 0.088 0.282 0.145 0.024

Table 1 summarizes the results. The ITN with similarity-aware

parameterization and weight maps outperforms the other three

networks in most metrics, except for c̄ where its performance is

a close second. In terms of parameter prediction, it is noteworthy

that the similarity-aware parameterization outperforms the naive

pameterization for both the RN and ITN cases, despite the fact

that errors are computed directly on the parameters optimized

by the naive parameterization (σt, α, and c̄). This highlights the

importance of accounting for similarity relations when design-

ing networks for inverse scattering. When comparing ITNs with

RNs, the ITN produces strong improvements in both parameter

and appearance predictions regardless of what parameterization

is used. These improvements provide strong evidence that the

regularization term in Equation (3) allows the ITN to generalize

better to unseen shapes and illuminations. Finally, Figures 5 and

6 show images rendered with parameters predicted by the five

networks, for materials of varying optical thickness, including

diffusive, turbid, and very optically thin materials. In all cases,

the ITN with similarity-aware parameterization and weight map

produces the images that best match the reference.

Evaluation under novel scene. The previous results already

focus on the generalization performance of the trained networks,

considering that the testing images have shape and illumination

conditions that are completely absent from the training dataset.

To further emphasize generalization performance, we perform an

additional set of experiments: We use the networks to predict ma-

terial parameters for all test images. We then use these parameter

estimates, as well as their groundtruth values, to render images

for a scene of completely new geometry and lighting, absent from

both training and testing datasets. We compare these renderings

using the same image similarity metrics as above. Table 2 shows

the results, and Figure 5 (rightmost column) visualizes a few

example images rendered on this novel scene. We see that the ITN

with similarity-aware parameterization and weight map signifi-

cantly outperforms all other networks, and produces images very

similar to those rendered with the groundtruth parameters. This

provides evidence that this network can infer reliable estimates

of the true scattering paremeters underlying a translucent object,

from just a single, completely uncalibrated image of that object.

Initialization of analysis by synthesis. As we discussed in

Section 4, our main focus is on using neural networks to predict

scattering parameters from completely uncalibrated photographs,

where analysis by synthesis optimization is not possible due to

lack of information on geometry and illumination. When this in-

formation is available, analysis by synthesis will typically produce

more accurate material parameters than our method, considering

that analysis by synthesis uses significantly more information

about the object. However, even in such cases, our networks can
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Fig. 5: Images rendered with predicted material parameters: Each column corresponds to a different input image drawn from our

synthetic testing set. The last column shows images rendered under the novel scene used to emphasize generalization performance. For

each image, different rows compare the groundtruth (row 1) to images rendered using the parameters predicted by the five networks we

evaluate (rows 2-6).
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Reference ITN+similar+map ITN+similar ITN+naive RN+similar RN+naive

Fig. 6: Images rendered with predicted material parameters: Each row corresponds to a different input image drawn from our

synthetic testing set. For each image, different columns compare the groundtruth (column 1) to images rendered using the parameters

predicted by the five networks we evaluate (columns 2-6).

TABLE 2: Network performances: Average L2 and 1 −
MS-SSIM image appearance errors, for five different networks,

on the novel scene used to emphasize generalization performance.

network
appearance

L2 1 - MS-SSIM

RN+naive 0.250 0.067

RN+similar 0.144 0.035

ITN+naive 0.186 0.031

ITN+similar 0.140 0.035

ITN+similar+map 0.133 0.021

still be useful, as they provide a way to warm-start subsequent

analysis by synthesis optimization, accelerating its convergence

and improving the quality of the resulting material estimates.

To quantify the performance difference between our networks

and analysis by synthesis, as the well as the advantage that can be

gained from warm-starting, we perform the following experiment:

We randomly select a subset of 40 images from the testing set (10

for each shape in that set), and use our five networks to predict

material parameters. Then, we use these parameters to initialize

analysis by synthesis optimization for each image: We use our

differentiable renderer together with the groundtruth scene infor-

mation (e.g., geometry and illumination) to compute derivatives of

the loss of Equation (1) with respect to the parameters π, and use

ADAM to optimize the values of these parameters, starting from

the values predicted by the networks. Each optimization procedure

is run for 150 iterations, and we record the average MSE of

individual parameters across all 40 images at every 30 iterations.

The results are shown in Table 3. We make two observations: First,

as expected, analysis by synthesis optimization takes advantage of

the additional scene information it has access to, to significantly

improve the initial parameter predictions of the networks (average

MSE reduction of 43.8%). Second, initializing with our ITN

with similarity-aware parameterization and weight map provides

more than 2x convergence speedup compared to the baseline RN,

resulting in 53.5% better average MSE at the same number of

iteratons. Our ITN with similarity-aware parameterization and

weight map additionally outperforms all other neworks.

The improvements observed above are in part due to the

fact that a better initialization can help the analysis by synthesis

procedure avoid local minima due to similarity relations. Figure

7 shows a simple demonstration: The ITN with similarity-aware

parameterization and weight map produces an initialization that

is closer to the true parameters than the one by the ITN with

naive parameterization. Additionally, after 50 gradient descent

iterations, the optimization initialized by the ITN with similarity-

aware parameterization and weight map has converged to param-

eters closer to the groundtruth, also producing 7.7% lower image

error. From the optimization trajectories at the top of Figure 7,

we observe that, after a few iterations, the optimization initialized

by the ITN with naive parameterization moves along a contour of

constant σr
s (visualized by the color map). This indicates that it
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TABLE 3: Network performances on initialization of analysis

by synthesis: Average MSE for individual scattering parameters

over iterations for five different networks.

number of iterations
1 30 60 90 120 150

σt

RN+naive 90.40 72.87 60.93 55.58 52.22 49.26
RN+similar 59.23 43.96 34.36 28.87 25.41 23.67
ITN+naive 60.02 57.82 51.36 47.27 43.69 40.51
ITN+similar 50.45 39.47 33.09 28.78 25.53 23.27
ITN+similar+map 43.98 32.42 26.08 23.71 22.48 21.36

α

RN+naive 0.138 0.095 0.096 0.093 0.089 0.084
RN+similar 0.078 0.058 0.053 0.049 0.046 0.044
ITN+naive 0.102 0.090 0.084 0.077 0.071 0.066
ITN+similar 0.073 0.057 0.051 0.046 0.043 0.040
ITN+similar+map 0.057 0.052 0.047 0.043 0.041 0.038

c̄

RN+naive 0.304 0.279 0.266 0.268 0.264 0.252
RN+similar 0.232 0.229 0.202 0.178 0.158 0.145
ITN+naive 0.284 0.246 0.224 0.207 0.190 0.178
ITN+similar 0.233 0.234 0.210 0.178 0.158 0.143
ITN+similar+map 0.240 0.202 0.172 0.151 0.139 0.128

Fig. 7: Post-learning refinement: We use predictions from two

ITNs to initialize analysis by synthesis optimization. The top

row shows how parameters change during gradient descent, in

the {σs, σa, c̄} parameter space, and in its 2D projection {σs, c̄}
colored by reduced scattering coefficient value σr

s . The bottom

row compares groundtruth to renderings using the initial and final

parameter estimations from the green optimization trajectory.

may be trapped at a local minimum. The bottom row of Figure 7

compares the groundtruth image with renderings using the initial

and optimized material predictions from the ITN with similarity-

aware parameterization and weight map.

Experiments on real photographs. Figure 8 shows results

from using our top-performing networks, the three ITNs, on

photographs of two translucent objects: a silicone cube, and a

soap bar. The networks take as input a single high-dynamic-

range photograph of the object, with completely uncalibrated

geometry and illumination. To evaluate the network predictions,

we created virtual scenes that crudely approximate the shape (by

fitting rectangles) and lighting conditions (by matching shadows)

of the original photographs. We then used these scenes to render

images with the predicted parameters. We emphasize that these

approximate scene conditions are used for validation only, and

they are not used by the networks when making predictions.

We observe that, even though the renderings do not reproduce

the appearance of the original objects perfectly, in all cases the

parameter predictions produce plausible appearance, especially

considering the complete lack of calibration. The appearance er-

rors are in part because of the mismatched geometry and lighting,

and the fact that we do not model surface reflectance. In particular,

the rendered images reproduce important features of translucent

appearance, e.g., the intensity gradients near geometric edges.

Qualitatively, the ITN with similarity-aware parameterization and

weight map performs the best among the three networks, in terms

of both matching the overall intensity of the real objects, and

intensity gradients at geometric edges. We consider these results a

promising start towards uncalibrated and computationally efficient

inverse subsurface scattering on images captured in-the-wild.

7 CONCLUSIONS

We have taken first steps towards using deep learning techniques

for the problem of homogeneous inverse scattering. Starting from

a state-of-the-art regression network architecture as baseline, we

made three innovations, informed from the physics of radiative

transfer: First, we introduced inverse transport networks as an

architecture that can combine the efficiency of neural networks

with the generality properties of analysis by synthesis. Second, we

used material parameterizations that can ameliorate ambiguities in

the scattering parameter space due to similarity relations. Third,

we utilized per-pixel weight maps to emphasize parts of the image

that are informative about the underlying scattering parameters.

Our experiments show that the combination of these innovations

results in networks that can produce convincing scattering material

parameter estimates, when provided with a single photograph

without any calibration (completely unknown geometry and il-

lumination). Additionally, the performance of our networks shows

strong improvements in both parameter estimation accuracy and

appearance reproduction compared to the baseline. We hope that

these results will motivate follow-up work on using data-driven

learning techniques to improve upon and complement existing

physics-based approaches for inverse subsurface scattering.

At the core of our approach is the use of Monte Carlo

differentiable renderers. The use of physically-accurate rendering

allows us to enhance the generalization of neural networks, and

the differentiability allows us to efficiently train these networks.

Together with other work on combining differentiable rendering

with learning [16], our results point towards a new direction of

exploration: the investigation of more general learning architec-

tures that intelligently combine neural networks with physics-

based light transport simulation. We hope that our paper and our

publicly-available implementations and datasets [19] will facilitate

further research in this direction.
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