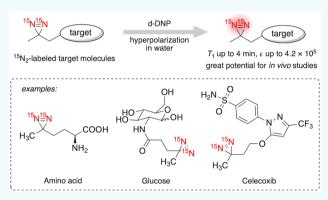


pubs.acs.org/bc Communication

Application of ¹⁵N₂-Diazirines as a Versatile Platform for Hyperpolarization of Biological Molecules by d-DNP

Hyejin Park,[§] Guannan Zhang,[§] Junu Bae,[§] Thomas Theis, Warren S. Warren,* and Qiu Wang*

Cite This: *Bioconjugate Chem.* 2020, 31, 537–541


ACCESS

Metrics & More

Article Recommendations

3 Supporting Information

ABSTRACT: ¹⁵N₂-Diazirines represent an attractive class of imaging tags for hyperpolarized magnetic resonance imaging (HP-MRI), offering desirable biocompatibility, ease of incorporation into a variety of molecules, and ability to deliver long-lasting polarization. We have recently established hyperpolarization of ¹⁵N₂-diazirines in organic solvents using SABRE-Shield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH). Yet, the current challenge of SABRE-SHEATH in water, specifically poor polarization efficiency, presents a barrier in examining the practical use of ¹⁵N₂-diazirines for HP-MRI. Herein, we show that efficient polarization of diverse ¹⁵N₂-diazirine-labeled molecules in water can be readily achieved by dissolution dynamic nuclear polarization (d-DNP), a hyperpolarization technique used in clinical practice. Hyperpolarization by d-DNP also demonstrates greater enhancement for long-lasting ¹⁵N signals,

in comparison with SABRE-SHEATH. Various biologically important molecules are studied in this work, including amino acid, sugar, and drug compounds, demonstrating the great potential of $^{15}N_2$ -diazirines as molecular tags in broad biomedical and clinical applications.

agnetic resonance imaging (MRI) has received great agnetic resonance magning (-12) attention in biomedical research and clinics as a noninvasive imaging technique that allows for identification, visualization, and characterization of physiological processes with high spatial and temporal resolution. Yet, one of the most critical challenges of MRI is its low sensitivity arising from the intrinsically low magnetic energy of nuclear spins. Low sensitivity is generally compensated by a high concentration of 1H in the form of water and fat in the body, but scanning other MR-active isotopes with low natural abundance (e.g., ^{13}C and ^{15}N) is difficult to achieve. 3 By the hyperpolarization technique, signal sensitivity can be increased by several orders of magnitude. Particularly, hyperpolarized heteronuclei (e.g., ¹³C and ¹⁵N) often allow signal detection for extended time periods, enabling real-time in vivo detection of these heteronuclei for investigating dynamic metabolic and physiologic processes that were previously inaccessible to imaging.

To develop novel strategies for hyperpolarized (HP)-¹⁵N-MRI, we have recently reported a labeling strategy using the ¹⁵N₂-diazirine motif as a potential hyperpolarizable MRI tag with long polarization lifetime.^{4,5} Diazirines, due to their small size, generally cause minimal effects on the biological activities of target molecules they are incorporated into.⁶ Diazirines also show great stability in a wide range of chemical and biological conditions.^{7,8} They have been used for photoaffinity labeling tags in biologically relevant molecules, which further

exemplifies the compatibility of diazirines as imaging tags. 9-15 In addition, the 15N-15N moiety within 15N₂diazirines is usually strongly coupled and close in chemical shifts, allowing support of the relaxation protected singlet state with long-lived polarization lifetimes. 16,17 To achieve such a strategy, we have first demonstrated that hyperpolarization of ¹⁵N₂-diazirines using SABRE-Shield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) afforded excellent enhancement (ε) with long-lived (T_1) signals.^{4,5} These results have established the feasibility of using the ¹⁵N₂-diazirine motif as an HP-MRI tag. Yet, hyperpolarization by SABRE has thus far been limited mostly to organic solvents such as methanol, because hyperpolarization in water leads to a decreased polarization level by orders of magnitude resulting from poor solubility of the polarizing partners in water. 18,19 This incompatibility presents challenges for translating this hyperpolarized 15N-tagging method to in vivo applications and clinical practices.

To address this barrier, we decided to investigate hyperpolarization of $^{15}\mathrm{N}_2$ -diazirine-tagged biological molecules using

Received: January 15, 2020 Revised: February 4, 2020 Published: February 5, 2020

dissolution dynamic nuclear polarization (d-DNP). d-DNP is a hyperpolarization technique that is capable of polarizing almost any molecule of interest and is routinely used in preclinical studies. Hyperpolarization occurs at low temperatures (\sim 1.4 K) by microwave irradiation in contact with a sample compound. The resulting hyperpolarized sample is then rapidly dissolved in superheated solvent (e.g., water), affording significantly enhanced nuclear polarization in an aqueous solution suitable for *in vivo* applications. 3,20

In this work, we designed an array of ¹⁵N₂-diazirine-tagged compounds, including amino acid, sugar, and drug molecules. Using deuterated water as the dissolution solvent, we show that hyperpolarization of these compounds by d-DNP provided highly effective ¹⁵N signal enhancements over 400,000-fold and long ¹⁵N relaxation lifetimes up to 4 min at 1 T, thus paving the way for employing ¹⁵N₂-diazirines as promising molecular tags for biomedical and clinical imaging research.

■ RESULTS AND DISCUSSION

Our studies on hyperpolarization of $^{15}N_2$ -diazirine-tagged molecules began with diazirines 1 and 2 (Table 1), which

Table 1. Hyperpolarization of $^{15}N_2$ -Diazirines 1 and 2 via SABRE-SHEATH and d-DNP Methods^a

	i	15N15N H ₃ C CN	15N15N OTS H ₃ C CH ₃			
		1				
SABRE- SHEATH				with D_2O		
(in D ₄ -	3	7,100	6,800	2,000		
MeOH) ^a	T_1 [min]	3.13 ± 0.17	3.70 ± 0.13	2.98 ± 0.32		
d-DNP	3	90,600	276,200			
$(\text{in D}_2\text{O})^b$	$T_1[\min]$	3.43 ± 0.11	2.36 ±	2.36 ± 0.03		

^aSABRE-SHEATH hyperpolarization conditions: diazirine (12.5 mM) in D_4 -MeOH, Ir catalyst (0.125 mM), pyridine (1 mM) or D_2O (925 mM). Signal enhancement (ε) measured at 8.45 T and calculated by comparison to a reference of neat ¹⁵N labeled acetonitrile at 8.45 T. T_1 measured at 1 T. Data from ref 4. ^bd-DNP hyperpolarization conditions: solution of diazirine (1, 2) (500 mM) in DMSO/ D_2O (volume ratio: 1/1), OX63 radical (15 mM), and Gd-DTPA (1 mM), dissolution solvent D_2O . Signal enhancement (ε) measured at 1 T and calculated by comparison to a reference of neat ¹⁵N labeled acetonitrile at 1 T. T_1 measured at 1 T.

were previously reported to deliver long-lasting signals with 10^3 -fold enhancement by SABRE-SHEATH hyperpolarization in D_4 -MeOH. 4 Yet the presence of D_2O resulted in a $\sim\!3.5$ -fold decrease in signal enhancement, as seen in $^{15}N_2$ -diazirine-tagged choline derivative 2. When we used the d-DNP method for their hyperpolarization in water, both compounds 1 and 2 afforded much higher levels of 10^4-10^5 -fold enhancement, and long-lived ^{15}N -signal with comparable T_1 relaxation times, in comparison with SABRE-SHEATH (Table 1).

Based on the encouraging results of $^{15}N_2$ -diazirines 1 and 2, we investigated the generality and amenability of $^{15}N_2$ -diazirines on complex biological molecules by d-DNP hyperpolarization. A range of $^{15}N_2$ -diazirine-labeled com-

pounds were prepared, including simple molecules (3-4) and biologically relevant molecules (5-8). The hyperpolarization efficiency of these molecules is shown in Table 2.

We first tested d-DNP hyperpolarization of $^{15}N_2$ -diazirine-containing simple carboxylic acid (3) and alcohol (4). Both compounds provided 15 N-signal enhancement over $\sim 250,000$ -fold and long T_1 values. These results illustrate the functional group tolerability of diazirine compounds with d-DNP.

To demonstrate the adaptability of the $^{15}N_2$ -diazirine tag on various target molecules, we chose to synthesize $^{15}N_2$ -diazirine celecoxib analog 5. Celecoxib is a known anti-inflammatory drug and $^{14}N_2$ -diazirine-labeled celecoxib has been used for photoaffinity labeling studies to map the binding site of the drug. 23 Thus, $^{15}N_2$ -diazirine celecoxib may be useful as an exogenous probe to study drug—enzyme interactions by HP-MRI. Hyperpolarization of celecoxib analog 5 by d-DNP provided signal enhancement over 114,000-fold and T_1 value over 4 min. Such significantly enhanced and long-lived signals are highly attractive for *in vivo* imaging applications, which also highlight efficient hyperpolarization and utility of the $^{15}N_2$ -diazirine tag for studying and imaging drug molecules. Note that D_4 -MeOH was used as a solvent in d-DNP experiment because of the poor solubility of $^{15}N_2$ -celecoxib in D_2 O.

We next examined the incorporation of ¹⁵N₂-diazirine into biological molecules and prepared ¹⁵N₂-photomethionine 6 as an example for a ¹⁵N₂-diazirine-tagged amino acid. Photoaffinity labeling studies with ¹⁴N₂-diazirine-tagged amino acids, including ¹⁴N₂-photomethionine, have shown diazirines to be biocompatible agents for metabolic studies.¹¹ Thus, we envisioned the use of 15N2-diazirine-tagged amino acids as metabolic imaging probes for HP-MRI. Hyperpolarization of ¹⁵N₂-diazirine-tagged methionine 6 by d-DNP afforded high efficiency with ¹⁵N signal enhancement over ~293,000-fold and T_1 value close to 4 min in water. Amino acid derivatives labeled with MR active isotopes have been hyperpolarized for various bioimaging studies, 24,25 which denotes amino acid analogs as adaptable hyperpolarized imaging probes. Similarly, ¹⁵N₂-diazirine-incorporated amino acids such as 6 afford favorable polarization lifetime and may offer an innovative platform for hyperpolarized imaging applications.

We also prepared ¹⁵N₂-diazirine-tagged glucose molecules 7 and 8 for d-DNP studies. ¹³C-labeled glucose has been extensively used for real-time imaging of glycolysis using HP-MRI, but it suffers from short polarization lifetime (e.g., T_1 for $[U-^{2}H, U-^{13}C]$ -glucose is 12 s at 14.1 T). 21,26 d-DNP hyperpolarization of ¹⁵N₂-diazirine-tagged glucose derivatives 7 and 8 provided ample ¹⁵N-signal enhancement over 400,000fold and T_1 values over 3 min in water. As the feasibility of a HP-MRI probe is dependent on the relaxation time, the long T₁ lifetime of ¹⁵N₂-diazirine-tagged glucose molecules is an attractive attribute for their biomedical imaging applications. Moreover, 8 with a deuterated methyl group had a comparable hyperpolarization level to nondeuterated glucose derivative 7, indicating that deuterium labeling has a negligible effect on ¹⁵N₂-diazirine hyperpolarization. Thus, efficient hyperpolarization of these glucose analogs in aqueous solution demonstrates their values as HP-MRI probes for tissue perfusion and targeting studies.

Finally, we compared hyperpolarization between d-DNP and the SABRE-SHEATH method for three selected diazirines (Table 2, 4-6). Under SABRE-SHEATH conditions, $^{15}\mathrm{N}_2$ -diazirine-containing alcohol 4 was successfully hyperpolarized

Table 2. Hyperpolarization of $^{15}N_2$ -Diazirines—Enhancements (ε), Polarization levels (P), and $^{15}N_1$ Relaxation Times

Diazirines	d-DNP ^a			SABRE-SHEATH ^b		
Diazitiles	ϵ^{c}	P (%)	T_1^{d} (min)	ϵ^{c}	P (%)	$T_1^{\rm d}$ (min)
15 _N 15 _N H ₃ C OH	293,600	10.2	3.60 ± 0.04	_e	_	-
15N15N H ₃ C OH	248,800	8.6	3.81 ± 0.05	69,000	2.4	3.30 ± 0.04
H ₂ N S O CF ₃ 15N O CF ₃ H ₃ C 5	114,100 ^{f,g}	3.9	4.10 ± 0.05	76,600	2.6	3.84 ± 0.05
$H_{3}C$ NH_{2} NH_{2}	292,700	10.1	3.93 ± 0.07	6,400 ^h	0.2	1.15 ± 0.16^{h}
OH HO OH HN 15N H ₃ C 15N	408,600	14.1	2.97 ± 0.04	نـ	=	_
OH HO OH HN 15N D3C 8	418,400	14.5	3.06 ± 0.04	_e	-	_

^ad-DNP hyperpolarization conditions: solution of diazirine in DMSO/D₂O (See SI for details), OX63 radical (15 mM), and Gd-DTPA (1 mM). Dissolution solvent D₂O. ^bSABRE-SHEATH hyperpolarization conditions: diazirine (12.5 mM) in D₄-MeOH, Ir catalyst (0.125 mM), and pyridine (1 mM). 'Signal enhancement (ε) measured at 1 T and calculated by comparison to a reference of neat ¹⁵N labeled acetonitrile at 1 T. ^dT₁ measured at 1 T. ^cNot tested by SABRE-SHEATH polarization. ^fD₄-MeOH as a dissolution solvent. ^gSolution of diazirine in THF/toluene (see SI for details). ^hPolarization and T_1 affected by acidity of the compound solution. ²⁷ (See SI for details). ⁱInsoluble in D₄-MeOH.

in D₄-MeOH, exhibiting signal enhancement over 69,000-fold and T_1 value of 3.3 min, which is a similar trend to that observed for diazirines 1 and 2.⁴ SABRE-SHEATH hyperpolarization of celecoxib analog 5 in D₄-MeOH yielded lower polarization level ($P_{\text{SABRE-SHEATH}} = 2.6\%$; $P_{\text{d-DNP}} = 3.9\%$) and a comparable T_1 value, in comparison with d-DNP hyperpolarization of 5 in the same solvent. For the polarization of methionine analog 6 by SABRE-SHEATH, the signal enhancement ($\varepsilon = 6400$) was much lower, which was likely influenced by acidity of the compound solution.²⁷ An attempt to hyperpolarize glucose derivative 7 by SABRE-SHEATH was unsuccessful due to the insolubility of 7 in D₄-MeOH. These

results suggested that hyperpolarization of diazirines by d-DNP is less limited by the chemical nature of the compound.²⁸

CONCLUSION

In summary, we have investigated hyperpolarization of various $^{15}\mathrm{N}_2\text{-}\mathrm{diazirine}\text{-}\mathrm{tagged}$ biologically relevant molecules using d-DNP in aqueous solution. The $^{15}\mathrm{N}_2\text{-}\mathrm{diazirine}\text{-}\mathrm{tagged}$ compounds delivered signal enhancements over 400,000-fold and long $^{15}\mathrm{N}$ relaxation lifetimes up to 4 min. The significantly enhanced signal and the long-lasting $^{15}\mathrm{N}$ T_1 lifetimes of the $^{15}\mathrm{N}_2\text{-}\mathrm{diazirine}$ moiety within these compounds in water offer the opportunity to observe $^{15}\mathrm{N}$ signal for an extended period of time in biological systems, thus establishing $^{15}\mathrm{N}_2\text{-}\mathrm{diazirine}$ tags

suitable for *in vivo* applications. Compared to the SABRE-SHEATH method, hyperpolarization of $^{15}\mathrm{N}_2$ -diazirines with d-DNP offered higher polarization efficiency and comparable T_1 lifetimes. These results mark the promising potential of $^{15}\mathrm{N}_2$ -diazirines-labeled biological probes as useful hyperpolarized imaging tracers for various applications in biomedical and clinical research.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00028.

Synthesis and characterization of $^{15}N_2$ -diazirines, hyperpolarization experimental methods, ^{1}H , ^{13}C , and ^{15}N NMR spectra and data analysis (PDF)

AUTHOR INFORMATION

Corresponding Authors

Warren S. Warren — Department of Chemistry and Department of Physics, Radiology and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States; orcid.org/0000-0001-8458-2076; Email: warren.warren@duke.edu

Qiu Wang — Department of Chemistry, Duke University, Durham, North Carolina 27708, United States; oocid.org/ 0000-0002-6803-9556; Email: qiu.wang@duke.edu

Authors

Hyejin Park – Department of Chemistry, Duke University, Durham, North Carolina 27708, United States

Guannan Zhang — Department of Chemistry, Duke University, Durham, North Carolina 27708, United States;

ocid.org/
0000-0001-9298-5115

Junu Bae — Department of Chemistry, Duke University, Durham, North Carolina 27708, United States

Thomas Theis — Department of Chemistry, Duke University, Durham, North Carolina 27708, United States; ⊚ orcid.org/0000-0001-6779-9978

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.bioconjchem.0c00028

Author Contributions

§H. Park, G. Zhang, and J. Bae contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the financial support to this project from NSF (CHE-1665090), NIH (R21EB026153 and R21EB024824), and the Camille and Henry Dreyfus Foundation.

REFERENCES

- (1) Logothetis, N. K. (2008) What we can do and what we cannot do with fMRI. *Nature* 453, 869–878.
- (2) Ardenkjaer-Larsen, J. H., Boebinger, G. S., Comment, A., Duckett, S., Edison, A. S., Engelke, F., Griesinger, C., Griffin, R. G., Hilty, C., Maeda, H., et al. (2015) Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy. *Angew. Chem., Int. Ed.* 54, 9162–9185.
- (3) Ardenkjaer-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., Servin, R., Thaning, M., and Golman, K.

- (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. *Proc. Natl. Acad. Sci. U. S. A. 100*, 10158–10163.
- (4) Shen, K., Logan, A. W. J., Colell, J. F. P., Bae, J., Ortiz, G. X., Jr., Theis, T., Warren, W. S., Malcolmson, S. J., and Wang, Q. (2017) Diazirines as potential molecular imaging tags: probing the requirements for efficient and long-lived SABRE-induced hyperpolarization. *Angew. Chem., Int. Ed.* 56, 12112–12116.
- (S) Theis, T., Ortiz, G. X., Logan, A. W. J., Claytor, K. E., Feng, Y., Huhn, W. P., Blum, V., Malcolmson, S. J., Chekmenev, E. Y., and Wang, Q. (2016) Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal ¹⁵N₂-diazirine molecular tags. *Sci. Adv. 2*, e1501438.
- (6) Dubinsky, L., Krom, B. P., and Meijler, M. M. (2012) Diazirine based photoaffinity labeling. *Bioorg. Med. Chem.* 20, 554–570.
- (7) Hill, J. R., and Robertson, A. A. B. (2018) Fishing for drug targets: a focus on diazirine photoaffinity probe synthesis. *J. Med. Chem.* 61, 6945–6963.
- (8) Hashimoto, M., and Hatanaka, Y. (2008) Recent progress in diazirine-based photoaffinity labeling. *Eur. J. Org. Chem.* 2008, 2513—2523.
- (9) Smith, C. C., Hollenstein, M., and Leumann, C. J. (2014) The synthesis and application of a diazirine-modified uridine analogue for investigating RNA-protein interactions. *RSC Adv.* 4, 48228–48235.
- (10) Shigdel, U. K., Zhang, J., and He, C. (2008) Diazirine-based DNA photo-cross-linking probes for the study of protein–DNA interactions. *Angew. Chem., Int. Ed.* 47, 90–93.
- (11) Suchanek, M., Radzikowska, A., and Thiele, C. (2005) Photoleucine and photo-methionine allow identification of protein-protein interactions in living cells. *Nat. Methods* 2, 261–267.
- (12) Sakurai, K. (2015) Photoaffinity probes for identification of carbohydrate-binding proteins. *Asian J. Org. Chem.* 4, 116–126.
- (13) Beiroth, F., Koudelka, T., Overath, T., Knight, S. D., Tholey, A., and Lindhorst, T. K. (2018) Diazirine-functionalized mannosides for photoaffinity labeling: trouble with FimH. *Beilstein J. Org. Chem.* 14, 1890–1900.
- (14) Kuroda, T., Suenaga, K., Sakakura, A., Handa, T., Okamoto, K., and Kigoshi, H. (2006) Study of the interaction between actin and antitumor substance Aplyronine A with a novel fluorescent photoaffinity probe. *Bioconjugate Chem. 17*, 524–529.
- (15) Yu, S.-H., Boyce, M., Wands, A. M., Bond, M. R., Bertozzi, C. R., and Kohler, J. J. (2012) Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners. *Proc. Natl. Acad. Sci. U. S. A.* 109, 4834–4839.
- (16) Levitt, M. H. (2012) Singlet nuclear magnetic resonance. *Annu. Rev. Phys. Chem.* 63, 89–105.
- (17) Warren, W. S., Jenista, E., Branca, R. T., and Chen, X. (2009) Increasing hyperpolarized spin lifetimes through true singlet eigenstates. *Science* 323, 1711–1714.
- (18) Colell, J. F. P., Emondts, M., Logan, A. W. J., Shen, K., Bae, J., Shchepin, R. V., Ortiz, G. X., Jr., Spannring, P., Wang, Q., Malcolmson, S. J., et al. (2017) Direct hyperpolarization of nitrogen-15 in aqueous media with parahydrogen in reversible exchange. J. Am. Chem. Soc. 139, 7761–7767.
- (19) Zeng, H., Xu, J., McMahon, M. T., Lohman, J. A. B., and van Zijl, P. C. M. (2014) Achieving 1% NMR polarization in water in less than 1 min using SABRE. *J. Magn. Reson.* 246, 119–121.
- (20) Lee, J. H., Okuno, Y., and Cavagnero, S. (2014) Sensitivity enhancement in solution NMR: emerging ideas and new frontiers. *J. Magn. Reson.* 241, 18–31.
- (21) Keshari, K. R., and Wilson, D. M. (2014) Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. *Chem. Soc. Rev.* 43, 1627–1659.
- (22) Chaumeil, M. M., Najac, C., and Ronen, S. M. (2015) Chapter one studies of metabolism using 13C MRS of hyperpolarized probes, In *Methods in Enzymology* (Metallo, C. M., Ed.) pp 1–71, Academic Proces
- (23) Gao, J., Mfuh, A., Amako, Y., and Woo, C. M. (2018) Small molecule interactome mapping by photoaffinity labeling reveals

Bioconjugate Chemistry pubs.acs.org/bc Communication

binding site hotspots for the NSAIDs. J. Am. Chem. Soc. 140, 4259-4268.

- (24) Hundshammer, C., Duwel, S., Ruseckas, D., Topping, G., Dzien, P., Muller, C., Feuerecker, B., Hovener, J. B., Haase, A., Schwaiger, M., et al. (2018) Hyperpolarized amino acid derivatives as multivalent magnetic resonance pH sensor molecules. *Sensors* 18, 600–615.
- (25) Chiavazza, E., Viale, A., Karlsson, M., and Aime, S. (2013) N15-Permethylated amino acids as efficient probes for MRI-DNP applications. *Contrast Media Mol. Imaging* 8, 417–421.
- (26) Rodrigues, T. B., Serrao, E. M., Kennedy, B. W. C., Hu, D.-E., Kettunen, M. I., and Brindle, K. M. (2014) Magnetic resonance imaging of tumor glycolysis using hyperpolarized C13-labeled glucose. *Nat. Med.* 20, 93–98.
- (27) Hundshammer, C., Grashei, M., Greiner, A., Glaser, S. J., and Schilling, F. (2019) pH Dependence of T1 for 13C-labelled small molecules commonly used for hyperpolarized magnetic resonance imaging. *ChemPhysChem* 20, 798–802.
- (28) It should be noted that the polarization time in SABRE-SHEATH experiments (~30 min) was shorter than the polarization time in d-DNP experiments (3.5 h), which could relate to the lower polarization levels of targeted molecules by SABRE-SHEATH methods. See polarization experimental details in the Supporting Information.