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ABSTRACT
A challenging problem in modern archaeology is to automatically
identify fragmented heritage objects by their decorative full de-
signs, such as the pottery sherds from Southeastern America. The
difficulties of this problem lie in: 1) these pottery sherds are usually
fragmented so that each sherd only covers a small portion of its
underlying full design; 2) these sherds can be so highly degraded
that curves may contain missing segments or become very shallow;
and 3) curve patterns may overlap with each other from the making
of these potteries. This paper presents a deep-learning based frame-
work for matching a sherd with a database of known designs to
find its underlying design. This framework contains three steps: 1)
extracting curve pattern using an FCN-based curve pattern segmen-
tation method from the digitized sherd’s depth map, 2) matching
a sherd with a non-composite (single copy of a design) pattern
combining template matching algorithm with a dual-source CNN
re-ranking method to find its underlying design, and 3) matching a
sherd with a composite (multiple copies of a design) pattern using a
Chamfer Matching based method. The framework was evaluated on
a set of sherds from the heartland of the paddle-stamping tradition
with a subset of known paddle-stamped designs of Pre-colonial
southeastern North America. Extensive experimental results show
the effectiveness of the proposed framework and algorithms.

KEYWORDS
Cultural heritage protection, curve pattern extraction, curve pattern
matching, composite curve patterns, neural networks

1 INTRODUCTION
All around the world, the archaeological record is filled with frag-
mentary objects of bone, pottery, shell, stone, wood, and cloth vari-
ously embellished with realistic and abstract designs. These designs
may include figural imagery like that seen on ancient Maya [24] or
the carved marine shell gorgets of late prehistory in North Amer-
ica [22]. Humanities and social science scholars have put these
designs to many uses, such as building chronologies, tracking trade
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networks, reconstructing aspects of style and the creative process,
and understanding the creation and expression of identity.

Without question, most of these topics are best addressed us-
ing complete designs rather than design fragments. Traditionally,
complete designs are composed using whole artifacts; fragments
of designs are then identified as belonging to complete composi-
tions manually by visual assessment. The task of matching design
fragments to whole designs can be highly time-consuming. As a
result, millions of broken cultural heritage objects stored in muse-
ums around the world remain unstudied from a design perspective,
and large numbers of decorated objects found in the archaeological
record contribute little to our understanding of style, production
and use, and meaning.

Computer-aided identification of the designs from fragmented
cultural objects has attracted great interest among archaeologists
and computer scientists in recent years [10, 12]. In this paper, we
take pottery sherds found on archaeological sites in the heartland
of the paddle-stamping tradition of southeastern North America as
our case study, and develop a framework to identify the underlying
carved wooden paddles impressed on pottery from the Carolinas
to the Gulf Coast. The elaborately carved wooden paddles of the
Southeastern Woodlands, a small fraction of which are shown in
Figure 1. And the ornate curvilinear paddle impressions on count-
less pottery sherds of the Swift Creek style tradition made ca. AD
350 to AD 650, shown in Figure 2 frames our study case.

Figure 1: Five paddle designs reconstructed by Frankie Snow.
Original design reproduced with permission, courtesy of
Frankie Snow, South Georgia State College.

Identifying the full curvilinear paddle design from fragmentary
sherds is a highly challenging problem. First, each sherd only con-
tains a small portion of the underlying full paddle design. Second,
the available sherds rarely come from the same vessel, and it is
difficult to assemble them into large pieces for more complete curve
patterns. Third, one carved paddle may be applied multiple times on
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the pottery surface with spatial overlap. As a result, curve patterns
detected on sherds may be incomplete or very noisy due to the
gap when applying a planar carved paddle onto a curved pottery
surface and to the erosion of sherd surfaces over thousands of years.
Furthermore, a sherd may contain a composite pattern, i.e. 2.(b), a
small fragment of multiple, partially overlapping copies of the same
design. Such a composite pattern is not simply a portion of the full
design. Therefore, matching it to the underlying full design is not a
simple partial-to-global matching problem [5].

Figure 2: Sample pottery sherds (top) and their underlying
wooden paddle designs (bottom). Two pottery sherds in (b)
contain a composite pattern, resulting from themultiple ap-
plications of the carved paddle with partial spatial overlaps.
Original designs reproduced with permission, courtesy of
Frankie Snow, South Georgia State College.

In this paper, we develop a new framework for identifying carved
paddle designs from pottery sherds by addressing these challenges.
More specifically, we extract the curve pattern from a sherd and
then match it to each known design in a database and return the
best matched design. As shown in Fig 3, this framework contains
three steps: 1) extract a curve pattern from a sherd, 2) identify the
underlying design for a sherd with a non-composite pattern, or 3)
identify underlying design for a sherd with a composite pattern. In
particular, we extract curve pattern using an FCN-based curve pat-
tern segmentation method from a digitized sherd’s depth map, and
then match the sherd with a non-composite pattern by combining
template matching algorithm with a dual-source CNN re-ranking
algorithm to find its underlying design, or match the sherd with a
composite pattern using a new Chamfer Matching algorithm.

In our experiments, we evaluate the proposed framework on a
set of sherds from the heartland of the paddle-stamping tradition
with a subset of known paddle-stamped designs of pre-Colonial
southeastern North America. Our result shows our algorithms are
much better than several other state-of-art matching algorithms.

The remainder of this paper is organized as follows. Section 2
reviews the related work. Section 3 introduces the proposed frame-
work including new algorithms for curve pattern extraction and
matching the curve pattern on a sherd with known designs. Sec-
tion 4 introduces the collected test data and the experiment results.
Section 5 discusses the future work that will improve our algorithms
and followed by a brief conclusion in Section 6.

(a)

(b)

(c)

Figure 3: An illustration of a framework on identifying the
underlying design for a sherd. (a) Extract a curve pattern
from a sherd. (b) Identify the underlying design for a sherd
with a non-composite pattern. (c) Identify the underlying de-
sign for a sherdwith a composite pattern. Original design re-
produced with permission, courtesy of Frankie Snow, South
Georgia State College.

2 PREVIOUS WORK
Many previous works on computer-aided processing of archaeolog-
ical fragments, such as pottery sherds, were focused on classifying
whether different fragments come from the same vessel and the
classification results are then used to aid the 3D reconstruction of
the underlying whole object, such as a full vessel [8, 9]. Color and
texture information have been widely used for fragment classifica-
tion [20, 23]. Many geometric features were also used to classify
archaeological fragments [13, 14, 25]. Several previous works [7, 8]
are focused on developing algorithms to assemble sherds into larger
pottery pieces, or the whole vessel, by fitting the boundary shape
of sherds.

However, the sherds with the same design are rarely from the
same vessel and it is impossible to reconstruct an entire vessel using
available sherds. As a result, we could not use the color, texture,
and geometric information in this work as in previous fragment
classification researches.

From the algorithm perspective, this paper aims to extract curve
pattern from a sherd’s depth image and to find a match between a
partial curve pattern (on a sherd) and a full curve pattern (design).

Curve-pattern extraction from RGB or gray-scale images is
closely related to curve-based image segmentation. Seveal algo-
rithms have been proposed in many specific applications. For ex-
ample, [18] utilized an energy criterion based on intensity and local
boundary smoothness to extract blood vessels in medical images.
[27] constructed a statistical shape model to extract sulcal curves
on the outer cortex of the human brain. [33] proposed a tree-based
algorithm to detect curve like cracks from pavement images. These
methods all rely on specific assumptions in respective applications
and it is not easy to extend the segmentation algorithm developed
for one application to another application.

Curve-pattern matching has been a long-studied problem in
computer vision and image processing. By thinning all of the curve
pattern to one-pixel wide, many shape matching algorithms have
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been developed for matching curve patterns. For example, Belongie
et al. [3] proposed a shape context approach, which uses a log-polar
histogram as the feature to match two curve patterns. Roman-
Rangel [26] extended the shape context algorithm to a Histogram
of Orientation Shape Context (HOOSC) algorithm. Barrow et al. [2]
proposed the widely used Chamfer matching algorithm by pre-
computing a distance map for efficiently locating one curve pattern
on another curve pattern. Brunelli [4] developed a template match-
ing method. In Perceptual Hash (pHash) [30], each image was coded
into a 64-bit fingerprint number, which was then used as features
to compare and match images. Many of these existing matching
algorithms are sensitive to noise and deformation present in the
curve patterns segmented from sherds.

Deep-learning based algorithms, particularly the CNN-based
algorithms, have been recently used for image segmentation [1, 31]
and image matching[11, 29]. For image segmentation, the most in-
fluential one is the Fully Convolutional Network proposed by [6, 17].
However, if we directly apply these deep-learning based segmen-
tation algorithms to our problem of extracting curve patterns, it
may produce non-curve segments because the CNNs are trained
directly on the color/intensity images. For image matching, several
algorithms have been proposed. For example, a patch-based local
image matching network, called MatchNet [11], was developed to
jointly learn the feature representation and the matching function
from image data. In [29], after exploring multiple neural networks,
a CNN-based model called DeepCompare was developed to match
a variety of images based on their appearance. In [16], Lin et al.
designed a CNN-based model for fast image retrieval using binary
hash codes. These methods are mainly developed for matching color
or gray-scale images and show degraded performance in matching
binary images of curve patterns with noise and deformation.

3 PROPOSED METHOD
The full pipeline of the proposed framework is illustrated in Fig-
ure 3.

3.1 Curve-pattern extraction from a sherd
Given a pottery sherd, the first step of our framework is to extract
curve pattern from this sherd. Generally speaking, extracting curve
pattern from the surface of a sherd is a typical low-level image
segmentation problem. However, the erosion and sediment usu-
ally make the visibility of curve patterns on the sherd very weak
and blurred, which substantially increases the difficulty in accu-
rately segmenting them. In this step, we use the excavated pottery
sherds associated with the Woodland period for experiments and
we found that it is very difficult to extract these curve patterns from
the camera-taken RGB images of these sherds. Given that these
curve patterns are stamped on the surfaces of pottery vessels by
carved paddles, curve patterns usually show larger depth than the
adjacent non-curve surface. Therefore, in archeology, 3D scanners
are usually applied to achieve the 3D depth image of the sherd
surface, as illustrated in Figure 4, and the curve patterns are then
segmented directly from the depth image.

However, after buried under the earth for thousands of years,
together with possible shallow stamping in making the vessel, the
curve patterns can still be difficult to segment even from the scanned

(b) (c) (d)(a)

Figure 4: An illustration of scanning sherds for depth im-
ages. (a) RGB image of a sherd. (b) Setup of a 3D scanner.
(c) 3D point cloud of the sherd surface obtained by the 3D
scanner. (d) Depth image of the sherd surface: pixel inten-
sity represents the depth value at a location.

(a) (b) (c) (d)

Figure 5: An illustration of segmenting curve patterns from
sample sherds. (a) Depth images of sherds, where darker pix-
els have larger depths. (b) FCN-extracted curve skeletons. (c)
Refined curve skeletons by using a dense predictionCNN. (d)
Final segmented curve patterns with recovered curve width,
masked by the sherd boundaries (indicated by red contours).

high-resolution depth images. In our previous work [19], we de-
veloped a CNN-based algorithm to more accurately and reliably
segment the stamped curve patterns from the depth images of the
sherds, by learning and incorporating the implied curve geometry,
such as curve smoothness and parallelism, in the underlying de-
signs. Specifically, we train a Fully Convolutional Network (FCN) to
detect the skeletons of the curve patterns in the depth images. Then,
we train a dense prediction convolutional network to identify and
prune false positive skeleton pixels. Finally, we recover the curve
width by a scale-adaptive thresholding algorithm to get the final
segmentation of curve patterns. Figure 5 shows the sample results
after each step of this algorithm. We also extract the boundary of a
sherd, indicated by red contours in Figure 5. The sherd boundary
provides a mask to exclude all the information outside the sherd
boundary from matching in the later steps.

It has been shown in [19] that this CNN-based algorithm can
segment the curve pattern from a sherd much more accurately than
other low-level and high-level image segmentation algorithms.

3.2 Identify the underlying design for a sherd
with a non-composite pattern

Most of the sherds contain non-composite patterns, i.e. only one
copy of partial designs are presented on these sherds. The second
step of our framework is to identify underlying designs for sherds
with non-composite patterns. The segmented curves from above
step can be far from perfect because of the strong noise and shallow
stampings on the unearthed sherds. In particular, the curve pattern
segmented from a sherd may show deformation from its underly-
ing design due to the drying process in making the object. In this
step, we elaborate on a two-stage matching algorithm that is robust
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(a)

(b)

(c)

Figure 6: An illustration of the full pipeline of identifying
design for a sherd with non-composite patterns. (a) Curve
pattern segmentation from a sherd. (b) Stage 1: template
matchingwith all the designs for selecting a small set of can-
didate matchings of the input sherd. (c) Stage 2: CNN-based
re-ranking of the candidate matchings. Correctly matching
design is shown in red box, which is ranked low in Stage 1
but ranked at the top in Stage 2. Original design reproduced
with permission, courtesy of Frankie Snow, South Georgia
State College.

to noise, errors and deformation present in the segmented curve
patterns. We formulate this problem by matching the curve pattern
segmented from a sherd against each location, with each possible
orientation, of each known design, and then select the design with
the lowest matching cost as the matched design. This exhaustive
matching procedure identifies not only the matched design, but also
the matched location and orientation on the matched design. Based
on this problem formulation, the key issue is then the definition of
an appropriate cost in matching the curve patterns segmented from
a sherd to a location of a full design, with a specified orientation.
This problem is nontrivial in the proposed archaeology application
for two reasons. First, the exhaustive matching against each pos-
sible location and orientation of each design leads to a very large
search space. To prevent from an overly slow algorithm, we require
the matching cost to be very efficient to compute for each possible
solution in the search space. Second, compared with the underly-
ing design, the curve patterns segmented from the sherd usually
contain strong noise and deformations in the drying process in
making many of these objects, many years of erosion and sediment
under the earth, and the imperfectness of the curve-segmentation
algorithms.

To address this problem, we developed a new two-stagematching
algorithm, with a different matching cost in each stage, as shown in
Figure 6. In Stage 1, we propose to use a classical template match-
ing method, which is highly computationally efficient, over the
whole search space to identify a small set of candidate matchings on
all the known designs. This simplematching cost can help efficiently
reduce the search space of solutions. In Stage 2, we further derive a
new matching cost by training a dual-source Convolutional Neural
Network (CNN) and apply this more computationally-intensive
matching to re-rank the candidate matchings identified in Stage 1.

CNN architecture is shown in Figure 7(a). These two sub-networks
take candidate matchings and sherd curve patterns as the inputs,
respectively. Each sub-network consists of a sequence of convolu-
tion, max pooling layers and a global average pooling layer (GAP)
for feature learning, as detailed in Table 1. We implement this dual-
source CNN by truncating AlexNet [15], as shown in Fig. 7(b), to
“conv4" layer and replacing all layers after “conv4" layer with a
GAP layer. Both inputs, i.e., candidate matchings and sherd curve
patterns are re-sized to 227 × 227 pixels, before being fed to the
sub-network. Parameters are listed in Table 1.
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conv2

pool2

conv3

conv4
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pool1
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conv5

pool5

fc6

fc7
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feat

Contrastive Loss

f f

(a) (b)

Figure 7: An illustration of the dual-source CNN architec-
tures: (a) the proposed CNN and (b) AlexNet.

Table 1: Configuration of each sub-network; n,k, s,p stand
for the number of outputs, kernel size, stride and padding
size respectively.

Name Type Configuration

GAP GAP k : 13 × 13, s : 1
conv4 Convolution n : 384,k : 3 × 3, s : 1,p : 1
conv3 Convolution n : 384,k : 3 × 3, s : 1,p : 1
pool2 MaxPooling k : 3 × 3, s : 2
conv2 Convolution n : 256,k : 5 × 5, s : 1,p : 2
pool1 MaxPooling k : 3 × 3, s : 2
conv1 Convolution n : 96,k : 11 × 11, s : 4,p : 0
data Input 227 × 227 binary image

Through this supervised learning, various kinds of noise and
deformations in the segmented curve patterns can be implicitly
identified and suppressed in computing the CNN-based matching
cost.

3.3 Identify the underlying design for a sherd
with a composite pattern

In the making of the pottery, the carved paddle usually stamped
on the pottery multiple times to ensure full coverage of the surface.
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As a result, a large number of the pottery sherds contain composite
patterns, i.e. each pattern is a part of its underlying design, and these
patterns can overlap with each other. Classical matching methods,
such as Chamfer matching require one pattern to be a portion of the
other. This is not true in this case as the curve pattern on the sherd
is a composite one. In our previous work [32], we developed a new
algorithm that can automatically identify multiple components of
the composite pattern extracted from the sherd.

(a) (b) (c) (d)

Figure 8: An illustration of identify the underlying design
for a sherd with a composite pattern. (a) A sherd image. (b)
Curve extraction from a sherd. (c) Curve extraction from
a design. (d) A sherd matching to two locations on a de-
sign. Original design reproduced with permission, courtesy
of Frankie Snow, South Georgia State College.

95%

74%

54%

0.6%

0.7%

41%

(b) (c)(a)

Figure 9: The process of combining candidate components
for matching to a design. The optimal result is indicated in
the red box. (a) Matching a sherd pattern (top) to a design
pattern (bottom). (b) Candidate Components. (c) Combin-
ing candidate components (best matching is shown in red
box). Original design reproduced with permission, courtesy
of Frankie Snow, South Georgia State College.

Taking sherd curve pattern images and design images, we first
use standard edge-thinning algorithm to reduce the curve width to
one pixel as illustrated in Figure 8 (b).

Although thewidth of curves presents important cue inmatching
a sherd and a design, we try not to use the curve width informa-
tion because it is very difficult to accurately measure the curve
width from a deteriorated sherd surface. Second, we extended clas-
sical Chamfer matching method to match the one-pixel-wide curve
patterns from a sherd against each location, with each possible ori-
entation, of each known design. Different from classical Chamfer
matching algorithm, we do not pick the design with the lowest

matching cost. Instead, for each design, we select a number of
matchings as candidates as long as a threshold percentage of total
pixel matches. Shown in Fig 9, these candidates are then combined
and reconstructed. The combination with the most matching pix-
els (defined as completeness) and least overlapping pixels (defined
as disjointness) is taken as the best matching, and its normalized
completeness is taken as its matching score. The design with the
highest matching score is selected as the sherd’s underlying design.
Note that, matching score is the higher the better.

4 EXPERIMENTS
For our study, we collected a set of 1000 pottery sherds that were
excavated in various archaeological sites located in Southeastern
North America. 900 of these pottery sherds contain non-composite
patterns represent 98 unique paddle designs, and the rest 100 pottery
sherds contain composite patterns representing 20 unique paddle
designs. Each sherd in the set only displays one design, while the
same design may be applied to the surfaces of multiple sherds. We
divide these 900 sherds with non-composite curve patterns into
two groups of equal sizes, one group is for CNN training and the
other is for CNN testing.

In our experiment, we use the Cumulative Matching Character-
istics (CMC) ranking metric to evaluate the matching performance.
To identify the underlying design of a sherd patternU , we match it
against all 98 or 20 designs depending on whether it is a sherd with
a non-composite pattern or a composite pattern. We then sort these
98/20 designs in terms of the matching scores and pick the top L
designs with the highest scores. If the ground-truth design of this
sherd is among the identified top L designs, we treat it a correct
design identification under rank L. We repeat this identification
for all 450 sherds with non-composite patterns in CNN testing set,
and 100 sherds with composite patterns respectively, and calculate
the accuracy, i.e., the percentage of the correctly identified sherds,
under each rank L, L = 1, 2, · · · , 20, · · · , 98. This way, we can obtain
a CMC curve in terms of rank L to evaluate the performance of a
matching algorithm, shown in Figure 10 and Figure 12 for sherds
with non-composite patterns and sherds with composite patterns
respectively. The higher value in this curve, the better the matching
performance.

Since matching methods applied to sherds with non-composite
patterns and sherds with composite patterns are different, we con-
ducted two sets of experiments to evaluate our proposed framework.
First, to evaluate the effectiveness of the proposed framework on
sherds with non-composite curve patterns, we select eight exist-
ing matching algorithms for comparison: Template Matching [4],
Chamfer Matching [2], Shape Context [3], Nearest Neighbor [28],
pHash [30], Gabor [21], DeepCompare [29] and MatchNet [11].
Experiments are conducted on the testing dataset with 450 sherds
with non-composite patterns.

In Template Matching, we directly use OpenCV implementa-
tion of Template Matching for finding the best matched designs,
as well as locations and orientations. In Chamfer Matching, sherd
curve pattern IT and each design are first thinned to one-pixel-wide
skeletonU and V , respectively. Then U is translated and rotated to
matchV in terms of Chamfer distance. The Chamfer matching cost
is then defined as the minimal distance, including all translations
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Figure 10: CMC curves of the proposedmethod and the eight
comparison matching methods.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 11: The top 5 matched designs (from top to the bot-
tom) identified by (a) the proposed method, (b) Template
Matching, (c) Nearest Neighbor, (d) MatchNet, (e) DeepCom-
pare, (f) Shape Context, (g) Chamfer matching, (h) Gabor
and (i) pHash, respectively. True designs are highlighted in
the red box. Original designs reproduced with permission,
courtesy of Frankie Snow, South Georgia State College.

and rotations. Shape Context follows the same formation of Cham-
fer Matching by sliding U over V and calculate the shape-context
matching at each location of sliding for best matching locations. We
directly use the Shape Context implementation, as well as its match-
ing cost, from the OpenCV package1. Nearest Neighbor, pHash,
Gabor, DeepCompare and MatchNet are used to re-rank the candi-
date matchings that are selected by the proposed Stage 1 Template
Matching method. The same CMC ranking metric is then computed
for each of them for performance evaluation. Specifically, for Near-
est Neighbor, we directly calculate the intensity difference between
a pair of inputs as their matching cost. pHash was implemented
using pHash library2. For Gabor, we construct gabor features using
Gabor filter from OpenCV package3. For the MatchNet, we employ

1https://docs.opencv.org/3.0-beta/modules/shape/doc/shape_distances.html
2https://www.phash.org/
3https://docs.opencv.org/3.0-beta/modules/imgproc/doc/filtering.html

its original network architecture and training parameters, then
fine-tune with the above training dataset on the model trained on
“Yosemite" dataset4. For DeepCompare, we choose the 2-channel
deep network introduced in [29], and fine-tune the model with the
canny edge images generated from the “Yosemite" dataset.

CMC curves of the proposed method and the eight compari-
son methods are shown in Figure 10. We can see that our method
achieves the best CMC performance, and outperforms the second-
best matching method by 17.3% on Rank-1 CMC value. Figure 11
shows the identification result of the proposed method and the
eight comparison methods on a sherd with non-composite pattern
segmented from a degraded sherd. We can see that, the proposed
method matches the true design (in red box) at CMC Rank 1, while
the other comparison methods do not.

Second, to justify the effectiveness of our framework for sherds
with composite patterns, we pick four classical matching algorithm
for performance comparison in the experiments: Template Match-
ing [4], Chamfer Matching [2], Shape Context [3] and Histogram of
Orientation Shape Context (HOOSC) [26].We follow the same setup
for the first three as that described for sherds with non-composite
patterns and for HOOSC, we use the same setup as Shape Context,
but incorporating the orientation measure into the log-polar his-
tograms. HOOSC was implemented by HG Zhao5 using MATLAB.
Shown in Figure 12, the top-1 CMC rank of the proposed method
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Figure 12: CMC curves of the proposed method and the four
comparison methods.

is %46, while all of the four comparison methods show very poor
performance by having top-1 CMC ranks below %5 and the CMC
curves along the diagonal line. The major reason for their poor per-
formance is that they do not consider and cannot well handle the
composite patterns present on the sherds. By explicitly considering
the possible composite patterns, the proposed method achieves
much better CMC performance.

Figure 13 shows the identification result of two sample sherds
with composite patterns on the proposed method and four compar-
ison methods. We can see that, the proposed method can identify

4https://github.com/hanxf/matchnet
5https://github.com/CyberZHG/Sketch-Based/tree/master/HOOSC

https://docs.opencv.org/3.0-beta/modules/shape/doc/shape_distances.html
https://www.phash.org/
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/filtering.html
https://github.com/hanxf/matchnet


A Framework for Identifying Designs PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

the correct designs under CMC rank 1, while the four comparison
methods can only identify the correct designs under much higher
CMC ranks.

(e)(d)(c)(b)(a)(a) (b) (c) (e)(d)

Figure 13: The top 5 matched designs (from top to the bot-
tom) identified by (a) the proposed method, (b) Chamfer
Matching, (c) Shape Context, (d) HOOSC, respectively. True
designs are highlighted in the red box. Original designs re-
produced with permission, courtesy of Frankie Snow, South
Georgia State College.

5 FUTURE WORK
Many different adaptations, tests, and experiments have been left
for the future due to lack of time and data (i.e. the experiments with
real data on sherds with composite patterns are usually very time
consuming, requiring evenweeks to finish a single run). Concerning
different methods applied to sherds with non-composite patterns
and composite patterns in our framework, our future work would
also involve combining these two cases into one single method or
developing an algorithm to automatically identify whether a sherd
contains a non-composite pattern or a composite pattern.

6 CONCLUSION
In this paper, we explored an important and challenging task in
archaeology: identifying the curve design on the surfaces of highly
fragmented and degraded pottery sherds. We developed a new
framework to match the curve patterns segmented from sherds
to a set of known designs. First, we extract curve patterns from
a sherd using an FCN-based image segmentation method. Then,
we used a 2-stage matching algorithm to match a sherd with non-
composite pattern to a set of known designs. Alternatively if the
sherd is a composite pattern, we developed a new Chamfer match-
ing algorithm to match the sherd to find its underlying design. In
the experiment, we validated the proposed framework by using a
set of real sherds together with their corresponding designs from
the Woodland Period in Southeastern North America. Comparison
to several existing matching methods verified that the proposed
framework can achieve a new state-of-the-art performance .
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