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Abstract. Self-consistent field theory (SCFT) is a powerful approach for computing
the phase behavior of block polymers. We describe a fast version of the open-
source Polymer Self-Consistent Field (PSCF) code that takes advantage of the
massive parallelization provided by a graphical processing unit (GPU). Benchmarking
double precision calculations indicate up to 30x reduction in time to converge SCFT
calculations of various diblock copolymer phases when compared to the Fortran
CPU version of PSCF using the same algorithms, with the speed-up increasing with
increasing unit cell size for the diblock polymer problems examined here. Where double
precision accuracy is not needed, single precision calculations can provide speed-up of
up to 60x in convergence time. These improvements in speed within an open-source
format open up new vistas for SCFT-driven block polymer materials discovery by the
community at large.
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1. Introduction

When a block polymer melt is cooled below its order-disorder transition temperature,
it spontaneously undergoes microphase separation into an ordered morphology. The
selection of a particular ordered structure at a given temperature can be tuned by
changing the volume fraction of each block, the chain architecture, and the degree
of segregation YN, where Y is the Flory-Huggins parameter and N is the degree
of polymerization [1]. This tunability forms the basis for using block polymers to
design soft materials with particular physical and chemical properties [2]. An emerging
challenge is determining what material to make from the vast design space afforded
by block polymer chemistry [3]. Modern polymer synthesis techniques now provide a
vast range of possible block chemistries and block polymer architectures (linear, star,
miktoarm, bottle-brush) [4]. Even for the simplest case of a linear block polymer, the
number of possible permutations grows factorially with increasing number of blocks and
chemistries [3]. As a result, it is infeasible to synthesize and characterize every possible
permutation in an attempt to discover materials with novel properties. It is exceedingly
useful to have a guided strategy to systematically search such a large parameter space for
a desired material property [5,6]. Any such strategy requires an efficient computational
approach, a need that we address here through a fast version of an open-source code for
self-consistent field theory (SCFT) calculations.

The key step in computational design of block polymer materials is identifying
the stable morphology at a given state point, ideally via parameters that can be readily
mapped to experimental studies. SCF'T is well-suited to this purpose, and can also serve
as the computing engine for inverse design strategies [7-13]. However, SCFT has been
underutilized as a tool due to the lack of readily available open-source software [14]. The
release of the Polymer Self Consistent Field (PSCF) code [15] improved this situation
by providing an open-source SCFT solver along with guides for initializing calculations
and examples of usage [14].

The original PSCF code [14] was designed to utilize only a single CPU core. This
provides adequate speed for many tasks, and has allowed the code to be successfully
used to analyze block copolymer phase behavior [16-34]. To determine the relative
stability of different candidate morphologies in a region of the block polymer parameter
space, an SCFT calculation must be performed for each competing morphology at
many points in parameter space. If one has access to a CPU cluster, this task can
be partially parallelized by assigning different morphologies and different regions of
parameter space to different CPU cores. The single CPU implementation inevitably
becomes a bottleneck, however, when each calculation requires a sufficiently long time
to complete. The time required to solve the modified diffusion equation by a pseudo-
spectral SCEFT algorithm scales as O(N;N,,log N,,) [17], where N, is the number of
nodes in the spatial mesh and N; is the number of contour length integration steps.
Some particularly important examples of computationally challenging problems involve
candidate morphologies that have very large unit cells, such as Frank-Kasper phases and
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Laves phases [21,23,24,35-50]. Evaluating the relative stability of several competing
Frank-Kasper phases is particularly challenging because of the need to use a large
number nodes in the spatial mesh, and the need to test the dependence of free energy on
both N,, and N, to ensure sufficient accuracy when comparing phases with very similar
free energies [23]. Obtaining a SCFT solution for Frank-Kasper phases in PSCF also
generally requires many iterations to converge [14,51]. Likewise, problems involving
strongly segregated components and narrow interfaces are particularly challenging.
Computation time also becomes a bottleneck for inverse design problems [7-13], since
many SCFT calculations are required during the search of the design space. Clearly,
PSCF stands to benefit from having a massively parallelized version which could be
used to accelerate expensive calculations.

For this reason, we have implemented a GPU-accelerated version of PSCF. Delaney
and Fredrickson previously described a GPU implementation of SCFT within their
closed software package and found remarkable speed-ups of up to 60 x for single precision
calculations [52]. Following these authors, we also chose a GPU implementation over
a multiple-CPU mesage passing implementation because the computational time of
SCFT is dominated by Fast Fourier Transforms (FFT) [52]. FFTs are very effectively
accelerated on GPUs, but suffer from significant communication costs in multi-CPU
message passing implementations.

The GPU-accelerated code that we focus on here differs from that of Delaney and
Fredrickson [52] in two ways. First, the two codes use different iteration algorithms.
The algorithms described by Delaney and Fredrickson obtain a solution of the self-
consistent field equations through a relaxation scheme. Our implementation instead uses
an Anderson mixing iteration scheme [53,54] that can be used to optimize the unit-cell
dimensions simultaneously with the solution of the self-consistent field equations [51,55].
Secondly, and more importantly, our implementation is available for use by others as
an open-source code. We found that our implementation obtains a speed-up of up to
~60x relative to the existing Fortran PSCF code for sufficiently large single precision
problems, comparable to the speed-up obtained by Delaney and Fredrickson.

Though we focus in this paper on a GPU-accelerated SCFT code for periodic
structures, this code is being distributed [56] as part of a rewritten version of the PSCF
package that also contains several CPU-based programs. While the original PSCF
program was written in Fortran 90, the new package has been rewritten using C++ for
code that is implemented on the CPU and CUDA for code that is implemented on a
GPU.

2. Algorithm and implementation details

In the spirit of our prior publication on the PSCF Fortran code [14], we provide here
a walk-through of the algorithms used in the code, focusing on design choices that
affect performance. As part of this, we briefly reiterate some of the relevant governing
equations [1,14,57,58]. For simplicity, we present some equations in a form appropriate
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to a one-component melt of linear block copolymers of equal length N, though the
code can perform simulations of mixtures that can contain both branched and linear
polymers.

The most computationally expensive part of SCFT is the solution of the modified
diffusion equation (MDE). The forward propagator, ¢(r,s), of a linear multiblock
polymer is computed from the solution of the MDE,

OQ(I"S)_ bgz 2
5 [GV —wa(r)] q(r,s) . (1)

The parameter b, is the statistical segment length within a block containing monomers

of type «, s € [0, N] is a contour variable, r is the position variable, and w, is the
spatially-dependent potential field acting on monomers of type a. The corresponding
backward propagator, ¢'(r,s), follows the same MDE but with the sign of the time
derivative in (1) reversed. In both cases, the initial condition is ¢(r,0) = ¢'(r, N;) = 1.

Solutions of the MDE are obtained in PSCF using the pseudospectral algorithm
of Ranjan, Qin and Morse (RQM) [17]. This algorithm yields a discretization error
of order (As)*, where As = N/N, is the contour length step size, N is chain contour
length, and N, is the number of contour length steps. Typically, each chain is discretized
into N, ~ 102 steps. The RQM algorithm has been shown to be very effective for high
accuracy SCFT calculations [59]. This algorithm involves six Fast Fourier Transform
(FFT) operations at each step of integration along the contour length of the polymer,
which dominate the cost of the algorithm [52]. In our code, NVIDIA’s CUFET library is
used to perform all FFTs on the GPU. All other operations with a cost per contour step
that is proportional to the number of grid points, such as point-wise multiplications, are
also implemented on the GPU.

Following the solution of (1) for ¢ and the counterpart equation for ¢, the volume
fraction of each monomer at position r is computed as

1
o(r) = NQ/q(r, s)q'(r,s)ds (2)
where the partition function for an unconstrained chain is
1
= — Ny)dr . 3
Q= [alr,Ndr 3)

The integral with respect to s in Eq. (2) is computed using Simpson’s rule, while the
spatial average in Eq. (3) is computed as an average over mesh nodes [54]. Both types
of integration are implemented on the GPU, where the division of work is at the level
of an individual grid point.

The chemical potential fields in the modified diffusion equation must be chosen so
as to satisfy the SCF'T self-consistency condition,

wa(r> - Z Xaﬁ¢5(r) + f(I‘) ) (4)
B#a

for the chemical potential potential field, w, for each monomer type «. Here, {(r) is a
Lagrangian that enforces incompressibility constraint, which requires that

> dalr) =1 ()
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at every position r in the unit cell.

In a SCFT calculation with a flexible unit cell, the MDE and SCFT equations
are supplemented by a requirement that parameters of the unit cell be chosen so as to
minimize the free energy per unit volume or (in a one-component melt) per chain. Let N,
denote the number of parameters (lengths and angles) required to describe the unit cell
of a particular type (e.g., cubic, hexagonal, tetragonal, etc.), and let 6y, ..., 6y_ denote
a list of these parameters. In a block copolymer melt, the requirement of minimization
of the free energy can be expressed as a requirement that

10Q
0=—— 6
06, (6)
for all i = 1,..., N.. The calculation of the stress in the unit cell in (6) is obtained

using a perturbation theory that provides an analytical form of derivative Q) /06, [55].
Efficient calculation of this derivative in a pseudo-spectral algorithm requires knowledge
of the spatial Fourier transforms of the forward and reverse MDE solutions ¢(r, s) and
q'(r, s) at each step of the contour length variable. Calculation of 9Q/d6; thus requires
the calculation of two additional FFTs per contour integration step, per trial choice
of the chemical potential fields and unit cell parameters, in addition to the six FFTs
required by the RQM algorithm for solving the MDE. These two additional FFTs are
performed on the MDE solutions ¢ and ¢' after each completion of the RQM algorithm
for computing these quantities. To reduce the cost of these additional FFTs, solutions
of g and ¢' are stored in a contiguous memory array that can then be pipelined into the
CUFFT batching system. This batch processing of FFT's results in a speed-up of up to
2x for this operation compared to performing separate FFTs.

Equations (1)-(6) constitute a set of nonlinear, non-local equations that need to be
solved simultaneously to obtain a SCFT solution in an optimal unit cell. A calculation
with a flexible unit cell typically begins with a guess for the potential fields w,(r) and
for the unit cell parameters. Reference [14] provides step-by-step recipes for generating
initial chemical potential fields for both particle-forming phases and network phases.
These initial guesses must then be iteratively adjusted until Equations (4)-(6) are
satisfied. To obtain a SCFT solution in a fixed unit cell, one instead begins with an
initial guess for the chemical potential fields and iteratively solves Equations (1)-(5),
while treating the unit cell parameters as constants.

The self-consistent solution is found using an iterative procedure known as Anderson
mixing [51,53,54,60]. The form of Anderson mixing used in both the CPU code and
the GPU code is the same as that presented by Arora et al. [51], which is only briefly
summarized here. This algorithm is based on a reformulation of equations (4) and (5)
for a system with N,, distinct types of monomers as a set of N, independent equations
per point in space (in a continuum) or per node on the FFT mesh (in a discretized
solution), given by equations (10-12) in Ref. [51]. In a SCFT problem with a rigid
unit cell, this formulation gives a system of N,,N; independent equations that must
be satisfied by the chemical potential fields, where N; is the number of independent
degrees of freedom used to represent the chemical potential and volume fraction fields
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associated with each monomer type. The version of Anderson mixing implemented in
the CPU code for periodic microstructures uses a representation of these fields as an
expansion in symmetry-adapted basis functions. In this case, N; denotes the number
of basis function used in the expansion, which is generally less than the number N,, of
nodes in the FFT mesh by a factor approximately equal to the number of symmetry
elements in the space group. The version of Anderson mixing in the GPU-accelerated
code, however, uses a representation that does not impose any space group symmetry,
for which Ny = N,,. The solution of an SCF'T problem with a flexible unit cell must also
satisfy equation (6) for each of N, unit cell parameters, giving a system of N,, Ny + N,
equations.

The resulting system of nonlinear equations can be expressed formally in all cases
of interest as a requirement that

0=R(x) , (7)

where R(x) denotes a column vector of residuals and x denotes vector of unknowns.
In the case of a rigid unit cell, x is a vector with N,,,/N; elements corresponding to the
coefficients required to specify the NN, chemical potential fields, and R is a vector of
N,,N¢ corresponding SCF'T residuals. In the case of a flexible unit cell, x also contains
an additional N, elements given by the values of the unit cell parameters, while R
contains an additional N, elements containing derivatives of free energy with respect to
particular unit cell parameters.

Anderson mixing is an iterative algorithm that retains a history of previous trial
values of x and R, and uses information from this history to construct new trial values
of x. The variant of the algorithm presented by Arora et al. [51] allows problems with
fixed unit cell and flexible unit cells to be treated with analogous algorithms, simply by
extending the number of elements in x and R. After k steps of iteration, it retains a
history of the K most recent previous values of x and R. The number of previous trials
retained is K’ = min(k+1, Ny,), where N, the maximum history length, is a user-selected
parameter. Storage of this history incurs a memory penalty of O(N,N;N,,). This is
comparable to the memory required to store g and ¢' in calculations with N, ~ Ny ~ 102,

After the first N, iterations, each iteration of the Anderson-mixing update
algorithm as described by Stasiak and Matsen [54] requires computation of Nj inner
products of pairs of residual vectors, at a cost of O(N,N;N,,). We achieved this time
complexity by following their suggestion of storing the inner products of pairs of residual
vectors.

In our implementation, these operations are performed on the GPU. While the
Anderson mixing update algorithm constitutes only a small portion of the computation
time in SCFT, we were able to obtain a modest additional speed-up in the GPU code
by offloading these update operations to the GPU.

In contrast to the CPU code, which uses double precision, the GPU-accelerated code
can be compiled in either single precision or double precision. For professional grade
GPUs that are designed for scientific computing, such as as NVIDIA’s Tesla, double
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precision calculations take roughly twice as much time as corresponding single precision
calculations. For more widely available GPUs that were not designed for computation,
such as the GTX series, use of double precision can cause a slow down of 32-fold in the
ideal case where everything else such as bandwidth is equal. The flexibility of our code
reduces the burden of needing sophisticated hardware and thus allows efficient use of
the code on more common, less expensive GPUs.

To further take advantage of our choice of hardware, we have also chose to limit
the simulation grid to sizes of N,, = 2". This allows us to write GPU kernels that both
require less communication time with the CPU and have a higher computational speed.

3. Code Performance

To ensure the efficacy of this code, it is important to address both the speed-up and the
accuracy of the calculation. The performance of GPU-accelerated SCF'T calculations are
well documented by Delaney and Fredrickson [52] for their particular implementation.
We have performed basic performance testing here as well, as our implementation of the
field relaxation is somewhat different than Delaney and Fredrickson [52], and we also
test their conjecture that single-precision codes can be polished to higher accuracy by a
subsequent double-precision calculation. We further provide results for GPU-accelerated
solutions for Frank-Kasper phases, which have very large unit cells.

For the purpose of comparing the older PSCF Fortran code to the new GPU code,
we used the diblock case studies that are distributed with [14] as a benchmarking tool.
The files necessary for running the calculations are also included with this paper as
the online supplementary material. The SCFT solution provides the free energy of a
particular morphology with an optimized domain size, which allows for easy comparison
between different implementations. The diblock case studies involve BCC, FCC, gyroid,
A15, and the Frank-Kasper o phase. Except where noted otherwise, each calculation
proceeded until the root-mean-squared magnitude of elements in the residual vector R,
as defined by Arora et al. [14], is less than 107°. All calculations were performed with
a Intel® Xeon® Processor E5-2630 v2 CPU, coupled with a Tesla K40 GPU for the
GPU code. The computational time is taken from an average of three trials. All results
reported here for a CPU program were obtained with the original Fortran PSCF code.

We performed four sets of calculations to benchmark the code. The first calculation
(with the label ‘Symmetry’) uses the Fortran CPU code with the workflow that was
recommended in [14] and simultaneous relaxation of the fields and unit-cell stress [51].
This calculation uses symmetry-adapted basis functions to represent all fields within the
Anderson Mixing iteration algorithm, thus constraining the solution to have a specified
space group symmetry [14]. We also examined the performance of the CPU code
but with no imposed symmetry (‘No-Symmetry’), by setting the space group to the
identity group. Finally, we tested the performance of both double and single precision
calculation on the GPU (‘GPU-D’ and ‘GPU-S’ respectively). The ‘No-Symmetry’

calculations yield the closest equivalence between the CPU and the GPU codes, since
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Table 1. Grid size and computational time needed to reach convergence for each
morphology using the three different SCFT implementations. The corresponding
number of Anderson mixing iterations for each implementation is in parenthesis next
to the computational time. The ‘Symmetry’ and ‘No-Symmetry’ implementations are
CPU-based with the conditions as described in Section 3. ‘GPU-D’ and ‘GPU-S’
is the double precision and single precision, respectively, GPU-based implementation
described in Section 2.

Computational Time [s] (# Iterations)

Phase  Grid Size, N,, Symmetry  No-Symmetry GPU-D GPU-S

BCC  32x32x32 27.9 (51)  80.7 (56) 5.4 (49) 4.3 (68)
FCC  64x64x64 256.9 (53)  580.9 (54) 20.3 (51)  11.0 (67)
Al5 6464 %64 418.0 (84)  951.0 (93) 314 (79) 157 (92)
o 64%64x32 372.0 (177) 846.3 (183)  41.9 (175) 21.2 (198)
Gyroid 32x32x32 21.7 (44)  47.4 (45) 49 (44) 3.7 (58)

we have not yet implemented an iteration algorithm that enforces space group symmetry
during iteration in the GPU-based code. The relative speed of the GPU code and CPU
code with no imposed symmetry is thus the best measure of the speed-up obtained for
identical algorithms as a result of the change in hardware alone. The speed of the GPU
code relative to the CPU code with symmetry is instead the speed-up obtained for these
crystal structures by switching to the current GPU code from the fastest available CPU
implementation.

Figure 1 provides the computational time for two of the case studies, and Table
1 provides the computational time and the number of iterations needed to reach
convergence for each of the case studies. Overall, the GPU-accelerated calculations
are much faster than the CPU calculations. The speed-up accrued by shifting to the
double precision GPU-based SCF'T code is around two orders of magnitude, about 30 x
for A15. The change from double precision to single precision provides an additional 2 x
speed up per iteration, consistent with our choice of GPU. Taking into account both the
change in hardware and the use of single precision calculations, the magnitude of our
largest speed-up is 60x, similar to that by Delaney and Fredrickson [52]. Speed aside,
Anderson mixing is crucial to the SCFT solutions of Frank-Kasper phases because it
is a Jacobian-free method, and thus uses much less memory than, for example, using a
Newton-Raphson scheme to update the fields [14].

A common observation is that the relative speed-up obtained by using GPUs tends
to increase up until the problem becomes large enough to hide latency. This is observed
in our calculations of the case study examples where the largest speed-up are with
examples of 64x64x64 grid size, while only moderate speed-up is seen for 32x32x32
grids. Note that, since the algorithm dictates that the computational grid is limited to
sizes of 2", we slightly modified the unit cell of the PSCF-distributed case study example
of BCC to 322 from the previous value of 363. The improvement with increasing grid
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Figure 1. Execution time for the SCFT solution for the BCC and A15 phase. The
labels above the bars corresponds to the speed-up, which is defined as time to compute
the solution with no-symmetry constraints divided by execution time for the other
approaches. The grid sizes and number of iterations for each solution are in Table 1,
along with similar speed-up results for other morphologies.

size is especially important for SCFT solutions for Frank-Kasper phases, which have
large unit cells with a large number of particles [61] and thus require many grid points
to resolve the core-matrix interfaces of the particles.

The difference in speed between the ‘Symmetry’ and ‘No-Symmetry’ calculations
is a result of the use of symmetry-adapted basis functions on the cost of the operations
required for Anderson-Mixing update operations. In the CPU code, symmetry adapted
basis functions are used to represent fields in the outer Anderson-Mixing iterator
algorithm, but not within the pseudo-spectral algorithm used to solve the MDE. Use of
symmetry-adapted basis functions thus has no effect on the time required to solve the
MDE, but does affect the time required by the Anderson Mixing update operation itself,
because it drastically reduces the number of degrees of freedom required to represent
the chemical potential field and the corresponding residual vector.

We have not yet implemented any symmetry constraints in the GPU-accelerated
code. It is illuminating to estimate the speed-up that might be obtained if this feature
were implemented. Comparing the ‘Symmetry” and ‘No-Symmetry’ calculations reveals
the effect of including symmetry-constrained basis functions in Anderson mixing. For
example, the symmetry-adapted basis for the A15 ‘Symmetry’ case reduces the 262 144
nodes to a mere 6 017 basis function coefficients, a 44x reduction. The use of basis
functions allows inner products of residual vectors to be computed as summations over
basis functions rather than summations over grid points, and dramatically reduces the
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number of unknowns in the required solution of a system of linear equations. The fact
that the solution with ‘Symmetry’ is roughly twice as fast as the 'No Symmetry’ case
reflects the fact that, in the ‘No Symmetry’ case, the cost of these update operations has
become comparable to the cost of the solution of the MDE, though the cost of the update
operations becomes negligible for high symmetry (e.g., cubic) phases when symmetry
is imposed. While these observations suggest that a further speed-up is possible by
implementing these symmetry constraints within the GPU code, we do point out that
the effectiveness of the GPU acceleration will be decreased concomitantly with the
reduction in the number of equations to solve. Thus the speed-up is not multiplicative.

To ensure the accuracy of our calculations, we examined the resulting volume
fraction profile for each block in the converged solution as well as the final free energies.
Density profiles were examined using the visualizer developed for [14], which is also
available online [15]. In all cases, the converged solutions were found to yield the
expected morphology. The free energies obtained from the CPU and GPU codes were
very similar, with the largest fractional error in free energy for both double precision
and single precision GPU calculations with respect to the ‘Symmetry’ calculation being
an order of magnitude less than the convergence criteria described earlier.

For cases where speed is the key criterion, our results indicate that single precision
GPU calculations are preferred. However, there are situations where higher accuracy
may be required, for example when comparing different Frank-Kasper phases with nearly
degenerate free energies [23]. Delaney and Fredrickson [52] proposed that the solution
generated by a single precision GPU calculation could be used as the initial condition
for a subsequent double precision calculation to provide the desired accuracy while
retaining the speed of the original GPU calculation during the early stages. We tested
this proposition by first computing a single precision GPU calculation to the standard
tolerance of 107° for our work, and then using that solution with a double precision
GPU calculation to reach a tolerance of 1075, The timing results of this calculation
are the ‘Refine’ method in Fig. 2. We then repeated the calculation by performing it
entirely in double precision, which is denoted as the ‘Direct’” method in Fig. 2. Both
methods lead to similar run-times. Note that the comparison in Fig. 2 uses identical
Anderson mixing parameters when switching from single precision to double precision,
and none of the history information from the single precision calculation is transferred
to the double precision calculation. Some additional speed-up of the ‘Refine’ calculation
might be possible by additional optimization of the algorithm.

4. Conclusion

This paper provides a brief presentation of a new open-source implementation of SCF'T
with Anderson mixing using GPU acceleration. The present contribution focuses
on using this code to compute three-dimensional, periodic morphologies in diblock
copolymer melts. The speed-up of the GPU code is found to increase with the size
of the problem, which is important for investigating the properties of complex phases in
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Figure 2. Execution time for the SCFT solution for the BCC and A15 phase with a
convergence criteria of 1076, The set of histograms labeled ‘Refine’ is the time taken
to run a single precision solver to an accuracy of 10~° and then refine that solution to
an accuracy of 1079 using the double precision solver. The set labeled ‘Direct’ is the
time taken using a double precision solver from the outset.

block polymers [21,23,24,37-50]. Eventually, the GPU acceleration will saturate with
problem size, but none of the problems we have explored thus far have reached such a
large system.

While we have focused here on SCFT computations of bulk phases of block
copolymer melts, the present GPU-accelerated implementation can be modified in a
straightforward manner to address other problems of interest. The simplest case is
employing it as the compute engine within an algorithm for inverse design of bulk
phases, such as particle-swarm optimization [11]. By adding appropriate non-periodic
boundary conditions [62,63] the code could be used to compute pattern formation in
thin films. Similar to the case for bulk phases, such a code could also be used as the
compute engine for inverse design of such patterns [7-9,12,13]. Likewise, modifying
the code to self-consistently compute the pressure field would allow it to serve as the
inner loop for Monte Carlo Field Theoretic Simulations [64,65]. In all of these cases,
the key computational bottleneck is obtaining a fast self-consistent field solver. We
are optimistic that all of these applications will be enabled by the availability of this
open-source, GPU-accelerated SCFT code.

This GPU code is being distributed as part of a new C++/CUDA version of
PSCF that also includes several C++ codes. This rewritten package provides a
common framework for implementation of different SCF'T solvers for different boundary
conditions, algorithms, geometries, and choices of hardware, based on a common set



Open-source SCEF'T on graphics processing units 12

of classes for shared aspects of SCF'T. All programs in the package allow simulation of
systems containing arbitrarily complicated acyclic branched block copolymers (e.g., star
copolymers) in addition to the linear block copolymers and homopolymers allowed in
the older Fortran code. The package currently contains a specialized CPU-based solver
for one-dimensional problems and CPU-based programs for problems with periodic
boundary conditions in 1, 2 and 3 dimensions in addition to the GPU-accelerated code
for periodic problems described here. The one-dimensional solver allows the use of
Cartesian, cylindrical or spherical coordinates, and was designed to allow the treatment
of flat or curved interfaces and spherical or cylindrical micelles. The CPU and GPU
codes for periodic boundary structures both use algorithms analogous to those used in
the original Fortran PSCF program. These new CPU and GPU codes both provide
efficient algorithms to optimize unit cell parameters so as to minimize the free energy.
The new C++ CPU code, like the Fortran code, also allows the user to constrain the
solution to have a specified space group symmetry. The C++ CPU code for periodic
boundary conditions is intended to eventually supplant the Fortran code, but is still
missing a few features of the Fortran code. Currently, most important of such missing
features are an algorithm to efficiently continue solutions along a line in parameter
space (the SWEEP command of the Fortran program), and a specialized code for point-
particle solvents. The GPU code also does not yet allow the user to explicitly constrain
the space group symmetry during iteration. The source code of the new package in its
present form is available online [56].
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