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In a quantum system in a pure state, a subsystem generally has a nonzero entropy because of
entanglement with the rest of the system. Is the average entanglement entropy of pure states also
the typical entropy of the subsystem? We present a method to compute the exact formula of the
momenta of the probability P (SA)dSA that a subsystem has entanglement entropy SA. The method
applies to subsystems defined by a subalgebra of observables with a center. In the case of a trivial
center, we reobtain the well-known result for the average entropy and the formula for the variance.
In the presence of a nontrivial center, the Hilbert space does not have a tensor product structure and
the well-known formula does not apply. We present the exact formula for the average entanglement
entropy and its variance in the presence of a center. We show that for large systems the variance
is small, ∆SA/〈SA〉 � 1, and therefore the average entanglement entropy is typical. We compare
exact and numerical results for the probability distribution and comment on the relation to previous
results on concentration of measure bounds. We discuss the application to physical systems where
a center arises. In particular, for a system of noninteracting spins in a magnetic field and for a
free quantum field, we show how the thermal entropy arises as the typical entanglement entropy of
energy eigenstates.

Introduction.—In a seminal paper [1], Page showed
that, when an isolated quantum system is in a random
pure state, the average entropy of a subsystem is close
to maximal. This result plays a central role in the anal-
ysis of the black hole information puzzle [2–9], in the
quantum foundations of statistical mechanics [10–23], in
quantum information theory [24–31] and in the study of
the quantum nature of spacetime geometry [32–37]. The
entanglement entropy, expressed as a function of the sub-
system size, is often called the Page curve (Fig. 1).

In a quantum system in a pure state, a subsystem A
generally has a nonzero entropy because of entanglement
with the rest of the system. In this paper we address
the question: Is the average entanglement entropy of
pure states 〈SA〉 also the typical entropy of the subsys-
tem? To illustrate the significance of this question, let
us consider for instance the gas in a room held at fixed
temperature. The canonical ensemble allows us to com-
pute the average energy of the gas. However, the con-
figuration of molecules in one room is one realization of
this ensemble—we are not averaging over rooms. How
close to the average is the energy of this realization? In
other words, is the average energy typical? In statis-
tical mechanics, we answer this question by computing
the variance (∆E)2. In the canonical ensemble, we find
∆E/〈E〉 � 1 and we conclude that the average energy
is typical. Here we investigate the typicality of the en-
tanglement entropy SA of a subsystem by studying its
average and variance.

A well-studied special case of subsystem A is described
by a subalgebra with a trivial center. In this case the
Hilbert space of the system is simply given by a tensor
product of the subsystem Hilbert space HA and its com-
plement HB , i.e. H = HA⊗HB . This case was originally
considered by Page [1, 38–43] who computed the average
inH of the entanglement entropy. The variance was com-
puted recently in [44, 45]. In this paper we present an

FIG. 1. Page curve of a system of N = 10 noninteracting
spins. (i) Trivial center. In the absence of an external mag-
netic field, all states are equiprobable: the entanglement en-
tropy SA of a sample of random pure states is shown as a
function of the subsystem size NA (orange circles), together
with the band 〈SA〉 ± 3 ∆SA (green dashed line and gray re-
gion). The inset shows the data for NA = 4. (ii) nontrivial
center. In the presence of a magnetic field, the entanglement
entropy of random pure states of given energy En = µ0Bn
with n = −2 is shown for NA = 4 (red diamonds), together
with the band 〈SA〉E ± 3 (∆SA)E for the Page curve at fixed
energy (blue solid line and gray region).

algorithm that reproduces the average and variance, to-
gether with the skewness and higher moments of the en-
tanglement entropy probability distribution P (SA)dSA
for a trivial center.

In many physically relevant cases, the Hilbert space
over which we average the entanglement entropy does
not have a tensor product structure, H 6= HA ⊗HB . In
fact, in general, the subalgebra that identifies the subsys-
tem A has a nontrivial center. As a result, the Hilbert
space of the system is a direct sum of tensor products
[46, 47]. In this work we extend the typicality results on
the entanglement entropy in the presence of a center. Ex-
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amples of subsystems with a nontrivial center are subsets
of a spin chain with fixed boundary conditions; lattice
fermions with fixed boundary conditions [48]; compact
scalar fields, Abelian and non-Abelian gauge fields on a
lattice [46]; loop quantum gravity [35, 36, 49, 50].

A simple example of subsystems with a center is pro-
vided by the energy eigenspace in a noninteracting sys-
tem with Hamiltonian H = HA + HB . In this case the
eigenspace H(E) ⊂ H has the structure of a direct sum
of tensor products

H(E) =
⊕J

j=1

(
HA(εj)⊗HB(E − εj)

)
, (1)

where HA(εj) and HB(εk) are eigenspaces of given en-
ergy for the subsystems A and B. This structure is rele-
vant for the study of thermal properties of isolated quan-
tum systems. See Fig. 1 for an example.

Building on [1, 38–43], we develop methods to compute
the exact formula for the average entanglement entropy
and the moments mn = 〈(SA − 〈SA〉)n〉 of the probabil-
ity distribution P (SA)dSA of finding a pure state with
entanglement entropy SA. Our methods are tailored to
the computation of averages over pure states in H and
over pure states in the eigenspace H(E).

The exact formula for the average 〈SA〉 over all pure
states inH was conjectured by Page in [1], improving ear-
lier works [38, 39], and later proved with different meth-
ods in [40–43] and in (7). Here we present the exact for-
mula for the average 〈SA〉E over all states in the Hilbert
H(E) with a nontrivial center. Furthermore, we deter-
mine the exact formulas for: the variance m2 for pure
states in H reproducing the result found in [44, 45] for a
trivial center; the exact formula for third order moment
m3 with a trivial center; the exact formula for m2 in the
presence of a nontrivial center. We compare our results
to concentration of measure bounds [24].

By studying the average entanglement entropy 〈SA〉
and the variance

(∆SA)2 = 〈SA2〉 − 〈SA〉2, (2)

we show that, both in the case of a trivial and a nontriv-
ial center, for large systems the average entanglement
entropy of a subsystem is also typical.

After presenting a detailed derivation of the Page curve
and its variance, we discuss the application of our results
to a model system where a nontrivial center arises: we
determine the Page curve of energy eigenstates of a para-
magnetic solid in a magnetic field (Fig. 1), and show how
thermal properties of a subsystem arise from entangle-
ment with the rest of the system.

Average entropy and variance with a trivial center.—
Let us consider a quantum system with a bipartite
Hilbert space H = HA ⊗ HB . The subsystems A and
B have dimension dA = dimHA and dB = dimHB , with
A the smaller of the two subsystems, 1 < dA ≤ dB , and
the dimension of H given by d = dAdB . The restric-
tion of a pure state |ψ〉 ∈ H to the subsystem A defines
the reduced density matrix ρA = TrB |ψ〉〈ψ|. The en-

tanglement entropy SA(ψ) = −Tr(ρA log ρA) is the von
Neumann entropy of the reduced density matrix.

A random state |ψ〉 in the Hilbert space H can be
generated by choosing an orthonormal basis |n〉 with
n = 1, . . . , d and picking a vector |ψ〉 =

∑
n ψn|n〉 at

random with respect to the uniform measure dµ(ψ) =
Z−1δ(|ψ|2 − 1)dψdψ on the unit sphere in Cd, with the
constant Z defined so that the measure is normalized to
unity,

∫
dµ(ψ) = 1. The average of a function f over

all states |ψ〉 can be computed by integrating uniformly
over states, 〈f〉 =

∫
f(ψ) dµ(ψ). As the entanglement

entropy SA depends on the reduced density matrix ρA
only via its eigenvalues λa, (the entanglement spectrum,
with a = 1, . . . , dA), to compute the average over |ψ〉 we
need only the induced measure over the eigenvalues λa.
This measure dµ(λ1, . . . , λdA) was computed by Lloyd
and Pagels in [39], (see also App. A).

Computing the average entanglement entropy 〈SA〉
and its variance ∆SA is not immediate because they are
not polynomial functions of ρA. Here we follow a strat-
egy that generalizes to the computation of higher mo-
ments of SA. We first consider the average of the function
〈TrA(ρrA)〉 with r ≥ 0,

〈Tr(ρrA)〉 =

∫ (∑dA
a=1 λ

r
a

)
dµ(λ1, . . . , λdA) . (3)

To compute the integral over λa it is useful to introduce
the quantity Xij(r), defined as an integral of generalized

Laguerre polynomials L
(dB−dA)
i (q) with i = 0, . . . , dA−1:

Xij(r) =

∫∞
0
qrLi

(dB−dA)

(q)Lj
(dB−dA)

(q) qdB−dAe−q dq

Γ(i+ 1)Γ(dB − dA + i+ 1)

=

dA−1∑
p=0

Γ(dB−dA+r+1+p) Γ(j+1)Γ(r+1)2/Γ(dB−dA+i+1)
Γ(i−p+1)Γ(r+p−i+1)Γ(j−p+1)Γ(r−j+p+1)Γ(p+1) (4)

Computing the integral (4) is nontrivial. We obtained the
result by using the generating function for the Laguerre
polynomials, as we describe in more detail in App. A.
Formula (4) for Xij(r) provides the main technical tool
for our derivation.

The average (3) takes a simple form when expressed in
terms of the matrix Xij(r),

〈Tr(ρrA)〉 =
Γ(dAdB)

Γ(dAdB + r)
TrX(r) , (5)

where we treat Xij(r) as a dA×dA matrix X(r). We note
that (5) is a smooth continuous function of r. The aver-
age entanglement entropy can be obtained immediately
by taking a derivative with respect to r,

〈SA〉 = −〈Tr ρA log ρA〉 = − lim
r→1

∂r〈Tr(ρrA)〉 . (6)

The result of this computation, expressed in terms of the
digamma function Ψ(x) = Γ′(x)/Γ(x) (i.e., the logarith-
mic derivative of the gamma function), is the formula
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〈SA〉 = Ψ(dAdB + 1)−Ψ(dB + 1)− dA − 1

2dB
. (7)

This formula was first conjectured by Page [1] and then
proved with different techniques here and in [40–43].

The technique described above applies directly to the
calculation of the average of SA

2. The strategy is to first
consider the average of 〈Tr(ρr1A ) Tr(ρr2A )〉 and express it
in terms of matrices X(r):

〈Tr(ρr1A ) Tr(ρr2A )〉 =
Γ(dAdB)

Γ(dAdB + r1 + r2)
× (8)

×
(
TrX(r1+r2) + TrX(r1) TrX(r2)− Tr

(
X(r1)X(r2)

))
.

Its derivatives with respect to r1 and r2 can again be
expressed in terms of derivatives of the gamma function,
and simplified with the help of Wolfram’s Mathematica.
The average of SA

2 is obtained as

〈SA2〉 = lim
r1,r2→1

∂r1∂r2〈Tr(ρr1A )Tr(ρr2A )〉 . (9)

Using the definition (2) and the formula (7), we obtain
the exact formula:

(∆SA)2 = dA+dB
dAdB+1Ψ′(dB + 1) + (10)

−Ψ′(dAdB + 1)− (dA−1)(dA+2dB−1)
4d2B(dAdB+1)

,

discussed also in [44, 45]. Using the same technique
we can determine also the average of higher powers of
SA. In particular, we report the exact formula for the
third moment m3 of the entanglement entropy distribu-
tion (App. A)

m3 = Ψ′′(dAdB + 1)− d2A+3dAdB+d2B+1
(dAdB+1)(dAdB+2)Ψ′′(dB + 1)+

+
(d2A−1)(dAdB−3d2B+1)
dB(dAdB+1)2(dAdB+2)Ψ′(dB + 1)+

− (dA−1)(2d3AdB+3d2Ad
2
B−4d2AdB+4dAd

3
B−3dAd

2
B)

4d3B(dAdB+1)2(dAdB+2)
+

− (dA−1)(2d2A+8dAdB+10d2B−4dA−6dB+2)

4d3B(dAdB+1)2(dAdB+2)
. (11)

We observe that the formulas for the moments mn are
exact: they provide the mean (7), the variance (10) and
the skewness (11) of the entropy for small systems, as well
as for large systems. In the latter case, a Taylor series in
1/dB provides asymptotic expressions for large systems
and any subsystem: the average entropy is approximated
by the expression

〈SA〉 ≈ log dA −
1

dAdB

d2
A − 1

2
for dB � 1 . (12)

As the entropy of A can be at most Smax = log dA, this
formula shows that for a large system the average entropy
of a subsystem is close to maximal. The asymptotic ex-

pression for the variance of SA is:

∆SA ≈
1

dAdB

√
d2
A − 1

2
for dB � 1 . (13)

We observe that the variance vanishes in the limit of
dB →∞. Therefore we conclude that, in a large system,
any subsystem has ∆SA/〈SA〉 � 1. In other words, in
a large system, the average entropy of any subsystem is
also its typical entropy. We report also the asymptotic
expression for the third moment m3 (11)

m3 ≈ −
d2
A − 1

d3
Ad

3
B

for dB � 1 . (14)

This formula shows that the skewness m3/σ
3 ≈

−
√

8/(d2
A − 1) is negative, which results in a right tilt

in the distribution that does not vanish as dB →∞.

One might expect that these asymptotic formulas can
be obtained in a simpler way, for instance by first ex-
panding the entropy SA around the maximally mixed
state and then taking the average. The expansion in
δρA = ρA − 1/dA was first proposed by Lubkin and
Lubkin in [38] and is commonly found in reviews [7].
However, it was shown by Dyer in [43] that the series
in δρA for 〈SA〉 does not converge. This has the conse-
quence that, truncating the expansion in δρA, only the
first order in Page’s formula (12) is accidentally repro-
duced. Similarly, the leading order variance ∆SA (13)
cannot be obtained by truncating the expansion in δρA.

Determining the full probability distribution
P (SA)dSA of a random pure state is not immedi-
ate. The methods introduced here allow us to determine
its average m = 〈SA〉, its variance σ2 = (∆SA)2 and
higher order moments mn such as the skewness (14),
(see also App. A). The normal distribution

PN (SA) dSA = 1√
2πσ

exp
(
− (SA−m)2

2σ2

)
dSA (15)

is the distribution with the largest Shannon entropy at
fixed average m and variance σ2. In Fig. 2 we compare
this distribution to a numerical sample and find that it
characterizes well the support of the probability distribu-
tion P (SA)dSA of random pure states. In particular, the
numerical sample and the analytic formulas (12), (13)
show that it is unlikely to find a state with maximum
entropy Smax. The numerical sample shows also a small
right tilt with respect to the normal distribution, in ac-
cordance with the negative skewness (14).

Previous analysis of typicality have used concentration
of measure techniques to provide upper bounds on the
probability of finding a state with entropy lower than the
average entropy [24]. In particular, using Levy’s lemma,
Theorem III.3 in [24][51] states that the cumulative dis-
tribution P[SA < α ] is bounded from above by a Gaus-
sian function,

P[SA < α ] =

∫ α

0

P (SA)dSA ≤ exp
(
− (α−mb)2

2σ2
b

)
(16)
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FIG. 2. (i) Trivial center. Probability of finding entanglement entropy SA in a sample of 105 random pure states of a spin
system (N = 10 and NA = 4, in orange 200 bins). See Fig. 1 (inset) for reference. We compare the sample to the normal
probability distribution (15) with mean (7) and variance (10) (solid green line). Inset: Cumulative probability distribution of
finding entanglement entropy smaller than α for the same sample (orange circles). We compare the sample to the normal
cumulative distribution (solid green line) and to the concentration of measure bound (16) (dashed gray line). (ii) nontrivial
center. Probability of finding entanglement entropy SA in a sample of 105 random pure states of energy En = µ0Bn with
n = −2 of a spin system in a magnetic field (N = 10 and NA = 4, in red 200 bins). See Fig. 1 (red diamonds) for reference.
We compare the sample to the normal probability distribution with mean (23) and variance (10) (solid blue line)

with mb = log dA − dA
dB

, σb = 2π log dA√
dAdB−1

and α < mb. We

compare this bound to the normal cumulative distribu-
tion, and to a numerical sample of random pure states.
The inset in Fig. 2 clearly shows that the probability is
more concentrated than what the bound (16) indicates.

Average entropy and variance in the presence of a
nontrivial center.— Consider a system with algebra of
observables A. We define a subsystem A by choosing a
subalgebra of observables AA. The complement of the
subsystem A is denoted B and its algebra of observables
is the commutant of AA, i.e., AB = {b ∈ A | [b, a] =
0 ∀a ∈ AA}. The intersection of the two subalgebras,
AA ∩ AB = ZA, is called center of AA ⊂ A. In the
presence of a center, the Hilbert space of the system de-
composes as a direct sum of tensor products [46, 47],

H =
⊕

ζ

(
HA(ζ)⊗HB(ζ)

)
, (17)

where the sum is over the spectrum of ZA.
We give a concrete example of a center. Let us consider

a composite system with Hilbert space H = HA⊗HB and
Hamiltonian H = HA + HB having energy eigenvalues
Ejk = εjA + εkB . On the energy eigenspace H(E) ⊂ H
the algebra of the subsystem A has a nontrivial center
ZA = HA. Therefore, H(E) has the structure (17),

H(E) =
⊕J

j=1

(
HA(εj)⊗HB(E − εj)

)
, (18)

where the sum over j is such that εkB = E − εjA.
Energy eigenspaces of the subsystem A are denoted
HA(εj) and have dimension djA = dimHA(εj). Similarly
for subsystem B. The energy eigenspaces of the system

have then the direct sum structure H(E) = ⊕jHj(E)
where the sector Hj(E) = HA(εj) ⊗ HB(E − εj) has
definite energy in each subsystem. We denote dj =
dimHj(E) the dimension of each sector, with dj =
djA djB and dE =

∑
j dj the dimension of H(E).

Due to the direct-sum structure (18), Page’s formula
(7) does not apply. Other instances of systems where
the relevant Hilbert space has the form (1) are subsys-
tems in lattice gauge theory [46], in spin chains and in
lattice fermions with fixed boundary conditions [48], in
loop quantum gravity [35, 36, 49, 50], and in general in
presence of an additive constraint. The formulae that we
derive below apply equally to all these cases.

To investigate typicality of the entropy in the en-
ergy eigenspace H(E), we determine the uniform mea-
sure over pure states belonging it. We note that a
state |ψ,E〉 in H(E) can be written as a superposition
|ψ,E〉 =

∑
j

√
pj |φj〉 of normalized states |φj〉 ∈ Hj(E),

with weights pj ≥ 0 satisfying the normalization con-
dition

∑
j pj = 1. The reduced density matrix for the

subsystem A is given by ρA =
∑
j pjρjA with ρjA =

TrB |φj〉〈φj |. The entanglement entropy of the subsys-
tem, SA(ψ) = −Tr(ρA log ρA), splits into the sum of two
terms [52]:

SA(ψ) =
∑
j pj SjA(φj) −

∑
j pj log pj , (19)

where SjA(φj) = −Tr(ρjA log ρjA) is the entanglement
entropy in the sector Hj(E). We note that the entan-
glement entropy of A is the pj-weighted sum of the en-
tanglement entropy SjA in each sector, plus the Shannon
entropy of the weights pj .

The uniform measure dµE(ψ) over pure states in H(E)
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decomposes as

dµE(ψ) = dν(p1, . . . , pJ)
∏
j dµ(φj) , (20)

where dµ(φj) is the uniform measure over pure states
in each sector Hj(E). We derive the measure over the
weights pj in App. B and find

dν(p1, . . . , pJ) =
1

Z
δ
(∑

j pj − 1
)∏

j

(
p
dj−1
j dpj

)
. (21)

This measure defines the Dirichlet distribution, also
known as the multivariate beta distribution [53]. The
constant Z is defined so that the measure is normal-

ized to unity,
∫

dν(p1, . . . , pJ) = 1. The average weight
is 〈pj〉 = dj/dE and its second moments are 〈pi pj〉 =
(didj + δijdi)/(dE(dE + 1)).

Using the technique described in (6), we write the av-
erage in H(E) of the entanglement entropy as

〈SA〉E = − lim
r→1

∂r〈
∑
j pjTr(ρ rjA) +

∑
j p

r
j〉 , (22)

and find the exact formula

〈SA〉E =
∑
j
dj
dE

(
〈SjA〉+ Ψ(dE + 1)−Ψ(dj + 1)

)
, (23)

where 〈SjA〉 is given by (7). Using the same technique,
we compute the exact formula for the average of SA

2,

〈SA2〉
E

=
∑
j
dj(dj+1)
dE(dE+1)

(
(∆SjA)2 −Ψ′(dE + 2) + Ψ′(dj + 2) + (〈SjA〉+ Ψ(dE + 2)−Ψ(dj + 2))

2 )
(24)

+
∑
i6=j

didj
dE(dE+1)

(
(〈SiA〉+ Ψ(dE + 2)−Ψ(di + 1)) (〈SjA〉+ Ψ(dE + 2)−Ψ(dj + 1))−Ψ′(dE + 2)

)
.

See App. B for a detailed derivation. In the limit of large
dimension of each sector, dj � 1, the average entangle-
ment entropy takes the form

〈SA〉E =
∑
j〈pj〉 〈SjA〉−

∑
j〈pj〉 log〈pj〉+O(1/dE) . (25)

In the same limit, the variance (∆SA)2
E

= 〈SA2〉
E
−〈SA〉2E

goes to zero and the ratio of the two quantities scales as

(∆SA)
E

〈SA〉E
∼ 1√

dE
. (26)

Therefore the average entropy of a subsystem is also its
typical entropy. Fig. 2 shows that the normal distribu-
tion with mean (23) and variance (∆SA)2

E
characterizes

well the support of the distribution of the entanglement
entropy of random pure states of energy E.

Discussion and applications.—We can now answer the
question posed in the introduction. As, for large systems,
the standard deviation ∆SA is much smaller than the
average, we conclude that the average entropy 〈SA〉 is
also the typical value of the entanglement entropy of a
subsystem. The conclusion holds both in the presence of
a trivial and of a nontrivial center.

The result applies to all systems where a subalgebra
with a center arises. A notable case is the one of a free
isolated quantum system prepared in an energy eigen-
state. While interaction between subsystems is necessary
for thermalization [10–23], an arbitrarily small interac-
tion is sufficient to select a typical energy eigenstate. We
illustrate the relevance of our result with two examples.

A system of N noninteracting spins with magnetic mo-
ment µ in a magnetic field B has Hamiltonian H =∑
i µ0Bσzi . The energy eigenspace H(E) has dimension

dE = N !/((N+n
2 )!(N−n2 )!) with n = E/µ0B. We consider

a subsystem A consisting of NA spins. The eigenspace
H(E) has the structure (1) where the direct sum is over
eigenvalues ε of the Hamiltonian HA of the subsystem A.

The average energy in A is ε̄ = 〈Tr(HAρA)〉
E

= ENA/N
which shows equipartition of the energy in a typical state.
For N � 1, the average entanglement entropy of the sub-
system (23) evaluates to

〈SA〉E ≈ −min(NA, NB)
∑
i=± νi log νi , (27)

where ν± = 1
2 (1 ± E

Nµ0B ). This is the Page curve of

the system and its variance is exponentially small in N .
We observe that the entanglement entropy vanishes for
the ground state E = −NµB, increases with the energy
up to min(NA, NB) log 2 in the middle of the spectrum,
and then decreases indicating that the system behaves
as if it had a temperature that is positive for low energy
eigenstates and negative for high energy eigenstates [54].
In fact for a small subsystem (NA � N) we can define a
temperature as the variation of the entanglement entropy
with respect to the typical energy

kT =
(
∂〈SA〉E/∂ε̄

)−1

N,NA
≈ −µ0B

arctanh E
Nµ0B

, (28)

with k the Boltzmann constant. This is the familiar rela-
tion between the temperature and the energy in a para-
magnetic system [55]. Fig. (1) shows the Page curve and
its variance for a system of N = 10 spins. The tempera-
ture of a small subsystem can be read from the slope of
the Page curve.

As a second example, we consider a free quantum field:
the quantum electromagnetic field in a cubic box of vol-
ume L3. Previous analysis have focused on the geometric
entanglement entropy of a region of space [56–58] and its
renormalization [8, 59–61]. Here we identify a different
subalgebra of observables that better characterizes what
can be measured [62]. The Hilbert space of the quantum
field H =

⊗
λHλ is the tensor product of Hilbert spaces

of discrete wavelength λ = (2L/kx, 2L/ky, 2L/kz) with
kx, ky, kz ∈ N. A measuring device, such as an antenna of
length `, defines a subsystem A corresponding to the dis-
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crete wavelengths λA = (2`/kx, 2`/ky, 2`/kz). If `/L ≤ 1
is a rational number, the wavelengths λA are a subset
of the wavelengths λ. The Hilbert space H(E) of eigen-
states with energy E inherits the structure (1), where ε
is the energy of the antenna A. When the box is large,
i.e. when EL� ~c, we can compute the dimension dE of
H(E) from the density of states and the occupation num-

bers of photons. We find dE ≈ exp
( 4

√
π

3(15)1/4
(EL~c )3/4

)
.

Analogously, the dimension of HA(ε) for ε` � ~c is

dA(ε) ≈ exp
( 4

√
π

3(15)1/4
( ε `~c )3/4

)
.

The average energy in the subsystem A is ε̄ =∑
ε ε 〈p(ε)〉 ≈ E`3/L3, which shows that in a typical state

the energy of the subsystem is extensive and E/L3 is the
energy per unit volume. The average entanglement en-
tropy of a subsystem with `3 ≤ L3/2 is

〈SA〉 ≈ log dA(ε̄) ≈ 4
√
π

3(15)1/4

(
ε̄ `
~c
)3/4

. (29)

The result follows from (23) together with the fact that
〈p(ε)〉 is sharply peaked at ε̄ and therefore the Shan-
non entropy contribution is negligible and the dominat-
ing term is the average entanglement entropy 〈Sε̄A〉. As
the variance is exponentially small in EL/~c, this is also
the typical value of the entropy in an energy eigenstate.

For ` � L we can also define a temperature from en-
tanglement:

kT =
(
∂〈SA〉E/∂ε̄

)−1

L,`
≈
(

15
π2

(~c)3 E
L3

)1/4
. (30)

We note that this temperature does not depend on the
subsystem size. In terms of this temperature, the en-
tanglement entropy assumes the form of the familiar ex-
tensive formula for the canonical entropy of black body

radiation. On the other hand, for large subsystems, the
typical entanglement entropy is smaller than the thermal
entropy and follows a Page curve qualitatively similar to
the one in Fig. 1,

〈SA〉 ≈ 4π2

45

(
kT
~c
)3

min(`3, L3 − `3) . (31)

This entropy is arising from the entanglement between
the modes that the antenna can measure, i.e. the wave-
lengths λA, and the modes that it cannot measure. The
unmeasured modes include both longer wavelengths and
wavelengths shorter than ` that the antenna cannot cou-
ple to.

Our results show that, in small noninteracting systems
prepared in a typical energy eigenstate, thermal prop-
erties can arise from entanglement. Recent experimen-
tal developments on measurements of thermalization in
small isolated quantum systems, such as ultracold atoms
in optical lattices [63–66], might provide access to the de-
viations from statistical mechanics predicted by the ex-
act formulas for the average entropy (23) and its variance
(24) at fixed energy.
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Appendix A: Detailed computation of the moments of the distribution P (SA)dSA

Given a Hilbert space H of dimension d and an orthonormal base |n〉 of H, a normalized state |ψ〉 ∈ H can be

decomposed as |ψ〉 =
∑d
n=1 ψn |n〉 with ψ ∈ Cd and |ψ| =

∑d
n=1 |ψn|2 = 1. The uniform measure on H is then the

measure on the unit sphere on Cd,

dµ(ψ) =
1

Z
δ
(

1−
d∑

n=1

|ψn|2
) d∏
n=1

dψndψn , (A1)

where Z is a normalization constant. The average over states in H of functions of the reduced density matrix of a
subsystem A [1] is computed more efficiently using the measure over the eigenvalues of the density matrix induced by
dµ(ψ), first computed by Lloyd and Pagels in [39]:

dµ(ψ) −→ dµ (λ1, . . . , λdA) = Z̃ δ
(

1−
dA∑
i=1

λi

)
∆2 (λ1, . . . , λdA)

dA∏
k=1

λdB−dAk dλk , (A2)

where ∆ (λ1, . . . , λdA) =
∏

1≤a<b≤dA (λb − λa) is the Vandermonde determinant and Z̃ a normalization constant.

To compute the average of the entanglement entropy SA over the states in H we start by computing the integral

〈Tr(ρrA)〉 =

∫
Tr(ρrA) dµ(ψ) =

∫ ( dA∑
a=1

λra

)
dµ (λ1, . . . , λdA) . (A3)
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It is convenient to multiply (A3) by a factor of 1 written using the definition of the gamma function Γ,

1

Γ (dAdB + r)

∫ ∞
0

ζdAdB+r−1e−ζdζ = 1 , (A4)

and perform a change of variables qa = ζλa. Integrating over ζ, we eliminate the delta function in the measure. The
integration is over dA copies of the real positive line, qa ∈ [0,∞],

〈TrρrA〉 =
Z̃

Γ (dAdB + r)

∫ ( dA∑
a=1

qra

)
∆2 (q1, . . . , qdA)

dA∏
k=1

qdB−dAk e−qkdqk . (A5)

Each term of the sum over a gives an equal contribution to 〈TrρrA〉. Therefore, we write

〈TrρrA〉 =
Z̃ dA

Γ (dAdB + r)

∫
qr1∆2 (q1, . . . , qdA)

dA∏
k=1

qdB−dAk e−qkdqk . (A6)

The Vandermonde determinant can be computed using any monic polynomial. As noticed in [42, 43], it is convenient

to compute the Vandermonde determinant using the generalized Laguerre polynomials L
(dB−dA)
i (qa) since they form

a complete and orthogonal basis of L2
(
R+, qdB−dAe−q dq

)
. We note that our convention for the Laguerre polynomials

includes a factor (−1)
k
k!,

L
(dB−dA)
k (q) = (−1)

k
k!

k∑
r=0

(
k + dB − dA
r + dB − dA

)
(−1)

r
qr

r!
. (A7)

Writing the determinant in terms of the fully antisymmetric tensor ε with dA indices ik = 0, . . . , dA − 1, the integrals
factorize

〈TrρrA〉 = Z̃
∑
ikjk

dAεi1i2···idA εj1j2···jdA
Γ (dAdB + r)

∫
qr1

dA∏
k=1

L
(dB−dA)
ik

(qk)L
(dB−dA)
jk

(qk) qdB−dAk e−qkdqk . (A8)

All the integrals over qk with k > 1 can be immediately computed using the orthogonality relation of the generalized
Laguerre polynomials ∫ ∞

0

L
(dB−dA)
i (q)L

(dB−dA)
j (q) qdB−dAe−qdq ∝ δij . (A9)

The two ε tensors are then contracted on all indices but the first one. Using the relation∑
i2,...,idA

εi1i2···idA εj1i2···idA ∝ δi1j1 , (A10)

and introducing a new normalization constant ˜̃Z to take care of the normalization of the measure (A2) and of other
proportionality factors, we write 〈TrρrA〉 as

〈TrρrA〉 =
˜̃Z

Γ (dAdB + r)

∑
ij

δijXij (r) , (A11)

where we denoted Xij with i, j = 0, . . . , dA − 1 the integral

Xij (r) =
1

Γ (i+ 1) Γ (dB − dA + i+ 1)

∫ ∞
0

qrLdB−dAi (q)LdB−dAj (q) qdB−dAe−qdq . (A12)

To compute (A11) we only need the values of Xij (r) with i = j. However, the computation of all matrix elements i 6= j
is useful for computing higher order moments and therefore is also computed here. The special case Xij (0) = δij is
easy to obtain as it reduces to the orthogonality relation for the Laguerre polynomials. This is sufficient to determine
the normalization constant, since

dA = 〈Trρ0
A〉 =

˜̃Z

Γ (dAdB)

∑
ij

δijXij (0) = dA

˜̃Z

Γ (dAdB)
(A13)
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requires ˜̃Z = Γ (dAdB). We then compute the integrals Xij (r) (A12) for any r ≥ 0 which appear in

〈TrρrA〉 =
Γ (dAdB)

Γ (dAdB + r)

∑
ij

δijXij (r) . (A14)

To keep the notation compact we denote X(r) the dA×dA matrix with entries Xij (r). Using the generating function
for the generalized Laguerre polynomials

F (t, q) =
∞∑
k

(−1)
k t

k

k!
L

(dB−dA)
k (q) =

1

(1− t) dB−dA+1
e−

tq
1−t and L

(dB−dA)
i (q) = (−1)i

[
di

dti
F (t, q)

]
t=0

, (A15)

we write (A12) as derivatives respect to the parameters x and y of the integral of two generating functions:

Xij (r) =
(−1)

i+j

Γ (i+ 1) Γ (dB − dA + i+ 1)

[
di

dxi
dj

dyj

∫
F (x, q)F (y, q) qdB−dA+re−qdq

]
x=0,
y=0

(A16)

=
(−1)

i+j
Γ (dB − dA + r + 1)

Γ (i+ 1) Γ (dB − dA + i+ 1)

[
di

dxi
dj

dyj
(1− xy)

−dB+dA−r−1
(1− x)

r
(1− y)

r

]
x=0,
y=0

. (A17)

We compute the derivatives explicitly by applying successively the Leibniz rule, obtaining a closed form for the
integrals Xij (r)

Xij (r) =
Γ (j + 1) Γ (r + 1)

2

Γ (dB − dA + i+ 1)

dA−1∑
p=0

Γ (dB − dA + r + 1 + p)

Γ (i− p+ 1) Γ (r + p− i+ 1) Γ (j − p+ 1) Γ (r − j + p+ 1) Γ (p+ 1)
. (A18)

We conclude the computation for 〈SA〉 noticing that

〈SA〉 = −〈TrρA log ρA〉 = − lim
r→1

∂r〈TrρrA〉 = − lim
r→1

∂r
Γ (dAdB)

Γ (dAdB + r)
TrX (r) . (A19)

Taking the derivative and the limit is a long but straightforward calculation that can be done with the help of
Wolfram’s Mathematica. The result is the celebrated Page formula,

〈SA〉 = Ψ(dAdB + 1)−Ψ(dB + 1)− dA − 1

2dB
. (A20)

The calculation of 〈SA2〉 can be done following a similar strategy. We first compute

〈Tr(ρr1A ) Tr(ρr2A )〉 =

∫ ( dA∑
a=1

λr1a

)(
dA∑
b=1

λr2b

)
dµ (λ1, . . . , λdA) (A21)

with r1 > 0 and r2 > 0. We perform a similar change of variables qa = ζλa and eliminate the delta function in the
measure by integrating over ζ. We obtain

〈Tr(ρr1A )Tr(ρr2A )〉 = Z̃
1

Γ (dAdB + r1 + r2)

∫ ( dA∑
a=1

qr1a

)(
dA∑
b=1

qr2b

)
∆2 (q1, . . . , qdA)

dA∏
k=1

qdB−dAk e−qkdqk . (A22)

The two sums can be expanded into two terms that can be integrated separately,(
dA∑
a=1

qr1a

)(
dA∑
b=1

qr2b

)
=

dA∑
a=1

qr1+r2
a +

dA∑
a6=b=1

qr1a q
r2
b . (A23)

The integral of the first term is completely analogous to the computation we just performed resulting in

˜̃Z1

Γ (dAdB + r1 + r2)

∑
ij

δijXij (r1 + r2) , (A24)
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with a proportionality constant ˜̃Z1 to be determined later. The integral of the second term in (A23) reduces to

Z̃
dA(dA − 1)

Γ (dAdB + r)

∫
qr11 q

r2
2 ∆2 (q1, . . . , qdA)

dA∏
k=1

qdB−dAk e−qkdqk . (A25)

Once again, we compute the Vandermonde determinant using Laguerre polynomials. This time the two fully anti-
symmetric tensors are contracted on all but two indices:∑

i3,...,idA

εi1i2i3···idA εj1j2i3···idA ∝ δi1j1δi2j2 − δi1j2δi2j1 . (A26)

We recast the integrals in terms of Xij (r) to obtain

˜̃Z2

Γ (dAdB + r1 + r2)

∑
ijkl

(δijδkl − δilδjk)Xij (r1)Xkl (r2) . (A27)

Summing the two contribution together we find

〈Trρr1A Trρr2A 〉 =
1

Γ (dAdB + r1 + r2)

(
˜̃Z1TrX (r1 + r2) + ˜̃Z2TrX (r1) TrX (r2)− ˜̃Z2Tr (X (r1)X (r2))

)
. (A28)

We fix the proportionality constants requiring 〈TrρrATrρ0
A〉 = dA〈TrρrA〉. The final expression is

〈Trρr1A Trρr2A 〉 =
Γ (dAdB)

Γ (dAdB + r1 + r2)
(TrX (r1 + r2) + TrX (r1) TrX (r2)− Tr (X (r1)X (r2))) . (A29)

We conclude the computation for 〈S2
A〉 noticing that

〈S2
A〉 = 〈(−TrρA log ρA)

2〉 = lim
r1→1
r2→1

∂r1∂r2〈Trρr1A Trρr2A 〉 . (A30)

We take the derivatives and the limits with the help of Wolfram’s Mathematica. The variance of the entanglement
entropy of a subsystem is defined as (∆SA)2 = 〈SA2〉 − 〈SA〉2. Substituting our expressions for 〈SA2〉 and 〈SA〉 we
obtain the result reported in the main text paper:

(∆SA)2 = −Ψ′ (dAdB + 1) +
dA + dB
dAdB + 1

Ψ′ (dB + 1)− (dA − 1) (dA + 2dB − 1)

4d2
B (dAdB + 1)

. (A31)

We can compute higher order moments of the entanglement entropy distribution employing the same strategy
used to compute average and variance. As an example, we also report the computation for the third momentum

m3 = 〈
(
SA − 〈SA〉

)3 〉. First, we compute

〈Trρr1A Trρr2A Trρr3A 〉 =
Γ (dAdB)

Γ (dAdB + r1 + r2 + r3)

(
TrX (r1 + r2 + r3) + TrX (r1 + r2) TrX (r3)− Tr (X (r1 + r2)X (r3))

TrX (r1 + r3) TrX (r2)− Tr (X (r1 + r3)X (r2)) + TrX (r3 + r2) TrX (r1)− Tr (X (r3 + r2)X (r1))

TrX (r1) TrX (r2) TrX (r3) + Tr (X (r1)X (r3)X (r2)) + Tr (X (r1)X (r2)X (r3))

− TrX (r2) Tr (X (r1)X (r3))− TrX (r1) Tr (X (r2)X (r3))− TrX (r3) Tr (X (r1)X (r2))
)

Second, we take the limit of the derivatives respect r1, r2, and r3

〈S3
A〉 = − lim

r1→1
r2→1
r3→1

∂r1∂r2∂r3〈Trρr1A Trρr2A Trρr3A 〉 . (A32)

The computation is an herculean task but with the help of Wolfram’s Mathematica we are able to simplify the exact
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formula for m3:

m3 = Ψ′′ (dAdB + 1)− d2
A + 3dAdB + d2

B + 1

(dAdB + 1) (dAdB + 2)
Ψ′′ (dB + 1) +

(
d2
A − 1

) (
dAdB − 3d2

B + 1
)

dB (dAdB + 1)
2

(dAdB + 2)
Ψ′ (dB + 1) (A33)

−
(dA − 1)

(
2d3
AdB + 3d2

Ad
2
B − 4d2

AdB + 2d2
A + 4dAd

3
B − 3dAd

2
B + 8dAdB − 4dA + 10d2

B − 6dB + 2
)

4d3
B (dAdB + 1)

2
(dAdB + 2)

.

When the subsystem B is large, the result reduces to:

m3 ≈ −
d2
A − 1

d3
Ad

3
B

for dB � 1 . (A34)

The skewness of a probability distribution is a measure of the asymmetry of the distribution and is defined as the
ratio

m3/σ
3 ≈ −

√
8√

d2
A − 1

. (A35)

The negative sign indicates a tilt of the distribution on the right of the median.

We give an example for a small system consisting of two qubits. The exact formulas (A20), (A31) at dA = 2, dB = 2
evaluate to

〈SA〉 = 1
3 ' 0.333 , Smax = log 2 ' 0.693 , (A36)

∆SA = 1
6

√
13− 6

5π
2 ' 0.179 , (A37)

which match the result of the numerical evaluation of the average over random pure states.

Appendix B: Uniform measure over a direct sum of Hilbert spaces

We consider the eigenspace H(E) ⊂ H with fixed energy E. H(E) has the structure of a direct sum of tensor
products

H(E) =
⊕J

j=1

(
HA(εj)⊗HB(E − εj)

)
, (B1)

where HA(εj) and HB(εk) are eigenspaces of given energy for the subsystems A and B.
Energy eigenspaces of the subsystem A are denoted HA(εj) and have dimension djA = dimHA(εj). Similarly for

subsystem B. The energy eigenspaces of the system have then the direct sum structure

H(E) =
⊕

j Hj(E) (B2)

where the sector Hj(E) = HA(εj) ⊗HB(E − εj) has definite energy in each subsystem. We denote dj = dimHj(E)
the dimension of each sector, with dj = djA djB and dE =

∑
j dj the dimension of H(E).

Any state |ψ,E〉 ∈ H(E) can be written as |ψ,E〉 =
∑
j

√
pj |φj〉 with |φj〉 normalized to 1 and

∑
j pj = 1. The

coefficient pj can be interpreted as the probability of finding the state |ψ〉 in the sub-Hilbert space Hj(E). Without
any loss of generality we can assume that a basis |n,E〉 of H(E) is adapted to the decomposition in Hj(E) meaning
that |1, E〉, . . . |d1, E〉 is a basis of H1(E), |d1 +1, E〉, . . . |d1 +d2, E〉 is a basis of H2(E) and so on. Focusing for clarity
on j = 1, it is easy to see that

dψ1dψ1 · · · dψd1dψd1 = pd1−1
1 dp1 δ(|φ1| − 1)dφ1,1dφ1,1 dφ1,2dφ1,2 · · · dφ1,d1dφ1,d1 = pd1−1

1 dp1 dµ(φ1) . (B3)

Repeating this decomposition on all the subspaces Hj(E), the uniform measure on H(E) can be written as the
probability distribution of finding |ψ,E〉 in Hj(E) times the product of the uniform measures on Hj(E):

dµ(ψ) = dν(p)
∏
j dµ(φj) , (B4)

where

dν(p) =
1

Z
δ
(

1−
∑
j=1

pj

) J∏
j

p
dj−1
j dpj . (B5)
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The normalization constant Z can be computed using a procedure similar to the one used in (A2),

Z =

∫
δ
(

1−
∑
j=1

pj

)
p
dj−1
j

∏
j

dpj =

∏
j Γ (dj)

Γ (dE)
. (B6)

The average and the variance of pj can be easily shown to be given by

〈pj〉 =
dj
dE

, (∆pj)
2 =

dj (dE − dj)
d2
E (dE + 1)

. (B7)

The average of the Shannon entropy for the probability distribution (B5) is given by

〈S(p)〉 = −〈
∑
j

pj log pj〉 = −

∂r〈∑
j

prj〉


r=1

= Ψ (dE + 1)−
∑
j

dj
dE

Ψ (dj + 1) . (B8)

We illustrate the result with two examples. The first one consists in taking all equal dimensions dj = dE/J . We
find:

〈pj〉 =
1

J
, (∆pj)

2 =
J − 1

J2

1

dE + 1
, (B9)

〈S(p)〉 = Ψ (dE + 1)−Ψ (dE/J + 1) ≈ log(J) for J � 1. (B10)

As a second example, we consider the case where the dimension dJ is much larger than the sum of all the others

dJ � dR =
∑J−1
i=1 di = dE − dJ . In this case the exact formulas reduce to

〈pJ〉 ≈ 1− dR
dJ

, (∆pJ)2 ≈ dR
d2
J

(B11)

〈pi〉 ≈
di
dJ

, (∆pi)
2 ≈ di

d2
J

for i 6= J , (B12)

〈S(p)〉 ≈ 1

dJ

(
dR + dR log dJ +

J−1∑
i=1

diΨ (di + 1)
)
. (B13)

Note in particular that the average Shannon entropy goes to zero as dJ →∞. Furthermore if all the dimensions are
large dj � 1, we note that the average Shannon entropy equals the Shannon entropy of the average probability,

〈S(p)〉 ≈
J∑
j=1

〈pj〉 log〈pj〉 . (B14)

The computation of ∆S(p)2 is straightforward but its expression is convoluted. We report here its leading order for
dj � 1,

∆S(p)2 ≈ 1

dE

∑
j

dj
dE

(
1 + log

dj
dE

)2

− 1

dE

∑
ij

didj
d2
E

(
1 + log

di
dE

)(
1 + log

dj
dE

)
. (B15)

The variance of the Shannon entropy vanishes as 1/dE for dj →∞.
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