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Abstract6

The study of marine plankton data is vital to monitor the health of the world’s oceans. In recent decades,

automatic plankton recognition systems have proved useful to address the vast amount of data collected

by specially engineered in situ digital imaging systems. At the beginning, these systems were devel-

oped and put into operation using traditional automatic classification techniques, which were fed with

hand-designed local image descriptors (such as Fourier features), obtaining quite successful results. In

the past few years, there have been many advances in the computer vision community with the rebirth

of neural networks. In this paper, we leverage how descriptors computed using Convolutional Neural

Networks (CNNs) trained with out-of-domain data are useful to replace hand-designed descriptors in

the task of estimating the prevalence of each plankton class in a water sample. To achieve this goal, we

have designed a broad set of experiments that show how effective these deep features are when working

in combination with state-of-the-art quantification algorithms.

Keywords: Abundance estimation, quantification, deep learning, convolutional neural networks,7

phytoplankton8

1. Introduction9

Phytoplankton play a vital role in marine ecosystems. Since the creation of automatic plankton imaging10

systems, many efforts have been devoted to the development of automatic techniques for processing all11

the data captured to optimize conclusions from temporally dense data sets (Benfield et al., 2007).12

In the last few years, attention has turned to Convolutional Neural Networks (CNNs) that push the limit13

of computer vision techniques, but before that, systems designed to automatically classify plankton14

were trained with hand-designed descriptors. These descriptors were a reduced representation of each15

image, that were used for training and testing machine learning algorithms such as Random Forest or16
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Support Vector Machines (SVM). These well studied descriptors included shape and texture features,17

such as Fourier descriptors (Kuhl and Giardina, 1982), Haralick features (Haralick and Shanmugam,18

1973), invariant moments (Hu, 1962), etc. When using CNNs, these descriptors no longer need to be19

computed for each image. Convolutional layers in the CNN serve as feature extractors, gaining in com-20

plexity as we move forward into the network, while pooling layers are designed to reduce the spatial21

resolution of the feature maps, obtaining then invariance to translations and distortions. The network22

itself learns a representation of the images when adjusting the weights of its different layers. This ap-23

proach has been shown to be superior to hand-designed descriptors (Sharif Razavian et al., 2014) and24

it was applied by most of the teams participating in the National Data Science Bowl (NDSB) competi-25

tion1, where participants had to classify plankton images, and 81.5% accuracy was reached across 12126

different categories.27

While CNNs can be used to build a classifier for a specific dataset, as the teams of the NDSB competi-28

tion did, they can also be used to extract a numerical representation of a given image (as an alternative29

to hand-designed descriptors). After feeding a CNN with a plankton image and evaluating all the activa-30

tions of the network, activations in fully connected layers are compressed representations of the image31

and can be used as image descriptors. These descriptors, called deep features, have been applied suc-32

cessfully to many computer vision problems (Oquab et al., 2014; Chatfield et al., 2014).33

One of the main problems with CNNs is that they are computationally expensive. They need special34

hardware to be trained (powerful GPUs) and the time needed for training a big CNN with a respectable35

amount of data is usually counted in weeks. One possible solution for this issue is to use a CNN already36

trained with a set of images belonging to a different domain, a technique known as transfer learning37

(Pan and Yang, 2010). With this approach, a pre-trained CNN can be used to compute deep features of38

plankton images. To improve the results, the network can be fine-tuned with labeled plankton images,39

so the network weights are adjusted better to the plankton domain.40

Transfer learning is a technique that has been around for a few years and that has increased in impor-41

tance since the growth in popularity of CNNs. It has been applied to the WHOI-plankton dataset (Sosik42

et al., 2015) with promising results in terms of classification accuracy (Orenstein et al., 2015). Re-43

cently, increasingly more powerful CNNs have been developed with larger numbers of layers (He et al.,44

2016), leading to astonishing results over the ImageNet dataset (Deng et al., 2009). These very deep45

pre-trained networks are usually openly available, presenting us with the opportunity to test their perfor-46

mance in challenging problems such as the WHOI-plankton dataset where the objective is to estimate47

the prevalence of plankton taxa in a water sample.48

The task of predicting the prevalence of each taxon in a given sample has often been tackled with image49

classification techniques. The most basic approach uses a classifier to assign a class to each plankton50

1https://www.kaggle.com/c/datasciencebowl
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image and then counts them. We shall call this approach ”Classify & Count”. Although this method has51

some efficacy, it is suboptimal and can be improved with methods specifically designed for quantifica-52

tion (González et al., 2017c), such that the aggregated underlying distribution is considered rather than53

individual classifications.54

We are interested in estimating the prevalence of each class in an unknown water sample. To that end,55

we have used quantification algorithms with deep features as their input, and we have analyzed their56

performance with a rigorously designed validation methodology (González et al., 2017a) where the57

sample is the minimum test unit.58

In recent years, different deep learning algorithms have been applied for plankton classification, see59

Moniruzzaman et al. (2017) for a small survey of some of these applications. However, to the best of60

our knowledge, only one other paper (Beijbom et al., 2015) has studied the use of deep learning for61

plankton abundance estimation using quantification algorithms before. In the majority of the papers62

published on the topic, authors use CNNs as classifiers rather than as quantifiers. For instance, Py et al.63

(2016) and Luo et al. (2018) describe two systems based on CNNs able to automatically classify 12164

and 108 types of plankton, respectively. Dunker et al. (2018) and Lloret et al. (2018) use CNN classi-65

fiers for identifying phytoplankton species. Dai et al. (2016a) present a similar approach in the design66

of a zooplankton classifier. Other authors combine CNNs with different machine learning techniques,67

including active learning (Bochinski et al., 2018), hybrid systems (Dai et al., 2016b), parallel networks68

(Wang et al., 2018), imbalance learning (Lee et al., 2016) or different forms of information fusion (Cui69

et al., 2018; Lumini and Nanni, 2019). It should be noted that the improvements on plankton classifi-70

cation described in these papers may not be directly transferable to quantification systems, as classifi-71

cation and quantification are two different tasks. Importantly, capturing the changes in the distribution72

between training data and test samples (González et al., 2017b) is crucial when dealing with quantifica-73

tion. All proper quantification algorithms have some mechanism to detect and deal with such changes74

(see Section 2.4). Furthermore, classification and quantification use different target performance mea-75

sures. While classification requires performance metrics that measure classification accuracy at the in-76

dividual image level (e.g., how likely it is that an image of a given taxon will be classified correctly),77

quantification focuses on sample-level errors instead (e.g., how precise is the estimated concentration of78

a given taxon). The correlation between both performances is lower than expected, see González et al.79

(2017a) for further details. Thus, plankton quantification should be properly studied through a well-80

designed set of experiments, different from those commonly used in plankton classification papers.81

Beijbom et al. (2015) apply four quantification algorithms (Forman, 2008; Saerens et al., 2002) based82

on CNNs classifiers to automatically estimate the abundance of 33 classes over 21 test samples. The83

present paper expands such study in several directions:84

1. Applying standard CNNs, with and without fine-tuning, as feature extractors. The goal is to ana-85

lyze whether fine-tuning helps to significantly improve quantification performance.86
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2. Employing CNNs to obtain deep features, rather than as classifiers. Since training CNN classi-87

fiers may be complex for some users, this paper proposes the use of deep features provided by88

already trained CNNs in combination with easy-to-train quantification algorithms.89

3. Comparing deep features with hand-crafted features (e.g. shape and texture features) that were90

the standard until the emergence of deep learning algorithms.91

4. Performing more exhaustive experiments. In Beijbom et al. (2015) only 21 test samples were92

used, a number that we consider to be too low for analyzing quantification performance, and93

those classes with less than 1000 examples were removed. Our study comprises 764 test sam-94

ples considering all the 49 classes present in those samples. Additionally, the computational cost95

of the compared approaches is also analyzed.96

Our aim is to show that an approach that combines standard CNNs with basic quantification algorithms97

outperforms traditional machine learning methods over the WHOI-plankton dataset.98

For the sake of reproducibility, all relevant source code used to run experiments has been made avail-99

able for download2, along with the full results drawn from all the experiments that were not included in100

this paper3.101

2. Material and Methods102

2.1. Dataset103

The WHOI-Plankton dataset (Sosik et al., 2015) was used for all of the experiments. This dataset is104

publicly available and it has been used by a few papers on this topic (Beijbom et al., 2015; Lee et al.,105

2016; Orenstein and Beijbom, 2017). The WHOI-Plankton data was collected with a multi-year se-106

ries of Imaging FlowCytobot (IFCB) (Olson and Sosik, 2007) deployments at the Martha’s Vineyard107

Coastal Observatory (MVCO), which is a facility operated by Woods Hole Oceanographic Institution108

(WHOI). The MVCO site is a component of the Northeast U.S. Shelf Long-Term Ecological Research109

(NES-LTER) program where the IFCB time series contributes critical information to characterize and110

understand the roles of plankton in ecosystem function. At MVCO, IFCB automatically draws in a 5-111

ml sample of seawater every 20 minutes. The seawater sample is pumped through a cytometric system,112

where particles that contain chlorophyll and are in the approximate size range 10 to 150 µm are im-113

aged. Regions of interest (ROIs) containing plankton targets are extracted from the camera frame in114

realtime during a sample run. These ROIs are stored onboard the IFCB and transmitted to shore over an115

Ethernet connection. At MVCO, IFCB has captured nearly 1 billion images since 2006.116

2https://github.com/pglez82/IFCB_quantification
3https://pglez82.github.io/IFCB_quantification
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Figure 1: Examples of ROIs from the WHOI annotated dataset.

From this huge quantity of images, NES-LTER researchers at WHOI have annotated 3.5 million ROIs117

belonging to more than 5000 different samples. They have manually sorted images into 103 different118

classes, which can be grouped together into 51 more generic categories. Notably, in these experiments119

we have used these image categories as determined by NES-LTER researchers working with the image120

data to address unresolved ecological questions. An example of IFCB images from MVCO can be seen121

in Figure 1. The size of the images varies depending on the size of the organism, typically ranging from122

100 to 100,000 pixels. All images are gray-scale.123

The WHOI-Plankton dataset has a highly unbalanced distribution in which over 90% of images belong124

to only 5 classes and the most prevalent class (miscellaneous nanoplankton) represents 75% of all ROIs125

in the dataset.126

It is important to highlight that every sample has a different plankton distribution, due to temporal varia-127

tions in the natural community.128

2.2. Data preprocessing129

The WHOI-plankton dataset images are distributed in more than 5000 samples. From all these samples130

only the fully annotated ones (all the individuals in the sample have been annotated) were considered131

for the experiment in order to properly test quantification methods. The resulting dataset contains 3.4132

million images organized in 964 samples collected between 2006 and 2014. The categories considered133

were the ones suggested in Sosik et al. (2015), which comprises 51 different classes. From these 964134

samples, the dataset was split into training and test sets taking the first 200 samples (in temporal se-135

quence) as the training set and the rest as the test set. Because two classes contained no examples in the136

first 200 samples, this split resulted in a 49-class training set and resulting 49-class quantifiers evaluated137

in this work.138

This experimental setting follows the guidelines suggested in (González et al., 2017a) trying to simu-139

late a realistic case in which: 1) training data is collected during a sufficiently long period of time, 2) a140

model is learned using these training data and 3) finally such model is deployed to automatically pro-141

cess subsequent samples. Notice that only 20% of all available data has been chosen for the training set142

but these first 200 samples represent all data collected from 2006 to 2008, a length of time which should143

assure the classes of interest are represented. It is likely that using a larger number of samples in the144

training set could result in improved performance for the whole system, but the trade-off is increased145
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time required to learn each model. Our choice balances adequate performance with training time that is146

fast enough to run all the experiments reported in this paper (see Table 4).147

All plankton images have been resized to match the inputs of the CNNs. In this case, images had to be148

224x224 pixels. As most of the IFCB images were not square, each one was resized keeping its original149

aspect ratio and so that its longest dimension is 224 pixels; then the resulting scaled ROI was placed in150

the middle of the image and the two lateral gaps were filled with the value of the average pixel, com-151

puted from 30.000 plankton images randomly selected from the data set.152

Hand-coded features were downloaded from the publicly available MVCO IFCB Dashboard website4,153

where standard computations are provided for the entire dataset (Sosik and Olson, 2007; Sosik et al.,154

2016). For each image a vector with 227 features was downloaded, including shape and texture fea-155

tures. The computation process for these features is carefully documented in Sosik (2017). From now156

on, we will refer to this feature set as normal features (NF) for which performance will be compared157

against the features computed using Convolutional neural networks (CNNs), also known as deep fea-158

tures.159

2.3. Deep features160

Convolutional networks (CNNs) have recently enjoyed great success in large-scale image recognition161

tasks. This has been made possible by the existence of large public image repositories, such as Ima-162

geNet (Deng et al., 2009), and the increase of computing capacity. CNNs used by the computer vision163

community have been growing deeper and deeper since AlexNet (Krizhevsky et al., 2012) was pro-164

posed in 2012 with only 8 layers. Nowadays, deep residual networks (resnets) (He et al., 2016) contain165

more than one hundred layers. The resnet architecture solves the notorious vanishing gradient problem166

(Hochreiter et al., 2001) that emerges when training very deep networks by introducing short cut con-167

nections that skip one or more layers. Notably, residual networks were successful in winning the Ima-168

geNet ILSVRC 2015 competition with an incredible error rate of 3.6% (humans generally hover around169

a 5-10% error rate).170

When a CNN is trained on images, like those in ImageNet, to perform image classification, it automat-171

ically learns features that will vary in complexity depending on the layer depth. On the first layers, fea-172

tures similar to Gabor filters that act as edge and contour detectors are learned. These features are not173

specific to a particular dataset. Deeper layers in the network learn more complex features, usually from174

a combination of features from early layers, that resemble shapes or forms, that are also more specific175

to the dataset in hand. Nonetheless, this specificity is not a problem since the ImageNet dataset is suf-176

ficiently varied. When a new image (in our case, a plankton image) is presented to the CNN, this set of177

4http://ifcb-data.whoi.edu/mvco
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Figure 2: CNN architecture used for deep feature extraction. Layers on the right contain higher level features. The network
input is a raw image resized to fit the input layer.

learned features will be computed in each of the network layers. These deep features, can then be used178

as the input for the different quantification algorithms.179

For the problem at hand, we have used resnets pre-trained on the ImageNet dataset, even though other180

network architectures could be considered (see for example, Huang et al. 2016). ImageNet contains im-181

ages totally different from plankton images containing only macroscopic images such as animals, land-182

scapes, etc. We tested different pre-trained versions of this network, varying the number of layers from183

18 (RN-18) to 101 (RN-101). Our goal was to determine the degree of complexity necessary to obtain184

satisfactory results. To compute deep features for each plankton image, activations were pulled from185

the final fully connected layer of a network during a forward pass of each IFCB plankton image (see186

Figure 2). The number of deep features obtained for each image depends on the network used, varying187

between 512 for RN-18 and RN-34 to 2048 for RN-50 and RN-101.188

Even though off-the-shelf CNN deep features have good discriminative power (Sharif Razavian et al.,189

2014), results can be improved by fine-tuning the networks to actual plankton images. To fine-tune190

the CNNs and adapt them to plankton images, we replaced the last fully connected layer of the CNNs191

(which is designed for classifying ImageNet) with an output layer matching the number of classes in192

our dataset. The network was then trained with the labeled images from the training set in order to193

adapt its weights to plankton images. In our experiments, we used 30 epochs, being an epoch a full pass194

of the whole training dataset (half a million images), with a learning rate of 0.01, which was decreased195

by an order of magnitude after completing the first 15 epochs.196

All fine-tuning and deep feature computing was done with the R deep learning package MXNet (Chen197

et al., 2015) on 2xNVIDIA K80 GPUs. Times needed for fine-tuning the networks and computing the198

deep features are shown in Table 4.199
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2.4. Quantification algorithms200

In the wide variety of problems that machine learning faces, there are tasks in which the individual class201

predictions are not as important as predicting the proportion of each class in a concrete sample or set of202

examples. This problem is called quantification (Forman, 2008) in machine learning and data mining203

communities. Quantification is a learning problem on its own because it requires specific approaches,204

and not just using classification methods. In fact, many experiments (Barranquero et al., 2013, 2015;205

González et al., 2017c) have shown that off-the-shelf classifiers are often suboptimal when applied di-206

rectly to quantification tasks. For that reason, several quantification algorithms have been proposed dur-207

ing the past few years (Firat, 2016; Narasimhan et al., 2016; Pérez-Gállego et al., 2017, 2019). A review208

of quantification learning can be found in González et al. (2017b).209

Given a dataset D = {(x1, y1), ..., (xn, yn)}, in which xi is a representation of an individual example210

in the input space X and yi ∈ Y = {c1, ..., cl} is the corresponding class label, the goal in supervised211

classification is learning a model:212

h : X −→ {c1, ..., cl}, (1)

able to assign a class label for a new unseen example. In quantification, the learning task is totally dif-213

ferent from a formal point of view; it can be defined as follows:214

h̄ : Sample −→ [0, 1]l. (2)

In this case the model h̄ returns a l-dimensional vector in which each element, p̂j , represents the pre-215

dicted prevalence for class j for the input sample, such that216

l∑
j=1

p̂j = 1, (3)

s.t. 0 ≤ p̂j ≤ 1, ∀j = 1, . . . , l.

That is, h̄ predicts the class probability distribution of a sample. Despite the fact that most quantifiers217

have been designed for binary problems (l = 2), multiclass quantification (l > 2) can be solved com-218

bining the results of l binary quantifiers. In this paper, we use the well-known one-vs-all approach that219

learns a collection of binary quantifiers:220

h̄j : Sample −→ [0, 1]. (4)

Each h̄j just returns the proportion of examples of class j in the sample. The initial predictions of all221

the binary models, { p̂0j | j=1, . . . , l}, are finally normalized in order to satisfy (3):222

p̂j =
p̂0j∑l
j=1 p̂

0
j

. (5)

In this study, we have evaluated a set of quantification algorithms developed in the literature for applica-223

tion to binary quantifiers. These approaches were mainly selected because their implementation is very224
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simple and any practitioner with a little knowledge of machine learning could implement these algo-225

rithms. We briefly describe each of them here.226

The Classify & Count (CC) approach follows the most intuitive way to tackle a quantification prob-227

lem: build a classifier and count the examples falling into each class. We shall consider this method as228

a baseline as it is not formally a quantification method, even though it is used in the evaluation of many229

automatic plankton recognition systems (González et al., 2017a). The problem with the CC method is230

that its performance degrades when there are significant changes in class distributions (González et al.,231

2017b).232

The Adjusted Count (AC) algorithm, proposed by Forman (Forman, 2008), is theoretically well founded233

and based on making a correction to the prevalence estimated by the CC method, p̂CCj , using the classi-234

fier true positive rate (tpr) and false positive rate (fpr) for the target class j:235

p̂ACj =
p̂CCj − fpr
tpr − fpr

(6)

which would lead to a perfect prediction given that the estimation of tpr and fpr is perfect and P (x|y)236

is constant [see further details in Forman (2008)]. Even when these two conditions are not completely237

fulfilled, AC usually works better than CC (see Section 3). This approach has been previously used in238

the plankton domain for correcting abundance estimates with a high degree of success (Sosik and Ol-239

son, 2007).240

The methods referred to as Probabilistic Classify & Count (PCC) and Probabilistic Adjusted Count241

(PAC) (Bella et al., 2010) work with an underlying probabilistic classifier instead of a crisp one. The242

prevalence is then computed as the average of the probability of belonging to class j for all the exam-243

ples in a test sample T :244

p̂PCCj =
1

|T |
∑
x∈T

P (y = cj|x) (7)

In the PAC method, this result is adjusted in an analogous way as in the AC method.245

p̂PACj =
p̂PCCj − FP pa

TP pa − FP pa
(8)

in which TP pa (TP probability average) and FP pa (FP probability average), are estimated from the246

training dataset, and are defined as:247

TP pa =

∑
x∈Dj P (y = cj|x)

|Dj|
and FP pa =

∑
x∈Dj P (y = cj|x)

|Dj|
(9)

where Dj is the set of training examples in class j and Dj is the rest of the training examples in D.248

The HDy method (González-Castro et al., 2013) is based on matching probability distributions where249

the Hellinger Distance (HD) is the metric to compute the difference between such distributions. It uses250
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(a) Dj and Dj distributions

T distribution

C
o
u
n
t

P( y=cj | x )

0 0.5 1.0

(b) Test sample distribution

Figure 3: HDy computes first the probability density functions of (a) the examples from Dj and Dj . Eq.(10) combines both
distributions for different values of p̂, to approximate (b) the distribution of the test set sample.

the outputs of a binary classifier to represent the distributions for Dj , Dj and the test set T (with bin-251

ning to approximate the integral in the definition of HD), see Figure 3. The idea is to combine the distri-252

butions Dj and Dj , by means of their prevalences, to approximate the observed distribution in T :253

p̂HDyj = min
p̂j∈[0,1]

√√√√bins∑
k=1

(√
|Tk|
|T |
−

√
|Dj

k|
|Dj|
· p̂j +

|Dj
k|

|Dj|
· (1− p̂j)

)2

. (10)

For instance, in the example depicted in Figure 3, the prevalence of class j is 0.4 in the training set (a)254

and 0.6 in T (b). To match the distribution of T , we need to increase p̂j to give more importance to Dj
255

distribution. A simple linear search in which p̂j moves over the range [0,1] in small steps is used to se-256

lect the predicted prevalence for class j that minimizes the HD.257

These quantification algorithms have been implemented in Python and are publicly available as a Python258

module called PyQuan5. PyQuan is able to tackle multi-class quantification problems with n binary259

quantifiers using a one-vs-all approach. As explained above, a binary quantifier is trained for each class260

j considering examples of this class as the positive class and the rest as the negative. We trained only261

one model per class and used it for each of the quantification algorithms described above (CC, AC,262

PCC, PAC and HDy). This guarantees that the differences in performance between them are only due263

to the way in which each method employs the predictions made by the binary classifiers. We use lin-264

ear regression as the underlying binary classifier as it is simple and fast enough to be trained with this265

dataset in reasonable time and it provides probabilistic outputs, which are needed for the PCC and PAC266

methods. The regularization parameter C was adjusted for each model with a grid search over the val-267

ues (0.1, 1, 10).268

To run the quantification algorithms, we used a machine with 2 Haswell 2680v3 processors, 24 cores,269

5https://github.com/albertorepo/quantification
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and 120Gb of RAM. All experiment times are shown in Table 4.270

2.5. Performance measures271

To compare the different methods and descriptors used in this paper, we need to define the evaluation272

method and performance measures. Given the characteristics of this dataset and its inherent properties273

(see Section 2.1), we chose a validation method that ensures that results are transferable to production274

like conditions. That is, testing should be carried out with different samples presenting different plank-275

ton distributions, covering the actual variations due to seasonalilty or any other factors. The dataset276

comprises 964 samples, where the first 200 (ordered from oldest to newest) are used for training, hav-277

ing 764 remaining samples for the test set. In this work, the evaluation guidelines proposed in González278

et al. (2017a) have been followed. Thus, given the high number of samples, the evaluation method cho-279

sen has been a hold-out by sample, where the model to evaluate is used to predict the distribution of all280

the samples in the test set. An important precondition for properly evaluating quantification algorithms281

is that samples must be complete, meaning that all examples present in a sample have to be annotated282

and placed in one class and no example can be manually discarded.283

Performance measures included in this paper are Mean Absolute Error (MAE) and Mean Relative Ab-284

solute Error (MRAE). Given the true prevalences {pj,s : s = 1, . . . ,m} of class cj over m labelled285

samples, {T1, . . . , Tm}, and the predicted prevalences {p̂j,s : s = 1, . . . ,m}, these performance mea-286

sures can be defined as:287

• Mean Absolute Error: MAE(cj) = 1
m

∑m
s=1 |pj,s − p̂j,s|288

• Mean Relative Absolute Error: MRAE(cj) = 1
m

∑m
s=1

ε+|pj,s−p̂j,s|
ε+pj,s

, where ε is a small constant289

that prevents the function from being undefined when pj,s = 0.290

We do not compare classification accuracy for individual images for several reasons: 1) our goal is to291

tackle the abundance problem in which predictions at the individual level are not relevant, 2) in fact,292

some of the compared algorithms (e.g. AC, PAC and HDy) do not provide such individual classifica-293

tions, and 3) it has been shown that the correlation between classification accuracy and quantification294

accuracy is much lower than expected; see González et al. (2017a) for a complete analysis on this issue.295

3. Results296

All experiment results are fully available online6 as an interactive web application, allowing the user to297

compare between different feature sets and quantification methods, for each class in the dataset.298

6https://pglez82.github.io/IFCB_quantification/
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Figure 4: (Part 1) Results for each sample comparing true prevalence and model outputs using NF (normal features) with CC
method and RN (fine-tuned RN-101 features) using AC method.
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Figure 5: (Part 2) Results for each sample comparing True prevalence and model outputs using NF (normal features) with
CC method and RN (fine-tuned RN-101 features) using AC method.
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NF RN-101
Class CC (10−4) AC (10−4) CC (10−4) AC (10−4)

Cerataulina 89.25 / 4.39 61.97 / 4.61 28.44 / 2.87 27.52 / 2.79
Chaetoceros 334.28 / 6.17 136.26 / 5.47 42.49 / 1.86 38.81 / 1.97
ciliate mix 148.76 / 3.96 71.13 / 4.29 6.56 / 0.40 6.47 / 0.36
Cylindrotheca 58.14 / 2.82 63.26 / 3.00 23.18 / 1.98 22.50 / 1.93
DactFragCerataul 192.36 / 4.97 75.18 / 5.29 20.19 / 1.06 14.69 / 1.04
dino30 148.90 / 4.82 128.98 / 4.78 138.26 / 5.05 121.86 / 5.20
Guinardia 62.17 / 4.42 50.89 / 3.97 20.88 / 1.27 20.48 / 1.28
Leptocylindrus 217.77 / 16.64 184.05 / 12.26 91.86 / 7.48 87.28 / 7.17
pennate 101.97 / 2.83 30.42 / 2.28 8.05 / 0.79 8.35 / 0.79
Rhizosolenia 82.21 / 3.95 61.50 / 3.55 20.99 / 1.41 20.00 / 1.39
Skeletonema 272.94 / 9.43 229.31 / 13.01 28.52 / 2.65 28.57 / 2.66
Thalassiosira 210.93 / 4.94 75.49 / 5.07 19.93 / 0.98 19.32 / 0.99

Table 1: Absolute Errors (AE) Mean / Standard Error for 12 classes over all test samples (full table can be found in the sup-
plemental material). Results for CC and AC methods using normal features (NF) and RN-101 features. Lowest errors per
class shown in bold.

The annotated dataset described in Section 2.1 was used for the experiments. Hand-coded descriptors299

(”normal” features, NF) downloaded from the MVCO IFCB Dashboard (see Section 2.2) were used as300

a baseline to compare with results from descriptors obtained with CNNs. The CNN-derived descriptors301

were computed with residual deep networks (see Section 2.3). These deep features were used for train-302

ing and testing the quantification algorithms in the same way as the hand-coded descriptors. All experi-303

ment times have been logged with the aim of giving a general view of the computing time needed to ap-304

ply these methods (see Table 4). With the class prevalences calculated for each quantification method,305

Absolute Errors and Relative Absolute Errors were computed (see Table 1).306

We found that deep features perform better than normal features resulting in a lower absolute error for307

all classes. This difference is illustrated in Figures 4 and 5. For a given class, it is important to observe308

how the true prevalence varies from sample to sample, sometimes very abruptly. Predictions made with309

deep features get a superior level of adjustment compared to traditional features. There are some classes310

like mix elongated or ciliate mix where predicted prevalences from deep features are almost perfect.311

It is interesting to note how true prevalences vary over samples. For instance in the class Leptocylin-312

drus, true prevalence goes from less than 0.1 to 0.61 in sample 280. Similar changes can be observed313

for most classes. These variations make this problem challenging and suitable for quantification tech-314

niques.315

Differences between the CC and AC method are very small when we deal with very low absolute errors.316

For RN-101 features, AC is almost equivalent to CC. The mean absolute error by class for CC is 0.0035317

where the same value for AC is 0.0031. This difference is greater when features do not work as well.318

For instance, with normal features, error decreases from 0.0149 with CC to 0.0.0084 with AC, a 43%319

decrease in absolute error. On the one hand, when the CC method already gets very good results, the320

margin for improvement is too low to be noticeable. On the other hand, when dealing with a complex321
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NF RN-18* RN-18 RN-34* RN-34 RN-50 RN-101
CC 0.0149 0.0111 0.0103 0.0110 0.0070 0.0036 0.0035
AC 0.0084 0.0208 0.0074 0.0211 0.0268 0.0031 0.0031
PCC 0.0171 0.0133 0.0118 0.0130 0.0082 0.0045 0.0044
PAC 0.0089 0.0077 0.0082 0.0072 0.0058 0.0035 0.0034
HDy 0.0075 0.0063 0.0071 0.0057 0.0055 0.0054 0.0062

Table 2: Mean Absolute Error (AE) by class for all the CNN tested. CNNs with * have not been fine-tuned to plankton im-
ages.

NF RN-18* RN-18 RN-34* RN-34 RN-50 RN-101
CC 17.64 9.15 9.69 8.53 4.45 2.13 2.08
AC 9.99 67.03 7.87 69.85 94.16 1.88 1.87
PCC 20.34 11.96 12.18 11.11 6.67 3.71 3.37
PAC 10.24 7.07 8.95 5.95 4.09 2.50 2.41
HDy 7.9 5.71 8.19 5.16 4.67 11.31 13.97

Table 3: Mean Relative Absolute Error (MRAE) by class for all the CNN tested. CNNs with * have not been fine-tuned to
plankton images.

quantification problem like this one, the conditions for a perfect adjustment are only met to a certain322

degree (tpr and fpr estimations are not perfect and P (x|y) varies across the dataset).323

For other quantification methods, it is interesting to see that adjustments usually work better than the324

CC method. For instance, AC improves the results in four out of seven experiments. Taking a closer325

look at experiments where AC has underperformed CC (RN-18*, RN-34* and RN-34), the problem is326

caused by a few classes (such as Stephanopyxis) with very few training examples and nearly zero preva-327

lence over all samples. With such a low number of examples for a class, it is possible for AC to com-328

pute a tpr and fpr almost zero. In this case, it is easy to see how a very small denominator in Equa-329

tion 6 can lead to a high error in the adjustment. Since Table 2 and Table 3 errors are averaged by class,330

giving the same importance to every class in the dataset, the errors can be misleading without consider-331

ing each class individually.332

Similar conclusions can be drawn looking at the Mean Relative Absolute Errors (see Table 3). The333

same problem is observed with class Stephanopyxis, where the relative error is very high for the AC334

method in three experiments. In the rest of the experiments, values are equivalent to those in the Abso-335

lute Error table and show how well RN-50 and RN-101 with AC work, with an error lower than 2%.336

Another interesting conclusion is that PAC outperforms PCC in all seven experiments (both in absolute337

and relative errors). The adjustment in PAC works similarly to AC (see Equation 8), but seems more338

resistant than AC to the problems due to very infrequent classes, mainly because PAC does not use a339

threshold when deciding if an example belongs or not to a certain class, as this method works with the340
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NF RN-18 RN-34 RN-50 RN-101
Fine-tuning CNN X 11 17 36 65
Compute deep features X 27 30 32 45
Quantification 72 96 96 224 226

Table 4: Comparative of times (in hours) needed for making the experiments using 2 GPUs NVIDIA Tesla K80 for GPU
tasks (fine-tuning and compute deep features) and 2 processors Haswell 2680v3, 24 cores with 120Gb RAM memory for
CPU tasks (quantification).

raw probabilities returned by the classifier. Also, HDy appears as a very solid method, giving very good341

results even with normal features.342

Mean absolute errors by class (see Table 2) show errors for shallower residual networks. It is impor-343

tant to note than even the smaller network with 18 layers and without fine-tuning (RN-18*) outperforms344

normal features. This result leads to the conclusion that the process of fine-tuning is desirable but not345

required. Previous studies (Sharif Razavian et al., 2014) have shown how off-the-shelf deep features346

work better than hand-coded features and this claim is confirmed by our work. Nonetheless, it is impor-347

tant to note that fine-tuning is a process that is done only once in the model building phase and it is not348

very computationally expensive (65 hours of GPU computing for the biggest network tested: RN-101).349

Fine-tuning leads to an improvement over 7% in absolute error for RN-18 and a 36% improvement for350

RN-34.351

It is important to notice how errors decrease with deeper networks. The largest difference takes place352

from 34 layers to 50 layers, where absolute error for the CC method decreases from 0.0070 to 0.0036353

(49% improvement). From there, even doubling the number of network layers (from 50 to 101) only re-354

sults in a 2% decrease in absolute error. This improvement also has a drawback in computation time.355

In addition, the number of deep features computed with RN-50 is four times higher than for RN-34356

(2048 vs. 512). Table 4 shows how time increases from 96 hours to more than 200 hours for building357

the model and applying quantification algorithms. Part of this time increment has its origin in the mem-358

ory requirements to fit a dataset four times bigger. With a machine with 120Gb of RAM, we were able359

to build up to twelve binary models at the same time for 512 deep features, but only four parallel mod-360

els for 2048 deep features.361

4. Discussion362

We have evaluated how well deep features perform when trying to estimate the abundances of plank-363

ton species in a water sample. Conforming with current computer vision literature, deep features have364

proven far more powerful than traditional hand-designed descriptors. Even the smallest networks, pre-365

trained with out-of-domain data, are able to compete against traditional features.366
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Deep features are applicable to most problems in the computer vision field. Nowadays they should be367

considered above hand-designed descriptors given their robust performance, as shown by this and many368

other recent studies. Even if a dataset is not big, and fine-tuning is not an option, pre-trained CNNs369

should still remain as a viable alternative.370

The power of the improved quantification accuracy achieved with deep features is most evident when371

we consider the implications for understanding important ecological problems. A major objective of372

IFCB deployments at MVCO is to characterize taxon-specific bloom occurrences and temporal changes373

in community structure in the plankton. The number of images in the multi-year dataset (nearly 1 bil-374

lion) makes full expert validation of image classifications prohibitive. Traditional hand-descriptor based375

classification has been employed with some success, but even low overall false positive rates can in-376

terfere with the ability to separate critical species and provide adequate estimates of bloom trajectories377

through time.378

We highlight the relative strengths of quantification with deep features with several contrasting plankton379

taxa in the MVCO records, fully analyzed to reflect absolute concentration in the environment (count380

estimate scaled to seawater volume) and known sample date and time (Figure 6). The chain-forming381

diatom species Guinardia delicatula commonly dominates the phytoplankton biomass at MVCO, with382

large wintertime blooms occurring in many years. While traditional features and a random forest clas-383

sification approach have previously been used to study bloom dynamics in this species (Peacock et al.,384

2014), quantification from AC coupled with RN-101 provides fewer cases of incorrectly predicted small385

peaks during non-bloom periods. For the less abundant diatom, Ditylum brightwellii the improvement386

is even more evident, with AC-RN101 estimates almost entirely removing the false bloom events and387

overestimates that plague quantification with CC and traditional feature-based classification. Appropri-388

ately interpreted random forest classification has also been useful for studying temporal dynamics in the389

ciliated micrograzer Laboea strobila (Brownlee et al., 2016) but, as for the low concentration diatom,390

quantification with deep features provides striking fidelity even during period of very low concentration391

(� 1ml−1). Notably, quantification with deep features also works extremely well for some challenging392

cases, such as heterogeneous groupings of small ciliated protozoan taxa with a range of morphologies393

and relatively small cell types including the nanoflagellate Pyraminomnas longicauda, that have proven394

difficult to distinguish reliably from other nanoplankton on the basis of traditional features.395

New CNN architectures are emerging rapidly, with innovations that are expected to lead to even better396

results going forward(Huang et al., 2016). The availability of these models pre-trained with a dataset397

such as ImageNet makes it relatively easy for researchers from different domains to take advantage of398

transfer learning and apply these models to their problems. Even a low-end computer, equipped with399

an inexpensive GPU, would be able to compute deep features for an automatic plankton system in real400

time. For instance, with a GPU GTX 1080, and a 100-layer resnet, deep features for all the images in401

an IFCB sample (we have taken 3500 images as the average sample size), can be computed in less than402
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Figure 6: Daily resolved estimates of plankton concentration in the ocean at MVCO for several taxa that exhibit a range of
concentrations and patterns of temporal variability during a 7-year period after collection of the images used for classifier
training. True concentration (manually verified by experts) is shown along with estimates contrasting the simple CC method
with traditional features (CC-NF) with the AC method with fully trained 101-layer network (AC-RN101). Guinardia delicat-

ula and Ditylum brightwellii are diatoms. Laboea strobila is a distinctive species of ciliated protozoa, while ”Mixed ciliates”
corresponds to a heterogeneous grouping of smaller-sized ciliates of unknown identity. Pyramimonas longicauda is a small
(< 10µm) flagellate.
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five minutes.403

The methods described in this work are fully applicable to other plankton capture systems capable of404

obtaining and processing water samples containing plankton data. Parameters such as the period be-405

tween samples, the number of ROIs in each sample or the plankton classes to be identified, are not406

determining as long as the system is trained and validated with a sufficiently high number of samples.407

This number is a parameter that should be analyzed carefully while validating the system and that will408

depend on the complexity of the data to which the system is exposed.409

In this work, quantification algorithms have been tested against the traditional Classify and Count (CC)410

method. Our results show that the improvement of quantification methods as AC, PAC or HDy over CC411

is typically small. Nonetheless, results also indicate that these quantification methods make the biggest412

difference when the underlying classifier performs less well, as the adjustments made are bigger and413

have a greater impact on the final result.414

The set of experiments conducted in this work were carried out following a very thorough method (González415

et al., 2017a). Quantification algorithms were tested in the most similar way to actual working con-416

ditions. Also, the error measures used, are appropriate for abundance estimation problems, and allow417

us to detect potential problems in the built system. It is very interesting to note that all numerical and418

graphical data generated during the experiments are available online, favouring the detailed analysis of419

the system performance and its refinement.420

Finally, it is important to highlight the importance of the effort of making public and available for down-421

load a dataset as the WHOI-Plankton dataset. Researchers from the Woods Hole Oceanographic In-422

stitution have made public not only the annotated data used in this paper, but also all data captured by423

IFCB since 2006. On the one hand, the use of publicly available dataset is important to guarantee exper-424

imental reproducibility in studies such as the one described in this paper. On the other hand, the fact of425

having all this raw data accessible will enable future exploration of different approaches such as autoen-426

coders (Hinton and Salakhutdinov, 2006). The idea behind autoencoders is to build a neural network427

where the input and output layers are fed with the pixel values of the images. Thus, the network learns428

how to reconstruct each image in the dataset and the activations in the internal layers can be considered429

as a compressed representation of the image. Future work with the full IFCB image dataset will make it430

possible to assess the utility of this unsupervised method that can exploit the huge amount of unlabelled431

data available.432
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Appendix A. Plankton Dataset Labels

Short quantifier label WHOI-Plankton dataset la-
bels

Taxonomic range in class,
other description

Asterionellopsis Asterionellopsis Asterionellopsis spp.

Cerataulina Cerataulina pelagica Cerataulina pelagica

Ceratium Ceratium Ceratium spp.

Chaetoceros Chaetoceros, Chaetoceros didymus Chaetoceros spp., Chaetoceros
didymus

Corethron Corethron hystrix Corethron hystrix

Coscinodiscus Coscinodiscus Coscinodiscus spp.

Cylindrotheca Cylindrotheca Cylindrotheca spp.

DactFragCerataul Dactyliosolen fragilissimus Dactyliosolen fragilissimus

Dactyliosolen Dactyliosolen blavyanus Dactyliosolen blavyanus

Dictyocha Dictyocha Dictyocha spp.

Dinobryon Dinobryon Dinobryon spp.

Dinophysis Dinophysis Dinophysis spp.

Ditylum Ditylum brightwellii Ditylum brightwellii

Ephemera Ephemera Ephemera spp.

Eucampia Eucampia Eucampia spp.

Euglena Euglenia (subclass) Euglenia (subclass)

Guinardia Guinardia delicatula Guinardia delicatula

Guinardia flaccida Guinardia flaccida Guinardia flaccida

Guinardia striata Guinardia striata Guinardia striata

Gyrodinium Gyrodinium, Amphidinium, Ka-
todinium, Torodinium, Protery-
thropsis

Gyrodinium spp., Amphidinium
spp., Katodinium spp., Toro-
dinium spp., Proterythropsis spp.

Laboea Laboea strobila Laboea strobila

Lauderia Lauderia Lauderia spp.

Leptocylindrus Leptocylindrus Leptocylindrus spp.

Licmophora Licmophora Licmophora spp.

Myrionecta Mesodinium sp Mesodinium spp.

Odontella Odontella Odontella spp.

Paralia Paralia Paralia spp.
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Phaeocystis Phaeocystis, Parvicorbicula so-
cialis

Phaeocystis globosa, Parvicorbic-
ula socialis

Pleurosigma Pleurosigma Pleurosigma spp.

Prorocentrum Prorocentrum Prorocentrum spp.

Pseudonitzschia Pseudonitzschia Pseudonitzschia spp.

Pyramimonas Pyramimonas longicauda Pyramimonas longicauda

Rhizosolenia Rhizosolenia Rhizosolenia spp.

Skeletonema Skeletonema Skeletonema spp.

Stephanopyxis Stephanopyxis Stephanopyxis spp.

Thalassionema Thalassionema Thalassionema spp.

Thalassiosira Thalassiosira Thalassiosira spp., other similar
centric diatom species

Thalassiosira dirty Thalassiosira with external detri-
tus

Thalassiosira spp.with external
detritus

bad contains only camera field back-
ground

contains only camera field back-
ground

ciliate mix Didinium, Euplotes, Leegaardiella
ovalis, Pleuronema, Strobilidium,
Tiarnia, Tontonia, and unidenti-
fied ciliates

Didinium spp., Euplotes spp., Lee-
gaardiella ovalis, Pleuronema spp.,
Strobilidium spp., Tiarnia spp.,
Tontonia spp., and unidentified
ciliates

clusterflagellate Corymbellus Corymbellus spp.

detritus detritus detritus

dino30 ameoba, Akashiwo, Hetercapsa tri-
quetra, Karenia, Protoperidinium,
Vicicitus globosus, unidentified di-
noflagellates

Akashiwo spp., Hetercapsa trique-
tra, Karenia spp., Protoperidinium
spp., Vicicitus globosus, unidenti-
fied dinoflagellates and amoeba

kiteflagellates Chrysochromulina lanceolata Chrysochromulina lanceolata

mix Cryptophyta, Pyramimonas,
Chrysochromulina, Hetero-
capsa rotundata, unidentified
nanoplankton

Cryptophyta, Pyramimonas spp.,
Chrysochromulina spp., Hete-
rocapsa rotundata, unidentified
nanoplankton

mix elongated miscellaneous diatom fragments miscellaneous diatom fragments
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na dino10, other, diatome flagellate,
other interaction, Leptocylindrus
mediterraneus, pennates on di-
atoms, Delphineis, Bacillaria,
Bidulphia, Cochlodinium, Emil-
iania huxleyi, Pseudochattonella
farcimen, bead, bubble, pollen,
spore, zooplankton

Other rare and/or unidentified
taxa

pennate miscellaneous pennate diatoms miscellaneous pennate diatoms

tintinnid Tintinnida Tintinnida
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Appendix B. Mean absolute error by class

NF RN-101
Class CC (10−4) AC (10−4) CC (10−4) AC (10−4)

Asterionellopsis 56.97 / 1.60 43.16 / 2.50 2.64 / 0.25 2.61 / 0.26
bad 148.35 / 15.04 162.01 / 18.44 40.43 / 5.16 40.78 / 5.31
Cerataulina 89.25 / 4.39 61.97 / 4.61 28.44 / 2.87 27.52 / 2.79
Ceratium 0.97 / 0.07 0.95 / 0.07 0.32 / 0.05 0.31 / 0.05
Chaetoceros 334.28 / 6.17 136.26 / 5.47 42.49 / 1.86 38.81 / 1.97
ciliate mix 148.76 / 3.96 71.13 / 4.29 6.56 / 0.40 6.47 / 0.36
clusterflagellate 80.33 / 3.14 67.71 / 5.56 0.61 / 0.09 0.57 / 0.09
Corethron 75.28 / 2.32 39.16 / 3.01 2.04 / 0.21 1.89 / 0.19
Coscinodiscus 2.42 / 0.17 2.61 / 0.29 0.82 / 0.11 0.87 / 0.12
Cylindrotheca 58.14 / 2.82 63.26 / 3.00 23.18 / 1.98 22.50 / 1.93
DactFragCerataul 192.36 / 4.97 75.18 / 5.29 20.19 / 1.06 14.69 / 1.04
Dactyliosolen 72.64 / 2.14 60.30 / 3.11 9.49 / 0.85 9.61 / 0.87
detritus 555.91 / 20.27 652.58 / 24.07 409.26 / 23.09 387.54 / 23.79
Dictyocha 20.72 / 1.02 14.98 / 1.22 1.13 / 0.19 1.13 / 0.20
dino30 148.90 / 4.82 128.98 / 4.78 138.26 / 5.05 121.86 / 5.20
Dinobryon 27.72 / 0.92 18.52 / 1.04 3.54 / 0.33 3.30 / 0.32
Dinophysis 18.10 / 0.83 15.44 / 1.49 1.59 / 0.16 1.66 / 0.17
Ditylum 7.91 / 0.43 6.11 / 0.52 1.86 / 0.22 1.67 / 0.20
Ephemera 3.99 / 0.20 2.29 / 0.23 0.57 / 0.11 0.58 / 0.11
Eucampia 29.93 / 1.02 25.28 / 1.66 2.01 / 0.26 2.09 / 0.27
Euglena 17.63 / 0.60 4.60 / 0.51 4.08 / 0.37 3.91 / 0.37
Guinardia 62.17 / 4.42 50.89 / 3.97 20.88 / 1.27 20.48 / 1.28
Guinardia flaccida 4.56 / 0.23 3.49 / 0.30 0.72 / 0.08 0.72 / 0.08
Guinardia striata 12.56 / 1.28 8.64 / 1.22 4.25 / 1.24 4.18 / 1.24
Gyrodinium 33.73 / 1.60 25.01 / 2.14 4.89 / 0.34 4.81 / 0.34
kiteflagellates 14.35 / 0.79 16.26 / 1.13 0.75 / 0.21 0.75 / 0.22
Laboea 2.02 / 0.15 1.85 / 0.17 0.50 / 0.09 0.47 / 0.08
Lauderia 2.22 / 0.30 7.61 / 1.14 0.19 / 0.04 0.22 / 0.05
Leptocylindrus 217.77 / 16.64 184.05 / 12.26 91.86 / 7.48 87.28 / 7.17
Licmophora 3.61 / 0.16 2.45 / 0.22 0.42 / 0.06 0.42 / 0.06
mix 3135.64 / 29.01 1296.29 / 39.10 583.80 / 23.05 459.72 / 22.77
mix elongated 305.75 / 7.28 177.42 / 9.49 119.55 / 6.54 111.25 / 6.81
Myrionecta 65.59 / 1.92 25.91 / 2.15 2.33 / 0.17 2.38 / 0.16
na 484.27 / 7.93 125.58 / 9.29 19.33 / 0.88 18.90 / 0.90
Odontella 0.68 / 0.06 1.13 / 0.14 0.10 / 0.02 0.12 / 0.03
Paralia 22.52 / 0.93 17.57 / 1.49 0.60 / 0.06 0.60 / 0.06
pennate 101.97 / 2.83 30.42 / 2.28 8.05 / 0.79 8.35 / 0.79
Phaeocystis 13.62 / 0.58 20.35 / 1.28 1.98 / 0.32 1.94 / 0.31
Pleurosigma 2.43 / 0.17 2.40 / 0.21 0.76 / 0.09 0.75 / 0.09
Prorocentrum 15.38 / 0.58 10.92 / 0.66 4.35 / 0.49 4.36 / 0.48
Pseudonitzschia 69.37 / 2.54 28.30 / 2.34 11.66 / 0.74 11.80 / 0.75
Pyramimonas 24.49 / 0.82 15.42 / 1.14 1.12 / 0.27 1.04 / 0.25
Rhizosolenia 82.21 / 3.95 61.50 / 3.55 20.99 / 1.41 20.00 / 1.39
Skeletonema 272.94 / 9.43 229.31 / 13.01 28.52 / 2.65 28.57 / 2.66
Stephanopyxis 0.38 / 0.04 0.51 / 0.09 0.04 / 0.01 0.04 / 0.01
Thalassionema 10.25 / 0.37 5.55 / 0.37 1.48 / 0.11 1.48 / 0.11
Thalassiosira 210.93 / 4.94 75.49 / 5.07 19.93 / 0.98 19.32 / 0.99
Thalassiosira dirty 48.70 / 2.29 25.04 / 2.61 6.13 / 0.83 5.45 / 0.79
tintinnid 8.71 / 0.43 6.09 / 0.57 1.75 / 0.17 1.77 / 0.17

Table B.1: Absolute Errors (AE) Mean / Standard Error by class over all test samples. Results for CC and AC
methods using normal features (NF) and RN-101 features. Lowest errors per class shown in bold.
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