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ABSTRACT: Uranyl—carbon bonds are rare due to the limited numbers of synthetic routes. The synthesis of carbodicarbene uranyl
complexes is reported, along with complete spectroscopic and structural characterization. These data along with a computational
analysis confirm strong electron donation by the carbodicarbene ligand, as well as a single-bond order between the uranium(VI) ion
and the carbon.

he uranyl ion, [UO,]*, characterized by its hexavalent ligands where neutral N-heterocyclic carbenes (NHCs) are
ion and trans-[O=U=0]*" unit, predominantly accom- tethered with anionic amides or alkoxides to serve as an anchor
modates hard donor ligands (N, O, F, or Cl) in its orthogonal to uranium. For example, Arnold reported the synthesis of
plane. More rare are organometallic uranyl complexes that uranyl carbene complexes using amido-NHCs or alkoxy-NHCs
feature direct uranium—carbon bonds in this plane. In where two of these chelating ligands coordinate to uranyl in
organometallic chemistry, metal—carbon bonds are commonly the equatorial plane (Figure 1).'”"* Costa has reported the
installed using alkali-metal alkylating reagents in salt metathesis only examples of isolated uranyl complexes stabilized by
reactions. These reagents are also strongly reducing and in nontethered NHC ligands. Two complexes, synthesized using
certain instances cause reduction of the metal rather than 1,3-dimesitylimidazol-2-ylidene (IMes) and 1,3-dimesityl-4,5-
alkylation. This is the cause for the rarity of uranyl—carbon
bonds, as rlegluction to pentavalent uranyl derivatives, [UO,]* o R
5 . . . : . u R<py Ar<n Mes\N/g_
can octc.ur. U(\[;;;mgznn(/\)f) d?dspropor.tlonat(liont readily ensues, (—h K )§> Me?ro\ﬁ )Z} v, 1.8 )&N\ R
generating , » and organic products. i ¢ Ee(ﬁ\ M-eée \N\(H\ \
Despite these challenges, reports of anionic carbon-based Q\j,(g N\'B @NJ,: Ko RS\JN\O Gl Mes
ligands on uranyl have become increasingly more common in ‘ _r K Mes
3—11 . R = 'Bu or Mes Ar = Dipp or Mes R=HorCl
recent years. Specific systems have been developed that
P. Arnold, 2004 P. Arnold, 2008 D. Costa, 2001

feature this type of linkage. For example, Sarsfield and later

Liddle utilized a tridentate bis(iminophosphorano)methane-

based ligand around uranyl to force a uranyl—carbon bond.**

Hayton reported an example of a fleeting homoleptic uranyl

alkyl complex, [Li(DME),],[UO,(CH,SiMe,),], which was Received: December 20, 2019

found to be thermally unstable.’ Published: March 11, 2020
Coordination of neutral carbon (or carbene) to uranyl is

even more challenging, as the interaction between a soft donor

carbon and the hard [UO,]** ion is an unstable match. This

issue has been circumvented by judiciously designing chelating

Figure 1. Examples of uranyl complexes bound to neutral carbon.
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dichloroimidazol-2-ylidene (IMesCl,) ligands, were crystallo-
graphically characterized to reveal a near-perfect octahedral
geometry around uranium (Figure 1)."*

Related to N-heterocyclic carbenes are “carbodicarbenes”,
originally predicted to be synthetically viable by Frenking in
2007, which contain divalent carbon(0) flanked between two
NHCs."” In the very next year, Bertrand isolated such species,
demonstrating that they both are stable at room temperature
and could also act as ligands.'®'” Computational and
experimental data suggest that these carbodicarbenes
(CDCs) are dibasic and behave as four-electron donors to
metals."® These CDCs are attractive as ligands because they
are predicted to be stronger ligands in comparison to NHCs
due to their possible o- and z-donation capabilities (Figure
2)."” The superior donor strength of CDCs is reflected in the
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Figure 2. Resonating structures of (a) NHC showing only ¢ donation
and (b) carbodicarbene showing the possibility of ¢ and 7z donation.

average Uco value of [(CDC)RhCI(CO),] (2018 cm™), in
comparison to the NHC congener [(NHC)RhCI(CO),]
(2038 cm™)."” Despite the unique properties of CDCs, few
reports can be found in the literature describing the
coordination chemistry of these molecules.”’™*’

Recent work from our laboratory'"**7*° has demonstrated
that strong #-donor ligands weaken and activate the [O=U=
O]*" unit, as well as bis(imido) analogues, [RN=U=NR]*".
We hypothesized that the strong, neutral o donation of the
CDC ligand could also serve to activate the [UO,]*" unit,
while also creating a new family of organouranyl species.
Herein, we present the synthesis of carbodicarbene complexes
of uranyl. Full characterization using spectroscopic and
crystallographic methods is reported, as well as a computa-
tional analysis to explore the electronic structure of these
derivatives.

Our studies were initiated by pursuing the synthesis of a
stable carbodicarbene complex of either uranyl triflate or
uranyl chloride. Slow addition of 2 equiv of 1,2-diphenoxy-3,5-
bis(2,6-dimethylphenyl)pyrazolin-4-ylidene (CDC’) to a THF
solution of 1 equiv UO,(OTf),(THF); or UO,CL(THF),
produced off-white solutions (eq 1). Following workups, pale
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yellow microcrystalline solids were isolated in each case and
assigned as 1-OTf and 1-CL. The '"H NMR (THF-d, 25 °C)
spectrum of 1-OTf showed characteristic resonances for a
diamagnetic compound, including one at 2.16 ppm for the
methyl protons of the aryloxide fragments. One signal at —79
ppm was observed in the F{'H} NMR (THF-dg, 25 °C)
spectrum for 1-OTf, suggesting C,, symmetry in solution.
Furthermore, two distinctive signals were located in the
BC{'H} NMR (THF-dj, 25 °C) spectrum at 125.7 and 186.5
ppm, likely assignable to two ring carbon atoms, CCC and
NCO, respectively. Interestingly, these resonances are shifted
significantly downfield in comparison to the free CDC (115.5
and 174.8 ppm for CCC and NCO, respectively), corroborat-
ing a ligation to the Lewis acidic uranyl ion.

The product of the carbodicarbene reaction with
UO,CL(THF);, 1-Cl, was largely insoluble in common
NMR solvents, except for acetonitrile-d;. In this case, the
resonance assignable to the methyl protons of the aryloxide
groups appeared at 2.20 ppm, which was expected on the basis
of the location of the resonance for 1-OTf.

To confirm the exact composition of this yellow precipitate
assigned as 1-OTf, X-ray-quality single crystals were grown
from a concentrated THF solution stored at —35 °C for 1
week. Refinement of the data showed the bis(ligand) derivative
[(CDC’),U0,][OTf], (1-OTf). The molecular structure of 1-
OTT{ features an octahedral uranium with two trans oxos, two
trans CDC' ligands, and two trans OTf anions (Figure 3). The

Figure 3. Solid-state structure of 1-OTf shown with 30% probability
ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond

distances (A) and angles (deg): Ul-O1 = 1.753(3), U1-Cl =
2.541(4), C1-C2 = 1.389(6), C1-C3 = 1.378(6), C2—N1 =
1.353(5), C3—N2 = 1.372(6), C1-U1-01 = 92.6, C2—C1-C3 =
100.3, U-O(OTYf) = 2.370(3); NI = 358.3, Y N2 = 356.3.

uranyl U—O bond distance of 1.753(3) A is comparable to that
observed in the analogous UO,CL(NHC), complexes."* The
O-U-C and O-U—-Ogps angles are 92.6 and 87.3°
respectively. The two CDC’ ligands are coordinated 180°
with respect to each other. The U—C distance of 2.541(4) A is
shorter than that in the NHC complex (2.626(7) A) reported
by Costa and co-workers.'* This U—C distance is significantly
longer than those reported for uranyl methanediide complexes,
including [UO,(BIPM™%)(DMAP),] (2.383(3) A) and
[UO,(SCS)(Py),] (2.430(6) A), where the authors suggest
multiple-bond character between uranium and carbon.”'’
Interestingly, the steric environment around the uranium
center causes one of the aryloxide substituents to point toward

https://dx.doi.org/10.1021/acs.organomet.9b00860
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and the other to point away from the UO,(OTf), fragment, as
previously observed in RuHCI(CO)(CBA)(SIMes) reported
by Stephan.”' This “semiopen” alignment is rare, as these
substituents usually either both bend toward or away from the
ligated metal fragment.'”**"*" The backbone nitrogen atoms
of CDC are nearly planar () y; = 358.3° and Y\, = 356.3°).
The average N—C distance (1.362(7) A) is within error of that
of a free CDC (1.387(4) A)."” These metrical parameters in
combination with a significantly shorter U—~C distance do not
suggest multiple-bond character between uranium and carbon.
Additionally, these metrics are most consistent with the CDC
resonance structure indicated as C (Figure 2). Due to the poor
solubility of 1-Cl, crystallization and X-ray diffraction analysis
was not possible.

Vibrational spectroscopy was also used to assess the
electronics of the uranyl species, as the O=U=O0 stretch is
inversely proportional to the donor strength of the ligand in
the equatorial plane. The infrared spectrum of 1-OTf shows an
intense absorbance at 907 cm™" (KBr pellet) assignable to the
asymmetric O=U=O stretch. This signal shifted to 862 cm™'
for the '®O-labeled uranyl carbodicarbene complex
(CDC’),U"®0,(0Tf), (1-OT£-'*0) (Figure 4). Raman spec-

—_ (CDC),U'0,(0T),
— (CDC),U0,(0TH),

1300 1200 1100 1000 900

Wavelength (cm)

800 700 600

Figure 4. Overlay of solid-state infrared (IR) spectra of
(CDC"),U'0,(0Tf), (1-OTf) and (CDC’),U0,(0Tf), (1-
OTE£.1%0).

troscopy showed a symmetric stretch at 864 cm™" (Figure S8).
The infrared spectrum for the chloride analogue,
(CDC’),U0,Cl, (1-Cl), showed an asymmetric O=U=0
stretch at 901 cm™" (Figure S7), while the Raman spectrum
showed a value of 827 cm™ for the symmetric stretch (Figure
S9). The values obtained for the asymmetric stretches for both
1-OTf and 1-ClI are significantly lower than the 938 or 942
cm™! observed in similar NHC complexes of uranyl reported
by Costa,"* consistent with further activation of the uranyl
moiety from the more strongly donating carbodicarbene
ligand. The Raman stretches are slightly shifted from the
values of uranyl salts (~840 s cm™).

The electronic structure of 1-OTf was then interrogated
using density functional theory (DFT) calculations at the
B3PW91-GD3B]J level of theory. B3PWI1 is a well-established
functional for actinide-containing systems,”>™*° but in this
case, it was necessary to also consider dispersion effects in the
system.”” While the calculated U—O(triflate) and U—O(oxo0)
bond distances were in agreement (~0.02 A) with
experimentally determined values, the U—C bond was
calculated to be 2.613 A, or ~0.07 A longer (Figure S) than
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Figure S. 6 bond, HOMO-12, between U—C(carbene) in 1-OTf
(isolevel 0.02).

the experimentally determined value. When dispersion effects
were included in the analysis, the calculated U—C(carbene),
U—-0(oxo0), and U—O(triflate) bond distances of 2.538, 1.741,
and 2.347 A, respectively, were all in excellent agreement with
the crystallographically determined values of 2.541(4),
1.753(3), and 2.370(3) A, respectively (Table 1).

Table 1. Experimental and Calculated Data of Uranium—
Carbon (NHC Carbon) in 1-OTf

U—-C calcd p
2.538 A 0.069

H
0.0171

complex

1-0OTf

U—C exptl
2.541(4) A

Next, the quantum theory of atoms in molecules (QTAIM)
level of theory was used to examine the electron density, p, and
the total energy density, H, at the bond critical point of the U—
C bond in 1-OTf (Table 1). These parameters afford a
measure of covalency with p > 0.2 and H < 0, indicating higher
degrees of covalent character. For 1-OTHf, the calculated values
of 0.069 and —0.0171 for p and H, respectively, are indicative
of an M—C ¢ bond (Figure S). For comparison, the U(IV)-
NHC complexes U(L)[N(SiMe;)],X (L = OC-
Me,CH,(CNCH,N-2,6-Pr,C¢H;), where X = F, has p =
0.055 and H = —0.007. Substituting the halogen causes a slight
change, as X = Cl shows values of 0.053 (p) and —0.007 (H).*®
Given that the effective charge of uranyl is less than that of
U(IV),* this would indicate that the CDC ligand is more
strongly donating than an NHC ligand. However, with a
contribution only from ¢ bonding, these CDC ligands are two-
electron donors, not four-electron donors, which has been
observed recently with U(IV).*’

In summary, examples of organoactinide complexes bearing
a carbodicarbene ligand have been synthesized and isolated in
this work. Spectroscopic characterization shows these species
are stable in both solution and the solid state. Structural
information highlights uranium—carbon bond distances that
are similar to those for uranium-NHC complexes, consistent
with a single bond. A theoretical analysis confirms that the
correct formulation for these species are as those containing
uranium—carbon single bonds, where the bonding is largely
ionic. Although no U—C multiple-bond character is present in
these molecules, the uranyl moiety is still activated, as
indicated by vibrational spectroscopy. This is likely due to
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the superior electron-donating ability of the carbodicarbene,
which surpasses that of the N-heterocyclic carbene. Future
work will be aimed at understanding how CDC ligands support
uranyl redox chemistry.
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