Selectively Metropolised Monte Carlo light transport simulation
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Fig. 1. For this indoor scene lit by a sun/sky environment emitter, path tracing resolves most of the lighting well, but introduces high variance in the reflective
caustic cast by the mirror. ERPT and RJMLT resolve the caustic better, but do not handle diffuse lighting well and introduce noise and temporal flickering. Our
method uses MLT to only resolve the difficult paths using bidirectional path tracing, and handles everything else with path tracing, leading to significantly
improved MSE (relative MSE shown in insets) and vastly reduced temporal flickering (see Fig. 5). Scene ©SlykDrako.

Light transport is a complex problem with many solutions. Practitioners are
now faced with the difficult task of choosing which rendering algorithm
to use for any given scene. Simple Monte Carlo methods, such as path
tracing, work well for the majority of lighting scenarios, but introduce
excessive variance when they encounter transport they cannot sample (such
as caustics). More sophisticated rendering algorithms, such as bidirectional
path tracing, handle a larger class of light transport robustly, but have a high
computational overhead that makes them inefficient for scenes that are not
dominated by difficult transport. The underlying problem is that rendering
algorithms can only be executed indiscriminately on all transport, even
though they may only offer improvement for a subset of paths. In this paper,
we introduce a new scheme for selectively combining different Monte Carlo
rendering algorithms. We use a simple transport method (e.g. path tracing)
as the base, and treat high variance “fireflies” as seeds for a Markov chain
that locally uses a Metropolised version of a more sophisticated transport
method for exploration, removing the firefly in an unbiased manner. We use a
weighting scheme inspired by multiple importance sampling to partition the
integrand into regions the base method can sample well and those it cannot,
and only use Metropolis for the latter. This constrains the Markov chain to
paths where it offers improvement, and keeps it away from regions already
handled well by the base estimator. Combined with stratified initialization,
short chain lengths and careful allocation of samples, this vastly reduces
non-uniform noise and temporal flickering artifacts normally encountered
with a global application of Metropolis methods. Through careful design
choices, we ensure our algorithm never performs much worse than the base
estimator alone, and usually performs significantly better, thereby reducing
the need to experiment with different algorithms for each scene.
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1 INTRODUCTION

Photorealistic image synthesis is an important problem with many
applications in scientific visualization, video games and the movie
industry. The rendering equation [Immel et al. 1986; Kajiya 1986] and
the path integral [Veach 1997] form the predominant mathematical
framework for physically based rendering, formalizing it in terms
of an integration problem over the space of light paths connecting
the camera to a light source.

In practical scenes with complex lighting, materials and geome-
try, the space of possible light paths is large and high-dimensional,
making Monte Carlo based rendering methods the predominant
solution technique [Pharr et al. 2016]. Of these methods, path trac-
ing [Kajiya 1986] in particular has found widespread adoption in
industry [Christensen and Jarosz 2016; Fascione et al. 2017], owing
to its simplicity and efficiency.

Although path tracing can perform well most of the time, it may
undersample small sets of high-contribution light paths (such as
caustics), which introduces excessive variance and leads to long
render times before a noise-free image is obtained (Figure 2, middle
row). More sophisticated Monte Carlo methods [Georgiev et al.
2012; Hachisuka et al. 2012; Lafortune and Willems 1993; Veach and
Guibas 1994] are superior at sampling complex transport, but these
methods come with considerable computational overhead. If the
scene is dominated by “simple” transport, i.e. that which path tracing
can handle well, these methods perform significantly worse than
path tracing when compared at equal time. This is because these
methods can only be employed globally, i.e. on all transport, rather

ACM Trans. Graph., Vol. 38, No. 6, Article 153. Publication date: November 2019.


https://doi.org/10.1145/3355089.3356578
https://doi.org/10.1145/3355089.3356578

153:2 « Benedikt Bitterli and Wojciech Jarosz

than locally, i.e. only on complex transport where they provide an
advantage.

Rendering algorithms based on Markov chains such as Metropolis
light transport (MLT) [Veach and Guibas 1997] excel at focusing
computational effort on complex transport by reusing and iteratively
perturbing existing samples. While they can sometimes reduce vari-
ance significantly compared to pure Monte Carlo methods, they also
explore the available space unevenly, leading to poor stratification,
“splotchy” non-uniform noise and flickering artifacts in animations.
This is particularly apparent on simple transport such as direct
lighting, which would otherwise be sampled well by path tracing
(Figure 2, bottom row). Implementations of these methods typically
include hard-coded rules for separating out simple transport to be
handled by a separate Monte Carlo method, but these rules do not
generalize well. Much like sophisticated pure Monte Carlo methods,
methods based on MLT only outperform path tracing when the
scene is dominated by complex transport.

In this paper, we introduce a way to selectively combine tradi-
tional Monte Carlo rendering algorithms with Metropolis sampling
to leverage the benefits of both. We partition the integration do-
main into regions that are handled well by a “base” Monte Carlo
method (like path tracing) and those that are not. Whenever the
base method encounters a sample in the latter region that would
introduce high variance, the sample is used instead as a seed for
a Markov chain that locally explores the difficult transport with
a more sophisticated rendering algorithm (like bidirectional path
tracing).

The design space for this type of algorithm is large, and we iden-
tify a particularly practical configuration that has the following
important properties:

e Robustness. Our method is usually much better and never much
worse than the base method. By quickly classifying which samples
should be handled by the Markov chain and carefully allocating
computational effort, our method does not degrade the perfor-
mance of the base method and avoids adversely affecting render
times when not needed.

o Stratification. We drastically reduce temporal flickering and im-
prove stratification by restricting the Markov chain only to paths
the base method cannot handle well. Low-discrepancy sequences
and adaptive sampling may still be used for the base method,
further improving noise characteristics.

e Local use of complex methods. Even if the base method is sim-
ple (e.g. path tracing), the Markov chain may use inversions [Bit-
terli et al. 2018; Otsu et al. 2017; Pantaleoni 2017] to employ more
complex rendering methods (e.g. bidirectional path tracing) to
explore nearby difficult transport. The ability to use these sophis-
ticated algorithms locally only for samples that need it allows our
algorithm to improve both upon the base method and its more
sophisticated variants.

We motivate our combination of Monte Carlo and Markov chains
with Multiple Importance Sampling [Veach and Guibas 1995] (sec-
tion 3), and show that the standard MIS heuristics do poorly for our
purposes (section 4). MIS for these estimators can be interpreted as
a crude firefly detector, and we improve on the standard heuristics
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with a more sophisticated outlier detector. We then discuss the de-
sign decisions needed to make the resulting MLT estimator practical
(section 5) and describe our choice of outlier detector (section 6).

2 RELATED WORK

Metropolis. Starting with the original Metropolis light transport
algorithm [Veach and Guibas 1997], much effort has been invested
in finding specialized perturbation strategies for complex transport
configurations [Hanika et al. 2015; Jakob and Marschner 2012], visi-
bility [Hachisuka and Jensen 2011; Sik et al. 2016], and improved
step size control [Otsu et al. 2018; Zsolnai and Szirmay-Kalos 2013].
MLT algorithms based in primary sample space [Hachisuka et al.
2014; Kelemen et al. 2002] are of particular interest due to their
simplicity and ability to leverage importance sampling strategies
present in modern renderers. Recent extensions [Bitterli et al. 2018;
Otsu et al. 2017; Pantaleoni 2017] allow these methods to leverage
inverses to rapidly switch between different importance sampling
techniques, which allows them to explore difficult paths more easily.
Although in theory our algorithm could be used with any of these
methods, we focus on primary sample space methods and in particu-
lar Reversible Jump MLT (RJMLT) [Bitterli et al. 2018], as it presents
a good trade-off between robustness and simplicity. Energy Redis-
tribution Path Tracing [Cline et al. 2005] (ERPT) aims to improve
stratification by running many short chains in parallel, as opposed
to the few, long-lived chains of traditional methods. Similar to ERPT,
we use well-seeded, short-lived chains to improve stratification, but
combine it with a partitioning of the integration domain so that
the Markov chains only need to explore small, high-energy parts of
path space, which further improves efficiency.

Path Guiding. Adaptive importance sampling has a long history
in light transport, starting with photon maps [Jensen 1995] or spatial
data structures [Lafortune and Willems 1995] used to guide path
tracing. Generally speaking, these methods build local representa-
tions of the incoming radiance based on past samples, and use these
representations to guide future samples. Classical machine learning
methods [Dahm and Keller 2017; Hey and Purgathofer 2002; Miiller
et al. 2017; Reibold et al. 2018; Vorba et al. 2014], and more recently
neural networks [Miiller et al. 2018] have found widespread use for
representing radiance and guiding samples. Although these meth-
ods are capable of concentrating samples in high-variance areas,
they can only do so after the fact; until the distribution of radiance is
learned, problematic samples may introduce excessive variance into
the image that takes many subsequent samples to remove. In addi-
tion, these methods require complex spatial acceleration structures
that do not adapt well to large scene scales or highly directional
transport. In contrast, our method does not require an initial learn-
ing period or spatial data structures, and can remove high variance
samples in an unbiased manner before they enter the estimate.

Filtering and Denoising. A different approach to handling variance
in MC rendering is to blur problematic samples or directly remove
them from the image. This can be in the form of selective blurring
based on image variance [Rousselle et al. 2012; Xu and Pattanaik
2005] or geometric features [Rousselle et al. 2013], or more sophisti-
cated methods based on regression [Bitterli et al. 2016; Moon et al.
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2014] or neural networks [Bako et al. 2017; Chaitanya et al. 2017].
Zwicker et al. [2015] provides a comprehensive survey up to 2015.
These methods can be powerful at reducing residual variance, but
come at the cost of introducing significant bias. Gradient-domain
formulations [Gruson et al. 2018; Kettunen et al. 2015; Lehtinen et al.
2013; Manzi et al. 2015] can also reduce and distribute error more
evenly across the image either via a screened Poisson solver [Pérez
et al. 2003] or as a form of control variates [Rousselle et al. 2016].
In their unbiased form, however, these tend to be outperformed
by biased denoising approaches. Instead of removing variance as a
post-process, a common alternative approach is to prevent excessive
variance from entering the image in the first place, either by clamp-
ing the contribution of a sample to some maximum value [Fascione
et al. 2017; Keller 1997], or by statistically detecting outliers and
discarding [DeCoro et al. 2010] or reweighting [Zirr et al. 2018]
them. These methods still introduce bias, but limit the use of fil-
tering only to samples with excessive variance. Instead of outright
removing problematic samples, we use them as starting points for
a Markov chain which spreads the brightness of the sample to its
neighboring pixels, resembling an unbiased form of blurring high
variance samples. Our method could still benefit from standard de-
noising methods to remove residual variance, and is more amenable
to filtering than standard MLT methods due to improved noise
uniformity.

3 BACKGROUND

Monte Carlo Rendering. The path integral framework forms the
basis of most current rendering algorithms and expresses the value
of a pixel measurement I in terms of an integral over the space
of all light paths

I=];f&%ﬁ, M

where f(X) is the measurement contribution of light path . Tradi-
tional Monte Carlo rendering algorithms approximate Eq. (1) using
the estimator

S fED)
i px)
which averages the result of N random and independent light paths
x(1) that were sampled with probability density p(i((i)).

Iz% 2)

Markov Chain Monte Carlo (MCMC). Instead of generating paths
independently, rendering algorithms based on MCMC generate a
sequence of correlated paths, starting from an initial seed path x(0),

At each step of the chain, a tentative path }—,(i+1)

is sampled from a
proposal distribution Tz — }—,(i+l))’ which is typically a narrow
distribution (e.g. a Gaussian) centered on the previous path. The
tentative path is then probabilistically accepted as the new state
%(*1) of the chain with probability rx® - }'I(i“)). If the tentative
path is rejected, the chain remains at its current state x(0),

The acceptance probability is carefully crafted in tandem with a
target distribution C(X) so that the distribution of states approaches
the target distribution in the limit. To obtain an image, MLT splats a
value of f &Dy/c(xD) to the image at each step of the Markov chain.
In the following, we will assume that the path contribution itself

(or its luminance) are chosen as the target distribution i.e. C(X) =
f (X(i)) /c for some normalization constant c, although other choices
are possible [Hoberock and Hart 2010]. If the path contribution is
not scalar, we assume f(X) to be its luminance for brevity, and use
frge(X) to explicitly refer to the spectral version.

Primary Sample Space MLT. Using MLT directly in path space [Veach
and Guibas 1997] can be cumbersome, because it is difficult to evalu-
ate and tailor the proposal distribution to the materials and geometry
present in the scene. Primary Sample Space MLT (PSSMLT) [Kele-
men et al. 2002] instead leverages an existing Monte Carlo rendering
algorithm (like path tracing) and recasts it as a function x = S(u) that
maps points u € U in the random number hypercube U = [0, 1]¥—
the primary sample space—to paths x. Eq. (1) can then be rewritten
as an integral over the primary sample space

I=Lﬂw®, 3)

where f(u) = f(S(u))/p(S(u)) for brevity, and p(S(u)) is both the
path space probability density of sample u and the Jacobian deter-
minant of function S. We can view traditional Monte Carlo methods
as approximating this integral with

1 f?) 1 )
I~Ni=1 ) ‘N;f(“ ). @)

Because these methods generate samples uniformly at random, the

sample density in primary sample space is simply p(u(i)) =1
PSSMLT uses this formulation by running the Markov chain in
primary sample space instead of path space directly. Each state of
the Markov chain is a vector of random numbers, and the under-
lying mapping S is used to evaluate the contribution of each state.
PSSMLT vastly simplifies proposals, since they can be sampled from
simple Gaussians in the unit hypercube, and it leverages the existing
importance sampling performed by the underlying mapping.

Reversible Jumps. Applying PSSMLT to bidirectional path tracing
is complicated by the fact that bidirectional path tracing consists of
multiple distinct sampling techniques that each represent a different
mapping S; from primary sample space to paths. Recent work on
probabilistic inverses [Bitterli et al. 2018; Otsu et al. 2017; Panta-
leoni 2017] allows mapping a path X; generated with technique i
back to a point in primary sample space via the inverse mapping
u= Si_l(ii), Coupled with the forward mapping, this allows jump-
ing between points u, v sampled with techniques i, j through the
composite mappings v = S].’I(S,-(u)) oru = Si’l(Sj (v)). This al-
lows PSSMLT to easily switch between sampling techniques during
rendering, facilitating faster exploration.

Multiple Importance Sampling (MIS). When multiple Monte Carlo
estimators exist for the same integral, each individual estimator may
work better or worse than the other estimators in different parts
of the integration domain. Instead of choosing a single estimator,
a more robust solution is to use a weighted combination of all
estimators with weights chosen such that the combined estimator
has lower variance than any individual estimator. MIS [Veach and
Guibas 1995] provides several different heuristics for deriving these
weights based on the PDFs of the estimators.
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Assuming there are two strategies with PDFs p; and py, the bal-
ance heuristic weights samples drawn from the first strategy using

ni - p1(u)
n1 - p1(u) +nz - pa(u) ’
and analogously for the second strategy, where n; and ny are the
number of samples drawn from the two strategies.
While the balance heuristic provides continuously varying weights,
the maximum heuristic assigns a binary weight of 1 to the estimator
with the highest PDF, e.g. for the first strategy

wi(u) = 1 ifng-p1(a) > nz - pa(u),
! 0 otherwise,

®)

wi(u) =

(6)

and analogously for the second strategy. Both the balance and the
maximum heuristic can be proven to be optimal in the sense that the
variance of the combined estimator is never much worse than the
variance of the estimator with optimal MIS weights [Veach 1997].

Discussion. In theory, MIS provides a mechanism for combining
estimators with different strengths, and we could attempt to solve
the problem laid out in Section 1 by coming up with a weighting
heuristic that is aware of the difference in computational effort
between estimators. However, this approach will fail in practice,
since MIS only provides a way for weighting different estimators; it
does not provide a way for guiding estimators towards paths that
score a large weight. Naive MIS would simply waste any samples
generated by a sophisticated estimator when they could be handled
by a simple estimator; but what we need is to not generate these
samples with an expensive estimator in the first place.

MLT is capable of guiding samples based on an arbitrary target
function, and this function can incorporate MIS weights [Hachisuka
et al. 2014]. We will use this idea and incorporate a specially crafted
weight into the target distribution of a Markov chain, such that
samples generated by computationally expensive estimators are
focused where they provide a benefit. Methods based on MLT, how-
ever, suffer from non-uniform noise and temporal artifacts that we
do not want to inherit, so we need to first identify the scenarios in
which MLT performs well.

4 SELECTIVE METROPOLISATION VIA MIS

In Fig. 2, we illustrate a simplified direct lighting scenario with
varying occlusion. A Monte Carlo approach without light sampling
(middle row) in this scene performs well if large areas of uniform
brightness of the emitter are visible (left), but does poorly if light is
visible only through a small window (middle). In contrast, an MLT
based method performs well if the target distribution is non-zero
only in a narrow region (middle), but does poorly on large areas
with uniform importance (left). Neither method performs well on a
scene with a mixture of both cases (right).

We propose to formulate the selective combination of MC and
MLT as a multiple importance sampling problem. The purpose of
this section is to come up with an MIS weighting strategy w(u)
that assigns small weights to large, flat areas easily integrable with
Monte Carlo and large weights to small islands that are best ex-
plored with MLT. We will then use the MC estimator to integrate
f(u)(1 — w(u)) in a straightforward way, and use MLT to explore
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Fig. 2. We illustrate a simple scene lit by an environment emitter under
different occlusion (top row). Monte Carlo methods (middle row) distribute

their samples uniformly at random in primary sample space. This works well
if the energy landscape is close to uniform (left column), but fails to sample
small energy islands well (middle column). MLT (bottom row) performs
poorly in flat regions (left column), but excels at exploring difficult paths
(middle column). When a scene contains a mixture of both scenarios, neither
strategy works well in isolation (right column).

the target distribution f(u)w(u), which makes it focus its sampling
effort where MLT performs well compared to MC.

We will first look at the standard weights derived from the balance-
and maximum heuristic and explore why they are not ideal for our
purposes, before deriving a better weighting scheme. For simplicity,
we consider combining a Monte Carlo estimator with a PSSMLT
method that uses the same underlying estimator as its mapping S(u);
however, the same weights hold for any MLT method in primary
sample space.

Both the max- and balance heuristics require knowing the PDF of
the two estimators. In primary sample space, the PDF of the Monte
Carlo method is trivially p2(u) = 1. Following Kelemen et al. [2002],
we use the target distribution as the PDF of the Markov chain, i.e.
p1(u) = f(u)/c, and the MIS weight of the Markov chain becomes

moG@e __ fw
ni-(f(w/e)+nz-1  fw)+nz/ni-c fu)+b’
for the balance heuristic, where b is some constant that does not
depend on the sample, and

i) = {1 ifny - flu)fe>np 1 _ {1 if f(u) > b’

0 else,

wi(u) =

0 else ®)
for the maximum heuristic and some other constant b’.

Equations (7) and (8) allow us to perform MIS between any Monte
Carlo estimator and its PSSMLT variant. The Markov chain will
automatically move towards regions where the base MC estimator
performs poorly, and high-variance samples generated by the MC
estimator will be downweighted before being added to the estimate.
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This forms the basis of a workable rendering algorithm. However,
these specific weights do not fully satisfy the goals set out at the
beginning of this section, and we again turn to Fig. 2 for an intuition.
For both heuristics, the MIS weight of the Markov chain depends
solely on the brightness of the sample. If both the window and the
large flat region have similar brightness, then these MIS weights
will lead to either MLT or Monte Carlo being used for both regions,
rather than the separation we would want. In practice, this leads to
counter-intuitive results, such as MLT being used to explore bright
direct lighting, and dim indirect lighting being left to Monte Carlo.

Although not ideal, the weight derived from the maximum heuris-
tic provides a starting point for deriving a better weighting scheme:
Looking at Eq. (8), this heuristic assigns zero weight to the Monte
Carlo estimator whenever the sample weight exceeds some thresh-
old, i.e. f(u) > b. If we did not use MLT in addition, this scheme
would be equivalent to discarding samples with high contribution
(“fireflies”) to avoid high variance at the cost of bias.

Classifying samples as fireflies based on brightness alone is the
simplest in a family of outlier detectors. These algorithms detect
unlikely Monte Carlo samples, and are usually employed as a last-
resort measure to remove troublesome samples. However, outlier
detectors form a strong candidate for a good weighting scheme for
combining MLT and Monte Carlo: small islands in path space that
are easily explored with MLT directly correspond to outlier samples,
whereas samples in large uniform areas that are well sampled by
MC would be classified as inliers.

Following these insights, we propose the following algorithm:
Given an outlier detector that assigns large weights w(u) to unlikely
samples, we integrate the function f(u) - (1 — w(u)) with a standard
MC estimator, and use MLT to integrate the function f(u) - w(u).
We give a high-level overview of our method in algorithm 1. The
Monte Carlo aspect of this algorithm is straightforward, but there
is a large design space for the Markov chain. In the next section, we
will explore the specific details needed to turn MLT into a practical
and efficient rendering algorithm for our purposes.

5 PRACTICAL MLT ON SPARSE DISTRIBUTIONS

Naively running an existing MLT method on the target distribution
f(u) - w(u) works poorly in practice. By design, this target distribu-
tion is sparse and contains a large number of small, disconnected
“islands”. This creates two problems: Exploring the state space effec-
tively poses a challenge, and finding initial states u® with non-zero
contribution is difficult.

Our solution to this problem is two-fold: First, we directly use
discarded samples of the Monte Carlo estimator as initial states for
MLT. MC samples with low MIS weights will have a large score
in the corresponding MLT target distribution and therefore form
suitable initial states for the Markov chain. This ensures a large
and continually increasing sample pool for MLT to choose from.
Secondly, because it is difficult for MLT to find its way across is-
lands, we don’t expend any effort into trying to do so. We only use
local perturbations instead of global mutations that are likely to fail,
and use many short-lived chains (100-1000 perturbations) instead
of a single long-lived chain. The latter ensures we still get global
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Algorithm 1: High-level outline of our rendering algorithm

function renderOneSPP()
// Run Monte Carlo sampler
outliers « {}
for i « 0 to numPixels do
RNGState « RNG
samples « traceMonteCarloPath(i, RNG)
foreach c € samples do
outlierDetectorSplat(i, ¢)
w « outlierWeight(i, ¢)
framebufferSplat(i, ¢ - (1 - w))
if w> 0 then
append(outliers, {w - ¢, RNGState})

// Bookkeeping
n; < determineMLTSampleBudget (outliers)

. ny
numChains « hatnlength

// Run MLT

for i « 1to numChains do
seed « selectSeed(candidates)
runMLT(seed)

// Apply changes to outlier detector from this iteration
updateOutlierDetector()

coverage of the state space, and also greatly improves stratification
and noise characteristics of MLT [Cline et al. 2005].

Each complete transport path formed by the Monte Carlo estima-
tor (e.g. each successful shadow connection by a path tracer) is run
through the outlier detector and recorded in an outlier pool if w(u)
is non-zero. For each chain, we randomly select one of the samples
in the outlier pool as the initial state u® and run the Markov chain
for k steps. Assuming an MLT budget of n; samples, we may run
|n1/k] chains in total. At each step u() of the Markov chain, we
record a value of

1 f®)  frep®)

m fw®) ©

ny  pmf(u(®)

in the framebuffer, where f(u(®) is the brightness of the initial
outlier, and pmf(u(®) is the probability of picking that outlier as the
initial state from the set of recorded outliers. To ensure all chains
have approximately equal contribution, we set pmf ) f (u(®).

Similar to Cline et al. [2005], we did not find our setting of the
chain length parameter to be critical. Shorter chains generally lead to
increased correlation artifacts, while longer chains lead to increased
noise as fewer seed paths can be explored. We use 1000 mutations
as a sane default, and did not need to adjust it for different scenes.

5.1

To make our algorithm effective, we need to appropriately budget
the number of samples that the MLT- and the Monte Carlo estimator
should take. Too few samples for MLT means we do not improve
much over the Monte Carlo estimator alone, and too many increases
render times without much decrease in variance.

The weighting introduced by the outlier detector effectively cre-
ates a soft partitioning of the integrand into two domains, where

Allocating Samples
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w(u) is 1 or 0 respectively. The ideal sampling PDF is perfectly pro-
portional to the integrand; therefore, it would on average place a
number of samples in each domain proportional to the domain’s
total brightness. That is, if the total number of samples taken is n,
then the region handled by MLT should receive

L /,u w(u)f(u) du

T Fw) du (10

ny=n-r with

samples to match the distribution of the ideal PDF. The Monte Carlo
sampler will deviate from the ideal PDF, and will place a smaller
fraction than r in the outlier domain. We use the MLT estimator
to compensate for this imbalance by adding additional samples
exclusively in the outlier region. Knowing that n = n; + ny, the
number of MLT samples is then determined by n; = ny - r/(1 —7r).

The number ny of MC samples is determined by the user (via
samples-per-pixel), but we do not know the ideal sample ratio r
a priori. However, we note that the unweighted MC samples are
an estimator of the denominator of Equation 10, and the weighted
samples an estimator of the numerator. We therefore keep running
averages of these two quantities and use their ratio to estimate r
incrementally during rendering.

6 DETECTING OUTLIERS

In theory, our algorithm is not limited to any particular outlier
detector. However, the choice of detector has a large influence on
the practical efficiency of the algorithm, and if our goal is to obtain
a fast renderer, this imposes several design constraints on the choice
of outlier detector.

The primary goal of our algorithm is to not degrade the perfor-
mance of the base integrator when it works well. In particular if
path tracing is used as the base, the cost of obtaining a sample is
comparably low; since the outlier classifier is run on each sample,
the computational efficiency of the classifier is paramount. In addi-
tion, high-quality renderings require a large number of samples, and
therefore the memory footprint of the classifier should be indepen-
dent of the sample count. These constraints make outlier detectors
operating in image space an attractive choice.

Pixels may contain samples from many independent integrals
(multiple path lengths, light sources, etc.). Sample statistics for a
pixel thus usually contain multiple modes, and the outlier detector
should be able to represent these; simple approaches such as per-
pixel mean and variance are not sufficient.

This initially led us to consider Density-Based Outlier Detection
(DBOR) [DeCoro et al. 2010]. While DBOR is an acceptable choice
for the purposes of our algorithm, it does not have bounded memory
footprint and its computational cost causes considerable efficiency
loss on simple scenes (such as e.g. a Cornell box). More recently,
Zirr et al. [2018] introduced an outlier detector based on cascaded
framebuffers. While similar in spirit to DBOR, this detector is com-
putationally inexpensive, has bounded memory footprint, and is
very effective at outlier detection, all the while being a very simple
algorithm to implement. From a practical standpoint, this makes it
an attractive choice for our algorithm.
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Fig. 3. We illustrate our chosen outlier detector in a scene containing diffi-
cult lighting. Starting from the raw Monte Carlo samples (top row), we first
record individual samples in one of several cascaded frame buffers based on
sample brightness (middle row). Using the number of samples with similar

brightness as an indicator of whether a sample is unlikely, the detector
reliably distinguishes paths handled well by Monte Carlo (bottom left) from
outlier paths (bottom right) on a per-sample basis. Scene ©Hamza Cheggour

6.1 Implementation Details

In the following, we first describe the detector of Zirr et al. [2018]
in detail, before motivating our particular choice of parameters. We
illustrate this detector in Figure 3.

This detector stores a set of exponentially spaced framebuffers
By, . ..,Bm, in which buffer B; at each pixel counts the number of
samples that fall in a luminance range centered on ¢ - /. All samples
generated by the Monte Carlo estimator, outlier or not, are recorded
in the cascaded framebuffer. For a sample with luminance x, we find
the nearest buffers Bj and Bj1 such that j = [logﬂ x/a], and add
a value of w = logg(x/a) — j to the corresponding pixel in B; and
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avalue of 1 — w to Bj+1. To determine if a sample is an outlier, we
linearly interpolate from the nearest buffers using the same weights
as with splatting, and check if the interpolated value is smaller than
a threshold 7.

Choice of Parameters. High-energy samples are almost exclusively
outliers, and we consider samples far beyond meaningful image
values (1000 in our implementation) automatically as outliers. The
detector only needs to operate in the regime below this threshold,
and we pick the number m of buffers to cover the luminance range
below 1000.

The exponential spacing of the buffers controls the discretiza-
tion of the luminance range: A smaller spacing means a larger
number of modes can be represented per pixel; but it also means
per-buffer statistics are noisier at lower sample counts. We choose
(¢ = 1/2, = 2) as a tradeoff between robust detection at low sam-
ple counts and luminance resolution. This differs from the powers
of 8 used by Zirr et al. [2018]; this is because they focus on ex-
tremely high-energy fireflies and require all samples to be splatted
to a buffer, thus the larger dynamic range. Our method benefits from
discriminating lower energy outliers and gracefully handles samples
brighter than the maximum representable luminance, motivating
the use of a smaller spacing.

We set the classification threshold r = max(3, spp/m), which
considers luminance ranges that receive less than uniform (spp/m)
samples to likely contain outliers. At low sample counts we do not
have much information; we err on the side of caution and clamp
the threshold to a lower bound.

Updating the Detector. Updating the outlier detector while simul-
taneously using it to classify outliers would lead to bias, as MIS
weights would shift during rendering. We instead render the image
in iterations of a small number of samples per pixel at a time. We
keep two copies of the outlier detector: The first is used only for
classifying outliers and is left unchanged during each iteration, and
the second records new samples generated from the Monte Carlo
estimator. After the iteration is complete, we copy the contents of
the second detector into the first.

Additional Thresholding. Regardless of which detector is used, it
may classify samples as outliers that are too dim to be worth explor-
ing with MLT. The likelihood of an outlier being picked as a chain
seed depends on its brightness, and dim outliers are picked so rarely
that it is better to splat them to the image than to hope for them to
become a Markov chain. To account for this, we impose a minimum
brightness threshold for a sample to be considered an outlier. The
threshold is determined automatically during rendering: Between
each iteration, we identify all outliers whose probability of being
picked for MLT exploration is smaller than some threshold (1/2
in our implementation), and set the maximum sample brightness
within this set as the threshold for the next iteration.

7 RESULTS

We implemented our method on top of an open source rendering
system, and tested it on a diverse test set of indoor- and outdoor
scenes that contain varying mixtures of difficult and simple light
transport. Although our method could be used with any Monte

Carlo and MLT estimator, we found the combination of path tracing
and RJMLT to work the best, and only show results using this combi-
nation in the paper. We include additional results using bidirectional
path tracing combined with RJMLT in the supplemental. We use
the public implementation provided by the authors of RIMLT for
comparison, and will release the full source code of our method. We
rendered time-sensitive results on an 8-core AMD Ryzen 1800x with
16 threads, and all remaining results on a heterogeneous compute
cluster. We evaluate our method using a variety of metrics, detailed
in the following paragraphs.

Equal-time Renderings. In Fig. 1 and Fig. 4, we show several scenes
rendered with path tracing, RIMLT, our method and a modified
version of ERPT that uses RIMLT. Sample counts were normalized
so all methods complete in equal time of 150 seconds. We also show
the MSE of each method to a reference, relative to our method. This
corresponds to how much longer we should expect to render with
each method to obtain the same error as our method. In nearly
all scenes, our method provides improvements of 2-15x over the
estimators our method is combining, both visually and in terms of
MSE. The only exception is the pool scene: Because the image is
dominated by very difficult paths, the computational effort expended
on path tracing does not provide much benefit over running RIMLT
alone, and our method performs slightly (0.8X) worse than RJMLT.

Convergence Plots. For MLT based methods, individual renderings
may not be representative of the behavior of the algorithm due
to correlations. For each estimator, we therefore also rendered 30
independent runs with different random seeds, and computed the
evolution of MSE over time. The average MSE then provides a more
stable comparison metric, which we plot in Fig. 5. We also compute
the standard deviation of the MSE across all runs, which gives an
indication of the temporal flickering for each method. We visualize
this with a shaded region around the average MSE corresponding
to one standard deviation. Note that because of logarithmic axes,
this region is asymmetric around the mean. As expected from a
pure MLT method, RIMLT has erratic convergence and significant
variance between runs, which makes it undesirable for practical
use. ERPT has smoother convergence and less temporal variance
than RJMLT, but converges significantly slower. Much like path
tracing, our method provides smooth convergence and temporal
stability, but with significantly lower average error. In most scenes,
our method significantly outperforms RJMLT, except when the scene
is dominated by complex transport; however, we offer significantly
more stable convergence and still outperform path tracing.

Temporal Videos. To visually aid in comparing temporal flickering,
we also provide videos for each method showing 30 independent
runs in quick succession. We refer to the supplemental material
containing an interactive viewer for comparing these videos.

8 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We introduced a new rendering algorithm that selectively combines
different Monte Carlo estimators through MLT. Using MIS as a the-
oretical foundation for combining MC estimators with different
strengths, we incorporate a special MIS weight into the target dis-
tribution of a Markov chain in order to focus its sampling effort in
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Fig. 4. We show a diverse set of scenes rendered with path tracing, ERPT with reversible jumps, RJMLT and our method, and compare them at equal render
time. We show the relative MSE (computed over the entire image) of each method compared to ours, which is equivalent to how much longer each method
would have to render to reach the same MSE as ours. Our method shows significant noise reduction compared to prior work. Please see the supplemental
material for full-size images and temporal comparisons. Living room scene ©Wig42. Kitchen scene ©TheCGNinja. Pool scene ©Jifi Vorba. Pavillion scene
©Hamza Cheggour
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Fig. 5. We measure the MSE of our method and previous work over 30 independent runs and visualize both the mean MSE (thick curve) as well as the standard
deviation of the MSE (shaded regions) over equal time. A large shaded region means that the MSE fluctuates significantly between runs, indicative of severe
temporal flickering. On most scenes, our method has both significantly lower MSE as well as less variation across runs compared to previous work. Note that
because of logarithmic axes, the shaded region is not symmetric around the mean. We focus on relative performance and omit y-axis labels for space reasons.

regions not handled well by a base MC estimator. We show that the
balance- and maximum heuristic reduce to functions solely based
on the sample brightness in primary sample space, which turns
the maximum heuristic into a crude firefly detector. Based on these
insights, we alleviate the problems of the standard weights by using
a more reliable outlier detector. We discuss important problems of
the Markov chain initialization and parameter design to obtain a
robust and efficient rendering algorithm. Our final method signifi-
cantly outperforms both path tracing and RIMLT on the majority of
our test scenes, with significantly reduced temporal flickering and
improved noise characteristics compared to standard MLT.

There are some limitations to our work. For example, we rely on
a simple MC estimator to produce samples for the Markov chain
to explore. If the transport is too difficult for the MC estimator to
sample, then it will not produce enough seed samples for the MLT
portion of our method to work effectively. This problem can be
circumvented by using a better MC base method (like bidirectional
path tracing), but this defeats our goal of avoiding experimentation
with different integrators or parameters for each scene.

The DRAGON scene represents a failure case of our method. Here,
our method spends computational effort exploring glossy-glossy
interreflections, which slightly reduces noise but disproportionately
increases render times, and our method performs approximately
0.5x as well as path tracing. We did not do parameter tuning or much
optimization on our method, and it is possible that may close this gap.
Better perturbation strategies or better criteria for which samples
to explore might also improve the performance of our method on
the simplest of scenes. However, our method still performs reliably
on scenes with more realistic complexity.

There are several ways in which our work could be extended. We
only explored unbiased estimators in this paper, but one could also

combine the Markov chain with biased methods such as photon map-
ping [Jensen 2001] or VCM/UPS [Georgiev et al. 2012; Hachisuka
et al. 2012] to selectively introduce bias where the base MC estima-
tor fails. Combinations of MLT with photon mapping [Hachisuka
and Jensen 2011] or VCM/UPS [Sik et al. 2016] have been attempted
previously and could find direct application in our work.

Although our outlier-based weighting scheme works well in prac-
tice, a more principled derivation would be interesting. The vari-
ance proofs of the balance- and maximum heuristic only hold under
sample independence, and it would be instructive to derive new
heuristics that explicitly incorporate not just the PDFs, but also the
sample correlations and computational cost to minimize variance.
These weights may be able to more readily explain when MLT works
better than standard Monte Carlo, and when it does not.
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