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Abstract. Self-consistent field theory (SCFT) is a powerful approach for computing

the phase behavior of block polymers. We describe a fast version of the open-

source Polymer Self-Consistent Field (PSCF) code that takes advantage of the

massive parallelization provided by a graphical processing unit (GPU). Benchmarking

double precision calculations indicate up to 30× reduction in time to converge SCFT

calculations of various diblock copolymer phases when compared to the Fortran

CPU version of PSCF using the same algorithms, with the speed-up increasing with

increasing unit cell size for the diblock polymer problems examined here. Where double

precision accuracy is not needed, single precision calculations can provide speed-up of

up to 60× in convergence time. These improvements in speed within an open-source

format open up new vistas for SCFT-driven block polymer materials discovery by the

community at large.
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1. Introduction

When a block polymer melt is cooled below its order-disorder transition temperature,

it spontaneously undergoes microphase separation into an ordered morphology. The

selection of a particular ordered structure at a given temperature can be tuned by

changing the volume fraction of each block, the chain architecture, and the degree

of segregation χN , where χ is the Flory-Huggins parameter and N is the degree

of polymerization [1]. This tunability forms the basis for using block polymers to

design soft materials with particular physical and chemical properties [2]. An emerging

challenge is determining what material to make from the vast design space afforded

by block polymer chemistry [3]. Modern polymer synthesis techniques now provide a

vast range of possible block chemistries and block polymer architectures (linear, star,

miktoarm, bottle-brush) [4]. Even for the simplest case of a linear block polymer, the

number of possible permutations grows factorially with increasing number of blocks and

chemistries [3]. As a result, it is infeasible to synthesize and characterize every possible

permutation in an attempt to discover materials with novel properties. It is exceedingly

useful to have a guided strategy to systematically search such a large parameter space for

a desired material property [5,6]. Any such strategy requires an efficient computational

approach, a need that we address here through a fast version of an open-source code for

self-consistent field theory (SCFT) calculations.

The key step in computational design of block polymer materials is identifying

the stable morphology at a given state point, ideally via parameters that can be readily

mapped to experimental studies. SCFT is well-suited to this purpose, and can also serve

as the computing engine for inverse design strategies [7–13]. However, SCFT has been

underutilized as a tool due to the lack of readily available open-source software [14]. The

release of the Polymer Self Consistent Field (PSCF) code [15] improved this situation

by providing an open-source SCFT solver along with guides for initializing calculations

and examples of usage [14].

The original PSCF code [14] was designed to utilize only a single CPU core. This

provides adequate speed for many tasks, and has allowed the code to be successfully

used to analyze block copolymer phase behavior [16–34]. To determine the relative

stability of different candidate morphologies in a region of the block polymer parameter

space, an SCFT calculation must be performed for each competing morphology at

many points in parameter space. If one has access to a CPU cluster, this task can

be partially parallelized by assigning different morphologies and different regions of

parameter space to different CPU cores. The single CPU implementation inevitably

becomes a bottleneck, however, when each calculation requires a sufficiently long time

to complete. The time required to solve the modified diffusion equation by a pseudo-

spectral SCFT algorithm scales as O(NsNn logNn) [17], where Nn is the number of

nodes in the spatial mesh and Ns is the number of contour length integration steps.

Some particularly important examples of computationally challenging problems involve

candidate morphologies that have very large unit cells, such as Frank-Kasper phases and
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Laves phases [21, 23, 24, 35–50]. Evaluating the relative stability of several competing

Frank-Kasper phases is particularly challenging because of the need to use a large

number nodes in the spatial mesh, and the need to test the dependence of free energy on

both Nn and Ns to ensure sufficient accuracy when comparing phases with very similar

free energies [23]. Obtaining a SCFT solution for Frank-Kasper phases in PSCF also

generally requires many iterations to converge [14, 51]. Likewise, problems involving

strongly segregated components and narrow interfaces are particularly challenging.

Computation time also becomes a bottleneck for inverse design problems [7–13], since

many SCFT calculations are required during the search of the design space. Clearly,

PSCF stands to benefit from having a massively parallelized version which could be

used to accelerate expensive calculations.

For this reason, we have implemented a GPU-accelerated version of PSCF. Delaney

and Fredrickson previously described a GPU implementation of SCFT within their

closed software package and found remarkable speed-ups of up to 60× for single precision

calculations [52]. Following these authors, we also chose a GPU implementation over

a multiple-CPU mesage passing implementation because the computational time of

SCFT is dominated by Fast Fourier Transforms (FFT) [52]. FFTs are very effectively

accelerated on GPUs, but suffer from significant communication costs in multi-CPU

message passing implementations.

The GPU-accelerated code that we focus on here differs from that of Delaney and

Fredrickson [52] in two ways. First, the two codes use different iteration algorithms.

The algorithms described by Delaney and Fredrickson obtain a solution of the self-

consistent field equations through a relaxation scheme. Our implementation instead uses

an Anderson mixing iteration scheme [53,54] that can be used to optimize the unit-cell

dimensions simultaneously with the solution of the self-consistent field equations [51,55].

Secondly, and more importantly, our implementation is available for use by others as

an open-source code. We found that our implementation obtains a speed-up of up to

∼60× relative to the existing Fortran PSCF code for sufficiently large single precision

problems, comparable to the speed-up obtained by Delaney and Fredrickson.

Though we focus in this paper on a GPU-accelerated SCFT code for periodic

structures, this code is being distributed [56] as part of a rewritten version of the PSCF

package that also contains several CPU-based programs. While the original PSCF

program was written in Fortran 90, the new package has been rewritten using C++ for

code that is implemented on the CPU and CUDA for code that is implemented on a

GPU.

2. Algorithm and implementation details

In the spirit of our prior publication on the PSCF Fortran code [14], we provide here

a walk-through of the algorithms used in the code, focusing on design choices that

affect performance. As part of this, we briefly reiterate some of the relevant governing

equations [1,14,57,58]. For simplicity, we present some equations in a form appropriate
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to a one-component melt of linear block copolymers of equal length N , though the

code can perform simulations of mixtures that can contain both branched and linear

polymers.

The most computationally expensive part of SCFT is the solution of the modified

diffusion equation (MDE). The forward propagator, q(r, s), of a linear multiblock

polymer is computed from the solution of the MDE,

∂q(r, s)

∂s
=

[
b2α
6
∇2 − ωα(r)

]
q(r, s) . (1)

The parameter bα is the statistical segment length within a block containing monomers

of type α, s ∈ [0, N ] is a contour variable, r is the position variable, and ωα is the

spatially-dependent potential field acting on monomers of type α. The corresponding

backward propagator, q†(r, s), follows the same MDE but with the sign of the time

derivative in (1) reversed. In both cases, the initial condition is q(r, 0) = q†(r, Ns) = 1.

Solutions of the MDE are obtained in PSCF using the pseudospectral algorithm

of Ranjan, Qin and Morse (RQM) [17]. This algorithm yields a discretization error

of order (∆s)4, where ∆s = N/Ns is the contour length step size, N is chain contour

length, and Ns is the number of contour length steps. Typically, each chain is discretized

into Ns ∼ 102 steps. The RQM algorithm has been shown to be very effective for high

accuracy SCFT calculations [59]. This algorithm involves six Fast Fourier Transform

(FFT) operations at each step of integration along the contour length of the polymer,

which dominate the cost of the algorithm [52]. In our code, NVIDIA’s CUFFT library is

used to perform all FFTs on the GPU. All other operations with a cost per contour step

that is proportional to the number of grid points, such as point-wise multiplications, are

also implemented on the GPU.

Following the solution of (1) for q and the counterpart equation for q†, the volume

fraction of each monomer at position r is computed as

φ(r) =
1

NQ

∫
q(r, s)q†(r, s)ds , (2)

where the partition function for an unconstrained chain is

Q =
1

V

∫
q(r, Ns)dr . (3)

The integral with respect to s in Eq. (2) is computed using Simpson’s rule, while the

spatial average in Eq. (3) is computed as an average over mesh nodes [54]. Both types

of integration are implemented on the GPU, where the division of work is at the level

of an individual grid point.

The chemical potential fields in the modified diffusion equation must be chosen so

as to satisfy the SCFT self-consistency condition,

ωα(r) =
∑
β 6=α

χαβφβ(r) + ξ(r) , (4)

for the chemical potential potential field, ωα for each monomer type α. Here, ξ(r) is a

Lagrangian that enforces incompressibility constraint, which requires that∑
α

φα(r) = 1 (5)
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at every position r in the unit cell.

In a SCFT calculation with a flexible unit cell, the MDE and SCFT equations

are supplemented by a requirement that parameters of the unit cell be chosen so as to

minimize the free energy per unit volume or (in a one-component melt) per chain. Let Nc

denote the number of parameters (lengths and angles) required to describe the unit cell

of a particular type (e.g., cubic, hexagonal, tetragonal, etc.), and let θ1, . . . , θNc denote

a list of these parameters. In a block copolymer melt, the requirement of minimization

of the free energy can be expressed as a requirement that

0 = − 1

Q

∂Q

∂θi
(6)

for all i = 1, . . . , Nc. The calculation of the stress in the unit cell in (6) is obtained

using a perturbation theory that provides an analytical form of derivative ∂Q/∂θi [55].

Efficient calculation of this derivative in a pseudo-spectral algorithm requires knowledge

of the spatial Fourier transforms of the forward and reverse MDE solutions q(r, s) and

q†(r, s) at each step of the contour length variable. Calculation of ∂Q/∂θi thus requires

the calculation of two additional FFTs per contour integration step, per trial choice

of the chemical potential fields and unit cell parameters, in addition to the six FFTs

required by the RQM algorithm for solving the MDE. These two additional FFTs are

performed on the MDE solutions q and q† after each completion of the RQM algorithm

for computing these quantities. To reduce the cost of these additional FFTs, solutions

of q and q† are stored in a contiguous memory array that can then be pipelined into the

CUFFT batching system. This batch processing of FFTs results in a speed-up of up to

2× for this operation compared to performing separate FFTs.

Equations (1)-(6) constitute a set of nonlinear, non-local equations that need to be

solved simultaneously to obtain a SCFT solution in an optimal unit cell. A calculation

with a flexible unit cell typically begins with a guess for the potential fields ωα(r) and

for the unit cell parameters. Reference [14] provides step-by-step recipes for generating

initial chemical potential fields for both particle-forming phases and network phases.

These initial guesses must then be iteratively adjusted until Equations (4)-(6) are

satisfied. To obtain a SCFT solution in a fixed unit cell, one instead begins with an

initial guess for the chemical potential fields and iteratively solves Equations (1)-(5),

while treating the unit cell parameters as constants.

The self-consistent solution is found using an iterative procedure known as Anderson

mixing [51, 53, 54, 60]. The form of Anderson mixing used in both the CPU code and

the GPU code is the same as that presented by Arora et al. [51], which is only briefly

summarized here. This algorithm is based on a reformulation of equations (4) and (5)

for a system with Nm distinct types of monomers as a set of Nm independent equations

per point in space (in a continuum) or per node on the FFT mesh (in a discretized

solution), given by equations (10-12) in Ref. [51]. In a SCFT problem with a rigid

unit cell, this formulation gives a system of NmNf independent equations that must

be satisfied by the chemical potential fields, where Nf is the number of independent

degrees of freedom used to represent the chemical potential and volume fraction fields
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associated with each monomer type. The version of Anderson mixing implemented in

the CPU code for periodic microstructures uses a representation of these fields as an

expansion in symmetry-adapted basis functions. In this case, Nf denotes the number

of basis function used in the expansion, which is generally less than the number Nn of

nodes in the FFT mesh by a factor approximately equal to the number of symmetry

elements in the space group. The version of Anderson mixing in the GPU-accelerated

code, however, uses a representation that does not impose any space group symmetry,

for which Nf = Nn. The solution of an SCFT problem with a flexible unit cell must also

satisfy equation (6) for each of Nc unit cell parameters, giving a system of NmNf +Nc

equations.

The resulting system of nonlinear equations can be expressed formally in all cases

of interest as a requirement that

0 = R(x) , (7)

where R(x) denotes a column vector of residuals and x denotes vector of unknowns.

In the case of a rigid unit cell, x is a vector with NmNf elements corresponding to the

coefficients required to specify the Nm chemical potential fields, and R is a vector of

NmNf corresponding SCFT residuals. In the case of a flexible unit cell, x also contains

an additional Nc elements given by the values of the unit cell parameters, while R

contains an additional Nc elements containing derivatives of free energy with respect to

particular unit cell parameters.

Anderson mixing is an iterative algorithm that retains a history of previous trial

values of x and R, and uses information from this history to construct new trial values

of x. The variant of the algorithm presented by Arora et al. [51] allows problems with

fixed unit cell and flexible unit cells to be treated with analogous algorithms, simply by

extending the number of elements in x and R. After k steps of iteration, it retains a

history of the K most recent previous values of x and R. The number of previous trials

retained is K = min(k+1, Nh), where Nh, the maximum history length, is a user-selected

parameter. Storage of this history incurs a memory penalty of O(NhNfNm). This is

comparable to the memory required to store q and q† in calculations withNh ∼ Ns ∼ 102.

After the first Nh iterations, each iteration of the Anderson-mixing update

algorithm as described by Stasiak and Matsen [54] requires computation of Nh inner

products of pairs of residual vectors, at a cost of O(NhNfNm). We achieved this time

complexity by following their suggestion of storing the inner products of pairs of residual

vectors.

In our implementation, these operations are performed on the GPU. While the

Anderson mixing update algorithm constitutes only a small portion of the computation

time in SCFT, we were able to obtain a modest additional speed-up in the GPU code

by offloading these update operations to the GPU.

In contrast to the CPU code, which uses double precision, the GPU-accelerated code

can be compiled in either single precision or double precision. For professional grade

GPUs that are designed for scientific computing, such as as NVIDIA’s Tesla, double
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precision calculations take roughly twice as much time as corresponding single precision

calculations. For more widely available GPUs that were not designed for computation,

such as the GTX series, use of double precision can cause a slow down of 32-fold in the

ideal case where everything else such as bandwidth is equal. The flexibility of our code

reduces the burden of needing sophisticated hardware and thus allows efficient use of

the code on more common, less expensive GPUs.

To further take advantage of our choice of hardware, we have also chose to limit

the simulation grid to sizes of Nn = 2n. This allows us to write GPU kernels that both

require less communication time with the CPU and have a higher computational speed.

3. Code Performance

To ensure the efficacy of this code, it is important to address both the speed-up and the

accuracy of the calculation. The performance of GPU-accelerated SCFT calculations are

well documented by Delaney and Fredrickson [52] for their particular implementation.

We have performed basic performance testing here as well, as our implementation of the

field relaxation is somewhat different than Delaney and Fredrickson [52], and we also

test their conjecture that single-precision codes can be polished to higher accuracy by a

subsequent double-precision calculation. We further provide results for GPU-accelerated

solutions for Frank-Kasper phases, which have very large unit cells.

For the purpose of comparing the older PSCF Fortran code to the new GPU code,

we used the diblock case studies that are distributed with [14] as a benchmarking tool.

The files necessary for running the calculations are also included with this paper as

the online supplementary material. The SCFT solution provides the free energy of a

particular morphology with an optimized domain size, which allows for easy comparison

between different implementations. The diblock case studies involve BCC, FCC, gyroid,

A15, and the Frank-Kasper σ phase. Except where noted otherwise, each calculation

proceeded until the root-mean-squared magnitude of elements in the residual vector R,

as defined by Arora et al. [14], is less than 10−5. All calculations were performed with

a Intel
R©

Xeon
R©

Processor E5-2630 v2 CPU, coupled with a Tesla K40 GPU for the

GPU code. The computational time is taken from an average of three trials. All results

reported here for a CPU program were obtained with the original Fortran PSCF code.

We performed four sets of calculations to benchmark the code. The first calculation

(with the label ‘Symmetry’) uses the Fortran CPU code with the workflow that was

recommended in [14] and simultaneous relaxation of the fields and unit-cell stress [51].

This calculation uses symmetry-adapted basis functions to represent all fields within the

Anderson Mixing iteration algorithm, thus constraining the solution to have a specified

space group symmetry [14]. We also examined the performance of the CPU code

but with no imposed symmetry (‘No-Symmetry’), by setting the space group to the

identity group. Finally, we tested the performance of both double and single precision

calculation on the GPU (‘GPU-D’ and ‘GPU-S’ respectively). The ‘No-Symmetry’

calculations yield the closest equivalence between the CPU and the GPU codes, since



Open-source SCFT on graphics processing units 8

Table 1. Grid size and computational time needed to reach convergence for each

morphology using the three different SCFT implementations. The corresponding

number of Anderson mixing iterations for each implementation is in parenthesis next

to the computational time. The ‘Symmetry’ and ‘No-Symmetry’ implementations are

CPU-based with the conditions as described in Section 3. ‘GPU-D’ and ‘GPU-S’

is the double precision and single precision, respectively, GPU-based implementation

described in Section 2.

Computational Time [s] (# Iterations)

Phase Grid Size, Nn Symmetry No-Symmetry GPU-D GPU-S

BCC 32×32×32 27.9 (51) 80.7 (56) 5.4 (49) 4.3 (68)

FCC 64×64×64 256.9 (53) 580.9 (54) 20.3 (51) 11.0 (67)

A15 64×64×64 418.0 (84) 951.0 (93) 31.4 (79) 15.7 (92)

σ 64×64×32 372.0 (177) 846.3 (183) 41.9 (175) 21.2 (198)

Gyroid 32×32×32 21.7 (44) 47.4 (45) 4.9 (44) 3.7 (58)

we have not yet implemented an iteration algorithm that enforces space group symmetry

during iteration in the GPU-based code. The relative speed of the GPU code and CPU

code with no imposed symmetry is thus the best measure of the speed-up obtained for

identical algorithms as a result of the change in hardware alone. The speed of the GPU

code relative to the CPU code with symmetry is instead the speed-up obtained for these

crystal structures by switching to the current GPU code from the fastest available CPU

implementation.

Figure 1 provides the computational time for two of the case studies, and Table

1 provides the computational time and the number of iterations needed to reach

convergence for each of the case studies. Overall, the GPU-accelerated calculations

are much faster than the CPU calculations. The speed-up accrued by shifting to the

double precision GPU-based SCFT code is around two orders of magnitude, about 30×
for A15. The change from double precision to single precision provides an additional 2×
speed up per iteration, consistent with our choice of GPU. Taking into account both the

change in hardware and the use of single precision calculations, the magnitude of our

largest speed-up is 60×, similar to that by Delaney and Fredrickson [52]. Speed aside,

Anderson mixing is crucial to the SCFT solutions of Frank-Kasper phases because it

is a Jacobian-free method, and thus uses much less memory than, for example, using a

Newton-Raphson scheme to update the fields [14].

A common observation is that the relative speed-up obtained by using GPUs tends

to increase up until the problem becomes large enough to hide latency. This is observed

in our calculations of the case study examples where the largest speed-up are with

examples of 64×64×64 grid size, while only moderate speed-up is seen for 32×32×32

grids. Note that, since the algorithm dictates that the computational grid is limited to

sizes of 2n, we slightly modified the unit cell of the PSCF-distributed case study example

of BCC to 323 from the previous value of 363. The improvement with increasing grid
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Figure 1. Execution time for the SCFT solution for the BCC and A15 phase. The

labels above the bars corresponds to the speed-up, which is defined as time to compute

the solution with no-symmetry constraints divided by execution time for the other

approaches. The grid sizes and number of iterations for each solution are in Table 1,

along with similar speed-up results for other morphologies.

size is especially important for SCFT solutions for Frank-Kasper phases, which have

large unit cells with a large number of particles [61] and thus require many grid points

to resolve the core-matrix interfaces of the particles.

The difference in speed between the ‘Symmetry’ and ‘No-Symmetry’ calculations

is a result of the use of symmetry-adapted basis functions on the cost of the operations

required for Anderson-Mixing update operations. In the CPU code, symmetry adapted

basis functions are used to represent fields in the outer Anderson-Mixing iterator

algorithm, but not within the pseudo-spectral algorithm used to solve the MDE. Use of

symmetry-adapted basis functions thus has no effect on the time required to solve the

MDE, but does affect the time required by the Anderson Mixing update operation itself,

because it drastically reduces the number of degrees of freedom required to represent

the chemical potential field and the corresponding residual vector.

We have not yet implemented any symmetry constraints in the GPU-accelerated

code. It is illuminating to estimate the speed-up that might be obtained if this feature

were implemented. Comparing the ‘Symmetry’ and ‘No-Symmetry’ calculations reveals

the effect of including symmetry-constrained basis functions in Anderson mixing. For

example, the symmetry-adapted basis for the A15 ‘Symmetry’ case reduces the 262 144

nodes to a mere 6 017 basis function coefficients, a 44× reduction. The use of basis

functions allows inner products of residual vectors to be computed as summations over

basis functions rather than summations over grid points, and dramatically reduces the
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number of unknowns in the required solution of a system of linear equations. The fact

that the solution with ‘Symmetry’ is roughly twice as fast as the ’No Symmetry’ case

reflects the fact that, in the ‘No Symmetry’ case, the cost of these update operations has

become comparable to the cost of the solution of the MDE, though the cost of the update

operations becomes negligible for high symmetry (e.g., cubic) phases when symmetry

is imposed. While these observations suggest that a further speed-up is possible by

implementing these symmetry constraints within the GPU code, we do point out that

the effectiveness of the GPU acceleration will be decreased concomitantly with the

reduction in the number of equations to solve. Thus the speed-up is not multiplicative.

To ensure the accuracy of our calculations, we examined the resulting volume

fraction profile for each block in the converged solution as well as the final free energies.

Density profiles were examined using the visualizer developed for [14], which is also

available online [15]. In all cases, the converged solutions were found to yield the

expected morphology. The free energies obtained from the CPU and GPU codes were

very similar, with the largest fractional error in free energy for both double precision

and single precision GPU calculations with respect to the ‘Symmetry’ calculation being

an order of magnitude less than the convergence criteria described earlier.

For cases where speed is the key criterion, our results indicate that single precision

GPU calculations are preferred. However, there are situations where higher accuracy

may be required, for example when comparing different Frank-Kasper phases with nearly

degenerate free energies [23]. Delaney and Fredrickson [52] proposed that the solution

generated by a single precision GPU calculation could be used as the initial condition

for a subsequent double precision calculation to provide the desired accuracy while

retaining the speed of the original GPU calculation during the early stages. We tested

this proposition by first computing a single precision GPU calculation to the standard

tolerance of 10−5 for our work, and then using that solution with a double precision

GPU calculation to reach a tolerance of 10−6. The timing results of this calculation

are the ‘Refine’ method in Fig. 2. We then repeated the calculation by performing it

entirely in double precision, which is denoted as the ‘Direct’ method in Fig. 2. Both

methods lead to similar run-times. Note that the comparison in Fig. 2 uses identical

Anderson mixing parameters when switching from single precision to double precision,

and none of the history information from the single precision calculation is transferred

to the double precision calculation. Some additional speed-up of the ‘Refine’ calculation

might be possible by additional optimization of the algorithm.

4. Conclusion

This paper provides a brief presentation of a new open-source implementation of SCFT

with Anderson mixing using GPU acceleration. The present contribution focuses

on using this code to compute three-dimensional, periodic morphologies in diblock

copolymer melts. The speed-up of the GPU code is found to increase with the size

of the problem, which is important for investigating the properties of complex phases in
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Figure 2. Execution time for the SCFT solution for the BCC and A15 phase with a

convergence criteria of 10−6. The set of histograms labeled ‘Refine’ is the time taken

to run a single precision solver to an accuracy of 10−5 and then refine that solution to

an accuracy of 10−6 using the double precision solver. The set labeled ‘Direct’ is the

time taken using a double precision solver from the outset.

block polymers [21, 23, 24, 37–50]. Eventually, the GPU acceleration will saturate with

problem size, but none of the problems we have explored thus far have reached such a

large system.

While we have focused here on SCFT computations of bulk phases of block

copolymer melts, the present GPU-accelerated implementation can be modified in a

straightforward manner to address other problems of interest. The simplest case is

employing it as the compute engine within an algorithm for inverse design of bulk

phases, such as particle-swarm optimization [11]. By adding appropriate non-periodic

boundary conditions [62, 63] the code could be used to compute pattern formation in

thin films. Similar to the case for bulk phases, such a code could also be used as the

compute engine for inverse design of such patterns [7–9, 12, 13]. Likewise, modifying

the code to self-consistently compute the pressure field would allow it to serve as the

inner loop for Monte Carlo Field Theoretic Simulations [64, 65]. In all of these cases,

the key computational bottleneck is obtaining a fast self-consistent field solver. We

are optimistic that all of these applications will be enabled by the availability of this

open-source, GPU-accelerated SCFT code.

This GPU code is being distributed as part of a new C++/CUDA version of

PSCF that also includes several C++ codes. This rewritten package provides a

common framework for implementation of different SCFT solvers for different boundary

conditions, algorithms, geometries, and choices of hardware, based on a common set
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of classes for shared aspects of SCFT. All programs in the package allow simulation of

systems containing arbitrarily complicated acyclic branched block copolymers (e.g., star

copolymers) in addition to the linear block copolymers and homopolymers allowed in

the older Fortran code. The package currently contains a specialized CPU-based solver

for one-dimensional problems and CPU-based programs for problems with periodic

boundary conditions in 1, 2 and 3 dimensions in addition to the GPU-accelerated code

for periodic problems described here. The one-dimensional solver allows the use of

Cartesian, cylindrical or spherical coordinates, and was designed to allow the treatment

of flat or curved interfaces and spherical or cylindrical micelles. The CPU and GPU

codes for periodic boundary structures both use algorithms analogous to those used in

the original Fortran PSCF program. These new CPU and GPU codes both provide

efficient algorithms to optimize unit cell parameters so as to minimize the free energy.

The new C++ CPU code, like the Fortran code, also allows the user to constrain the

solution to have a specified space group symmetry. The C++ CPU code for periodic

boundary conditions is intended to eventually supplant the Fortran code, but is still

missing a few features of the Fortran code. Currently, most important of such missing

features are an algorithm to efficiently continue solutions along a line in parameter

space (the SWEEP command of the Fortran program), and a specialized code for point-

particle solvents. The GPU code also does not yet allow the user to explicitly constrain

the space group symmetry during iteration. The source code of the new package in its

present form is available online [56].
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