L)

Check for
updates

q A Journal of the Gesellschaft Deutscher Chemiker 't
g GDCh

International Edvition Chem’e

www.angewandte.org

Accepted Article

Title: Nonlinear unmixing of hyperspectral datasets for the study of
painted works of art

Authors: Neda Rohani, Emeline Pouyet, Oliver Cossairt, Aggelos
Katsaggelos, and Marc Walton

This manuscript has been accepted after peer review and appears as an
Accepted Article online prior to editing, proofing, and formal publication
of the final Version of Record (VoR). This work is currently citable by
using the Digital Object Identifier (DOI) given below. The VoR will be
published online in Early View as soon as possible and may be different
to this Accepted Article as a result of editing. Readers should obtain
the VoR from the journal website shown below when it is published
to ensure accuracy of information. The authors are responsible for the
content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201805135
Angew. Chem. 10.1002/ange.201805135

Link to VoR: http://dx.doi.org/10.1002/anie.201805135
http://dx.doi.org/10.1002/ange.201805135

WILEY-VCH



Angewandte Chemie International Edition

10.1002/anie.201805135

WILEY-VCH

Nonlinear unmixing of hyperspectral datasets for the study of

painted works of art

Neda Rohani®, Emeline Pouyet®, Marc Walton*®!, Oliver Cossairtl®, Aggelos K. Katsaggelos®

Abstract: Nonlinear unmixing of hyperspectral reflectance data
is one of the key problems in quantitative imaging of painted
works of art. Our approach is to interrogate a hyperspectral
image cube by, first, decomposing it into a set of reflectance
curves representing pure basis pigments and, second, to
estimate the scattering and absorption coefficients of each
pigment in a given pixel to produce estimates of the component
fractions. This two-step algorithm uses i) a deep neural network
to qualitatively identify the constituent pigments in any unknown
spectrum and, based on the pigment(s) present, ii) Kubelka-
Munk theory to estimate the pigment concentration on a per-
pixel basis. Using hyperspectral data acquired on a set of mock-
up paintings and a well-characterized illuminated folio from the
15M century, we demonstrate the performance of the proposed
algorithm for pigment recognition and quantitative estimation of
concentration.

Pigment identification allows for an understanding of how
artists/workshops used their materials, how painted surfaces
may chemically change over time, and, lastly, how anachronistic
uses of materials can be associated with either fakes/forgeries
or past restorations. A primary tool for these tasks is
hyperspectral imaging (HSI), a fast non-invasive and in-situ
method that has become commonplace in cultural heritage to
document the distribution of pigments across painted surfaces,
especially when employed together with complementary
analytical techniques. ['-'"

Pigment mixture identification from HSI datasets is an on-
going challenge. It usually combines non-automated data
interpretation (namely, a simple visual comparison to literature
reflectance data) and classification algorithms. Mapping
pigments with HSI datasets is achieved by linear spectral
unmixing methods, e.g., maximum-likelihood estimation, spectral
angle mapping, subspace projection methods, or constrained
least squares. These approaches consider the spectrum as a
linear combination of two or more endmembers, defined as a
spectrum representing a pure pigment. While linear unmixing is
computationally fast and easy to implement, pigment mixtures
have a non-linear reflectance response. ['? For this reason, most
of the conventional approaches for spectral unmixing do not
provide accurate estimates of pigment concentration on painted
surfaces.

Significant limitations imposed by linear unmixing may be
overcome by approximating the reflectance from mixed
pigments through a simplified Kubelka-Munk (KM) model for
opaque and infinitely thick samples. >4 Using single or two-
constant KM models, the non-linearity of pigment mixtures has
previously been modeled. #1520 |n these studies, the pure
pigments best explaining spectral features are combined
following KM theory to create libraries of computed spectra. This
database is then matched to the experimental data using linear
regression. 2l To date, the use of KM modeling on a per pixel
basis has been performed on a limited number of mock-up
datasets to demonstrate proof of concept but is generally
considered too computationally intensive for practical use.
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Figure 1. Reflectance spectra of 12 single pigment paint layers from the
dataset.

Previous attempts to overcome computational bottlenecks
using single-constant KM modeling have relied on chromatic
segmentation and clustering as preliminary measures to reduce
the total number of spectra being fitted.[2%-22

In this work, a pixel-wise unmixing problem is solved to
produce semi-quantitative maps of pigment distributions. We are
inspired by recent work that developed a multilayer perceptron
neural network for classifying pigments, 3 as well as studies
from the field of remote sensing in which convolutional neural
networks, stacked auto-encoders, deep belief networks, and
restricted Boltzmann machines have been used for feature
extraction, 2425 classification 1262%1 and unmixing.% In this study,
pigments present in a given spectrum are identified using a deep
neural network designed to perform supervised classification.
Having found the pigments in each pixel, the concentration
values of the individual components are estimated, on a pixel-
by-pixel basis, using a KM model and non-linear optimization
(more specifically, a gradient descent algorithm).

Mock-ups were prepared to build and test the
computational efficiency, accuracy, and precision of the
developed model. The choice of pigments was based on
analysis of an illuminated manuscript currently housed at the
Isabella Stewart Gardner Museum (Ms. 6.T.6) which served as a
test case for the algorithm described. The mock-up is composed
of 12 pure pigments (the average spectra of the pure pigments
in the reflectance domain are presented in Fig. 1) and, 16 of two
and three pigment mixtures. The pigment weight ratio
percentages were (i) 50/50 for the two pigments mixture, and (ii)
33/33/33 for the three pigments mixture (more details about
sample preparation are given in B' and sec. A, table 2 in the
supplementary material).

From the known and controlled composition of the mock-up
paint layers, the following methodology was developed as
shown in Fig. 2 and enumerated below:
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Figure 2. Algorithm flowchart.

Step 1: Using the reflectance spectra from single colored
pigments and 50/50 mixture of lead white and colored pigments,
a two-constant KM model is applied to calculate the absorption
ki, and scattering, si coefficients of each pigment. For a
detailed description of these calculations please refer to
Berns ['® and to supplementary material (sec. B, egs. 3-4).

Step 2: The pigments present in a given pixel are identified
using a deep feed-forward neural network. Here, the problem is
posed as either a multi-class 2! classification task. 13 Additional
details regarding classification schemes are given in the
supporting material (sec. C and table 2). Multi-label classification
task is more suitable for real datasets where not all possible
mixtures are known (results shown in sec. D and table 3 in the
supplementary material).

Step 3: KM is used to model the observed reflectance
spectrum given inputs from steps 1 and 2 (Eq. 2 in sec. B). A
gradient descent KM solver (Eq. 2 in sec. B) provides an
estimation of pigment concentrations. The KM solver is used in
combination with a constrained nonlinear multivariable
optimization function that minimizes the reconstruction error
between the experimental spectrum and reconstructed one (Eq.
10 in sec. E). The minimization is subject to two constraints on
the concentration values, that is, abundances need to sum to
one and abundances are non-negative (more details about
gradient descent method are given in 8431 and in sec. E).

The results from this workflow may be observed in table 1
where average weight fractions are compared to their true
abundances for mock-up mixtures of i) Verdigris with Lead
White, ii) Lead Tin Yellow with Verdigris and Malachite, iii)
Verdigris with Malachite and iv) Azurite with Ultramarine. For
combinations of two and three colors, the estimated abundances
are respectively equal to 0.50 £ 0.15 and 0.33 + 0.17. These
measured data closely approximate their ground truth
abundances thus indicating the efficacy of the three-step
nonlinear unmixing approach for the quantitative analysis of
historical paint mixtures.

To test our approach on more complex works of art,
suffrages from the Gardner Museum’s 15" century book of hours
were studied using a combination of both HSI and macro X-Ray
Fluorescence (XRF) spectroscopy. We chose to focus on a
single page of the full book (page 34v, Fig. 3a).5" The complete
experimental acquisition setup is given in supplementary
material (sec. A). Pigment distribution maps were obtained
following the three-step strategy described above and presented
in Fig. 3b.
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Table 1. Ground truth compared to proposed approach estimated abundance
fractions by weight

Ground truth Proposed Method
Mixture abundance Standard
fraction by weight Average Deviation
Verdigris 0.50 0.51 0.01
Lead White 0.50 0.49 0.01
Lead Tin Yellow 0.33 0.34 0.17
Verdigris 0.33 0.32 0.16
Malachite 0.33 0.34 0.17
Verdigris 0.50 0.49 0.15
Malachite 0.50 0.51 0.15
Azurite 0.50 0.51 0.15
Ultramarine 0.50 0.49 0.15

The red mantle of the central figure and red flowers in the
decoration area (Fig. 3b) contain high amounts of the pigment
vermilion (HgS). The spectra of these areas have sigmoidal
shapes with a steep rise and an inflection point centered at 590-
605 nm characteristic of the pigment.¢371 This concentration
distribution information is confirmed by XRF results that show
the presence of mercury and sulfur in a similar area (Fig. 3c).
From the HSI information, vermilion is present as a pure single
pigment in the flower (point 1, (Fig. 4b and c), but is mixed with a
small amount of lead white (0-30%) in the mantle area.

The presence of the pigment hematite (Fe-Og3) is determined
in two interior framing lines of the page (Fig. 3b). The spectra
from these regions that match hematite reflectance references
show an inflection peak at 580 nm, a minor reflectance peak at
~600 nm, and a more pronounced peak one at ~750nm (Fig. 4b
and ¢).B53 |ron is also confirmed by XRF analyses however the
spatial resolution offered by this method alone did not allow to
propose accurate location of the framing lines compared to the
HSI data (Fig. 3c).

The pigment ultramarine (Nag[AleSisO24]Sn, the mineral
lazurite) is identified in the blue dress, with a reflectance
spectrum characterized by a maximum of absorption at 600 nm
and a transition to high reflectance around 700 nm. In the blue
flowers, the presence of azurite (2CuCO3.Cu(OH)2) mixed with
ultramarine is observed, this is confirmed by a decrease in
reflectance between 700 and 900 nm (Fig. 4b). B71 XRF spectra
confirm a significant amount of Cu, consistent with the presence
of azurite, together with Al, Si and K, all of which confirm the
presence of ultramarine (Fig. 3c).

Together with lead white, different shades and hues of blue
can be achieved as observed in the RGB image of the
illumination. Using our KM approach, the different ratios of
ultramarine, azurite and lead white used to paint these
decorations were estimated. In the darker area of the paint,
ultramarine solely is identified. This layer is applied on top of the
light blue paint. However, in a single stroke of the light blue
paint, azurite is identified together with ultramarine and lead
white (as an example, point 3 presents 36% azurite, 23%
ultramarine, and 41% lead white by weight- Fig. 4b and c). As
has been found previously B8 ultramarine was intentionally
layered over azurite to create deeper blue hues. The
identification of azurite and ultramarine intimately mixed in the
light blue tones of this manuscript is unusual but shows the
power of our quantitative technique in teasing apart such subtle
mixtures.
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Figure 3: a) Visible picture of the area analyzed; b) Distribution maps of vermilion, hematite, ultramarine, azurite, malachite, lead tin yellow, lead white pigments
extracted from hyperspectral datacube using proposed approach; ¢) Elemental map distribution of mercury, iron, silicon, copper, gold, tin and lead from XRF

scanning of the same area.

The spectra of the green foliage and leaves are
characterized by a peak reflectance around 535-540 nm and a
slow rise from 800 nm (Fig. 4b). These spectral features point
toward the use of Cu-containing pigment, a hypothesis
confirmed by the presence of Cu identified as the primary
element by XRF (Fig. 3c). Malachite (CuCOs;.Cu(OH).) was used
to obtain the best fit with our experimental data (Fig. 4b)
although verdigris or copper resinate could alternatively be
present as they have similar spectral responses. This Cu-based
pigment was not found alone in the bright green area: lead-tin
yellow is also identified in point 2, in Fig. 4c, the two pigments
found respectively with a 43%, 47% weight ratios. The 2D
pigment maps indicate that there is a clear distribution
correlation between the lead-tin yellow and the relatively low but
still observable Sn XRF signal identified in the same area.
Alternatively, these data could suggest a mixture of a Cu-blue
pigment, such as azurite, mixed with the yellow to create the
bright green. [361

As the database used to calculate pigment ratios is
determined a priori, pigment references can be missing, and
thus some pixel spectra can be poorly reconstructed. In order to
identify unsuccessful pixel spectrum fitting the root mean square
error (RMSE) is calculated on a pixel basis following:

RMSE = \/Zﬁ—1 ”RObS,AP_ RRemnst,l”%

where A is the wavelength, and Robsx and Rreconsta the observed
and reconstructed reflectance spectra, respectively.

The results of the RMSE calculation are presented in Fig.
4a. Low RMSE fitting results are correlated with correct
estimation of the expected pigments. Besides the shape edges,
and the paper support, high RMSE values may be observed in:

1) gilded areas: they were poorly fit to the data (point 6, Fig.
4b) due to specular reflections, a limitation of this approach
which models diffuse reflections only.

2) the red flower area surrounded by a gilded macaroon at
the bottom right of the image (point 8, Fig. 4b). With an inflection
point around 565 nm, the pigment present is most likely red lead
(Pb304). B This identification may be corroborated by the
presence of high content of lead via XRF.

3) the pink colored decorations (point 7, Fig. 4b). With an
XRF spectrum dominated by Ca signal and a broad asymmetric
absorption band centered at 560 nm, these features point
toward the use of a pink dye, perhaps brazilwood precipitated on
a chalk substrate. ¢!

As red lead and brazilwood are missing from our reference
library, the poor reconstructions where these pigments are
present highlights a second limitation of the nonlinear unmixing
approach: for the method to be successful, each pixel of the
image must be composed of pigments also present in the
database. Conversely, since high RMSE values were
encountered only in areas with missing reference spectra, this
confirms that the proposed approach does not over-fit the data
with the references available.
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Figure 4. a) Visible picture and RMSE map of the area analyzed, points of interest are represented by a white cross; b) Comparison of experimental data (black
plot) with reconstructed data (red plot) of the pixel of interest detailed in (a); c) Table providing the proportion of reference pigments found in each pixel of interest

together with the associated RMSE value.

We have demonstrated a novel quantitative unmixing
algorithm using deep neural networks for classification and
gradient descent approaches. Quantification opens new
possibilities to account for effects not often considered when
studying real works of art (yellowing, pigment fading, increased
transparency of the paint, particle size). On a HSI dataset
acquired from a medieval manuscript, our results are shown to
be consistent with complimentary elemental information
obtained by XRF. While the approach was successful for the
red, blue and green paint layers in the examined manuscript,
poor fits were due to lack of some spectral references. To
account for this, further work is underway to provide a
comprehensive database of absorption and scattering coefficient
for pigments and dyes for the use in KM unmixing models. This
approach will also be extended to layered structures in paintings
by fusing our analyses with analytical systems that probe depth
in paintings (e.g. optical coherence tomography).
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