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Conformational dynamics and phase behavior of
lipid vesicles in a precisely controlled extensional
flow†

Dinesh Kumar, ab Channing M. Richtera and Charles M. Schroeder *abc

Lipid vesicles play a key role in fundamental biological processes. Despite recent progress, we lack a

complete understanding of the non-equilibrium dynamics of vesicles due to challenges associated with long-

time observation of shape fluctuations in strong flows. In this work, we present a flow-phase diagram for

vesicle shape and conformational transitions in planar extensional flow using a Stokes trap, which enables

control over the center-of-mass position of single or multiple vesicles in precisely defined flows [A. Shenoy,

C. V. Rao and C. M. Schroeder, Proc. Natl. Acad. Sci. U. S. A., 2016, 113(15), 3976–3981]. In this way, we directly

observe the non-equilibrium conformations of lipid vesicles as a function of reduced volume n, capillary

number Ca, and viscosity contrast l. Our results show that vesicle dynamics in extensional flow are

characterized by the emergence of three distinct shape transitions, including a tubular to symmetric dumbbell

transition, a spheroid to asymmetric dumbbell transition, and quasi-spherical to ellipsoid transition. The

experimental phase diagram is in good agreement with recent predictions from simulations [V. Narsimhan, A. P.

Spann and E. S. Shaqfeh, J. Fluid Mech., 2014, 750, 144]. We further show that the phase boundary of vesicle

shape transitions is independent of the viscosity contrast. Taken together, our results demonstrate the utility of

the Stokes trap for the precise quantification of vesicle stretching dynamics in precisely defined flows.

1 Introduction

Vesicles are fluid-filled soft containers enclosed by a molecularly
thin (3–4 nm) lipid bilayer membrane suspended in a liquid
medium. In recent years, the mechanics of giant unilamellar
vesicles (GUVs) has been extensively studied to provide insight
into the mechanical properties of biological systems such as red
blood cells.1,2 To this end, vesicles have been used to under-
stand the equilibrium and non-equilibrium dynamics of sim-
plified cells that do not contain a cytoskeleton or a polymerized,
protein-laden membrane commonly found in living cells.3,4

Artificial vesicles have also been used for the triggered release
of cargo in biomedical applications such as drug delivery and
micro/nanoscale reactors.5–7

Achieving a full understanding of the non-equilibrium
dynamics of single-component lipid vesicles in precisely defined

flows is crucial for understanding cell mechanics. From this
view, such studies can inform how the fluid dynamics and
membrane properties inside and outside the fluid-filled com-
partment contribute to cell shape changes. Therefore, a signifi-
cant amount of prior work has focused on investigating the
shape dynamics of vesicles under different flow conditions,
such as Poiseuille flow,8–10 shear flow,11–25 and extensional
flow.26–32 Experiments and simulations on vesicles in shear flow
have uncovered intriguing dynamic behavior including: (i) tumbling,
where a vesicle undergoes a periodic flipping motion, (ii) trembling,
where vesicle shape fluctuates and the orientation oscillates in time,
and (iii) tank-treading, where an ellipsoid vesicle’s major axis
maintains a fixed orientation with respect to the flow direction while
the membrane rotates about the vorticity axis.11,18,21,23 The transi-
tions between these dynamical motions depend on shear rate _g,
viscosity ratio l between the inner min and outer mout fluid viscosities,
and reduced volume n, which is a measure of vesicle’s asphericity.33

Prior work has also focused on the induced hydrodynamic lift of a
single vesicle near a wall in shear flow,34 pair interactions between
vesicles in flow,35,36 and measurement of the effective viscosity of a
dilute vesicle suspension.14

Despite recent progress in understanding vesicle dynamics
in shear flow, the behavior of vesicles in extensional flow is less
well understood. Extensional flow is considered to be a strong
flow that can induce high levels of membrane deformation.
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Unlike simple shear, extensional flows consist of purely extensional–
compressional character without elements of fluid rotation.37 In
natural blood flows, red blood cells repeatedly undergo reversible
deformations by a combination of shear and extension when
passing through capillaries in the body.38,39 From this perspective,
there is a clear need to understand the shape dynamics of cells
when transiting through narrow capillaries. Interestingly, prior work
has shown that the extensional components of the velocity gradient
tensor are crucial for predicting rupture of red blood cells under-
going tank-treading motion in shear flow.39,40 From kinematic
analysis, any general linear flow can be decomposed into elements
of rotation and extension/compression, thereby identifying the
flow field components associated with rupture. From this view,
understanding the dynamics of vesicles in extensional flow is of
fundamental interest to elucidate dynamics in more complex
mixed flows containing arbitrary amounts of rotation and
extension/compression.17,41

The physical properties of vesicles govern their dynamic
behavior in flow. Reduced volume n is defined as the ratio of
a vesicle’s volume V to the volume of a sphere with an equivalent

surface area A, such that n = 3V/4pR3 where R ¼
ffiffiffiffiffiffiffiffiffiffiffi
A=4p

p
is the

vesicle’s equivalent radius based on the total surface area. For a
vesicle with a perfectly spherical shape, the reduced volume
n = 1, which means that there is no excess area to deform when
subjected to hydrodynamic stress. In the weak-flow limit, a
vesicle is described by a constant total surface area42 and
substantially deforms only if the reduced volume n o 1.

In 2008, Steinberg and coworkers studied the dynamics of
highly deflated vesicles n o 0.56 in extensional flow.26 At low
reduced volumes, vesicles essentially adopt tubular shapes at
equilibrium and are highly deformable due to the large surface
area to volume ratio. Under these conditions, the dynamics of
highly deflated vesicles in extensional flow was observed to be
similar to the coil–stretch transition for flexible polymers in exten-
sional flow.43–45 Above a critical strain rate _ec, deflated vesicles were
found to undergo a shape transition from a tubular to a symmetric
dumbbell conformation. Steinberg and coworkers reported a flow
phase-stability diagram for such shape transitions,26 however, they
did not directly characterize the bending modulus kb for the
deflated vesicles, and rather used an order-of-magnitude esti-
mate of kb from literature. Nevertheless, these experimental
observations are in good agreement with numerical simulations
by Shaqfeh and coworkers,30,31 which further confirm the
tubular-to-symmetric dumbbell shape transition for deflated
vesicles. Moreover, these simulations examined vesicle dynamics
under a wide range of reduced volumes, predicting that moder-
ately deflated vesicles (0.56o no 0.75) would undergo a spheroid
to asymmetric dumbbell shape transition due to destabilizing
curvature changes in the membrane as a result of modified
Rayleigh–Plateau mechanism.30,31

Recently, Muller and coworkers32 studied the dynamics of
lipid vesicles in planar extensional flow using a cross-slot micro-
fluidic device.46 The results from this study generally confirmed the
spheroid to asymmetric dumbbell shape transition for moderately
deflated (0.56o no 0.75) vesicles in extensional flow. Interestingly,
Muller and coworkers reported a stability boundary for shape

transitions in reduced volume-capillary number (n,Ca) phase-
space, where the capillary number Ca = mout_eR

3/kb is the ratio of
the bending time scale to the flow time scale, _e is the fluid strain
rate, and mout is the viscosity of suspending medium. These
experiments generally involved manual trapping of single vesicles
near the stagnation point of planar extensional flow, which
makes it challenging to observe dynamics over long times while
maintaining a stable center-of-mass position of vesicles in flow.
From this perspective, studying the non-equilibrium shape
dynamics of lipid vesicles in precisely defined extensional flows
is critically needed to understand vesicle shape transitions and
stability in strong flows.

In this paper, we present a detailed flow-phase diagram of
non-equilibrium vesicle shape transitions in extensional flow
using a Stokes trap,47–49 which enables precise control over the
center-of-mass position of single or multiple particles in flow.
In this way, we directly observe vesicle shape transitions over
long observation times across a wide range of parameters
including reduced volume n and capillary number Ca. We first
discuss the implementation of the Stokes trap technique in a
PDMS-based microfluidic device. We then present a method to
estimate the bending modulus of a vesicle at equilibrium using
thermal fluctuation analysis. Next, we systematically determine the
flow-phase diagram for vesicles in (n,Ca) space, and we investigate
the effect of viscosity contrast l on the phase boundary. Finally, we
discuss how the Stokes trap technique can be used to investigate
the transient stretching and relaxation dynamics of vesicles under
highly non-equilibrium flow conditions.

2 Experimental methods
2.1 GUV preparation

Giant unilamellar vesicles (GUVs) are prepared from a mixture
of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, Avanti Polar
Lipids) and 0.12 mol% of 1,2-dioleoyl-sn-glycero-3-phosphoethanol-
amine-N-(lissamine rhodamine B sulfonyl) (DOPE-Rh, Avanti Polar
Lipids) using the classical electroformation method described by
Angelova et al.50 The fluorescently labeled lipid DOPE-Rh contains a
rhodamine dye (absorption/emission maxima 560 nm/583 nm) on
the lipid head group, rather than the tail group, because it is known
that lipids with labeled hydrocarbon tails can result in altered
membrane properties if the charged dye molecule flips into the
hydrophilic head group space, which may affect the bending
modulus of the membrane.51

For electroformation of GUVs, a stock lipid solution is
prepared with 25 mg mL�1 DOPC and 0.04 mg mL�1 DOPE-Rh.
Next, 10 mL of the lipid solution in chloroform is spread on a
conductive indium tin oxide (ITO) coated glass slide (resistance O,
25 � 50 � 1.1 mm, Delta Technologies) and dried under vacuum
overnight. The pair of ITO slides are sandwiched together using a
1.5 mm Teflon spacer, forming a chamber with a volume of
E2.4 mL and coupled to a function generator (Agilent 33220 A).
The electroformation chamber is filled with 100 mM sucrose
solution (Sigma-Aldrich) and an alternating current (AC) electric
field of 2 V mm�1 at 10 Hz is applied for 120 min at room
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temperature (22 1C). Under these conditions, DOPC lipid
remains in the fluid phase.26 Most of the vesicles prepared by
this method are unilamellar with few defects, in the size range
of 5–25 mm in radius. The viscosity of the 100 mM sucrose
solution (m = 1.1 mPa s) is measured using a benchtop visco-
meter (Brookfield) at 22 1C. Following electroformation, most
vesicles are only weakly deflated and quasi-spherical in nature.
To generate moderately deflated (low reduced volume) vesicles,
100 mL of a 200 mM sucrose solution is added to 2.0 mL of the
electroformed vesicle suspension, which increases the total
sucrose concentration to 105 mM. In this way, osmotic pressure
differences tend to drive water out of the vesicle interior until
the sucrose concentrations are nearly equal on both sides of the
membrane.32,52 The osmotic deflation method generated
reduced volume vesicles in the range 0.30 o n o 0.90, though
the occurrence of extremely low reduced volume vesicles
(0.30 o n o 0.50) in the suspension was relatively rare. For
experiments involving high solvent viscosities (viscosity ratio l =
0.1), the viscosity of the suspendingmedium was increased to mout =
10.4 mPa s by adding glycerol to the 100 mM sucrose solution.

2.2 Stokes trap

We use a Stokes trap47 to generate controlled strain rate schedules
while simultaneously achieving long-term confinement of single
vesicles near the stagnation point of a planar extensional flow. A
four-channel cross-slot microfluidic device is used for studying
vesicle dynamics (Fig. 1a). In brief, single-layer polydimethyl-
siloxane (PDMS)-based microfluidic device (width = 400 mm, and
depth = 100 mm) is fabricated using standard techniques in soft
lithography.53 Prior work47 used full three-dimensional com-
putational fluid dynamics (CFD) simulations to demonstrate
that proper choice of the dimensions of the microfluidic device
(width and height) can reduce the relative error between the
velocity predicted by a two-dimensional theoretical formula
from Hele-Shaw model47 and CFD velocity to as low as 2%.
The channel dimensions are much larger compared to the
typical vesicle equilibrium size R = 5–15 mm, such that the effect
of confinement is negligible. During device operation, fluid is
injected into two opposing inlet channels and withdrawn
through the two remaining outlet channels, thereby forming
mutually perpendicular inlets and outlets. In this way, the
symmetry of the flow-field under low Reynolds number conditions
results in the formation of a fluid stagnation point (zero-velocity
point) near the center of the cross-slot device, thereby generating
a planar extensional flow in the vicinity of stagnation point as
shown in Fig. 1b.

The Stokes trap was used to enable the direct observation of
vesicle dynamics in extensional flow with a precisely defined
strain rate _e for long observation times.47,54 Briefly, the center-
of-mass position of a target vesicle is trapped in real-time using
fluorescence microscopy and model predictive control (MPC)
algorithm. The MPC feedback controller determines the neces-
sary flow rates required to achieve trapping at a specific point
while maintaining a nearly constant strain rate in extensional
flow and is achieved by using computer-controlled pressure
regulators. In this way, the Stokes trap can be used to confine

vesicles under zero-flow conditions (with no external or net
flow) or under non-zero net flow conditions,47,48 and the latter
method was used to study non-equilibrium flow dynamics in
this work.

2.3 Flow-field characterization

Particle tracking velocimetry (PTV) is used to determine the
fluid strain rates _e as a function of the input pressure from the
pressure regulators (Elveflow OB1-MkIII). Experimental char-
acterization of the fluid strain rate is performed to ensure that
the flow field is uniform in the vicinity of the stagnation point
and enables determination of the capillary number Ca =
mout _eR

3/kb. A trace amount of fluorescent microbeads (2.2 mm
diameter, Spherotech, 0.01% v/v) was added to 105 mM sucrose
buffer solutions (matched to the solution used for vesicle
dynamics experiments) to enable particle tracking. Microfluidic
devices are mounted on the stage of an inverted fluorescence

Fig. 1 Stokes trap for studying vesicle dynamics in flow. (a) Schematic of
the experimental setup used to generate planar extensional flow. Inlet/
outlet channels in the microfluidic device are connected to fluidic reservoirs
containing the vesicle suspension and pressurized by regulators controlled
by a custom LabVIEW program, thereby generating pressure-driven flow in
the cross-slot. (b) Schematic of the cross-slot microfluidic device showing a
deformed vesicle trapped in extensional flow at the stagnation point for
illustrative purposes (not drawn to scale). The width of channels is 400 mm
and the radii of the two spherical ends of the deformed vesicle are 12 mm and
4 mm, respectively.
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microscope (Olympus IX71), which allows for real-time imaging
of fluorescent beads using a high numerical aperture (1.45 NA,
63�) oil-immersion objective lens and a 100 W mercury arc
lamp (USH102D, UShio). The sucrose buffer is introduced into
microfluidic devices using the fluidic reservoirs, and images
of bead positions are acquired using a CCD camera (GS3-U3-
120S6M-C) as a function of the applied inlet pressure. For data
shown in Fig. 2a, the strain rate was determined at the center
plane of the channel in the z-direction (direction orthogonal
to the 2D flow plane). As shown in Fig. 2a, the strain rate at
the central plane of cross-slot device increases linearly with
pressure over the characteristic range of strain rates used in
this work. For data shown in Fig. 2b, fluid strain rate was
determined as a function of z-position by focusing through the
depth of the device as a function of inlet pressure driving flow.

A particle tracking and analysis program55 is used to determine
bead velocities for all trajectories, thereby enabling determina-
tion of the fluid strain rate _e using a non-linear least square
algorithm:

vx

vy

" #
¼

_e 0

0 �_e

" #
x� x0

y� y0

" #
(1)

where vx, vy, x, y are velocities and positions in the x and y
directions, respectively, and (x0,y0) is the location of the stagnation
point in the 2D flow plane.

2.4 Bending modulus determination

2.4.1 Vesicle imaging in observation chamber. For deter-
mination of bending modulus, vesicles are imaged in a secure-
seal imaging spacer (Grace Bio-Labs, 7 mm diameter, 0.12 mm
depth) using an inverted optical microscope (Olympus IX71) in
epifluorescence mode equipped with a 63� oil immersion
objective lens (NA 1.4, Zeiss Plan-Apochromat) and an electron
multiplying charge coupled device (EMCCD) camera (Andor
iXon-ultra, DU-897U-CSO, 512 � 512 pixel output). A 100 W
mercury arc lamp (USH102D, UShio) was used as the excitation
light source in conjunction with a neutral density filter (Olympus),
a 530 � 11 nm band-pass excitation filter (FF01-530/11-25,
Semrock), and a 562 nm single-edge dichroic mirror (Di03-
FF562-25 � 36, Semrock) in the illumination path.

The vesicle suspension is first introduced into the spacer,
and the top of spacer is then sealed with a coverslip to minimize
evaporation and convection within the observation chamber. The
temperature inside the chamber is measured using a thermo-
couple and found to be 22 1C for all experiments. The effect of
gravity influencing the vesicle shape is negligible because of the
nearly equivalent concentration of sucrose in the interior and
exterior of the vesicle, yielding symmetry across the bilayer
membrane. Imaging is performed at the central plane of the
spacer, and the center-of-mass of vesicles remains nearly con-
stant during an observation time of 30–60 s. Images are acquired
over at least 30 s (acquisition frame rate of 30 Hz), which is much
larger than the relaxation time of the slowest decaying mode of
themembrane.56 The approximate order-of-magnitude relaxation
time for a typical lipid membrane vesicle of size R = 10 mm
is E200 ms,56 yielding a bending modulus of 10�19 J in a
suspending medium with viscosity of 1 mPa s. In this way, long
observation times ensure that the available configurational
modes of vesicles are given sufficient time to relax. For these
experiments, unilamellar and defect-free vesicles are selected,
and the fluctuating vesicles in the spacer are spatially isolated
from their neighbors.

2.4.2 Contour detection and determination of jb. We use
the method proposed by Pécréaux et al.57 to determine vesicle
bending modulus. In this way, we follow a rigorous selection
criteria outlined in prior work32,58 that provides an unbiased
procedure for rejecting unsuitable vesicles that do not fluctuate
according to an analytical fluctuation spectrum given by the
Helfrich model.59 Vesicle contours are first detected in each
image with high precision using a custom MATLAB program

Fig. 2 Flow-field characterization in the cross-slot microfluidic device.
(a) Determination of strain rate at the central plane of a cross-slot micro-
fluidic device as a function of inlet pressure. Bead tracking experiments are
performed in 100 mM sucrose buffer. (b) Strain rate determination as a
function of distance from the horizontal mid-plane in the device.
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that relies on intensity gradient maxima values to locate the
edges (ESI,† Fig. S1). The detected coordinate positions of the
vesicle membrane (xi, yi) in each movie frame are transformed
to polar coordinates (ri,yi) and projected into Fourier modes as
follows:

rðyÞ ¼ R 1þ
X1
n¼1

an cosðnyÞ þ bn sinðnyÞ
 !

(2)

where R is the radius of contour in each frame defined as:

R ¼ 1

2p

XN
i¼1

ri þ riþ1

2

� �
yiþ1 � yið Þ (3)

The magnitude of Fourier amplitudes is calculated as

cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an2 þ bn2

p
, and the mean square amplitude of fluctuation

modes around a base spherical shape is given by:

u qxð Þj j2
D E

¼ p Rh i3
2

cn
2

� �
� cnh i2

� �
(4)

where qx = n/hRi is the wavenumber and hRi is the mean radius
of contours determined over all images in a fluctuation experi-
ment on a single vesicle. For determining the bending modulus
kb of vesicles, the following steps are performed:

(1) For each vesicle contour, the mean square amplitude of
fluctuations is calculated using eqn (4). For this analysis, the
behavior over modes n = 6–25 is examined (see ESI,† for
details).

(2) A one-sample Kolmogorov–Smirnoff test is used to check
the exponential distribution of modes. In brief, vesicles main-
tain a constant volume and surface area over the timescale of
these experiments, so the Fourier modes in eqn (4) are expected
to be exponentially distributed. For the modes that pass this
test, the experimental mean square amplitude h|u(qx)|2i is
calculated. In this way, the objective function F is optimized:

F �
Xn¼25

n¼6

u qxð Þj j2
D E

� uH qxð Þj j2
D E

s
u qxð Þj j2h i2

(5)

where sh|u(qx)|2i
2 is the measured standard deviation of the

experimental amplitudes h|u(qx)|2i according to a procedure
discussed in ESI,† and h|uH(qx)|2i is the modified form of
Helfrich’s spectrum after incorporating the effect of the finite
camera integration time.59

(3) The quantity h|u(qx)|2i versus qx is plotted and analyzed
for each vesicle to generate the experimental fluctuation spectrum.
In this way, a two-parameter fit is performed using the modified
form of Helfrich’s spectrum that accounts for the effect of finite
integration time of camera:

uH qxð Þj j2
D E

¼ 1

p

ð1
�1

kT

4moutq?
tm

tm2

t2
t
tm

þ exp
�t
tm

	 

� 1

� �
dqy

(6)

where k is the Boltzmann constant, T is the absolute
temperature, t is the camera integration time (33 ms),

tm�1 ¼ 1

4moutq?
sq?2 þ kbq?4
� �

is the inverse of fluctuation

lifetime, and q? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2 þ qy2

p
. In this way, we determine the

bending modulus kb and membrane tension s for each
vesicle.57 In this fitting procedure, the smallest value of the
quantity h|u(qx)|2i is taken to be 10�22 m3, limited by the spatial
resolution of camera (1 pixel E 200 nm), determined in a
separate experiment by measuring the fluctuation amplitudes
of a stationary rigid fluorescently labeled polystyrene bead in
the focal plane of the microscope.

We further estimate the correlation coefficient of the two
parameters of fit (kb and s) (see ESI,† for details). If the
correlation coefficient corr(s,kb)o�0.85, the vesicle is rejected
for analysis because the membrane is generally taken to be too
tense to provide an accurate estimate of the bendingmodulus.58 In
determining bending modulus kb, we only consider the images in
which the average contour length does not change by more than
5% to ensure the constant surface area and volume. Finally, we
only consider quasi-spherical vesicles in the fluctuation analysis
for estimation of bending modulus. The vesicles used in non-
equilibrium flow experiments are highly deflated (non-spherical),
though we follow prior work in assuming that the ensemble-
averaged bending modulus measured for quasi-spherical vesicles
is representative of all vesicles in the sample.32,58

2.5 Flow experiments in extensional flow

Following flow field characterization and determination of
equilibrium bending modulus kb, we studied the non-equilibrium
deformation of vesicles in extensional flow. Non-equilibrium flow
experiments were conducted using fluorescence microscopy at 10�
magnification using an inverted optical microscope (Olympus IX71)
with mercury lamp as the illumination source (100 W mercury arc
lamp USH102D, UShio). Images were captured using a CCD camera
(Pointgrey GS3 23S6M USB3 CMOS) at a frame rate of 30 Hz. A
dilute vesicle suspension in sucrose buffer was introduced into the
PDMSmicrofluidic device via sample tubing (PEEK tubing 1/1600

OD � 0.0200 ID) connected to fluidic reservoirs (Fig. 1). The four
fluidic reservoirs are pressurized using pressure transducers to
drive the fluid into the microfluidic chip. The fluid inside and
outside the vesicle (105 mM sucrose buffer) are density
matched, so there is no significant drift of vesicles in the
orthogonal direction (z-direction) during the timescale of the
experiment. Vesicles were introduced into the cross-slot device
by flowing through inlet channels at extremely low flow-rates such
that vesicles are negligibly deformed prior to flow experiments.

In this work, we only consider vesicles that are unilamellar
(via visual inspection of contour brightness and smoothness),
defect-free, and completely isolated from neighboring vesicles.
Multilamellar vesicles are observed in the sample, typically
showing defects such as a daughter vesicle inside a parent
vesicle, or lipid tubes protruding from the membrane, but these
vesicles are not included in our analysis. Prior to performing a
non-equilibrium flow experiment, individual vesicles are first
trapped under zero-flow conditions for E15–30 s, thereby
allowing the vesicle to relax for several seconds to ensure near-
equilibrium behavior. During this step, the equivalent radius R
and reduced volume n for each vesicle are measured under
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zero-flow conditions. Reduced volume n is defined as the ratio
of a vesicle’s volume V to the volume of an equivalent sphere
with surface area A = 4pR2, such that:

n ¼ 3V
ffiffiffiffiffiffi
4p

p

A3=2
(7)

A reduced volume of n = 1 corresponds to a perfectly
spherical vesicle, whereas n o 1 represents an osmotically
deflated vesicle.

For these experiments, the membrane contour is located
with a high precision using the edge detection method discussed
in Section 2.4. To determine reduced volume, we follow the
approach by Dahl et al.32 In brief, the surface area and volume
of a vesicle are estimated by revolution of the observed 2D
membrane contour along the vesicle’s short axis (ESI,† Fig. S2
and S3). The equilibrium shape of a vesicle is not always sym-
metric, so the volume and surface area are calculated from the
top and bottom halves of the vesicle separately by numerical
integration,60 and the total surface area and volume are taken
as the average value with uncertainty corresponding to one-half
of the difference between the top and bottom halves. In this
way, the equivalent vesicle radius R and the reduced volume
n are determined from the mean of 100 images at equilibrium
(ESI,† Fig. S4).

Following determination of R and n for a single vesicle, the
non-equilibrium flow experiment is performed by directly
observing shape dynamics for the same individual vesicle in
planar extensional flow. Vesicle dynamics in flow are governed
by three dimensionless parameters: reduced volume n, capillary
number Ca, and viscosity contrast l. The capillary number Ca is
the ratio of the viscous forces to bending forces on the inter-
face, such that:

Ca ¼ mout _eR
3

kb
(8)

where mout is the exterior fluid viscosity, and the viscosity
contrast l is the ratio of the fluid viscosities between the
interior (min) and exterior (mout) regions of a vesicle:

l ¼ min
mout

(9)

Using the Stokes trap, the fluid strain rate is increased in a
systematic step-wise fashion (Fig. 3) by changing the pressure
difference dP between the inlet and outlet channels in the
microfluidic device (Fig. 1b). After each step increase in the
flow rate, a trapped vesicle is observed for E15–30 s and shape
fluctuations are directly observed. The observation time at each
constant strain rate is longer than the time required for the
shape changes to occur, estimated from linear stability analysis.29,30

For our microfluidic system, the characteristic response time dt for
actuating fluid flow in response to a large change in pressure
from 0 psi to 4 psi in the cross-slot device is E300 ms. However,
for the experiments reported in this manuscript, the pressure is
varied with small incremental changes (E0.01–0.05 psi), for
which we generally expect much smaller characteristic response
time. Nevertheless, we wait for 15–30 seconds in between successive

incremental changes of the pressure difference, which is much
larger than the characteristic settling time. In this way, we system-
atically study vesicle shape transitions across a wide range of
parameters in (n,Ca) space with high resolution between experi-
mental data points along the Ca-axis in the flow-phase diagram.

3 Results and discussion
3.1 Bending modulus estimation

We began by determining the average bending modulus for an
ensemble of DOPC lipid vesicles using the procedure described
in the Experimental methods (Section 2.4). In brief, this
method relies on analyzing membrane fluctuations for weakly
deflated vesicles at equilibrium (no flow conditions), followed
by the determination of bending modulus kb and membrane
tension s using a two-parameter fit to the Helfrich model given
by eqn (6). The amplitude of membrane thermal fluctuations
h|u(qx)|2i as a function of wave vector qx is shown for a
characteristic lipid vesicle in Fig. 4. Using this approach, we
determined an average bending modulus of kb = (9.17 � 0.20)�
10�20 J (N = 22, ESI,† Fig. S5). The average value of membrane
tension was found to be s = (1.9 � 0.20) � 10�7 N m�1 (N = 22),
which is consistent with prior work reported in literature.32

The experimentally determined value of the bending modulus
for DOPC vesicles (kb = 9.17 � 10�20 J, DOPC with 0.12 mol%
DOPE-Rh, 100 mM sucrose, T = 24 1C) is in reasonable agreement
with the bendingmodulus measured for pure DOPC vesicles (kb =
9.1 � 10�20 J, 300 mM sucrose/307 mM glucose, T = 25 1C) by
Zhou et al.,60 which suggests that the bendingmodulus for DOPC
vesicles does not significantly depend on sugar concentration
over the relatively narrow range of 100–300 mM. Indeed, low
angle X-ray scattering measurements by Nagle et al.61,62 have
recently shown that the bending modulus of DOPC vesicles
does not depend on sucrose concentration in the range between
100–450 mM. Gracia et al. measured the bending modulus
of pure DOPC vesicles (10 mM glucose, T = 25 1C) to be

Fig. 3 Flow deformation protocol and time-dependent strain rate schedule
for the phase diagram experiments. Fluid strain rate is increased in a
systematic step-wise fashion, and after each step change, vesicle shape
is directly observed forE15–30 s. The critical strain rate _ec is defined as the
strain rate at which a vesicle undergoes a global shape transition.
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kb = 10.8 � 10�20 J, which is consistent with the value of kb
measured in this work at a higher sucrose concentration of
100 mM. Prior work63,64 has shown that increasing the sugar
concentration from 10 mM to 100 mM decreases the value of
bending modulus by a factor of two, though our results tend to
show less deviation in kb over this range of sucrose concentration.
Indeed, such variabilities in experimentalmeasurements of bending
moduli for DOPC vesicles have been reported in prior work.65

The DOPC vesicles in this work contain an exceedingly small
amount of fluorescently labeled lipid (0.12 mol% DOPE-Rh),
which suggests that such a low concentration of labeled
lipid does not substantially alter the bending modulus of the
membrane compared to pure DOPC vesicles.66 Our method for
determining bending modulus relies on a fairly strict set of
statistical rejection criteria for excluding vesicles that do not
conform to an analytical model (eqn (6)), which yields a
relatively narrow distribution in bending moduli values across
the ensemble. Nevertheless, variability in bending modulus
between individual vesicles can be attributed to light-induced
peroxide formation in GUVs and/or precision of membrane
edge detection in vesicle images.66 Broadly speaking, the experi-
mentally measured values of kb in this work are consistent with
prior work reported for DOPC vesicles.52,61,67

3.2 Non-equilibrium flow-phase diagrams

Following determination of bending modulus kb, we further
studied the non-equilibrium dynamics and conformation phase
transitions of vesicles in extensional flow over a wide range of
reduced volume n and capillary number Ca for a viscosity

contrast l = 1 (Fig. 5). Using the Stokes trap, we confined single
vesicles near the stagnation point of planar extensional flow and
observed the non-equilibrium shape dynamics while systematically
increasing the strain rate _e in a scheduled fashion (Fig. 3). In this
way, vesicles were observed to adopt a wide variety of shapes in flow,
including a symmetric dumbbell shape (Fig. 5a andMovie S1, ESI†),
an asymmetric dumbbell shape (Fig. 5c and Movie S2, ESI†), and a
stable ellipsoidal shape (Fig. 5b and Movie S3, ESI†) depending on
the flow strength Ca and amount of membrane floppiness n.

Fig. 5a shows a characteristic time series of images for a
highly deflated (n = 0.53) vesicle initially in a tubular shape
under zero flow conditions. In the presence of extensional flow,
the vesicle stretches along the extensional axis and eventually
transitions to a symmetric dumbbell shape at Ca = 2.3. Once
the shape change occurs, the vesicle is observed to reach a
steady-state conformation in flow. Similarly, Fig. 5c shows a
characteristic time series of images for a moderately deflated
(n = 0.73) vesicle initially in a spheroidal shape, eventually
transiting to an asymmetric dumbbell shape at Ca = 98.7.
Finally, Fig. 5b shows a time series of images for a quasi-spherical
vesicle that largely retains an ellipsoidal shape as Ca increases and
does not undergo a transition into a dumbbell shape.

The experimental flow-phase diagram for vesicle shapes in
extensional flow is shown in Fig. 5d. Our results reveal three
distinct dynamical regimes in the (n,Ca) plane attained by lipid
vesicles. In general, highly deflated (n o 0.60) and moderately
deflated (0.60 o n o 0.75) vesicles are observed to transition
into symmetric or asymmetric dumbbell shapes, respectively, at
a critical strain rate _ec (Movies S1 and S2, ESI†). The critical
capillary number Cac for the vesicle shape transition depends
on the reduced volume n. As shown in Fig. 5d, the filled green
symbols (red symbols) represent the symmetric (asymmetric)
dumbbell shape transition for vesicles with reduced volume
n o 0.60 (0.60 o n o 0.75). The vertical set of open green and
red squares represent data obtained by systematically stepping
strain rate using the Stokes trap for Ca values below the critical
value for a shape transition. At higher reduced volumes (n 4 0.75),
vesicles retain a stable ellipsoidal shape regardless of Ca and do not
undergo a symmetric/asymmetric dumbbell shape change over the
entire range of Ca. The grey curve shows the predicted stability
boundary from boundary-integral simulations,29–31 which is in good
agreement with our experimental data. Uncertainties in deter-
mining the strain rate and the bending modulus are generally
small (see ESI†), and the error bars are dominated by the
uncertainty in the reduced volume calculation. Depending on
the quality of vesicle images at equilibrium, the error bars
corresponding to reduced volume for most vesicles were found
to be smaller than the marker size (see ESI,† Fig. S4).

In general, the flow-phase diagram reveals three distinct
regimes in vesicle shape dynamics defined by reduced volume n:
(i) no 0.60, (ii) 0.60o no 0.75, and (iii) n4 0.75 corresponding
to transitions to a symmetric dumbbell, asymmetric dumbbell, or
stable ellipsoid shape, respectively. Interestingly, the critical
capillary number Cac required to trigger a shape transition
decreases with higher levels of deflation (decreasing n). These
observations are consistent with prior experimental work26,32

Fig. 4 Analysis of membrane fluctuations for determining bending mod-
ulus kb. The amplitude of fluctuations h|u(qx)|2i is plotted as a function of
wave vector qx for a representative DOPC vesicle. The solid red line
corresponds to the analytical model using eqn (6), yielding kb = 8.9 �
10�20 J and membrane tension 3.9 � 10�7 N m�1 (inset): detected contour
of a fluctuating GUV at equilibrium using image processing methods.
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and numerical simulations on vesicle dynamics in extensional
flow.30,31 Moreover, the predicted phase boundary from a
scaling analysis in prior work30 is also shown in Fig. 5d, which
appears to be in qualitative agreement with experiments.

Our experimental results also reveal some degree of variability
in the behavior of vesicle shape transitions near the critical
stability boundary. For example, vesicles marked as ‘1’ and ‘2’
in Fig. 5d have approximately the same reduced volume nE 0.74,
but they transition to an asymmetric dumbbell shape at different
values (Ca = 133 and Ca = 17.8, respectively). Similarly, vesicles
marked as ‘3’ and ‘4’ undergo an asymmetric shape transition at
Ca numbers slightly above and below the curve predicted from
simulations. In general, such variability in vesicle dynamics near
the phase boundary can arise due to several reasons. First, Ca
is defined based on an ensemble averaged value of bending
modulus kb determined from thermal fluctuation analysis of
quasi-spherical vesicles at equilibrium. In the non-equilibrium
flow experiments, vesicles are osmotically deflated and have non-
spherical shapes, which may result in differences in bending
modulus on an individual vesicle basis. Moreover, our method of
estimating reduced volume n by assuming a 2D contour for
vesicles as a body of revolution generally ignores thermal
wrinkles in the vertical direction (z-direction), which may intro-
duce minor variability in determining n.12,60 Finally, numerical

simulations of vesicle shape dynamics do not include thermal
fluctuations of the vesicle membrane, which may lead to
differences between experimental results and numerical predictions.
Indeed, our results show that the role of thermal fluctuationsmay be
important in describing the nature of vesicle shape transitions in
flow (Movies S1–S3, see ESI† for details).

To investigate the influence of viscosity ratio l on the stability
boundary, we performed an additional set of experiments by
increasing the viscosity of the suspending medium by adding
glycerol, such that the viscosity ratio l = 0.1. Fig. 6a shows the
flow-phase diagram for DOPC vesicles in extensional flow as a
function of Ca and n at l = 0.1. Overall, the dynamic behavior of
vesicles at l = 0.1 was similar to that observed at l = 1.0. To
quantitatively compare the dynamic behavior of vesicles at
different viscosity ratios, we plotted the stability boundary for
l = 1.0 and 0.1 in Fig. 6b. The difference between these curves is
not statistically significant as determined by a Mann–Whitney
test ( p 4 0.05). Overall, these results suggest that the onset
of the symmetric and asymmetric dumbbell instabilities is
independent of the viscosity ratio due to membrane area
incompressibility. This can be understood by the fact that the
flow in the base state interior to the vesicle is generally not
sensitive to the viscosity ratio because the interface is immobile
due to a constant membrane area. It should be noted that the

Fig. 5 Flow-phase diagram for vesicle dynamics in extensional flow. Time series of images showing vesicle shape changes in extensional flow for: (a) a
vesicle in the highly deflated regime n = 0.53, having a tubular shape at equilibrium and undergoing a symmetric dumbbell shape transition at Ca = 2.3,
(b) a vesicle in the weakly deflated regime n = 0.95, having a quasi-spherical shape at equilibrium and maintaining a stable ellipsoid shape upon extension
up to Ca of E1000, and (c) a vesicle in the moderately deflated regime n = 0.73, having a spheroid shape at equilibrium and undergoing an asymmetric
dumbbell shape transition at Ca = 98.7. (d) Flow-phase diagram of vesicles in planar extensional flow as a function of reduced volume n and capillary
number Ca at a viscosity ratio l = 1. Open green squares represent vesicles in the highly deflated regime n o 0.60 (tubular shape at equilibrium) for
Ca o Cac at which a vesicle does not undergo shape instability. Filled green squares represent the Cac phase boundary at which a tubular to symmetric
dumbbell transition occurs. Open red squares represent vesicles in the moderately deflated regime 0.60 o n o 0.75 (spheroid shape at equilibrium) for
Cao Cac at which a vesicle does not undergo a shape instability. Filled red squares represent the Cac phase boundary at which a spheroid to asymmetric
dumbbell transition occurs. Open magenta squares represent vesicles in the weakly deflated regime n 4 0.75 where vesicles have quasi-spherical shape
at equilibrium and transition to a stable ellipsoid shape. The grey curve represents the phase boundary from boundary integral simulations.31
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dynamic behavior of vesicles with a molecularly thin membrane
is markedly different compared to immiscible drops with a
simple liquid–liquid interface. In the case of immiscible drops,
the viscosity ratio plays a key role in their dynamics, such that
the critical capillary number required for drop burst instability
is a strong function of the viscosity ratio l.68

4 Conclusions

In this work, we experimentally determine the flow-phase
diagrams for vesicles in extensional flow with high resolution in
(n,Ca) space using a Stokes trap. Our results show that vesicles
undergo symmetric and asymmetric dumbbell shape transitions
depending on Ca and n over a wide range of conditions. Quantita-
tive characterization of the phase diagram reveals three distinct
dynamical regimes for vesicles in extensional flow namely, a tubular
to symmetric dumbbell transition, a spheroid to asymmetric dumb-
bell transition, and quasi-spherical to stable ellipsoid depending on
the value of reduced volume.We further demonstrate that the phase
boundary for shape transitions in flow is insensitive to viscosity
contrast between vesicle interior and exterior. Due to the
presence of the incompressible molecularly thin lipid bilayer
membrane, vesicles exhibit very different dynamics compared to
liquid drops in flow.

Importantly, the trapping method used in this work allows
vesicles to reach a steady-state conformation in extensional
flow after experiencing a global change in shape. We emphasize
that such experimental precision was enabled by using the
Stokes trap, which allows for the long-time observation of
single or multiple particles in an externally imposed flow. An
intriguing question relates to vesicle dynamics at flow rates

exceeding the critical capillary number Cac. Upon increasing
the flow rates above Cac, we anticipate that vesicles will continue to
stretch and will likely undergo large deformations to extremely
high aspect ratios (ratio of a vesicle’s stretched length along the
extensional axis to the equilibrium length). In future work, it will
be interesting to investigate if additional membrane-bound soft
materials such as polymersomes (polymer vesicles), capsules, or
cells undergo similar shape changes under flow. Overall, our work
establishes the utility of Stokes trap as a tool for investigating
vesicle dynamics and opens new avenues for investigating the non-
equilibrium dynamics of soft deformable particles in strong flows.
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