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Fig. 1. For this indoor scene lit by a sun/sky environment emitter, path tracing resolves most of the lighting well, but introduces high variance in the reflective
caustic cast by the mirror. ERPT and RJMLT resolve the caustic better, but do not handle diffuse lighting well and introduce noise and temporal flickering. Our
method uses MLT to only resolve the difficult paths using bidirectional path tracing, and handles everything else with path tracing, leading to significantly
improved MSE (relative MSE shown in insets) and vastly reduced temporal flickering (see Fig. 5). Scene ©SlykDrako.

Light transport is a complex problem with many solutions. Practitioners are

now faced with the difficult task of choosing which rendering algorithm

to use for any given scene. Simple Monte Carlo methods, such as path

tracing, work well for the majority of lighting scenarios, but introduce

excessive variance when they encounter transport they cannot sample (such

as caustics). More sophisticated rendering algorithms, such as bidirectional

path tracing, handle a larger class of light transport robustly, but have a high

computational overhead that makes them inefficient for scenes that are not

dominated by difficult transport. The underlying problem is that rendering

algorithms can only be executed indiscriminately on all transport, even

though they may only offer improvement for a subset of paths. In this paper,

we introduce a new scheme for selectively combining different Monte Carlo

rendering algorithms. We use a simple transport method (e.g. path tracing)

as the base, and treat high variance “fireflies” as seeds for a Markov chain

that locally uses a Metropolised version of a more sophisticated transport

method for exploration, removing the firefly in an unbiased manner.We use a

weighting scheme inspired by multiple importance sampling to partition the

integrand into regions the base method can sample well and those it cannot,

and only use Metropolis for the latter. This constrains the Markov chain to

paths where it offers improvement, and keeps it away from regions already

handled well by the base estimator. Combined with stratified initialization,

short chain lengths and careful allocation of samples, this vastly reduces

non-uniform noise and temporal flickering artifacts normally encountered

with a global application of Metropolis methods. Through careful design

choices, we ensure our algorithm never performs much worse than the base

estimator alone, and usually performs significantly better, thereby reducing

the need to experiment with different algorithms for each scene.
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1 INTRODUCTION
Photorealistic image synthesis is an important problem with many

applications in scientific visualization, video games and the movie

industry. The rendering equation [Immel et al. 1986; Kajiya 1986] and

the path integral [Veach 1997] form the predominant mathematical

framework for physically based rendering, formalizing it in terms

of an integration problem over the space of light paths connecting

the camera to a light source.

In practical scenes with complex lighting, materials and geome-

try, the space of possible light paths is large and high-dimensional,

making Monte Carlo based rendering methods the predominant

solution technique [Pharr et al. 2016]. Of these methods, path trac-

ing [Kajiya 1986] in particular has found widespread adoption in

industry [Christensen and Jarosz 2016; Fascione et al. 2017], owing

to its simplicity and efficiency.

Although path tracing can perform well most of the time, it may

undersample small sets of high-contribution light paths (such as

caustics), which introduces excessive variance and leads to long

render times before a noise-free image is obtained (Figure 2, middle

row). More sophisticated Monte Carlo methods [Georgiev et al.

2012; Hachisuka et al. 2012; Lafortune and Willems 1993; Veach and

Guibas 1994] are superior at sampling complex transport, but these

methods come with considerable computational overhead. If the

scene is dominated by “simple” transport, i.e. that which path tracing

can handle well, these methods perform significantly worse than

path tracing when compared at equal time. This is because these

methods can only be employed globally, i.e. on all transport, rather
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than locally, i.e. only on complex transport where they provide an

advantage.

Rendering algorithms based onMarkov chains such as Metropolis

light transport (MLT) [Veach and Guibas 1997] excel at focusing

computational effort on complex transport by reusing and iteratively

perturbing existing samples. While they can sometimes reduce vari-

ance significantly compared to pure Monte Carlo methods, they also

explore the available space unevenly, leading to poor stratification,

“splotchy” non-uniform noise and flickering artifacts in animations.

This is particularly apparent on simple transport such as direct

lighting, which would otherwise be sampled well by path tracing

(Figure 2, bottom row). Implementations of these methods typically

include hard-coded rules for separating out simple transport to be

handled by a separate Monte Carlo method, but these rules do not

generalize well. Much like sophisticated pure Monte Carlo methods,

methods based on MLT only outperform path tracing when the

scene is dominated by complex transport.

In this paper, we introduce a way to selectively combine tradi-

tional Monte Carlo rendering algorithms with Metropolis sampling

to leverage the benefits of both. We partition the integration do-

main into regions that are handled well by a “base” Monte Carlo

method (like path tracing) and those that are not. Whenever the

base method encounters a sample in the latter region that would

introduce high variance, the sample is used instead as a seed for

a Markov chain that locally explores the difficult transport with

a more sophisticated rendering algorithm (like bidirectional path

tracing).

The design space for this type of algorithm is large, and we iden-

tify a particularly practical configuration that has the following

important properties:

• Robustness. Our method is usually much better and never much

worse than the base method. By quickly classifying which samples

should be handled by the Markov chain and carefully allocating

computational effort, our method does not degrade the perfor-

mance of the base method and avoids adversely affecting render

times when not needed.

• Stratification.We drastically reduce temporal flickering and im-

prove stratification by restricting the Markov chain only to paths

the base method cannot handle well. Low-discrepancy sequences

and adaptive sampling may still be used for the base method,

further improving noise characteristics.

• Local use of complexmethods. Even if the base method is sim-

ple (e.g. path tracing), the Markov chain may use inversions [Bit-

terli et al. 2018; Otsu et al. 2017; Pantaleoni 2017] to employ more

complex rendering methods (e.g. bidirectional path tracing) to

explore nearby difficult transport. The ability to use these sophis-

ticated algorithms locally only for samples that need it allows our

algorithm to improve both upon the base method and its more

sophisticated variants.

We motivate our combination of Monte Carlo and Markov chains

with Multiple Importance Sampling [Veach and Guibas 1995] (sec-

tion 3), and show that the standard MIS heuristics do poorly for our

purposes (section 4). MIS for these estimators can be interpreted as

a crude firefly detector, and we improve on the standard heuristics

with a more sophisticated outlier detector. We then discuss the de-

sign decisions needed to make the resulting MLT estimator practical

(section 5) and describe our choice of outlier detector (section 6).

2 RELATED WORK
Metropolis. Starting with the original Metropolis light transport

algorithm [Veach and Guibas 1997], much effort has been invested

in finding specialized perturbation strategies for complex transport

configurations [Hanika et al. 2015; Jakob and Marschner 2012], visi-

bility [Hachisuka and Jensen 2011; Šik et al. 2016], and improved

step size control [Otsu et al. 2018; Zsolnai and Szirmay-Kalos 2013].

MLT algorithms based in primary sample space [Hachisuka et al.

2014; Kelemen et al. 2002] are of particular interest due to their

simplicity and ability to leverage importance sampling strategies

present in modern renderers. Recent extensions [Bitterli et al. 2018;

Otsu et al. 2017; Pantaleoni 2017] allow these methods to leverage

inverses to rapidly switch between different importance sampling

techniques, which allows them to explore difficult paths more easily.

Although in theory our algorithm could be used with any of these

methods, we focus on primary sample space methods and in particu-

lar Reversible Jump MLT (RJMLT) [Bitterli et al. 2018], as it presents

a good trade-off between robustness and simplicity. Energy Redis-

tribution Path Tracing [Cline et al. 2005] (ERPT) aims to improve

stratification by running many short chains in parallel, as opposed

to the few, long-lived chains of traditional methods. Similar to ERPT,

we use well-seeded, short-lived chains to improve stratification, but

combine it with a partitioning of the integration domain so that

the Markov chains only need to explore small, high-energy parts of

path space, which further improves efficiency.

Path Guiding. Adaptive importance sampling has a long history

in light transport, starting with photonmaps [Jensen 1995] or spatial

data structures [Lafortune and Willems 1995] used to guide path

tracing. Generally speaking, these methods build local representa-

tions of the incoming radiance based on past samples, and use these

representations to guide future samples. Classical machine learning

methods [Dahm and Keller 2017; Hey and Purgathofer 2002; Müller

et al. 2017; Reibold et al. 2018; Vorba et al. 2014], and more recently

neural networks [Müller et al. 2018] have found widespread use for

representing radiance and guiding samples. Although these meth-

ods are capable of concentrating samples in high-variance areas,

they can only do so after the fact; until the distribution of radiance is

learned, problematic samples may introduce excessive variance into

the image that takes many subsequent samples to remove. In addi-

tion, these methods require complex spatial acceleration structures

that do not adapt well to large scene scales or highly directional

transport. In contrast, our method does not require an initial learn-

ing period or spatial data structures, and can remove high variance

samples in an unbiased manner before they enter the estimate.

Filtering and Denoising. A different approach to handling variance

in MC rendering is to blur problematic samples or directly remove

them from the image. This can be in the form of selective blurring

based on image variance [Rousselle et al. 2012; Xu and Pattanaik

2005] or geometric features [Rousselle et al. 2013], or more sophisti-

cated methods based on regression [Bitterli et al. 2016; Moon et al.
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2014] or neural networks [Bako et al. 2017; Chaitanya et al. 2017].

Zwicker et al. [2015] provides a comprehensive survey up to 2015.

These methods can be powerful at reducing residual variance, but

come at the cost of introducing significant bias. Gradient-domain

formulations [Gruson et al. 2018; Kettunen et al. 2015; Lehtinen et al.

2013; Manzi et al. 2015] can also reduce and distribute error more

evenly across the image either via a screened Poisson solver [Pérez

et al. 2003] or as a form of control variates [Rousselle et al. 2016].

In their unbiased form, however, these tend to be outperformed

by biased denoising approaches. Instead of removing variance as a

post-process, a common alternative approach is to prevent excessive

variance from entering the image in the first place, either by clamp-

ing the contribution of a sample to some maximum value [Fascione

et al. 2017; Keller 1997], or by statistically detecting outliers and

discarding [DeCoro et al. 2010] or reweighting [Zirr et al. 2018]

them. These methods still introduce bias, but limit the use of fil-

tering only to samples with excessive variance. Instead of outright

removing problematic samples, we use them as starting points for

a Markov chain which spreads the brightness of the sample to its

neighboring pixels, resembling an unbiased form of blurring high

variance samples. Our method could still benefit from standard de-

noising methods to remove residual variance, and is more amenable

to filtering than standard MLT methods due to improved noise

uniformity.

3 BACKGROUND
Monte Carlo Rendering. The path integral framework forms the

basis of most current rendering algorithms and expresses the value

of a pixel measurement I in terms of an integral over the space P

of all light paths

I =

∫
P

f (x̄) dx̄ , (1)

where f (x̄) is the measurement contribution of light path x̄. Tradi-
tional Monte Carlo rendering algorithms approximate Eq. (1) using

the estimator

I ≈
1

N

N∑
i=1

f (x̄(i))
p(x̄(i))

, (2)

which averages the result of N random and independent light paths

x̄(i) that were sampled with probability density p(x̄(i)).

Markov Chain Monte Carlo (MCMC). Instead of generating paths

independently, rendering algorithms based on MCMC generate a

sequence of correlated paths, starting from an initial seed path x̄(0).
At each step of the chain, a tentative path ȳ(i+1) is sampled from a

proposal distribution T (x̄(i) → ȳ(i+1)), which is typically a narrow

distribution (e.g. a Gaussian) centered on the previous path. The

tentative path is then probabilistically accepted as the new state

x̄(i+1) of the chain with probability r (x̄(i) → ȳ(i+1)). If the tentative
path is rejected, the chain remains at its current state x̄(i).

The acceptance probability is carefully crafted in tandem with a

target distributionC(x̄) so that the distribution of states approaches

the target distribution in the limit. To obtain an image, MLT splats a

value of f (x̄(i))/C(x̄(i)) to the image at each step of theMarkov chain.

In the following, we will assume that the path contribution itself

(or its luminance) are chosen as the target distribution i.e. C(x̄) =
f (x̄(i))/c for some normalization constant c , although other choices

are possible [Hoberock and Hart 2010]. If the path contribution is

not scalar, we assume f (x̄) to be its luminance for brevity, and use

fRGB(x̄) to explicitly refer to the spectral version.

Primary Sample SpaceMLT. UsingMLT directly in path space [Veach

and Guibas 1997] can be cumbersome, because it is difficult to evalu-

ate and tailor the proposal distribution to thematerials and geometry

present in the scene. Primary Sample Space MLT (PSSMLT) [Kele-

men et al. 2002] instead leverages an existing Monte Carlo rendering

algorithm (like path tracing) and recasts it as a function x̄ = S(u) that
maps points u ∈ U in the random number hypercubeU = [0, 1]k—

the primary sample space—to paths x̄. Eq. (1) can then be rewritten

as an integral over the primary sample space

I =

∫
U

f (u) du , (3)

where f (u) = f (S(u))/p(S(u)) for brevity, and p(S(u)) is both the

path space probability density of sample u and the Jacobian deter-

minant of function S . We can view traditional Monte Carlo methods

as approximating this integral with

I ≈
1

N

N∑
i=1

f (u(i))
p(u(i))

=
1

N

N∑
i=1

f (u(i)) . (4)

Because these methods generate samples uniformly at random, the

sample density in primary sample space is simply p(u(i)) = 1.

PSSMLT uses this formulation by running the Markov chain in

primary sample space instead of path space directly. Each state of

the Markov chain is a vector of random numbers, and the under-

lying mapping S is used to evaluate the contribution of each state.

PSSMLT vastly simplifies proposals, since they can be sampled from

simple Gaussians in the unit hypercube, and it leverages the existing

importance sampling performed by the underlying mapping.

Reversible Jumps. Applying PSSMLT to bidirectional path tracing

is complicated by the fact that bidirectional path tracing consists of

multiple distinct sampling techniques that each represent a different

mapping Sj from primary sample space to paths. Recent work on

probabilistic inverses [Bitterli et al. 2018; Otsu et al. 2017; Panta-

leoni 2017] allows mapping a path x̄i generated with technique i
back to a point in primary sample space via the inverse mapping

u = S−1i (x̄i ). Coupled with the forward mapping, this allows jump-

ing between points u, v sampled with techniques i, j through the

composite mappings v = S−1j (Si (u)) or u = S−1i (Sj (v)). This al-
lows PSSMLT to easily switch between sampling techniques during

rendering, facilitating faster exploration.

Multiple Importance Sampling (MIS). When multiple Monte Carlo

estimators exist for the same integral, each individual estimator may

work better or worse than the other estimators in different parts

of the integration domain. Instead of choosing a single estimator,

a more robust solution is to use a weighted combination of all

estimators with weights chosen such that the combined estimator

has lower variance than any individual estimator. MIS [Veach and

Guibas 1995] provides several different heuristics for deriving these

weights based on the PDFs of the estimators.

ACM Trans. Graph., Vol. 38, No. 6, Article 153. Publication date: November 2019.



153:4 • Benedikt Bitterli and Wojciech Jarosz

Assuming there are two strategies with PDFs p1 and p2, the bal-
ance heuristic weights samples drawn from the first strategy using

w1(u) =
n1 · p1(u)

n1 · p1(u) + n2 · p2(u)
, (5)

and analogously for the second strategy, where n1 and n2 are the
number of samples drawn from the two strategies.

While the balance heuristic provides continuously varyingweights,

the maximum heuristic assigns a binary weight of 1 to the estimator

with the highest PDF, e.g. for the first strategy

w1(u) =

{
1 if n1 · p1(u) > n2 · p2(u) ,
0 otherwise ,

(6)

and analogously for the second strategy. Both the balance and the

maximum heuristic can be proven to be optimal in the sense that the

variance of the combined estimator is never much worse than the

variance of the estimator with optimal MIS weights [Veach 1997].

Discussion. In theory, MIS provides a mechanism for combining

estimators with different strengths, and we could attempt to solve

the problem laid out in Section 1 by coming up with a weighting

heuristic that is aware of the difference in computational effort

between estimators. However, this approach will fail in practice,

since MIS only provides a way for weighting different estimators; it

does not provide a way for guiding estimators towards paths that

score a large weight. Naive MIS would simply waste any samples

generated by a sophisticated estimator when they could be handled

by a simple estimator; but what we need is to not generate these

samples with an expensive estimator in the first place.

MLT is capable of guiding samples based on an arbitrary target

function, and this function can incorporate MIS weights [Hachisuka

et al. 2014]. We will use this idea and incorporate a specially crafted

weight into the target distribution of a Markov chain, such that

samples generated by computationally expensive estimators are

focused where they provide a benefit. Methods based on MLT, how-

ever, suffer from non-uniform noise and temporal artifacts that we

do not want to inherit, so we need to first identify the scenarios in

which MLT performs well.

4 SELECTIVE METROPOLISATION VIA MIS
In Fig. 2, we illustrate a simplified direct lighting scenario with

varying occlusion. A Monte Carlo approach without light sampling

(middle row) in this scene performs well if large areas of uniform

brightness of the emitter are visible (left), but does poorly if light is

visible only through a small window (middle). In contrast, an MLT

based method performs well if the target distribution is non-zero

only in a narrow region (middle), but does poorly on large areas

with uniform importance (left). Neither method performs well on a

scene with a mixture of both cases (right).

We propose to formulate the selective combination of MC and

MLT as a multiple importance sampling problem. The purpose of

this section is to come up with an MIS weighting strategy w(u)
that assigns small weights to large, flat areas easily integrable with

Monte Carlo and large weights to small islands that are best ex-

plored with MLT. We will then use the MC estimator to integrate

f (u)(1 −w(u)) in a straightforward way, and use MLT to explore

M
o
n
t
e
C
a
r
l
o

M
L
T

(a) (b) (c)

Fig. 2. We illustrate a simple scene lit by an environment emitter under
different occlusion (top row). Monte Carlo methods (middle row) distribute
their samples uniformly at random in primary sample space. This works well
if the energy landscape is close to uniform (left column), but fails to sample
small energy islands well (middle column). MLT (bottom row) performs
poorly in flat regions (left column), but excels at exploring difficult paths
(middle column). When a scene contains a mixture of both scenarios, neither
strategy works well in isolation (right column).

the target distribution f (u)w(u), which makes it focus its sampling

effort where MLT performs well compared to MC.

Wewill first look at the standardweights derived from the balance-

and maximum heuristic and explore why they are not ideal for our

purposes, before deriving a better weighting scheme. For simplicity,

we consider combining a Monte Carlo estimator with a PSSMLT

method that uses the same underlying estimator as its mapping S(u);
however, the same weights hold for any MLT method in primary

sample space.

Both the max- and balance heuristics require knowing the PDF of

the two estimators. In primary sample space, the PDF of the Monte

Carlo method is trivially p2(u) = 1. Following Kelemen et al. [2002],

we use the target distribution as the PDF of the Markov chain, i.e.

p1(u) = f (u)/c , and the MIS weight of the Markov chain becomes

w1(u) =
n1 · (f (u)/c)

n1 · (f (u)/c) + n2 · 1
=

f (u)
f (u) + n2/n1 · c

=
f (u)

f (u) + b
, (7)

for the balance heuristic, where b is some constant that does not

depend on the sample, and

w1(u) =

{
1 if n1 · f (u)/c > n2 · 1

0 else

=

{
1 if f (u) > b ′

0 else,
(8)

for the maximum heuristic and some other constant b ′.
Equations (7) and (8) allow us to performMIS between any Monte

Carlo estimator and its PSSMLT variant. The Markov chain will

automatically move towards regions where the base MC estimator

performs poorly, and high-variance samples generated by the MC

estimator will be downweighted before being added to the estimate.
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This forms the basis of a workable rendering algorithm. However,

these specific weights do not fully satisfy the goals set out at the

beginning of this section, and we again turn to Fig. 2 for an intuition.

For both heuristics, the MIS weight of the Markov chain depends

solely on the brightness of the sample. If both the window and the

large flat region have similar brightness, then these MIS weights

will lead to either MLT or Monte Carlo being used for both regions,

rather than the separation we would want. In practice, this leads to

counter-intuitive results, such as MLT being used to explore bright

direct lighting, and dim indirect lighting being left to Monte Carlo.

Although not ideal, the weight derived from the maximum heuris-

tic provides a starting point for deriving a better weighting scheme:

Looking at Eq. (8), this heuristic assigns zero weight to the Monte

Carlo estimator whenever the sample weight exceeds some thresh-

old, i.e. f (u) > b. If we did not use MLT in addition, this scheme

would be equivalent to discarding samples with high contribution

(“fireflies”) to avoid high variance at the cost of bias.

Classifying samples as fireflies based on brightness alone is the

simplest in a family of outlier detectors. These algorithms detect

unlikely Monte Carlo samples, and are usually employed as a last-

resort measure to remove troublesome samples. However, outlier

detectors form a strong candidate for a good weighting scheme for

combining MLT and Monte Carlo: small islands in path space that

are easily explored with MLT directly correspond to outlier samples,

whereas samples in large uniform areas that are well sampled by

MC would be classified as inliers.

Following these insights, we propose the following algorithm:

Given an outlier detector that assigns large weightsw(u) to unlikely
samples, we integrate the function f (u) · (1−w(u)) with a standard

MC estimator, and use MLT to integrate the function f (u) ·w(u).
We give a high-level overview of our method in algorithm 1. The

Monte Carlo aspect of this algorithm is straightforward, but there

is a large design space for the Markov chain. In the next section, we

will explore the specific details needed to turn MLT into a practical

and efficient rendering algorithm for our purposes.

5 PRACTICAL MLT ON SPARSE DISTRIBUTIONS
Naively running an existing MLT method on the target distribution

f (u) ·w(u) works poorly in practice. By design, this target distribu-

tion is sparse and contains a large number of small, disconnected

“islands”. This creates two problems: Exploring the state space effec-

tively poses a challenge, and finding initial states u(0) with non-zero

contribution is difficult.

Our solution to this problem is two-fold: First, we directly use

discarded samples of the Monte Carlo estimator as initial states for

MLT. MC samples with low MIS weights will have a large score

in the corresponding MLT target distribution and therefore form

suitable initial states for the Markov chain. This ensures a large

and continually increasing sample pool for MLT to choose from.

Secondly, because it is difficult for MLT to find its way across is-

lands, we don’t expend any effort into trying to do so. We only use

local perturbations instead of global mutations that are likely to fail,

and use many short-lived chains (100-1000 perturbations) instead

of a single long-lived chain. The latter ensures we still get global

Algorithm 1: High-level outline of our rendering algorithm

1 function renderOneSPP()
2 // Run Monte Carlo sampler

3 outliers← {}

4 for i ← 0 to numPixels do
5 RNGState← RNG

6 samples← traceMonteCarloPath(i, RNG)

7 foreach c ∈ samples do
8 outlierDetectorSplat(i, c)
9 w ← outlierWeight(i, c)

10 framebufferSplat(i, c · (1 −w ))
11 if w > 0 then
12 append(outliers, {w · c, RNGState})

13 // Bookkeeping

14 n1 ← determineMLTSampleBudget(outliers)

15 numChains← n1
chainLength

16 // Run MLT

17 for i ← 1 to numChains do
18 seed← selectSeed(candidates)

19 runMLT(seed)

20 // Apply changes to outlier detector from this iteration

21 updateOutlierDetector()

coverage of the state space, and also greatly improves stratification

and noise characteristics of MLT [Cline et al. 2005].

Each complete transport path formed by the Monte Carlo estima-

tor (e.g. each successful shadow connection by a path tracer) is run

through the outlier detector and recorded in an outlier pool ifw(u)
is non-zero. For each chain, we randomly select one of the samples

in the outlier pool as the initial state u(0) and run the Markov chain

for k steps. Assuming an MLT budget of n1 samples, we may run

⌊n1/k⌋ chains in total. At each step u(i) of the Markov chain, we

record a value of

1

n1
·

f (u(0))
pmf(u(0))

·
fRGB(u(i))
f (u(i))

, (9)

in the framebuffer, where f (u(0)) is the brightness of the initial

outlier, and pmf(u(0)) is the probability of picking that outlier as the
initial state from the set of recorded outliers. To ensure all chains

have approximately equal contribution, we set pmf(u(0)) ∝ f (u(0)).
Similar to Cline et al. [2005], we did not find our setting of the

chain length parameter to be critical. Shorter chains generally lead to

increased correlation artifacts, while longer chains lead to increased

noise as fewer seed paths can be explored. We use 1000 mutations

as a sane default, and did not need to adjust it for different scenes.

5.1 Allocating Samples
To make our algorithm effective, we need to appropriately budget

the number of samples that the MLT- and the Monte Carlo estimator

should take. Too few samples for MLT means we do not improve

much over the Monte Carlo estimator alone, and too many increases

render times without much decrease in variance.

The weighting introduced by the outlier detector effectively cre-

ates a soft partitioning of the integrand into two domains, where
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w(u) is 1 or 0 respectively. The ideal sampling PDF is perfectly pro-

portional to the integrand; therefore, it would on average place a

number of samples in each domain proportional to the domain’s

total brightness. That is, if the total number of samples taken is n,
then the region handled by MLT should receive

n1 = n · r with r =

∫
U
w(u)f (u) du∫
U

f (u) du
(10)

samples to match the distribution of the ideal PDF. The Monte Carlo

sampler will deviate from the ideal PDF, and will place a smaller

fraction than r in the outlier domain. We use the MLT estimator

to compensate for this imbalance by adding additional samples

exclusively in the outlier region. Knowing that n = n1 + n2, the
number of MLT samples is then determined by n1 = n2 · r/(1 − r ).
The number n2 of MC samples is determined by the user (via

samples-per-pixel), but we do not know the ideal sample ratio r
a priori. However, we note that the unweighted MC samples are

an estimator of the denominator of Equation 10, and the weighted

samples an estimator of the numerator. We therefore keep running

averages of these two quantities and use their ratio to estimate r
incrementally during rendering.

6 DETECTING OUTLIERS
In theory, our algorithm is not limited to any particular outlier

detector. However, the choice of detector has a large influence on

the practical efficiency of the algorithm, and if our goal is to obtain

a fast renderer, this imposes several design constraints on the choice

of outlier detector.

The primary goal of our algorithm is to not degrade the perfor-

mance of the base integrator when it works well. In particular if

path tracing is used as the base, the cost of obtaining a sample is

comparably low; since the outlier classifier is run on each sample,

the computational efficiency of the classifier is paramount. In addi-

tion, high-quality renderings require a large number of samples, and

therefore the memory footprint of the classifier should be indepen-

dent of the sample count. These constraints make outlier detectors

operating in image space an attractive choice.

Pixels may contain samples from many independent integrals

(multiple path lengths, light sources, etc.). Sample statistics for a

pixel thus usually contain multiple modes, and the outlier detector

should be able to represent these; simple approaches such as per-

pixel mean and variance are not sufficient.

This initially led us to consider Density-Based Outlier Detection
(DBOR) [DeCoro et al. 2010]. While DBOR is an acceptable choice

for the purposes of our algorithm, it does not have bounded memory

footprint and its computational cost causes considerable efficiency

loss on simple scenes (such as e.g. a Cornell box). More recently,

Zirr et al. [2018] introduced an outlier detector based on cascaded
framebuffers. While similar in spirit to DBOR, this detector is com-

putationally inexpensive, has bounded memory footprint, and is

very effective at outlier detection, all the while being a very simple

algorithm to implement. From a practical standpoint, this makes it

an attractive choice for our algorithm.

B0B0 B1B1 B2B2 B3B3

Monte Carlo SamplesMonte Carlo Samples

Cascaded Frame BufferCascaded Frame Buffer

InliersInliers OutliersOutliers

Fig. 3. We illustrate our chosen outlier detector in a scene containing diffi-
cult lighting. Starting from the raw Monte Carlo samples (top row), we first
record individual samples in one of several cascaded frame buffers based on
sample brightness (middle row). Using the number of samples with similar
brightness as an indicator of whether a sample is unlikely, the detector
reliably distinguishes paths handled well by Monte Carlo (bottom left) from
outlier paths (bottom right) on a per-sample basis. Scene ©Hamza Cheggour

6.1 Implementation Details
In the following, we first describe the detector of Zirr et al. [2018]

in detail, before motivating our particular choice of parameters. We

illustrate this detector in Figure 3.

This detector stores a set of exponentially spaced framebuffers

B0, . . . ,Bm , in which buffer Bj at each pixel counts the number of

samples that fall in a luminance range centered on α ·β j . All samples

generated by the Monte Carlo estimator, outlier or not, are recorded

in the cascaded framebuffer. For a sample with luminance x , we find
the nearest buffers Bj and Bj+1 such that j = ⌊logβ x/α⌋, and add

a value ofw = logβ (x/α) − j to the corresponding pixel in Bj and
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a value of 1 −w to Bj+1. To determine if a sample is an outlier, we

linearly interpolate from the nearest buffers using the same weights

as with splatting, and check if the interpolated value is smaller than

a threshold τ .

Choice of Parameters. High-energy samples are almost exclusively

outliers, and we consider samples far beyond meaningful image

values (1000 in our implementation) automatically as outliers. The

detector only needs to operate in the regime below this threshold,

and we pick the numberm of buffers to cover the luminance range

below 1000.

The exponential spacing of the buffers controls the discretiza-

tion of the luminance range: A smaller spacing means a larger

number of modes can be represented per pixel; but it also means

per-buffer statistics are noisier at lower sample counts. We choose

(α = 1/2, β = 2) as a tradeoff between robust detection at low sam-

ple counts and luminance resolution. This differs from the powers

of 8 used by Zirr et al. [2018]; this is because they focus on ex-

tremely high-energy fireflies and require all samples to be splatted

to a buffer, thus the larger dynamic range. Our method benefits from

discriminating lower energy outliers and gracefully handles samples

brighter than the maximum representable luminance, motivating

the use of a smaller spacing.

We set the classification threshold τ = max(3, spp/m), which
considers luminance ranges that receive less than uniform (spp/m)

samples to likely contain outliers. At low sample counts we do not

have much information; we err on the side of caution and clamp

the threshold to a lower bound.

Updating the Detector. Updating the outlier detector while simul-

taneously using it to classify outliers would lead to bias, as MIS

weights would shift during rendering. We instead render the image

in iterations of a small number of samples per pixel at a time. We

keep two copies of the outlier detector: The first is used only for

classifying outliers and is left unchanged during each iteration, and

the second records new samples generated from the Monte Carlo

estimator. After the iteration is complete, we copy the contents of

the second detector into the first.

Additional Thresholding. Regardless of which detector is used, it

may classify samples as outliers that are too dim to be worth explor-

ing with MLT. The likelihood of an outlier being picked as a chain

seed depends on its brightness, and dim outliers are picked so rarely

that it is better to splat them to the image than to hope for them to

become a Markov chain. To account for this, we impose a minimum

brightness threshold for a sample to be considered an outlier. The

threshold is determined automatically during rendering: Between

each iteration, we identify all outliers whose probability of being

picked for MLT exploration is smaller than some threshold (1/2

in our implementation), and set the maximum sample brightness

within this set as the threshold for the next iteration.

7 RESULTS
We implemented our method on top of an open source rendering

system, and tested it on a diverse test set of indoor- and outdoor

scenes that contain varying mixtures of difficult and simple light

transport. Although our method could be used with any Monte

Carlo and MLT estimator, we found the combination of path tracing

and RJMLT to work the best, and only show results using this combi-

nation in the paper. We include additional results using bidirectional

path tracing combined with RJMLT in the supplemental. We use

the public implementation provided by the authors of RJMLT for

comparison, and will release the full source code of our method. We

rendered time-sensitive results on an 8-core AMD Ryzen 1800x with

16 threads, and all remaining results on a heterogeneous compute

cluster. We evaluate our method using a variety of metrics, detailed

in the following paragraphs.

Equal-time Renderings. In Fig. 1 and Fig. 4, we show several scenes

rendered with path tracing, RJMLT, our method and a modified

version of ERPT that uses RJMLT. Sample counts were normalized

so all methods complete in equal time of 150 seconds. We also show

the MSE of each method to a reference, relative to our method. This

corresponds to how much longer we should expect to render with

each method to obtain the same error as our method. In nearly

all scenes, our method provides improvements of 2–15× over the

estimators our method is combining, both visually and in terms of

MSE. The only exception is the pool scene: Because the image is

dominated by very difficult paths, the computational effort expended

on path tracing does not provide much benefit over running RJMLT

alone, and our method performs slightly (0.8×) worse than RJMLT.

Convergence Plots. For MLT based methods, individual renderings

may not be representative of the behavior of the algorithm due

to correlations. For each estimator, we therefore also rendered 30

independent runs with different random seeds, and computed the

evolution of MSE over time. The average MSE then provides a more

stable comparison metric, which we plot in Fig. 5. We also compute

the standard deviation of the MSE across all runs, which gives an

indication of the temporal flickering for each method. We visualize

this with a shaded region around the average MSE corresponding

to one standard deviation. Note that because of logarithmic axes,

this region is asymmetric around the mean. As expected from a

pure MLT method, RJMLT has erratic convergence and significant

variance between runs, which makes it undesirable for practical

use. ERPT has smoother convergence and less temporal variance

than RJMLT, but converges significantly slower. Much like path

tracing, our method provides smooth convergence and temporal

stability, but with significantly lower average error. In most scenes,

ourmethod significantly outperforms RJMLT, except when the scene

is dominated by complex transport; however, we offer significantly

more stable convergence and still outperform path tracing.

Temporal Videos. To visually aid in comparing temporal flickering,

we also provide videos for each method showing 30 independent

runs in quick succession. We refer to the supplemental material

containing an interactive viewer for comparing these videos.

8 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
We introduced a new rendering algorithm that selectively combines

different Monte Carlo estimators through MLT. Using MIS as a the-

oretical foundation for combining MC estimators with different

strengths, we incorporate a special MIS weight into the target dis-

tribution of a Markov chain in order to focus its sampling effort in
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Fig. 4. We show a diverse set of scenes rendered with path tracing, ERPT with reversible jumps, RJMLT and our method, and compare them at equal render
time. We show the relative MSE (computed over the entire image) of each method compared to ours, which is equivalent to how much longer each method
would have to render to reach the same MSE as ours. Our method shows significant noise reduction compared to prior work. Please see the supplemental
material for full-size images and temporal comparisons. Living room scene ©Wig42. Kitchen scene ©TheCGNinja. Pool scene ©Jiří Vorba. Pavillion scene
©Hamza Cheggour
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Fig. 5. We measure the MSE of our method and previous work over 30 independent runs and visualize both the mean MSE (thick curve) as well as the standard
deviation of the MSE (shaded regions) over equal time. A large shaded region means that the MSE fluctuates significantly between runs, indicative of severe
temporal flickering. On most scenes, our method has both significantly lower MSE as well as less variation across runs compared to previous work. Note that
because of logarithmic axes, the shaded region is not symmetric around the mean. We focus on relative performance and omit y-axis labels for space reasons.

regions not handled well by a base MC estimator. We show that the

balance- and maximum heuristic reduce to functions solely based

on the sample brightness in primary sample space, which turns

the maximum heuristic into a crude firefly detector. Based on these

insights, we alleviate the problems of the standard weights by using

a more reliable outlier detector. We discuss important problems of

the Markov chain initialization and parameter design to obtain a

robust and efficient rendering algorithm. Our final method signifi-

cantly outperforms both path tracing and RJMLT on the majority of

our test scenes, with significantly reduced temporal flickering and

improved noise characteristics compared to standard MLT.

There are some limitations to our work. For example, we rely on

a simple MC estimator to produce samples for the Markov chain

to explore. If the transport is too difficult for the MC estimator to

sample, then it will not produce enough seed samples for the MLT

portion of our method to work effectively. This problem can be

circumvented by using a better MC base method (like bidirectional

path tracing), but this defeats our goal of avoiding experimentation

with different integrators or parameters for each scene.

The Dragon scene represents a failure case of our method. Here,

our method spends computational effort exploring glossy-glossy

interreflections, which slightly reduces noise but disproportionately

increases render times, and our method performs approximately

0.5× as well as path tracing.We did not do parameter tuning ormuch

optimization on ourmethod, and it is possible thatmay close this gap.

Better perturbation strategies or better criteria for which samples

to explore might also improve the performance of our method on

the simplest of scenes. However, our method still performs reliably

on scenes with more realistic complexity.

There are several ways in which our work could be extended. We

only explored unbiased estimators in this paper, but one could also

combine theMarkov chain with biasedmethods such as photonmap-

ping [Jensen 2001] or VCM/UPS [Georgiev et al. 2012; Hachisuka

et al. 2012] to selectively introduce bias where the base MC estima-

tor fails. Combinations of MLT with photon mapping [Hachisuka

and Jensen 2011] or VCM/UPS [Šik et al. 2016] have been attempted

previously and could find direct application in our work.

Although our outlier-based weighting scheme works well in prac-

tice, a more principled derivation would be interesting. The vari-

ance proofs of the balance- and maximum heuristic only hold under

sample independence, and it would be instructive to derive new

heuristics that explicitly incorporate not just the PDFs, but also the

sample correlations and computational cost to minimize variance.

These weights may be able to more readily explain whenMLTworks

better than standard Monte Carlo, and when it does not.
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