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SUMMARY

Stochastic gradient Markov chain Monte Carlo (MCMC) algorithms have received much attention in
Bayesian computing for big data problems, but they are only applicable to a small class of problems for
which the parameter space has a fixed dimension and the log-posterior density is differentiable with re-
spect to the parameters. This paper proposes an extended stochastic gradient MCMC algorithm which, by
introducing appropriate latent variables, can be applied to more general large-scale Bayesian computing
problems, such as those involving dimension jumping and missing data. Numerical studies show that the
proposed algorithm is highly scalable and much more efficient than traditional MCMC algorithms. The
proposed algorithms have much alleviated the pain of Bayesian methods in big data computing.
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1. INTRODUCTION

After six decades of continual development, MCMC has proven to be a powerful and typically unique
computational tool for analyzing data of complex structures. However, for large datasets, its computa-
tional cost can be prohibitive as it requires all of the data to be processed at each iteration. To tackle
this difficulty, a variety of scalable algorithms have been proposed in the recent literature. According to
the strategies they employed, these algorithms can be grouped into a few categories, including stochastic
gradient MCMC algorithms (Welling & Teh, 2011; Ding et al., 2014; Ahn et al., 2012; Chen et al., 2014;
Betancourt, 2015; Ma et al., 2015; Nemeth & Fearnhead, 2019), split-and-merge algorithms (Scott et al.,
2016; Srivastava et al., 2018; Xue & Liang, 2019), mini-batch Metropolis-Hastings algorithms (Chen
et al., 2016; Korattikara et al., 2014; Bardenet et al., 2014; Maclaurin & Adams, 2014; Bardenet et al.,
2017), nonreversible Markov process-based algorithms (Bierkens et al., 2019; Bouchard Coté et al., 2018),
and some discrete sampling algorithms based on the multi-armed bandit (Chen & Ghahramani, 2016).

Although scalable algorithms have been developed for both continuous and discrete sampling problems,
they are hard to be applied to dimension jumping problems. Dimension jumping is characterized by vari-
able selection where the number of parameters changes from iteration to iteration in MCMC simulations.
Under their current settings, the stochastic gradient MCMC and nonreversible Markov process-based al-
gorithms are only applicable to problems for which the parameter space has a fixed dimension and the
log-posterior density is differentiable with respect to the parameters. For the split-and-merge algorithms,
it is unclear how to aggregate samples of different dimensions drawn from the posterior distributions
based on different subset data. The multi-armed bandit algorithms are only applicable to problems with
a small discrete domain and can be extremely inefficient for high-dimensional variable selection prob-
lems. The mini-batch Metropolis-Hastings algorithms are in principle applicable to dimension jumping
problems. However, they are generally difficult to use. For example, the algorithms by Chen et al. (2016),
Korattikara et al. (2014), and Bardenet et al. (2014) perform approximate acceptance tests using subset
data. The amount of data consumed for each test varies significantly from one iteration to another, which
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compromise their scalability. The algorithms by Maclaurin & Adams (2014) and Bardenet et al. (2017)
perform exact tests but require a lower bound on the parameter distribution across its domain. Unfortu-
nately, the lower bound is usually difficult to obtain.

This paper proposes an extended stochastic gradient Langevin dynamics algorithm which, by intro-
ducing appropriate latent variables, extends the stochastic gradient Langevin dynamics algorithm to more
general large-scale Bayesian computing problems such as variable selection and missing data. The ex-
tended stochastic gradient Langevin dynamics algorithm is highly scalable and much more efficient than
traditional MCMC algorithms. Compared to the mini-batch Metropolis-Hastings algorithms, the proposed
algorithm is much easier to use, which involves only a fixed amount of data at each iteration and does not
require any lower bound on the parameter distribution.

2. A BRIEF REVIEW OF STOCHASTIC GRADIENT LANGEVIN DYNAMICS

Let Xy = (X1, Xa,..., Xy) denote a set of N independent and identically distributed samples
drawn from the distribution f(x|@), where N is the sample size and 6 is the parameter. Let p(X x|0) =
Hfil f(X;]0) denote the likelihood function, let m(f) denote the prior distribution of 6, and let
log m(0) X n) = log p(Xn10) + log w(6) denote the log-posterior density function. If 6 has a fixed dimen-
sion and log 7(6] X ) is differentiable with respect to 6, then the stochastic gradient Langevin dynamics
algorithm (Welling & Teh, 2011) can be applied to simulate from the posterior, which iterates by

6 o~
Orp1 =0, + tTHVe log (0| Xn) + v (€417T)Me41, M1 ~ N(0,1g), (D

where d is the dimension of 6, I; is an d x d-identity matrix, ;1 is the step size (also known as the
learning rate), 7 is the temperature, and @9 log (0¢| X n) denotes an estimate of Vg log w(0;| X n) based
on a mini-batch of samples. The learning rate can be decreasing or kept as a constant. For the former,
the convergence of the algorithm was studied in Teh et al. (2016). For the latter, the convergence of the
algorithm was studied in Sato & Nakagawa (2014) and Dalalyan & Karagulyan (2017). Refer to Nemeth
& Fearnhead (2019) for more discussions on the theory, implementation and variants of this algorithm.

3. AN EXTENDED STOCHASTIC GRADIENT LANGEVIN DYNAMICS ALGORITHM

To extend the applications of the stochastic gradient Langevin dynamics algorithm to varying-
dimensional problems such as variable selection and missing data, we first establish an identity for evalu-
ating Vg log m(0| X ) in presence of latent variables. As illustrated below, the latent variables can be the
model indicator in the variable selection problems or missing values in the missing data problems.

LEMMA 1. For any latent variable 1,
Valog (6| Xo) = [ Valogn(® | 9, Xx)n(d | 6, X)do. @)

where w(9 | 0, Xn) and (0 | 9, X ) denote the conditional distribution of 9 and 0, respectively.

Lemma 1 provides us a Monte Carlo estimator for Vylog (0 | X ) by averaging over the samples
drawn from the conditional distribution (9|0, X 7). The identity (2) is similar to Fisher’s identity. The
latter has been used in evaluating the gradient of the log-likelihood function in presence of latent variables,
see e.g. Cappé et al. (2005). When N is large, the computation can be accelerated by subsampling. Let
X,, denote a subsample, where n denotes the subsample size. Without loss of generality, we assume that
N is a multiple of n, i.e., N/n is an integer. Let X,, y = {X,,, ..., X,,} denote a duplicated dataset with
the subsample, whose total sample size is also /V. Following from (2), we have

Va 10gﬂ'(9 | Xn,N) = /Vg 10gﬂ'(9 | 19,Xn7N)7T(19 | G,Xn_’N)d’ﬂ. (3)



Biometrika style 3

Since Vglogn(0 | X,,.n) = Ve logp(X,, n|0) + Ve logw(0) is true and log p(X,, v|0) is unbiased for
log p(Xn10), Vglogm(0 | X,, n) forms an unbiased estimator of Vglogm (6 | Xn). Sampling from
7(7vs]0, Xn,n) can be much faster than sampling from 7(vg|0, Xn) as for the former the likelihood
only needs to be evaluated on a mini-batch of samples.

3.1.  Bayesian Variable Selection

As an illustrative example, we consider the problem of variable selection for linear regression
Y =z2"B+e, 4

where ¢ is a zero-mean Gaussian random error with variance o2, 5 € RP? is the vector of regression coeffi-
cients, and z = (21, 22, . .., zp) is the vector of explanatory variables. Let yg = (wé, ...,7%) be a binary
vector indicating the variables included in model S, and let S5 be the vector of regression coefficients as-
sociated with the model S. From the perspective of Bayesian statistics, we are interested in estimating the
posterior probability 7(vs|X ) for each model S € S and the posterior mean 7(p) = [ p(B8)7 (8| X )
for some integrable function p(-), where S comprises 2P models. Both quantities can be estimated using
the reversible jump Metropolis-Hastings algorithm (Green, 1995) by sampling from the posterior distri-
bution 7 (s, Bs| X n). However, when N is large, the algorithm can be extremely slow due to repeated
scans of the full dataset in simulations.

As aforementioned, the existing stochastic gradient MCMC algorithms cannot be directly applied to
simulate of 7(ys, B3| X ) due to the dimension jumping issue involved in model transition. To address

this issue, we introduce an auxiliary variable 6 = (61,62, ..., 6P), which links s and 3 through

Bs =0x7s = (0'78, 07, ..., 0P7%), ©)
where * denotes elementwise multiplication. Let 0jg) = {6 : v5 = 1,i=1,2,...,p} and O_g) = {6" :
wg =0,i=1,2,...,p} be subvectors of § corresponding to the nonzero and zero elements of g, re-

spectively. Note that 35 is sparse with all elements in ¢|_g) being zero, while ¢ can be dense. Based on
the relation (5), we suggest to simulate from 7(6| X ) using the stochastic gradient Langevin dynamic
algorithm, for which the gradient Vg log (6| X ) can be evaluated using Lemma 1 by treating s as the
latent variable. Let 7(6) denote the prior of 6. To simplify the computation of Vg log7(6 | vs, Xn), we
further assume the a priori independence that 7(6|vs) = 7(0s)|vs)7(0[—g]|7s). Then it is easy to derive

Vo5 log p(XN10;s),7s) + Vg m(01s)7s), for component 0,

Vo log (6 ,XN) =
ologn(@ ]9, Aw) {vt‘)[s] logﬂ'(e[*S]l’VS)a forcomponenté’[,s],

which can be used in evaluating V log 7(6| X y ) by Lemma 1. If a mini-batch of data is used, the gradient
can be evaluated based on (3). This leads to an extended stochastic gradient langevin dynamics algorithm.

Algorithm 1. [Extended Stochastic Gradient Langevin Dynamics for Bayesian Variable Selection]

(i) (Subsampling) Draw a subsample of size n (with or without replacement) from the full dataset X at
random, and denote the subsample by X,(Lt), where ¢ indexes the iteration.

(i1) (Simulating models) Simulate models vgl)m,...,wgzm from the conditional posterior

7(ys]0®, Xr(f)N) by running a short Markov chain, where Xr(f)N ={x®, ..., x"} and 0O®
is the sample of 6 at iteration ¢.

(iii) (Updating #) Update 6*) by setting 0('+1) = () 4 (2m) ;11 1L, Vo log w(0<t>l"y§t3,m X,(f)N) +
V/(€t41T) 41, where €, is the learning rate, 1,41 ~ N(0,I,), 7 is the temperature, and p is the
dimension of 6.

Theorem 1 justifies the validity of this algorithm with the proof given in the Appendix.

THEOREM 1. Assume that the conditions (A.1)-(A.3) (given in Appendix) hold, m, p, n are increasing
with N suchthat N > n > p, m > pl/Q, and a constant learning rate ¢ < 1/N is used. Then, as N — oo,
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(i) Wo(ms,ms) — 0 as t — oo, where ; denotes the distribution of 01, w, = 7(0|X ), and Wo(-, )
denotes the second order Wasserstein distance between two distributions.

(ii) If p(0) is a-Lipschitz for some constant o > 0, then Zthl p(0D) /T B 7, (p) as T — oo, where 2
denotes convergence in probability and m, (p) = [ p(0)m (0| X n)do.

(iii) If (A.4) further holds, Y1 S I(vY),, = 75)/(mT) — w(vs|Xn) B 0as T — .

Part (i) establishes the weak convergence of 6,; that is, if the total sample size N and the iteration
number ¢ are sufficiently large, and the subsample size n and the number of models m simulated at each
iteration are reasonably large, then 7 (6, | X ) will converge to the true posterior 7 (6| X ) in 2-Wasserstein
distance. Refer to Gibbs & Su (2002) for discussions on the relation between Wasserstein distance and
other probability metrics. Parts (ii) & (iii) address our general interests on how to estimate the posterior
mean and posterior probability, respectively, based the samples simulated by Algorithm 1. For parts (i),
(i1) and (iii), the explicit convergence rates are given in equations (3), (5) and (10), respectively.

For the choice of mm = p'/2, p can be approximately treated as the maximum size of the models under
consideration, which is of the same order as the true model. Therefore, m can be pretty small under
the model sparsity assumption. Theorem 1 is established with a constant learning rate. In practice, one
may use a decaying learning rate, see e.g. Teh et al. (2016), where it is suggested to set e, = O(1/t*) for
some 0 < x < 1. For the decaying learning rate, Teh et al. (2016) recommended some weighted averaging
estimators for 7, (p). Theorem 2 shows that the unweighted averaging estimators used above still work if
the learning rate slowly decays at a rate of ¢, = O(1/t") for 0 < xk < 1. However, if k = 1, the weighted
averaging estimators are still needed. The proof of Theorem 2 is given in the supplementary material.

THEOREM 2. Assume the conditions of Theorem 1 hold. If a decaying learning rate e; = O(1/t") is
used for some 0 < k < 1, then parts (i), (ii) and (iii) of Theorem 1 are still valid.

3.2.  Missing Data

Missing data are ubiquitous over all fields from science to technology. However, under the big data
scenario, how to conduct Bayesian analysis in presence of missing data is still unclear. The existing data-
augmentation algorithm (Tanner & Wong, 1987) is full data based and thus can be extremely slow. In
this context, we let X 5 denote the incomplete data and let # denote the model parameters. If we treat the
missing values as latent variables, then Lemma 1 can be used for evaluating the gradient Vy log 7(6| X n ).
However, Algorithm 1 cannot be directly applied to missing data problems, since the imputation of the
missing data might depend on the subsample only. To address this issue, we propose Algorithm S1 (given
in the Supplementary material), where the missing values ¢ are imputed from 7 (9|0, X, ) at each iteration.
Theorem 1 and Theorem 2 are still applicable to this algorithm.

4. AN ILLUSTRATIVE EXAMPLE

This section illustrates the performance of Algorithm 1 using a simulated example. More numeri-
cal examples are presented in the supplementary material. Ten synthetic datasets were generated from
the model (4) with N = 50, 000, p = 2001, 02 = 1,Bi=---=085=1,8s=pP7=pPs=—1,and 5y =
Bg =+ =B, =0, where o2 is assumed to be known, and the explanatory variables are normally dis-
tributed with a mutual correlation coefficient of 0.5. A hierarchical prior was assumed for the model and
parameters with the detail given in the supplementary material. For each dataset, Algorithm 1 was run for
5000 iterations with n = 200, m = 10, and the learning rate €; = 106, where the first 2000 iterations
were discarded for the burn-in process and the samples generated from the remaining iterations were used
for inference. At each iteration, the reversible jump Metropolis-Hastings algorithm (Green, 1995) was

used for simulating the models Vgi),m 1 =1,2,...,m with the detail given in the supplementary material.

Table 1 summarizes the performance of the algorithm, where the false selection rate (FSR), negative
selection rate (NSR), mean squared errors for false predictors (MSE() and mean squared errors for true
predictors (MSE;) are defined in the supplementary material. The variables were selected according to

the median posterior probability rule (Barbieri & Berger, 2004), which selects only the variables with the
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Table 1. Bayesian variable selection with the extended stochastic gradient Langevin dynamics
(eSGLD), reversible jump Metropolis-Hastings (RIMH), split-and-merge (SaM) and Bayesian
Lasso (B-Lasso) algorithms, where FSR, NSR, MSE, and MSE are reported in averages over
10 datasets with standard deviations given in the parentheses, and the CPU time (in minutes)
was recorded for one dataset on a Linux machine with Intel® Core™i7-3770 CPU@3.40GHz.

Algorithm FSR NSR MSE; MSE, CPU(m)
eSGLD 0(0) 0(0) 2.91 x 1073(1.90 x 1073)  1.26 x 10~ 7(1.18 x 10~9%) 3.3
RIMH  0.50(0.10) 0.16(0.042) 1.60 x 107%(3.89 x 1072) 2.64 x 107°(8.75 x 10~%)  180.1

SaM 0.05(0.05) 0.013(0.013) 1.29 x 1072(1.27 x 1072)  1.01 x 1075(1.00 x 10=%)  150.4
B-Lasso 0(0) 0(0) 2.32 x 1074(3.58 x 107%)  1.40 x 107 7(5.08 x 10~9) 32.8

marginal inclusion probability greater than 0.5. The Bayesian estimates of parameters were obtained by
averaging over a set of thinned (by a factor of 10) posterior samples. For comparison, some existing algo-
rithms were applied to this example with the results given in Table 1 and the implementation details given
in the supplementary material. The comparison show that the proposed algorithm has much alleviated the
pain of Bayesian methods in big data analysis.

5. DISCUSSION

This paper has extended the stochastic gradient Langevin dynamics algorithm to general large-scale
Bayesian computing problems, such as those involving dimension jumping and missing data. To the best
of our knowledge, this paper provides the first Bayesian method and theory for high-dimensional discrete
parameter estimation with mini-batch samples, while the existing methods work for continuous parame-
ters or very low dimensional discrete problems only. Other than generalized linear models, the proposed
algorithm can have many applications in data science. For example, it can be used for sparse deep learning
and accelerating computation for statistical models/problems where latent variables are involved, such as
hidden Markov models, random coefficient models, and model-based clustering problems.

Algorithm 1 can be further extended by updating 6 using a variant of stochastic gradient Langevin
dynamics, such as stochastic gradient Hamiltonian Monte Carlo (Chen et al., 2014), stochastic gradient
thermostats (Ding et al., 2014), stochastic gradient Fisher scoring (Ahn et al., 2012), or preconditioned
stochastic gradient Langevin dynamics (Li et al., 2016). We expect that the advantages of these variants
(over stochastic gradient Langevin dynamics) can be carried over to the extension.
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APPENDIX

A.l.  Proof of Lemma 1
Proof. Let w(6) denote the prior density of 0, and let 7w(¢}) denote the density of ¥J. Then

1
Vologm(0|Xn) = Vglogp(Xn | 8) + Vologn(0) = mVQ /p(XN,él | 6)dd + Vg logm(0)
p(XNaﬁ | 0)
= [ ———=Vyl Xn, 0| 60)dv 1 0
[ B Vo logp(X, 0 0)d0 -+ Vo log w(6)
= /w(ﬁ |6, XN)Vo logp(Xn | 6,9) +1logm(0 | 9) +log (V) — logm(#)] d + Vg logm(6)

= /Vg logﬂ'(t? | 19,XN)7T(’£9 | O,XN)d’l?,
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where the second and third equalities follow from the relation Vg log(g(6)) = Veg(0)/g(0) (for an ap-
propriate function g(6)), and the fourth and fifth equalities are by direct calculations of the conditional
distributions. O

A.2.  Proof of Theorem 1

Let 7, = (0| X ) denote the posterior density function of 6, and let m; = 7(0)| X ) denote the
density of #(*) generated by Algorithm 1 at iteration t. We are interested in studying the discrepancy
between 7, and 7; in the 2nd order Wasserstein distance. The following conditions are assumed.

(A.1) The posterior 7, is strongly log-concave and gradient-Lipschitz:

FO) = £0) = VIO (0-0)> L0013 0.6 €0, ()
IVF(O) = VAO)l2 < Qull0 = 0ll2, V0,0 €0, (2)
where f(0) = —log (0| X ), and c;N < gy < Qn < ¢ N for some positive constants ¢ and cf.

(A.2) The posterior , has bounded second moment: [, 67 0, (0)d6 = O(p).

(A.3) maxses Exy[l|Vologm(0]ys, Xn)|?10] = O(N?(]|0]|? + p)), where Ex,, denotes expectation with
respect to the distribution of X, and S denotes the set of all possible models.

(A4) Let Ly(vs,0) =logp(Xn|vs,0)/N and let {LV(6):i=1,2,...,|S|} be the descending or-
der statistics of {Ln(7vs,0):S € S}. Assume that there exists a constant ¢ >0 such that
infoco (LY (0) — LY (9)) > 4.

Proof. Part (i). In Algorithm 1, the gradient Vlog7(#)|Xy) is estimated by running a short
Markov chain with a mini-batch of data. Since the initial distribution of the Markov chain might not
coincide with its equilibrium distribution, the resulting gradient estimate can be biased. Let ((*) =

LS Vologm(6®) |’ysk s Xff)N) — Vlog m(6®)|X ). Following from (A.3), we have

2011000 |12 12
m mn

Following from Lemma S2 in the supplementary material, if m = p'/2, ¢ < 1/N < (mn)/(Np), and
V = O(p) holds, then

pl/? ENp)l/Q)

Woa(my, me) = (1 — w) Wa(mo, m) + O(— — )+O((ep)1/2)+0((m — 0, ast— oo, (3)

for some w > 0, since gy < N and @ =< N hold by conditions (A.1) and (A.2).
Part (ii). Since p(0) is a-Lipschitz, we have |p(6)| < a||0|| + C” for some constant C”. Further, 7, is
strongly log-concave, so 7. (|p|) < o0, i.e., p is T.-integrable. On the other hand,

I [ o(®yin. ()~ [ p(@ir(@)] = |1En(®) - Ep(@)] < Ellof6) - (@)
<aE||0 — 0|2 < o{E||0 — 0||2}Y/% = aWs (7., m) = o(1), (dueto eq. (3)).

“

where 6 and 6 are two random variables whose marginal distributions follow . and 7; respectively, F(-)
denotes expectation with respect to the joint distribution of 6 and 6, and (E||6 — 6;(|3)"/% = Wa (., ).
This implies that p is also 7;-integrable and [ p()dr:(0) — [ p(0)dm.(6) ast — oc.

Further, by the property of Markov chain, WLLN applies and thus Zthl p(6W) /T —
S, [ p(0)dmi(8))T = O,(T~'/2). Combining it with the above result leads to

T

T
> 0N/ T = m(p) = Op(T72) + 0y W, m) /T — 0. (5)

t=1
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Part (iii). To establish the convergence of 7 (vs| X n), we define Ly (ys, %)) = log p(Xn|vys, 0®)/N,
(75,9“)) log p(X |ys, 6®) /n, and §(t) = Ln(vs,0") — Ly (vg,0®) forany S € S. For each
S, §n s is approximately Gaussian with £ (57(L )S) = 0 and Var(,, ® s) = O(1/n). Therefore, for any posi-

tive v, with probability 1 — |S| ™7, maxg |€,, s is bounded by d,, := {(2v + 2)log |S|/n}'/2 = O[{(v +
1)p/n}'/?] according to the tail probability of the Gaussian. It implies, with high probability, that if S is
the most likely model, i.e., Lg\t,) (vs) = Lg\}) (6®), then

7 (51X, 0) = (11 X, 60)]
| 1 B 1
IR ZS’;&S eN(Ln(vs 00) =Ly (v5,00)+E, 1 —€n.s) 1 4 ZS/;AS eN(IN(Xn|vs,00) =Ly (Xn|vs,0))

ZS/;AS N (LN (XN 75,0 =Ly (X |ys.0™))+bgr)

T+ > gz €N NN 0~ L (X580 405 |2

<(2P —1)e N2 N5, < N2 5,

N|§n,s/ - 5n,S|

if vp < n (i.e., §, <) and N > p, where the second equality follows from the mean-value theorem
by viewing N(Ly(Xn|vs,0®) — Ly(Xn|ys,0®))’s as the arguments of 7(vs| Xy, 0®), and bs:
denotes a value between 0 and (&,,,.s7 — &5, ). Similarly, if S is not the most likely model, then we denote
S* as the most likely model and, by the mean-value theorem,

I (s 1 X 00) = (s | X, 60))]
eN (L (v5,0)) =L (v5+,0))+6n,5 =0 57) eN(Ln(v5,0) =L (v5+,01))

1+ ZS’;&S eN(LN(v57,00) =L (ys%,0)+E,, 51 =&n,5%) ] + ZS’;&S eN(Ln(vsr,0®) =Ly (ys+,0)

<[1+ (2P — l)efN(‘;*%") + €2N6"]€7N(6725")N25n <e N2 0.

In conclusion, with probability 1 — 1/|S|¥, |7T(’}/5|X7(:)N, 01 — w(ys| Xn, 0)| < exp(—=N§/2) for

1/2

all S, any iteration ¢ and any #() € ©. Then, one could choose some v = (n/p)*/? — oo, such that

(751X, 80) — 7(vs| X v, 81)) is bounded by
max Blr(ys|X, "y, 0)) = (35| X, 01)] < exp(~N6/2) + 1/|S]" =0, 6)

for any iteration ¢. Conditioned on {#") : t = 1,2,...}, [r(vs|Xn.nv, 0P) — 7(v5| X n, 01)]’s are inde-
pendent and each is bounded by 1, so WLLN applies. Therefore, for any .S € S, by WLLN,

T
%Zw 75|X7(fN, ) Zw (75| X, 00) = O, (T7Y2) + exp(=NG§/2) +1/|S|” = 0, (7)
t:l

t=1

provided p < n < N. Since {6(“ :t=1,2,...} forms a time-homogeneous Markov chain, whose con-
vergence is measured by (3), and the function (5| X, #) is bounded and continuous in 6,

1 I
T ZW(WSLXN, 0)) — m(vs|Xn) = Op(T/?), (8)

t=1
holds for any S € S. Combining (8) with (7) leads to

T Z (151X, 00) — 7(75| X ) = Op(T~Y/2) + exp(~N§/2) + 1/|S|” — 0. ©

Conditioned on X, () v and 0 by the standard theory of MCMC, m~* 37" | I(vg (45 — vs) forms a

consistent estimator of 7T(’}/5|Xn_ v» 01 with an asymptotic bias of O(1/m). Since m is increasing with
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p and NV, the estimator is asymptotically unbiased. Combining this result with (9) leads to

T m
1 - v -
SN TG, =9s) = wlsIXn) = Op(T71/2) + exp(=N3/2) + 1/IS]* + Op(m=/2),
t=1 i=1
(10)
which convergesto 0 as 7' — oo and N — oo. O
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This material is organized as follows. Section 1 presents an extended stochastic gradient Langevin dy-
namics algorithm for missing data problems. Section 2 presents some lemmas and and the proof of Theo-
rem 2. Section 3 presents the reversible jump Metropolis-Hastings (RIMH) algorithm used in Algorithm
1 (of the main paper) for Bayesian variable selection. Section 4 presents more numerical examples.

1. AN EXTENDED STOCHASTIC GRADIENT LANGEVIN DYNAMICS ALGORITHM FOR MISSING
DATA PROBLEMS

As mentioned in the main paper, Algorithm 1 cannot be directly applied to missing data problems,
because the imputation of the missing data ¥ might depend on the subsamples only. To address this issue,
we propose Algorithm S1, where the missing values (denoted by ©)) are imputed from 7r(19|9(t), X,) at
each iteration ¢.

Algorithm S1. [Extended Stochastic Gradient Langevin Dynamics for missing data problems]

2002.02919v1 [stat.CO] 7 Feb 2020

(i) (Subsampling) Draw a subsample of size n from the full dataset X 5 at random, and denote the sub-
(t)

> sample by X, 7, where ¢ indexes the iteration.
SE (i) (Multiple Imputation) For the subsamples, simulate the missing values 19521, ey 195,?” from the condi-
— tional posterior (196", Xr(f)), where #(*) is the sample of ¢ at iteration ¢.
< (iii)) (Importance Resampling) Resample an imputed value from the set {19?21, e 1952)”} according to
the importance weights {p(X,,[0®), 19521)]\’/”*1, (X0, 98, ) N/n=11 Denote the resampled
value by ().

(iv) (Updating #) Update #*) by setting

2 n

P+ — g 4 1 {% S Vologn(0® |9, X)) — N-ng, 1og7r(9<t>)} + eer1m) 1
k=1

where 1,11 ~ N(0, 1), and €1 is the learning rate.

In the case that ¥ or some components of ¥ depend on all data X, an importance resampling step can
be included for simulating samples from 77(19|9(t) , Xn,~v) and then the corresponding inference can be
made. For example, if Algorithm S1 is used for Bayesian variable selection where the model is treated as
latent variable, such a step is needed. For the problems that ¥ depends on the subsamples only, this step
can be omitted. The validity of Algorithm S1 follows directly from the fact that N/nVglog 7 (0|X,,) —
(N —n)/nVglogm(0) is an unbiased estimator of Vg log 7 (6| Xn).

© 2018 Biometrika Trust
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2. LEMMAS AND PROOF OF THEOREM 2

2.1. Some Lemmas

LEMMA S1. Let X ~ pandY ~ v, then
E|Y|3 < BIX|3 + W3 (i, v) + 2Wa (p, v){E|| X |3}/2,
where Wy (-, ) denotes the second order Wasserstein distance.

Proof. By definition of the Wasserstein metric, without loss of generality, we assume that X and Y
satisfy E||X — Y||3 = W3 (u,v). Then

(B3 - EIX5] = W3 (1, v)
=EY"TY - EXTX - EXTX - EYTY +2EXTY
=2EXTY —2EXTX =2EXT(Y — X) <2E||X|2|]Y — X |2
<2{E|X[ZEIY - X[3}!/* = 2Wa (u, v){ E||IX|[5}/*.
Lemma S2 is a generalization of Theorem 4 of Dalalyan & Karagulyan (2017). Compared to Theorem

4 of Dalalyan & Karagulyan (2017), Lemma S2 allows the noise of the stochastic gradients to scale with
[0¢=1)||2. A similar result can be found in Bhatia et al. (2019).

LEMMA S2. Let 041 and 61 be two random vectors in © satisfying
00 =601 — [V (V) + ¢TI+ y/(26)e,

where ((*=1) denotes the independent random error of the gradient estimate which can depend on =),
and eV ~ N(0,1,). Let 7; be the distribution of 0"), and let 7. oc exp{—f} be the target distribution.
If ¢ satisfies

1B D102 < (Ve + 109D Bl = B V100D < oo+ 16¢7)1%),

for some constants 1) and o which might depend on m,n,p and N, and (*=1)’s are independent of e s,
and if the conditions (A.1) and (A.2) (given in the main paper) are satisfied, qn > 1+ +/(2)o and the
learning rate ¢ < min{2/(qn + Qn),1/qn)}, then

¢ nvp+VV) Qn/(ep)
Wg(ﬂt,ﬂ*) < [1 — (qN —n— \/(2)0’)6] Wz(ﬂ'o,ﬂ'*) + m + 1.65m
N V(e)o®(p +2V)

L65QnpY2 + {qn + 1+ V/(2)o }1/2{o?(p +2V) 1/

(S1)
where V = [ ||0]|*m.(0)d6.

Proof. By the same arguments as used in the proof of Theorem 4 of Dalalyan & Karagulyan (2017),
we have

2
W (mei1,m) < [(1= ane)Wa(me,m) + 165Qu(p) /2 + en/p+ en{ B0} /2]
+ 20%p + 202 E|0W)| 2.



Biometrika style 3

By Lemma S1, E[|0®)||2 < (Wy(mg, m.) + +/V)?, we can derive that

(1 ane ) Walms, m.) + L65Qu(p) M + en/p-+ en(Walme, m) + V)]
@07+ 0> Walmi, ) + V)2

< [0~ awe + e Wa(m, ) + 1L65Qu ()2 + enly/p + V)]

—-i- 202 (p + 2V) + 220° Wi (mr, T )

(1~ ane + e + V@)oOWa(mi, ) + LEQN(ED)? +enlyp + V)]
-_i- 2% (p+2V).

W22(7T/€+1 ) T‘—*) <

<

The proof can then be concluded by Lemma 1 of Dalalyan & Karagulyan (2017). (]

LEMMA S3. Consider a stochastic gradient Langevin dynamics algorithm,
Wuﬁmﬂ+%ﬂW“H«WW+wmw%e@~MWMQm

for some smooth function F, where the independent random error term (=Y can depend on §¢—1)
and EC'=Y) = 0. If the learning rate satisfies limy e, = 0, 1= €, = 00, > 1o |1/ er41 — 1/e] /t < o,
and > (e;t?) ™! < oo, and furthermore, there exists a Lyapunov function V (0), which tends to infinity as
10]l — oo, is twice differentiable with bounded second derivatives and satisfies the following conditions:

(F(0),0) < —r||0|| forall|0| > M and some r, M > 0, (S2)
E|ICE V2R < VRO for some k> 2, (S3)
IVVOI* + IO <V (), (S4)
(VV(0),F(0)) < —aV(0)+ B forsomea,( >0, (S5)

then the following results hold:

1. There exists a unique invariant distribution, T, for the diffusion process df; = (1/2)F (0;)dt + dW.
2. For any function h such that |h|/V* is bounded for some k' < k/2,

T
1 _
im — (1)) —
lim ;:1 h(0') = E.h(0), a.s.

Proof. Part 1: Condition (S2) ensures existence of the invariant distribution by proposition 4.1 of Douc
et al. (2009).

Part 2: The convergence of the sample path average is due to Theorem 7 of Teh et al. (2016). Note that
Theorem 7 of Teh et al. (2016) shows the convergence of the weighted average ZiT:1 w; 0 / ZiT:1 w;
with w; — 0 and ' = V f for some f, but its proof is applicable to our case (with a general drift " and
w; = 1 for all 7) as well. O

2.2.  Proof of Theorem 2

Proof.(1) Without loss of generality, we let ¢, = 1/t" where r € (0, 1). Define y = /(1 — k), and let
Tp be the index such that max{qn, (Qn + qn)/2}er, < 1.LetTy < Ty < T» < ... be a sequence of
integers satisfying (so) X < ep, <ep—1 < (so+ 1) X <ep, <ep—1 < (so+2)7X < ..., where
so is some integer. It is easy to see that 1 — T =~ (x/k)(so +i)X/*~1 < TF ..
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Therefore, by the similar arguments as used in Lemma S2 and Theorem 1, let N be a fixed but suffi-
ciently large value,

Walmr, o m) < (1 (ay — 1 - V(@)o)er,, )T Wolmr, 7.) + Cu( L)

N 1/2 (S6)
cz<¢p+{m—§} >¢en,

for some constant Cy and Co, where gy — 7 — 1/(2)o > 0. For a fixed value of N, (1 — (gn — 1 —
V(2)o)er,, )T 7T < (1= (qv — 1 — /(2)0)(Ti41) )T+ =T converges to some positive con-
stant less than 1 as 7 — oo, since T;1q1 —T; < T\ ;. If we further assume that (1—(gv —n—
V(2)o)(Ti41) )i+ =T < < 1 for all 4, then (S6) is reduced to

mn

Wo (7, , ™ )<wW2(7TT,7T*)+Cl(\/p)+C <\/p+{Np} )\/ETi.

Iterating the above inequality, we have

K-1 p Np 1/2\ K
K 7 K—1
Wo(Try , ms) < w™ Wa(mr,, ms) + E w C1—m + Cs <\/p+{—mn} ) E w™ T er,

=1 =1
K

1/2
K VP Np 2
<w WQ(WTO,W*)-I—LU/(l—w)ClE-FCQ <\/p+{%} ) E So—f—l—l) x/

—w/(1—w)Ci/p/m (as K — o)
— 0, (as N — oo,/p/m —0),

which concludes part (i).
The extended stochastic gradient Langevin dynamics algorithm can be expressed as

€
ot =6 + tH ZVG log m(0® ]y X( N+ V(€)ne,
€ €
=00 + fT“ve 1ogw<9<f>|XNt>) + = E00) + =D+ er) i,

where  £(00) = B[Y7", Velogm(0D 7S, X )/m] — Vologm(0P|Xy)  and (V) =

S Velogm(0D ), X0) /m — B[ Velogm(0D |7y, X\"y)/m]  denote  the bias
term and noise term, respectlvely It has been shown in the proof of Theorem 1 that

N2(|16]1” + p) N2(II9(”H2+p))
p

mn

1E@)]* = of Lo B(ICW)PM) = of
With the same notation as in Lemma S3, F(0) = Vlogw(0|Xn) + £(60). Because — log w(0| X n) is
@ n-gradient Lipschitz continuous and gy -strongly convex with gn =< Q ~N =< N, we have

7 ~ len + 191,

which implies condition (S2). It is also easy to verify conditions (S3)-(S5) by choosing £ = 1 and
V() = C(]|0]|* + 1) for some sufficiently large constant C'. Also, the choice ¢; o ¢~ with x € (0, 1)
satisfies the conditions of Lemma S3, and any Lipschitz continuous p satisfies that |p|/V is bounded.
Putting all these together it implies, with given X, N, p and m, that the diffusion process d6(*) =
(1/2)F(6D)dt + dW ) has a unique invariant distribution 7, and

(F(0),0) < —anll0l* + 10 Vo=olog w(0]1 X )| + o=~

lim — Z = Eryp(0), as. (S7)
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As implied by Part (i) of Theorem 1, with proper growth rates of m and n, mx converges to 7, in
Ws-distance. Hence,

Eryp(0) — Ex, p(0). (S8)

That is, the unweighted estimator given in part (ii) of Theorem 1 is still valid if the learning rate
e = O(1/t") forsome 0 < k < 1.

(iii) For the proof of part (iii) of Theorem 1 in the main paper, equation (8) still holds by (S7) and (S8),
and the other parts of the proof hold independent of the setting of the learning rate. Therefore, the
unweighted estimator given in part (iii) of Theorem 1 is still valid if we set the learning rate ¢; =
O(1/t") for some 0 < x < 1. This concludes the proof of Theorem 2. O

3. THE REVERSIBLE JUMP METROPOLIS-HASTINGS ALGORITHM USED IN ALGORITHM 1

For Algorithm 1, we employ the reversible jump MH algorithm (Green, 1995) to draw the models
'yg?)n, 1 =1,2,...,m, at each iteration. The reversible jump MH algorithm consists of three types of
moves, namely, birth, death and exchange. Let {w;}?_ denote the weights assigned to intercept term
and variable z; fori = 1,2, ..., p. For linear models, we assign wy = exp(—1), w; = exp(|p(y, z;)| — 1)
fori =1,...,p, where p(y, z;) denotes the correlation coefficient between y and z;; for generalized lin-
ear models, let d; denote the deviance of the model .S;, which consists of variable z; and the intercept
term only, and we assign wo = exp(—¢), w; = exp{—(d; —min; d;)/(50q) — €} forall i =1,...,p,
where € = 0.1 and o4 denotes the standard deviation of dy,do, ..., d,. Let S denote the set of vari-
ables included in the current model, and let Sét) denote its complementary set. The birth move is to
randomly select a variable from Sgt) (with a probability proportional to its weight) and add it to S(*).
The death move is to randomly select a variable from S*) (with a probability proportional to one mi-
nus its weight w;) and remove it. The exchange move is to randomly select a variable from S (with

a probability proportional to one minus its weight) and replace it by another variable randomly selected

from Sét) (with a probability proportional to its weight). The exchange move keeps the size of S*) un-

changed. In addition, when a variable is selected to be added to or removed from S (t), the sign of the
corresponding component of § will be randomized, i.e., altered with probability 0.5. This accommodates
with the prior setting of | _g) in equation (7) of the main paper. In simulations, we set the proposal prob-
ability P(birth|S")) = P(death|S")) = P(exchange|S®)) = 1/3if 0 < |S®")| < ¢, P(birth|S®)) = 1if
|S®| =0, and P(death|S®")) = 1 if |S®)| = ¢. Note that in the reversible jump moves, no regression
coefficients were updated. This is different from traditional reversible jump MH algorithms, where the
regression coefficients of () might need to be updated accordingly.

4. NUMERICAL EXAMPLES
4.1. A Linear Regression Example
This section provides more details for the illustrative example reported in the main paper. The true
model follows
y=z1+z2+z23+2+tz—26—27—28+0-29+---+0-2,+¢, (S9)

where € ~ N(0, Iy), and I denotes an N x N identity matrix. The explanatory variables z1, ..., z,
were generated from a multivariate Gaussian distribution with a mutual correlation coefficient of 0.5. We
generated 10 independent datasets from the model (S9) with N = 50,000 and p = 2000. A hierarchical
prior was assumed for the model and parameters. For each model .S, we set

m(ys) o< A1 = XTSI (|S| < ), (S10)

where | S| denotes the number of explanatory variables included in the model, ¢ is set to 50, and \ is set to
1/(p + 1)*! by including the intercept term. Here the factor p + 1 means that the intercept term has been
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included in the model as a special explanatory variable. Conditioned on g, we set
015 ~ N(0,07115)), Oj—s) ~ N(0,081,41_5)), (S11)

where 0[5 and 6| _g) are the auxiliary variables corresponding to the variables included in and excluded
by the model S, respectively; o7 is set to a constant of 25; and o3 is set to a constant of 0.025.

Algorithm 1 was run for 5000 iterations with the subsample size n = 200, the number of models
m = 10 drawn at each iteration, and the learning rate €; = 106, where the first 2000 iterations were
discarded for the burn-in process. In each iteration, the subset models were drawn using the reversible
jump Metropolis-Hastings algorithm described in Section 3 of this material. Regarding the choice of the
learning rate, we note that Theorem 1 of the main paper suggests that it should be set in the order o(1/N).
In all our examples, we did not tune the learning rate much, just setting it around 1/N while avoiding
possible blowups of the simulation. Refer to Nemeth & Fearnhead (2019) for discussions on this issue for
the general stochastic gradient Langevin dynamics algorithm.

The variables were selected according to the median posterior probability rule (Barbieri & Berger,
2004), which selects only the variables with the marginal inclusion probability greater than 0.5. Table 1
of the main paper summarizes the performance of the algorithm, where the false selection rate (FSR),
negative selection rate (NSR), MSE, and MSE; are reported in averages over 10 independent dataset. To
be more precise, we define

10 10
1 A A 1 N
FSR = 15 > 185\ S.l/15i], NSR = -5 > 15\ 8il/1S-1;
i=1 i=1

where S, denotes the set of true variables, S‘l denotes the set of selected variables for dataset 4, and | - |
denotes the cardinality of a set. The accuracy of the parameter estimates is measured by

10 10
1 . 1 .
MSEo = 7 > "MSE(3”), MSE; = o > MSE(3),
i=1 1=1

where 7 indexes datasets, and 31-(0) and Bfl) denote the estimates of the coefficients of the false and true
variables, respectively. The Bl is obtained by averaging over a set of thinned (by a factor of 10) posterior
samples produced by Algorithm 1. The extremely small values of MSE(; and MSE; and the zero values
of FSR and NSR indicate that all the simulations have converged to the true model.

For comparison, some existing algorithms, including the reversible jump Metropolis-Hastings algo-
rithm (Green, 1995), split-and-merge (Song & Liang, 2015), and Bayesian Lasso (Park & Casella, 2008),
were applied to this example. For this example, the reversible jump Metropolis-Hastings algorithm was
also run for 5000 iterations. Similar to the implementation of extended stochastic gradient Langevin dy-
namic algorithm, the first 2000 iterations were discarded for the burn-in process, the variables were se-
lected according to the median posterior probability rule (Barbieri & Berger, 2004), and the regression
coefficients were estimated based on the samples collected from the last 3000 iterations (thinned by a
factor of 10).

For the split-and-merge algorithm, we first split the data into 5 equal subsets along the dimension of
predictors; that is, each subset consists of 400 predictors and 50,000 observations. For each subset, we
imposed a hierarchical prior on the model and parameters, where each predictor has a prior probability
of (1/401)! being selected, and if selected, its coefficient follows a Gaussian distribution N (0, 52). For
each subset, the reversible jump Metropolis-Hastings algorithm was run for 2500 iterations, where the
first 1000 iterations were discarded for the burn-in process, and the predictors with the marginal posterior
inclusion probability greater than 0.3 were selected. The predictors selected from each subset were then
merged into one dataset. For the merged dataset, we imposed the same hierarchical prior on the model
and parameters, and then ran the reversible jump Metropolis-Hastings algorithm for 2500 iterations with
the first 1000 iterations discarded for the burn-in process. The final model was selected according to the
median posterior probability rule, and the parameters were estimated based on the samples collected from
the last 1500 iterations.
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For Bayesian Lasso, we adopt the Laplace prior () oc exp(—AY_ |3;]) with A = {2N log(p)}'/2.
The Gibbs sampler was used to simulate posterior samples, as described in Park & Casella (2008), for 200
iterations. The predictors with the absolute value of the coefficient estimate greater than 0.1 were selected
as the “true” predictors, where the coefficient was estimated by averaging its posterior sample over the
iterations.

Among the four algorithms, the extended stochastic gradient Langevin dynamics algorithm cost the
least CPU time and perfectly selected all true variables. The reversible jump Metropolis-Hastings algo-
rithm took on average about 3 CPU hours to complete 5000 iterations. However, the resulting Markov
chain was not yet mixed well and yielded high FSR, NSR and MSE; values. It is worth to note that the
CPU time cost by the reversible-jump Metropolis-Hastings algorithm has a high variety among the ten
runs, ranging from 42 to 305 minutes. This is due to the local trapping issue suffered by the reversible-
jump Metropolis-Hastings algorithm; the CPU time can dramatically increase if the Markov chain is
frequently trapped at large models. By working on lower dimensional subset data, the split-and-merge
algorithm significantly improves the performance of the reversible jump Metropolis-Hastings algorithm,
but is still inferior to the extended stochastic gradient Langevin dynamics algorithm in both variable se-
lection accuracy and computational efficiency. We note that the split-and-merge algorithm can be further
accelerated by parallel computing, although not done here. The Bayesian Lasso was also capable to per-
fectly recover the true model. For this algorithm, the major CPU cost is for computing at each iteration the
inverse of an p X p-matrix, which, unfortunately, is not scalable with respect to /N. Although the algorithm
was only run for 200 iterations, it still cost more CPU time than the extended stochastic gradient Langevin
dynamics algorithm. It is worth noting that other than linear regression, the Bayesian Lasso algorithm will
not be so efficient as the conjugate Gibbs updates will not be available anymore.

4.2. A Logistic Regression Example

Other than the linear regression example reported in the main paper, we also tested Algorithm 1 on
large-scale logistic regression. We simulated 10 large datasets from the model

P
logitP(V; = 1) = Y Bz, i=12,...,N, (S12)

i=1
where N = 50,000, p =2000, 81 =---=f85=1, B6=PBr =z =—1,and g = --- = B, = 0. The
explanatory variables z;’s, where z; = (21, . . ., zip)T, were generated such that they have a mutual cor-

relation coefficient of 0.5. The response variables were generated such that half of them have a value of 1
and the other half have a value of 0.

To conduct Bayesian analysis for the datasets, we adopted the same prior setting as in Liang et al.
(2013). For each model .S, we set

m(ys) o< N1 — NP8 (S| < ), (S13)

where | S| denotes the number of explanatory variables included in the model, ¢ is set to 500, A is set to
1/{1+ (p+1)*y/(27)}, and ¢ = 0.5. Similar to the linear regression case, the factor p + 1 means that
the intercept term has been included in the model as a special explanatory variable. Conditioned on g,
we set

Ois) ~ N(0,08L15)), 6j—s) ~ N(0,00L,11_5)), (S14)

where 0|5 and 0| _ 5] denote the auxiliary variables corresponding to the variables included in and excluded
by the model S, respectively; o2 is set to a constant of 0.025; and 0% = exp{Cy/|S|}/(27). For this
example, we set Cy = 10. As shown in Liang et al. (2013), such a prior setting ensures the posterior
consistency and variable selection consistency for high-dimensional generalized linear models, even when
p is much larger than N.

For each dataset, Algorithm 1 was run for 5000 iterations with the subsample size n = 300, the learn-
ing rate €; = 1075, and the number of models m = 10 simulated at each iteration, where the first 2000
iterations were discarded for the burn-in process and the samples generated from the remaining iterations
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Table S1. Bayesian variable selection for logistic regression with the extended stochastic gradi-
ent Langevin Dynamics (eSGLD) algorithm, where FSR, NSR, MSE| and MSE are reported in
averages over 10 datasets with standard deviations given in the parentheses, and the CPU time
(in minutes) was recorded for one dataset on a Linux machine with Intel(R) Core(TM) i7-7700
CPU@3.60GHz.

Model  Algorithm FSR NSR MSE, MSE, CPU(minutes)
Logistic eSGLD  0(0) 0(0) 2.37 x 1072(2.88 x 1073) 2.70 x 10~%(1.40 x 10~ %) 2.9

were used for inference. At each iteration, the models were simulated using the same reversible jump
Metropolis-Hastings algorithm as described in Section 3 of this material.

The results were summarized in Table S1. For each dataset of this example, the extended stochastic
gradient Langevin dynamics algorithm took only 2.9 CPU minutes on a personal computer of 3.6GHz!
The numerical results indicate again that the extended stochastic gradient Langevin dynamic algorithm
has much alleviated the pain of Bayesian methods in big data analysis.

4.3. A Pascal Challenge Dataset

We considered the dataset epsilon with logistic regression. The dataset is available at
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets, which has been used
for Pascal large scale learning challenge in 2008. The raw dataset consists of 500,000 observations and
2000 features, which was split into two parts: 400,000 observations for training and 100,000 observa-
tions for testing. The training part is feature-wisely normalized to mean zero and variance one and then
observation-wisely scaled to unit length. Using the scaling factors of the training part, the testing part is
processed in a similar way.

For this example, we applied the same prior settings as used in Section 4.2 of this material except that
Cp was set to 2.5. A small value of C enhances the selection of a larger set of variables, while keeping
the regression coefficients of the selected variables relatively small. Our numerical experience shows that
this often improves the prediction performance for real data problems, as for which the true model might
deviate from the logistic regression and thus need to be approximated with a large number of variables
(but the effect of each variable is small). With this prior setting, Algorithm 1 was run for the dataset for 10
times independently. Each run consisted of 1000 iterations, where the first 500 iterations were discarded
for the burn-in process, and the samples drawn from the remaining iterations were used for inference.
In simulations, we set the subsample size n = 2000, the learning rate ¢, = 5 X 10~*, and the number of
simulated models m = 10 per iteration.

The numerical results were summarized in Table S2, where the variables were selected according to
the median posterior probability rule (Barbieri & Berger, 2004). To measure the quality of the selected
models, we evaluated the prediction accuracy of the selected models on the test dataset. For comparison,
we applied the Lasso algorithm (Tibshirani, 1996), which was implemented using the package glmnet, to
this example. For Lasso, we reported only the results with one value of the regularization parameter \ at
which it selected about the same size of models as eSGLD. A ¢-test for the eSGLD prediction error for the
hypothesis Hy : v = 0.1644 versus H; : v # 0.1644 shows a p-value of 6.014 x 107, where v denotes
the prediction error. Therefore, the models selected by eSGLD have significantly lower predication error
than that selected by Lasso. Later, we have tried other values of Cj such as 1, 5 and 10. Under each of
them, the models selected by eSGLD have significantly lower prediction error than the same size models
selected by Lasso.

For a thorough comparison, we have also applied the SCAD (Fan & Li, 2001) and MCP (Zhang, 2010)
algorithms to this example, which both were implemented in the R-Package SIS (Saldana & Feng, 2018).
Unfortunately, they did not produce any results after running 24 CPU hours. This comparison also shows
that Lasso penalty is computationally more attractive than the SCAD and MCP penalties, although they
share similar theoretical properties.
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Table S2. Numerical results for the dataset epsilon, where the results of the extended stochastic
gradient Langevin dynamics (eSGLD) algorithm were averaged over 10 independent runs with
the standard deviation reported in the parentheses, and the CPU time was recorded for a run on
a Linux machine with Intel(R) Core(TM) i7-7700 CPU@3.60GHz.

Algorithm Setting Model size Prediction Error(r) CPU (minutes)
eSGLD Co=25 62.7(2.6)  0.1422(1.80 x 1073) 17.4
Lasso A =0.0239 63 0.1644 21.2
MCP/SCAD — — — > 1440

This example shows again that the extended stochastic gradient Langevin dynamics algorithm has much
alleviated the pain of Bayesian computing for big data problems. For this example, it has even about the
same CPU cost as the Lasso algorithm.

4.4. MovielLens Data

Other than variable selection, we applied the extended stochastic gradient Langevin dynamics algorithm
to a large-scale missing data problem, estimating the mixed effect model for the MovieLens 10M Dataset
downloaded at https://grouplens.org/datasets/movielens/. The dataset contains N =
10,000, 054 ratings of 10,681 movies by 71,567 users. The ratings vary from 0.5 to 5 in an increment of
0.5. The whole dataset contains information of the ratings, the time of the ratings, and the genre of the
movies (with 19 possible categories).

This dataset has been modeled by mixed effect models, see e.g. Van Dyk (2000) and Srivastava et al.
(2018). Let N be the total number of users, and let s; denote the number of ratings of user 7. Following
Srivastava et al. (2018), we set

yi = Wi+ Zibi +e;,  bi~ Ny(0,%), & =0°D, e; ~ N, (0,0°I,),

where y; € R%, W; € R%*P, B € RP, Z; € R%*9, b, € RY fori =1,2,...,N.Let0 = (3, D, 0?) de-
note the parameter vector of the model, and let r;; be the rating of user ¢ for movie j. The response is
defined as yi = (7ijy, Tijys - - - Tija, )T Here we assume that (y;, W;, Z;), i = 1,2,..., N are indepen-
dent and identically distributed random samples with varying dimensions, where W; denotes the collection
of the intercept, genre predictor, popularity predictor and previous predictor (defined below), and Z; is the
same with W;.

e Genera predictor, which is a categorical variable for four categories, namely ‘Action’, ‘Children’,
‘Comedy’, and ‘Drama’, grouped from 19 movie genres. The category ‘Action’ consists of the
action, adventure, fantasy, horror, sci-fi, and thriller genres. The category ‘Children’ consists of
the animation and children geres. The category ‘Comedy’ consists of only the comedy genre.
The category ‘Drama’ consists of the crime, documentary, drama, film-noir, musical, mystery, ro-
mance, war, and western genres. We use effect coding to represent each category, i.e., using
(1,0,0),(0,1,0),(0,0,1), (=1, —1,—1) to represent Children, Comedy, Drama and Action, respec-
tively. The genre predictor of movie j is defined as the average of all categories that movie j belongs
to. For example, if movie j belongs to Fantasy, Thriller and Musical genres, then its genre predictor is
(1/3)((1,0,0) 4+ (1,0,0) + (0,1,0)) = (2/3,1/3,0).

* Popularity predictor, which, for the rating r;;, is defined as logit{(/; + 0.5)/(L; + 1.0)}, where L; is
the number of recent ratings of movie j, and [; is the number of recent ratings of movie j with score
greater than 3. Here “recent” means 30 or fewer most recent ratings.

e Previous predictor, which, for the rating 7;;, is defined as 1 if user ¢ rated previous movie with score
greater than 3 and O otherwise.
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As in Srivastava et al. (2018), we treat the random effect b; as missing data and set the priors

1
B|U2 ~ N, (0, O'QIP), o~ =

2 D ~ inverse-Wishart(p + 2, I).
2

In each iteration of Algorithm S1, we first randomly select a mini-batch of users with the subsample size
n = 500. For the selected users, we sample the random effect b; based on p(b;|y;, 3, 0%, D) (see Equation
3.6 in Van Dyk (2000) for its analytic form) and then update 6 = (3, D, 02) according to the rule of
Langevin Dynamics. We use the linear regression result for Y = X 3 + e to initialize 3 and 0% and use
a diagonal matrix with all diagonal elements equal to 0.2 to initialize D. Algorithm S1 was run for 4000
iterations. The learning rate was set to 0.002/N for this example.

To compare with other competitive Bayesian sampling algorithm, we also perform the data aug-
mentation Gibbs sampler, which iteratively samples 6 and b from the full data conditional distribution
(b6, Xn) and 7(0]b, X ), respectively where X denotes the whole data. The algorithm was run for
500 iterations.

The convergence performance of the extended stochastic gradient Langevin dynamics algorithm and
Gibbs sampler algorithm can be assessed by the kernel Stein discrepancy (KSD) (Gorham & Mackey,
2015,2017). For a set of samples { ) }I_ | generated by a Markov chain, the kernel Stein discrepancy be-
tween the empirical distribution of §(*), denoted by 7, and the target posterior distribution 7, = (0| XnN)
is defined as

P T kO(0® 9t V2
7 )

KSD(m,m) =Y ¢ D ¢

j=1 | t,t'=1

where the Stein kernel for j € {1,2,...,p} is given by k}(6,6') = Vo,U(0)Vo U(0)k(6,6") +
Vo,U(0)Vo k(0,0) + Vo U(0")Ve,k(6,0") + Vo,V k(0,0'), p is the dimension of 6, U(f) =
log (0| Xn), and k(0,0") = (1 + |6 — 0']|3) %% is the inverse multi-quadratic kernel. In practice, KSD
can also be calculated on some components of ¢ for simplicity. In this case, p will be smaller than the
dimension of 6.

Figure S1 compares the KSD paths of 8 produced by the extended stochastic gradient Langevin dynam-
ics algorithm and the Gibbs sampler, where the x-axis shows the elapsed CPU time. Figure S1 indicates
that to achieve the same level of KSD, the Gibbs sampler costs much longer, approximately 7 times,
CPU time than the extended stochastic gradient Langevin dynamics algorithm. Figure S2 plots the sample
trajectories of 3;’s for both algorithms, with respect to the iteration number. It is easy to see that with
same number of iterations, the extended stochastic gradient Langevin dynamics algorithm does converge
slower than the Gibbs sampler, however, such disadvantage is compensated by its shorter CPU time cost
per iteration.
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