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Abstract: Nonlinear unmixing of hyperspectral reflectance data 
is one of the key problems in quantitative imaging of painted 
works of art. Our approach is to interrogate a hyperspectral 
image cube by, first, decomposing it into a set of reflectance 
curves representing pure basis pigments and, second, to 
estimate the scattering and absorption coefficients of each 
pigment in a given pixel to produce estimates of the component 
fractions. This two-step algorithm uses i) a deep neural network 
to qualitatively identify the constituent pigments in any unknown 
spectrum and, based on the pigment(s) present, ii) Kubelka-
Munk theory to estimate the pigment concentration on a per-
pixel basis. Using hyperspectral data acquired on a set of mock-
up paintings and a well-characterized illuminated folio from the 
15th century, we demonstrate the performance of the proposed 
algorithm for pigment recognition and quantitative estimation of 
concentration. 

Pigment identification allows for an understanding of how 
artists/workshops used their materials, how painted surfaces 
may chemically change over time, and, lastly, how anachronistic 
uses of materials can be associated with either fakes/forgeries 
or past restorations. A primary tool for these tasks is 
hyperspectral imaging (HSI), a fast non-invasive and in-situ 
method that has become commonplace in cultural heritage to 
document the distribution of pigments across painted surfaces, 
especially when employed together with complementary 
analytical techniques. [1-11] 
 Pigment mixture identification from HSI datasets is an on-
going challenge. It usually combines non-automated data 
interpretation (namely, a simple visual comparison to literature 
reflectance data) and classification algorithms. Mapping 
pigments with HSI datasets is achieved by linear spectral 
unmixing methods, e.g., maximum-likelihood estimation, spectral 
angle mapping, subspace projection methods, or constrained 
least squares. These approaches consider the spectrum as a 
linear combination of two or more endmembers, defined as a 
spectrum representing a pure pigment. While linear unmixing is 
computationally fast and easy to implement, pigment mixtures 
have a non-linear reflectance response. [12] For this reason, most 
of the conventional approaches for spectral unmixing do not 
provide accurate estimates of pigment concentration on painted 
surfaces.  

Significant limitations imposed by linear unmixing may be 
overcome by approximating the reflectance from mixed 
pigments through a simplified Kubelka-Munk (KM) model for 
opaque and infinitely thick samples. [12-14] Using single or two-
constant KM models, the non-linearity of pigment mixtures has 
previously been modeled. [3,15-20] In these studies, the pure 
pigments best explaining spectral features are combined 
following KM theory to create libraries of computed spectra. This 
database is then matched to the experimental data using linear 
regression. [21] To date, the use of KM modeling on a per pixel 
basis has been performed on a limited number of mock-up 
datasets to demonstrate proof of concept but is generally 
considered too computationally intensive for practical use.  

 
 

  
 

Figure 1. Reflectance spectra of 12 single pigment paint layers from the 
dataset. 

 

Previous attempts to overcome computational bottlenecks 
using single-constant KM modeling have relied on chromatic 
segmentation and clustering as preliminary measures to reduce 
the total number of spectra being fitted.[20,22]  

In this work, a pixel-wise unmixing problem is solved to 
produce semi-quantitative maps of pigment distributions. We are 
inspired by recent work that developed a multilayer perceptron 
neural network for classifying pigments, [23] as well as studies 
from the field of remote sensing in which convolutional neural 
networks, stacked auto-encoders, deep belief networks, and 
restricted Boltzmann machines have been used for feature 
extraction, [24-25] classification [26-29] and unmixing.[30] In this study, 
pigments present in a given spectrum are identified using a deep 
neural network designed to perform supervised classification. 
Having found the pigments in each pixel, the concentration 
values of the individual components are estimated, on a pixel-
by-pixel basis, using a KM model and non-linear optimization 
(more specifically, a gradient descent algorithm).  

Mock-ups were prepared to build and test the 
computational efficiency, accuracy, and precision of the 
developed model. The choice of pigments was based on 
analysis of an illuminated manuscript currently housed at the 
Isabella Stewart Gardner Museum (Ms. 6.T.6) which served as a 
test case for the algorithm described. The mock-up is composed 
of 12 pure pigments (the average spectra of the pure pigments 
in the reflectance domain are presented in Fig. 1) and, 16 of two 
and three pigment mixtures. The pigment weight ratio 
percentages were (i) 50/50 for the two pigments mixture, and (ii) 
33/33/33 for the three pigments mixture (more details about 
sample preparation are given in [31] and sec. A, table 2 in the 
supplementary material).  

From the known and controlled composition of the mock-up 
paint layers, the following methodology was developed as 
shown in Fig. 2 and enumerated below: 
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Figure 2. Algorithm flowchart. 

 
Step 1: Using the reflectance spectra from single colored 

pigments and 50/50 mixture of lead white and colored pigments, 
a two-constant KM model is applied to calculate the absorption 
k , and scattering, s  coefficients of each pigment. For a 
detailed description of these calculations please refer to 
Berns [18] and to supplementary material (sec. B, eqs. 3-4).  

Step 2: The pigments present in a given pixel are identified 
using a deep feed-forward neural network. Here, the problem is 
posed as either a multi-class [32] classification task. [33] Additional 
details regarding classification schemes are given in the 
supporting material (sec. C and table 2). Multi-label classification 
task is more suitable for real datasets where not all possible 
mixtures are known (results shown in sec. D and table 3 in the 
supplementary material).  

Step 3: KM is used to model the observed reflectance 
spectrum given inputs from steps 1 and 2 (Eq. 2 in sec. B). A 
gradient descent KM solver (Eq. 2 in sec. B) provides an 
estimation of pigment concentrations. The KM solver is used in 
combination with a constrained nonlinear multivariable 
optimization function that minimizes the reconstruction error 
between the experimental spectrum and reconstructed one (Eq. 
10 in sec. E). The minimization is subject to two constraints on 
the concentration values, that is, abundances need to sum to 
one and abundances are non-negative (more details about 
gradient descent method are given in [34-35] and in sec. E).  

The results from this workflow may be observed in table 1 
where average weight fractions are compared to their true 
abundances for mock-up mixtures of i) Verdigris with Lead 
White, ii) Lead Tin Yellow with Verdigris and Malachite, iii) 
Verdigris with Malachite and iv) Azurite with Ultramarine. For 
combinations of two and three colors, the estimated abundances 
are respectively equal to 0.50 ± 0.15 and 0.33 ± 0.17. These 
measured data closely approximate their ground truth 
abundances thus indicating the efficacy of the three-step 
nonlinear unmixing approach for the quantitative analysis of 
historical paint mixtures. 

To test our approach on more complex works of art, 
suffrages from 15th century book of hours 
were studied using a combination of both HSI and macro X-Ray 
Fluorescence (XRF) spectroscopy. We chose to focus on a 
single page of the full book (page 34v, Fig. 3a).[31] The complete 
experimental acquisition setup is given in supplementary 
material (sec. A). Pigment distribution maps were obtained 
following the three-step strategy described above and presented 
in Fig. 3b.  

Table 1. Ground truth compared to proposed approach estimated abundance 
fractions by weight 

 
The red mantle of the central figure and red flowers in the 

decoration area (Fig. 3b) contain high amounts of the pigment 
vermilion (HgS). The spectra of these areas have sigmoidal 
shapes with a steep rise and an inflection point centered at 590-
605 nm characteristic of the pigment.[36-37] This concentration 
distribution information is confirmed by XRF results that show 
the presence of mercury and sulfur in a similar area (Fig. 3c). 
From the HSI information, vermilion is present as a pure single 
pigment in the flower (point 1, (Fig. 4b and c), but is mixed with a 
small amount of lead white (0-30%) in the mantle area.  

The presence of the pigment hematite (Fe2O3) is determined 
in two interior framing lines of the page (Fig. 3b). The spectra 
from these regions that match hematite reflectance references 
show an inflection peak at 580 nm, a minor reflectance peak at 
~600 nm, and a more pronounced peak one at ~750nm (Fig. 4b 
and c).[36-37] Iron is also confirmed by XRF analyses however the 
spatial resolution offered by this method alone did not allow to 
propose accurate location of the framing lines compared to the 
HSI data (Fig. 3c). 

The pigment ultramarine (Na8[Al6Si6O24]Sn, the mineral 
lazurite) is identified in the blue dress, with a reflectance 
spectrum characterized by a maximum of absorption at 600 nm 
and a transition to high reflectance around 700 nm. In the blue 
flowers, the presence of azurite (2CuCO3.Cu(OH)2) mixed with 
ultramarine is observed, this is confirmed by a decrease in 
reflectance between 700 and 900 nm (Fig. 4b). [37] XRF spectra 
confirm a significant amount of Cu, consistent with the presence 
of azurite, together with Al, Si and K, all of which confirm the 
presence of ultramarine (Fig. 3c).  

Together with lead white, different shades and hues of blue 
can be achieved as observed in the RGB image of the 
illumination. Using our KM approach, the different ratios of 
ultramarine, azurite and lead white used to paint these 
decorations were estimated. In the darker area of the paint, 
ultramarine solely is identified. This layer is applied on top of the 
light blue paint. However, in a single stroke of the light blue 
paint, azurite is identified together with ultramarine and lead 
white (as an example, point 3 presents 36% azurite, 23% 
ultramarine, and 41% lead white by weight- Fig. 4b and c). As 
has been found previously [38], ultramarine was intentionally 
layered over azurite to create deeper blue hues. The 
identification of azurite and ultramarine intimately mixed in the 
light blue tones of this manuscript is unusual but shows the 
power of our quantitative technique in teasing apart such subtle 
mixtures. 

 

 

 

Mixture 
Ground truth 
abundance 

fraction by weight 

Proposed Method  

Average 
Standard 

Deviation 

Verdigris 
Lead White 

0.50 
0.50 

0.51 
0.49 

0.01 
0.01 

Lead Tin Yellow 
Verdigris 
Malachite 

0.33 
0.33 
0.33 

0.34 
0.32 
0.34 

0.17 
0.16 
0.17 

Verdigris 
Malachite 

0.50 
0.50 

0.49 
0.51 

0.15 
0.15 

Azurite 
Ultramarine 

0.50 
0.50 

0.51 
0.49 

0.15 
0.15 
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Figure 4. a) Visible picture and RMSE map of the area analyzed, points of interest are represented by a white cross; b) Comparison of experimental data (black 
plot) with reconstructed data (red plot) of the pixel of interest detailed in (a); c) Table providing the proportion of reference pigments found in each pixel of interest 
together with the associated RMSE value. 

We have demonstrated a novel quantitative unmixing 
algorithm using deep neural networks for classification and 
gradient descent approaches. Quantification opens new 
possibilities to account for effects not often considered when 
studying real works of art (yellowing, pigment fading, increased 
transparency of the paint, particle size). On a HSI dataset 
acquired from a medieval manuscript, our results are shown to 
be consistent with complimentary elemental information 
obtained by XRF. While the approach was successful for the 
red, blue and green paint layers in the examined manuscript, 
poor fits were due to lack of some spectral references. To 
account for this, further work is underway to provide a 
comprehensive database of absorption and scattering coefficient 
for pigments and dyes for the use in KM unmixing models. This 
approach will also be extended to layered structures in paintings 
by fusing our analyses with analytical systems that probe depth 
in paintings (e.g. optical coherence tomography).  
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