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Abstract

The study of marine plankton data is vital to monitor the health of the world’s oceans. In recent decades,
automatic plankton recognition systems have proved useful to address the vast amount of data collected
by specially engineered in situ digital imaging systems. At the beginning, these systems were devel-
oped and put into operation using traditional automatic classification techniques, which were fed with
hand-designed local image descriptors (such as Fourier features), obtaining quite successful results. In
the past few years, there have been many advances in the computer vision community with the rebirth
of neural networks. In this paper, we leverage how descriptors computed using Convolutional Neural
Networks (CNNs) trained with out-of-domain data are useful to replace hand-designed descriptors in
the task of estimating the prevalence of each plankton class in a water sample. To achieve this goal, we
have designed a broad set of experiments that show how effective these deep features are when working

in combination with state-of-the-art quantification algorithms.

Keywords: Abundance estimation, quantification, deep learning, convolutional neural networks,

phytoplankton

1. Introduction

Phytoplankton play a vital role in marine ecosystems. Since the creation of automatic plankton imaging
systems, many efforts have been devoted to the development of automatic techniques for processing all

the data captured to optimize conclusions from temporally dense data sets (Benfield et al., 2007).

In the last few years, attention has turned to Convolutional Neural Networks (CNNs) that push the limit
of computer vision techniques, but before that, systems designed to automatically classify plankton
were trained with hand-designed descriptors. These descriptors were a reduced representation of each

image, that were used for training and testing machine learning algorithms such as Random Forest or

Email addresses: gonzalezgpablo@uniovi.es (Pablo Gonzilez), castanocalberto@uniovi.es (Alberto
Castafio), epeacock@whoi .edu (Emily E. Peacock), jdiez@uniovi.es (Jorge Diez), juanjo@uniovi.es (Juan
José del Coz), hsosik@whoi .edu (Heidi M. Sosik)

://m%.manuscriptcentral.com/jplankt

Preprint submitted to Journal of Plantkonh}itgvearc March 8, 2019



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Journal of Plankton Research Page 10 of 35

Support Vector Machines (SVM). These well studied descriptors included shape and texture features,
such as Fourier descriptors (Kuhl and Giardina, 1982), Haralick features (Haralick and Shanmugam,
1973), invariant moments (Hu, 1962), etc. When using CNNgs, these descriptors no longer need to be
computed for each image. Convolutional layers in the CNN serve as feature extractors, gaining in com-
plexity as we move forward into the network, while pooling layers are designed to reduce the spatial
resolution of the feature maps, obtaining then invariance to translations and distortions. The network
itself learns a representation of the images when adjusting the weights of its different layers. This ap-
proach has been shown to be superior to hand-designed descriptors (Sharif Razavian et al., 2014) and
it was applied by most of the teams participating in the National Data Science Bowl (NDSB) competi-
tion!, where participants had to classify plankton images, and 81.5% accuracy was reached across 121

different categories.

While CNNs can be used to build a classifier for a specific dataset, as the teams of the NDSB competi-
tion did, they can also be used to extract a numerical representation of a given image (as an alternative
to hand-designed descriptors). After feeding a CNN with a plankton image and evaluating all the activa-
tions of the network, activations in fully connected layers are compressed representations of the image
and can be used as image descriptors. These descriptors, called deep features, have been applied suc-

cessfully to many computer vision problems (Oquab et al., 2014; Chatfield et al., 2014).

One of the main problems with CNNss is that they are computationally expensive. They need special
hardware to be trained (powerful GPUs) and the time needed for training a big CNN with a respectable
amount of data is usually counted in weeks. One possible solution for this issue is to use a CNN already
trained with a set of images belonging to a different domain, a technique known as transfer learning
(Pan and Yang, 2010). With this approach, a pre-trained CNN can be used to compute deep features of
plankton images. To improve the results, the network can be fine-tuned with labeled plankton images,

so the network weights are adjusted better to the plankton domain.

Transfer learning is a technique that has been around for a few years and that has increased in impor-
tance since the growth in popularity of CNNs. It has been applied to the WHOI-plankton dataset (Sosik
et al., 2015) with promising results in terms of classification accuracy (Orenstein et al., 2015). Re-
cently, increasingly more powerful CNNs have been developed with larger numbers of layers (He et al.,
2016), leading to astonishing results over the ImageNet dataset (Deng et al., 2009). These very deep
pre-trained networks are usually openly available, presenting us with the opportunity to test their perfor-
mance in challenging problems such as the WHOI-plankton dataset where the objective is to estimate

the prevalence of plankton taxa in a water sample.

The task of predicting the prevalence of each taxon in a given sample has often been tackled with image

classification techniques. The most basic approach uses a classifier to assign a class to each plankton

https://www.kaggle.com/c/datasciencebowl
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image and then counts them. We shall call this approach ”Classify & Count”. Although this method has
some efficacy, it is suboptimal and can be improved with methods specifically designed for quantifica-
tion (Gonzdlez et al., 2017c), such that the aggregated underlying distribution is considered rather than

individual classifications.

We are interested in estimating the prevalence of each class in an unknown water sample. To that end,
we have used quantification algorithms with deep features as their input, and we have analyzed their
performance with a rigorously designed validation methodology (Gonzélez et al., 2017a) where the

sample is the minimum test unit.

In recent years, different deep learning algorithms have been applied for plankton classification, see
Moniruzzaman et al. (2017) for a small survey of some of these applications. However, to the best of
our knowledge, only one other paper (Beijbom et al., 2015) has studied the use of deep learning for
plankton abundance estimation using quantification algorithms before. In the majority of the papers
published on the topic, authors use CNNs as classifiers rather than as quantifiers. For instance, Py et al.
(2016) and Luo et al. (2018) describe two systems based on CNNs able to automatically classify 121
and 108 types of plankton, respectively. Dunker et al. (2018) and Lloret et al. (2018) use CNN classi-
fiers for identifying phytoplankton species. Dai et al. (2016a) present a similar approach in the design
of a zooplankton classifier. Other authors combine CNNs with different machine learning techniques,
including active learning (Bochinski et al., 2018), hybrid systems (Dai et al., 2016b), parallel networks
(Wang et al., 2018), imbalance learning (Lee et al., 2016) or different forms of information fusion (Cui
et al., 2018; Lumini and Nanni, 2019). It should be noted that the improvements on plankton classifi-
cation described in these papers may not be directly transferable to quantification systems, as classifi-
cation and quantification are two different tasks. Importantly, capturing the changes in the distribution
between training data and test samples (Gonzdlez et al., 2017b) is crucial when dealing with quantifica-
tion. All proper quantification algorithms have some mechanism to detect and deal with such changes
(see Section 2.4). Furthermore, classification and quantification use different target performance mea-
sures. While classification requires performance metrics that measure classification accuracy at the in-
dividual image level (e.g., how likely it is that an image of a given taxon will be classified correctly),
quantification focuses on sample-level errors instead (e.g., how precise is the estimated concentration of
a given taxon). The correlation between both performances is lower than expected, see Gonzalez et al.
(2017a) for further details. Thus, plankton quantification should be properly studied through a well-

designed set of experiments, different from those commonly used in plankton classification papers.

Beijbom et al. (2015) apply four quantification algorithms (Forman, 2008; Saerens et al., 2002) based
on CNNss classifiers to automatically estimate the abundance of 33 classes over 21 test samples. The

present paper expands such study in several directions:

1. Applying standard CNNs, with and without fine-tuning, as feature extractors. The goal is to ana-

lyze whether fine-tuning helps to significantly improve quantification performance.

http://mc.manuscri%tcentral.com/jplankt
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2. Employing CNNs to obtain deep features, rather than as classifiers. Since training CNN classi-
fiers may be complex for some users, this paper proposes the use of deep features provided by
already trained CNNSs in combination with easy-to-train quantification algorithms.

3. Comparing deep features with hand-crafted features (e.g. shape and texture features) that were
the standard until the emergence of deep learning algorithms.

4. Performing more exhaustive experiments. In Beijbom et al. (2015) only 21 test samples were
used, a number that we consider to be too low for analyzing quantification performance, and
those classes with less than 1000 examples were removed. Our study comprises 764 test sam-
ples considering all the 49 classes present in those samples. Additionally, the computational cost

of the compared approaches is also analyzed.

Our aim is to show that an approach that combines standard CNNs with basic quantification algorithms

outperforms traditional machine learning methods over the WHOI-plankton dataset.

For the sake of reproducibility, all relevant source code used to run experiments has been made avail-
able for download?, along with the full results drawn from all the experiments that were not included in

this paper>.

2. Material and Methods

2.1. Dataset

The WHOI-Plankton dataset (Sosik et al., 2015) was used for all of the experiments. This dataset is
publicly available and it has been used by a few papers on this topic (Beijbom et al., 2015; Lee et al.,
2016; Orenstein and Beijbom, 2017). The WHOI-Plankton data was collected with a multi-year se-
ries of Imaging FlowCytobot (IFCB) (Olson and Sosik, 2007) deployments at the Martha’s Vineyard
Coastal Observatory (MVCO), which is a facility operated by Woods Hole Oceanographic Institution
(WHOI). The MVCO site is a component of the Northeast U.S. Shelf Long-Term Ecological Research
(NES-LTER) program where the IFCB time series contributes critical information to characterize and
understand the roles of plankton in ecosystem function. At MVCO, IFCB automatically draws in a 5-
ml sample of seawater every 20 minutes. The seawater sample is pumped through a cytometric system,
where particles that contain chlorophyll and are in the approximate size range 10 to 150 ym are im-
aged. Regions of interest (ROIs) containing plankton targets are extracted from the camera frame in
realtime during a sample run. These ROIs are stored onboard the IFCB and transmitted to shore over an
Ethernet connection. At MVCO, IFCB has captured nearly 1 billion images since 2006.

https://github.com/pglez82/IFCB_quantification
3https://pglez82.github.io/IFCB_quantification

http://mc.manuscrigfcentral.com/jplankt
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Figure 1: Examples of ROIs from the WHOI annotated dataset.

From this huge quantity of images, NES-LTER researchers at WHOI have annotated 3.5 million ROIs
belonging to more than 5000 different samples. They have manually sorted images into 103 different
classes, which can be grouped together into 51 more generic categories. Notably, in these experiments
we have used these image categories as determined by NES-LTER researchers working with the image
data to address unresolved ecological questions. An example of IFCB images from MVCO can be seen
in Figure 1. The size of the images varies depending on the size of the organism, typically ranging from

100 to 100,000 pixels. All images are gray-scale.

The WHOI-Plankton dataset has a highly unbalanced distribution in which over 90% of images belong
to only 5 classes and the most prevalent class (miscellaneous nanoplankton) represents 75% of all ROIs

in the dataset.

It is important to highlight that every sample has a different plankton distribution, due to temporal varia-

tions in the natural community.

2.2. Data preprocessing

The WHOI-plankton dataset images are distributed in more than 5000 samples. From all these samples
only the fully annotated ones (all the individuals in the sample have been annotated) were considered
for the experiment in order to properly test quantification methods. The resulting dataset contains 3.4
million images organized in 964 samples collected between 2006 and 2014. The categories considered
were the ones suggested in Sosik et al. (2015), which comprises 51 different classes. From these 964
samples, the dataset was split into training and test sets taking the first 200 samples (in temporal se-
quence) as the training set and the rest as the test set. Because two classes contained no examples in the
first 200 samples, this split resulted in a 49-class training set and resulting 49-class quantifiers evaluated

in this work.

This experimental setting follows the guidelines suggested in (Gonzdlez et al., 2017a) trying to simu-
late a realistic case in which: 1) training data is collected during a sufficiently long period of time, 2) a
model is learned using these training data and 3) finally such model is deployed to automatically pro-
cess subsequent samples. Notice that only 20% of all available data has been chosen for the training set
but these first 200 samples represent all data collected from 2006 to 2008, a length of time which should
assure the classes of interest are represented. It is likely that using a larger number of samples in the

training set could result in improved performance for the whole system, but the trade-off is increased

http://mc.manuscri%tcentral.com/jplankt
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time required to learn each model. Our choice balances adequate performance with training time that is
fast enough to run all the experiments reported in this paper (see Table 4).

All plankton images have been resized to match the inputs of the CNNs. In this case, images had to be
224x224 pixels. As most of the IFCB images were not square, each one was resized keeping its original
aspect ratio and so that its longest dimension is 224 pixels; then the resulting scaled ROI was placed in
the middle of the image and the two lateral gaps were filled with the value of the average pixel, com-

puted from 30.000 plankton images randomly selected from the data set.

Hand-coded features were downloaded from the publicly available MVCO IFCB Dashboard website®,
where standard computations are provided for the entire dataset (Sosik and Olson, 2007; Sosik et al.,
2016). For each image a vector with 227 features was downloaded, including shape and texture fea-
tures. The computation process for these features is carefully documented in Sosik (2017). From now
on, we will refer to this feature set as normal features (NF) for which performance will be compared
against the features computed using Convolutional neural networks (CNNs), also known as deep fea-

tures.

2.3. Deep features

Convolutional networks (CNNs) have recently enjoyed great success in large-scale image recognition
tasks. This has been made possible by the existence of large public image repositories, such as Ima-
geNet (Deng et al., 2009), and the increase of computing capacity. CNNs used by the computer vision
community have been growing deeper and deeper since AlexNet (Krizhevsky et al., 2012) was pro-
posed in 2012 with only 8 layers. Nowadays, deep residual networks (resnets) (He et al., 2016) contain
more than one hundred layers. The resnet architecture solves the notorious vanishing gradient problem
(Hochreiter et al., 2001) that emerges when training very deep networks by introducing short cut con-
nections that skip one or more layers. Notably, residual networks were successful in winning the Ima-
geNet ILSVRC 2015 competition with an incredible error rate of 3.6% (humans generally hover around
a 5-10% error rate).

When a CNN is trained on images, like those in ImageNet, to perform image classification, it automat-
ically learns features that will vary in complexity depending on the layer depth. On the first layers, fea-
tures similar to Gabor filters that act as edge and contour detectors are learned. These features are not
specific to a particular dataset. Deeper layers in the network learn more complex features, usually from
a combination of features from early layers, that resemble shapes or forms, that are also more specific
to the dataset in hand. Nonetheless, this specificity is not a problem since the ImageNet dataset is suf-

ficiently varied. When a new image (in our case, a plankton image) is presented to the CNN, this set of

‘http://ifcb-data.whoi.edu/mvco

http://mc.manuscri%&central.com/jplankt
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Figure 2: CNN architecture used for deep feature extraction. Layers on the right contain higher level features. The network

input is a raw image resized to fit the input layer.

learned features will be computed in each of the network layers. These deep features, can then be used

as the input for the different quantification algorithms.

For the problem at hand, we have used resnets pre-trained on the ImageNet dataset, even though other
network architectures could be considered (see for example, Huang et al. 2016). ImageNet contains im-
ages totally different from plankton images containing only macroscopic images such as animals, land-
scapes, etc. We tested different pre-trained versions of this network, varying the number of layers from
18 (RN-18) to 101 (RN-101). Our goal was to determine the degree of complexity necessary to obtain
satisfactory results. To compute deep features for each plankton image, activations were pulled from
the final fully connected layer of a network during a forward pass of each IFCB plankton image (see
Figure 2). The number of deep features obtained for each image depends on the network used, varying
between 512 for RN-18 and RN-34 to 2048 for RN-50 and RN-101.

Even though off-the-shelf CNN deep features have good discriminative power (Sharif Razavian et al.,
2014), results can be improved by fine-tuning the networks to actual plankton images. To fine-tune

the CNNs and adapt them to plankton images, we replaced the last fully connected layer of the CNNs
(which is designed for classifying ImageNet) with an output layer matching the number of classes in
our dataset. The network was then trained with the labeled images from the training set in order to
adapt its weights to plankton images. In our experiments, we used 30 epochs, being an epoch a full pass
of the whole training dataset (half a million images), with a learning rate of 0.01, which was decreased

by an order of magnitude after completing the first 15 epochs.

All fine-tuning and deep feature computing was done with the R deep learning package MXNet (Chen
et al., 2015) on 2xNVIDIA K80 GPUs. Times needed for fine-tuning the networks and computing the

deep features are shown in Table 4.

http://mc.manuscrip)tcentral.com/jplankt
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2.4. Quantification algorithms

In the wide variety of problems that machine learning faces, there are tasks in which the individual class
predictions are not as important as predicting the proportion of each class in a concrete sample or set of
examples. This problem is called quantification (Forman, 2008) in machine learning and data mining
communities. Quantification is a learning problem on its own because it requires specific approaches,
and not just using classification methods. In fact, many experiments (Barranquero et al., 2013, 2015;
Gonzélez et al., 2017¢) have shown that off-the-shelf classifiers are often suboptimal when applied di-
rectly to quantification tasks. For that reason, several quantification algorithms have been proposed dur-
ing the past few years (Firat, 2016; Narasimhan et al., 2016; Pérez-Gdllego et al., 2017, 2019). A review

of quantification learning can be found in Gonzalez et al. (2017b).

Given a dataset D = {(x1,%1), ..., (Tn, yn)}, in which z; is a representation of an individual example
in the input space X and y; € Y = {cy, ..., ¢} is the corresponding class label, the goal in supervised
classification is learning a model:

h:X —{c,...,al, (1)

able to assign a class label for a new unseen example. In quantification, the learning task is totally dif-

ferent from a formal point of view; it can be defined as follows:
h : Sample — [0, 1]". 2)

In this case the model 4 returns a I-dimensional vector in which each element, pj, represents the pre-

dicted prevalence for class j for the input sample, such that

!
> pi=1, 3)
j=1

st. 0<p; <1,Vj=1,...,1

That is, h predicts the class probability distribution of a sample. Despite the fact that most quantifiers

have been designed for binary problems (I = 2), multiclass quantification (I > 2) can be solved com-

bining the results of / binary quantifiers. In this paper, we use the well-known one-vs-all approach that

learns a collection of binary quantifiers:
hj : Sample — [0,1]. 4)

Each Bj just returns the proportion of examples of class j in the sample. The initial predictions of all

the binary models, { p} | j=1,...,1}, are finally normalized in order to satisfy (3):
-0
. p;
Pi= = (5)
Zj:l P?

In this study, we have evaluated a set of quantification algorithms developed in the literature for applica-

tion to binary quantifiers. These approaches were mainly selected because their implementation is very

http://mc.manuscri%central.com/jplankt
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simple and any practitioner with a little knowledge of machine learning could implement these algo-

rithms. We briefly describe each of them here.

The Classify & Count (CC) approach follows the most intuitive way to tackle a quantification prob-
lem: build a classifier and count the examples falling into each class. We shall consider this method as
a baseline as it is not formally a quantification method, even though it is used in the evaluation of many
automatic plankton recognition systems (Gonzélez et al., 2017a). The problem with the CC method is
that its performance degrades when there are significant changes in class distributions (Gonzélez et al.,
2017b).

The Adjusted Count (AC) algorithm, proposed by Forman (Forman, 2008), is theoretically well founded
and based on making a correction to the prevalence estimated by the CC method, p$“, using the classi-

fier true positive rate (¢pr) and false positive rate (fpr) for the target class j:

~CC
A‘,ﬁ';c_pj _fpr

T tpr— fpr ©

which would lead to a perfect prediction given that the estimation of ¢pr and fpr is perfect and P(x|y)
is constant [see further details in Forman (2008)]. Even when these two conditions are not completely
fulfilled, AC usually works better than CC (see Section 3). This approach has been previously used in
the plankton domain for correcting abundance estimates with a high degree of success (Sosik and Ol-
son, 2007).

The methods referred to as Probabilistic Classify & Count (PCC) and Probabilistic Adjusted Count
(PAC) (Bella et al., 2010) work with an underlying probabilistic classifier instead of a crisp one. The
prevalence is then computed as the average of the probability of belonging to class j for all the exam-
ples in a test sample 7":
. 1
B = > Py =¢lx) (7)
z€eT

In the PAC method, this result is adjusted in an analogous way as in the AC method.

ANPCC __ FPpa

~PAC __ D;

Vi = Tprm—Fpm ®)

in which T'PP* (TP probability average) and F PP* (FP probability average), are estimated from the

training dataset, and are defined as:

TP = . =
| D7 | Di|

©)

where D7 is the set of training examples in class j and D7 is the rest of the training examples in D.

The HDy method (Gonzélez-Castro et al., 2013) is based on matching probability distributions where

the Hellinger Distance (HD) is the metric to compute the difference between such distributions. It uses

http://mc.manuscri@central.com/jplankt
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1. D! distribution
ruiL D/ distribution

Count

| L Tdistribution

P(y=cjIx)

1.0

015
P(y=¢;1x)

1.0

(a) D7 and Dj distributions (b) Test sample distribution

Figure 3: HDy computes first the probability density functions of (a) the examples from D7 and D7. Eq.(10) combines both
distributions for different values of p, to approximate (b) the distribution of the test set sample.

the outputs of a binary classifier to represent the distributions for D7, DJ and the test set T (with bin-
ning to approximate the integral in the definition of HD), see Figure 3. The idea is to combine the distri-

butions D7 and DJ, by means of their prevalences, to approximate the observed distribution in 7°:

bins i = 2
i : 3 N Dyl . |D 3
APy —  min —EN2 L.y — (1 =D .
p] ﬁjE[O,l] — |T| ’D]l p] ’Dj’ ( p])

For instance, in the example depicted in Figure 3, the prevalence of class j is 0.4 in the training set (a)

(10)

and 0.6 in 7" (b). To match the distribution of T, we need to increase p; to give more importance to D’
distribution. A simple linear search in which p; moves over the range [0,1] in small steps is used to se-

lect the predicted prevalence for class j that minimizes the HD.

These quantification algorithms have been implemented in Python and are publicly available as a Python
module called PyQuan®. PyQuan is able to tackle multi-class quantification problems with n binary
quantifiers using a one-vs-all approach. As explained above, a binary quantifier is trained for each class
j considering examples of this class as the positive class and the rest as the negative. We trained only
one model per class and used it for each of the quantification algorithms described above (CC, AC,
PCC, PAC and HDy). This guarantees that the differences in performance between them are only due
to the way in which each method employs the predictions made by the binary classifiers. We use lin-
ear regression as the underlying binary classifier as it is simple and fast enough to be trained with this
dataset in reasonable time and it provides probabilistic outputs, which are needed for the PCC and PAC
methods. The regularization parameter C' was adjusted for each model with a grid search over the val-
ues (0.1, 1, 10).

To run the quantification algorithms, we used a machine with 2 Haswell 2680v3 processors, 24 cores,

Shttps://github.com/albertorepo/quantification

http://mc.manuscriﬂfentral.com/jplankt
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and 120Gb of RAM. All experiment times are shown in Table 4.

2.5. Performance measures

To compare the different methods and descriptors used in this paper, we need to define the evaluation
method and performance measures. Given the characteristics of this dataset and its inherent properties
(see Section 2.1), we chose a validation method that ensures that results are transferable to production
like conditions. That is, testing should be carried out with different samples presenting different plank-
ton distributions, covering the actual variations due to seasonalilty or any other factors. The dataset
comprises 964 samples, where the first 200 (ordered from oldest to newest) are used for training, hav-
ing 764 remaining samples for the test set. In this work, the evaluation guidelines proposed in Gonzélez
et al. (2017a) have been followed. Thus, given the high number of samples, the evaluation method cho-
sen has been a hold-out by sample, where the model to evaluate is used to predict the distribution of all
the samples in the test set. An important precondition for properly evaluating quantification algorithms
is that samples must be complete, meaning that all examples present in a sample have to be annotated

and placed in one class and no example can be manually discarded.

Performance measures included in this paper are Mean Absolute Error (MAE) and Mean Relative Ab-
solute Error (MRAE). Given the true prevalences {p,;; : s = 1,...,m} of class ¢; over m labelled
samples, {71, ..., T,,}, and the predicted prevalences {p,, : s = 1,...,m}, these performance mea-

sures can be defined as:
e Mean Absolute Error: MAE(c;) = L 5" |pjs — bjs|

e Mean Relative Absolute Error: M RAE(c;) = =37, Eﬂfjr’;pfﬁj’s‘, where € is a small constant
2,8

that prevents the function from being undefined when p; ; = 0.
We do not compare classification accuracy for individual images for several reasons: 1) our goal is to
tackle the abundance problem in which predictions at the individual level are not relevant, 2) in fact,
some of the compared algorithms (e.g. AC, PAC and HDy) do not provide such individual classifica-
tions, and 3) it has been shown that the correlation between classification accuracy and quantification

accuracy is much lower than expected; see Gonzalez et al. (2017a) for a complete analysis on this issue.

3. Results

All experiment results are fully available online® as an interactive web application, allowing the user to

compare between different feature sets and quantification methods, for each class in the dataset.

Shttps://pglez82.github.io/IFCB_quantification/
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Figure 4: (Part 1) Results for each sample comparing true prevalence and model outputs using NF (normal features) with CC
method and RN (fine-tuned RN-101 features) using AC method.
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Figure 5: (Part 2) Results for each sample comparing True prevalence and model outputs using NF (normal features) with
CC method and RN (fine-tuned RN-101 features) using AC method.
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NF RN-101

Class CC (1074 AC (107%) CC (1079 AC (1074

Cerataulina 89.25 / 4.39 61.97 / 4.61 2844 | 2.87 27.52 / 2.79
Chaetoceros 334.28 / 6.17 136.26 / 5.47 4249 / 1.86 38.81 / 1.97
ciliate_mix 148.76 / 3.96 71.13 / 4.29 6.56 / 0.40 6.47 / 0.36
Cylindrotheca 58.14 / 2.82 63.26 / 3.00 23.18 / 1.98 22,50 / 1.93
DactFragCerataul 192.36 / 4.97 75.18 / 5.29 20.19 / 1.06 14.69 / 1.04
dino30 148.90 / 4.82 128.98 / 4.78 138.26 / 5.05 121.86 / 5.20
Guinardia 62.17 / 4.42 50.89 / 3.97 20.88 / 1.27 20.48 / 1.28
Leptocylindrus 217.77 /16.64 184.05 /12.26 91.86 / 7.48 87.28 / T.17
pennate 101.97 / 2.83 30.42 / 2.28 8.05 / 0.79 8.35 / 0.79
Rhizosolenia 82.21 / 3.95 61.50 / 3.55 2099 / 141 20.00 / 1.39
Skeletonema 272.94 / 9.43 229.31 /13.01 28.52 / 2.65 28.57 / 2.66
Thalassiosira 21093 / 494 75.49 [ 5.07 19.93 / 0.98 19.32 / 0.99

Table 1: Absolute Errors (AE) Mean / Standard Error for 12 classes over all test samples (full table can be found in the sup-
plemental material). Results for CC and AC methods using normal features (NF) and RN-101 features. Lowest errors per
class shown in bold.

The annotated dataset described in Section 2.1 was used for the experiments. Hand-coded descriptors
(’normal” features, NF) downloaded from the MVCO IFCB Dashboard (see Section 2.2) were used as
a baseline to compare with results from descriptors obtained with CNNs. The CNN-derived descriptors
were computed with residual deep networks (see Section 2.3). These deep features were used for train-
ing and testing the quantification algorithms in the same way as the hand-coded descriptors. All experi-
ment times have been logged with the aim of giving a general view of the computing time needed to ap-
ply these methods (see Table 4). With the class prevalences calculated for each quantification method,

Absolute Errors and Relative Absolute Errors were computed (see Table 1).

We found that deep features perform better than normal features resulting in a lower absolute error for
all classes. This difference is illustrated in Figures 4 and 5. For a given class, it is important to observe
how the true prevalence varies from sample to sample, sometimes very abruptly. Predictions made with
deep features get a superior level of adjustment compared to traditional features. There are some classes
like mix_elongated or ciliate_mix where predicted prevalences from deep features are almost perfect.

It is interesting to note how true prevalences vary over samples. For instance in the class Leptocylin-
drus, true prevalence goes from less than 0.1 to 0.61 in sample 280. Similar changes can be observed
for most classes. These variations make this problem challenging and suitable for quantification tech-

niques.

Differences between the CC and AC method are very small when we deal with very low absolute errors.
For RN-101 features, AC is almost equivalent to CC. The mean absolute error by class for CC is 0.0035
where the same value for AC is 0.0031. This difference is greater when features do not work as well.
For instance, with normal features, error decreases from 0.0149 with CC to 0.0.0084 with AC, a 43%
decrease in absolute error. On the one hand, when the CC method already gets very good results, the

margin for improvement is too low to be noticeable. On the other hand, when dealing with a complex

http://mc.manuscrimfentral.com/jplankt
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NF  RN-18*% RN-18 RN-34* RN-34 RN-50 RN-101

CcC 0.0149 0.0111 0.0103 0.0110 0.0070 0.0036 0.0035
AC  0.0084 0.0208 0.0074 0.0211 0.0268 0.0031 0.0031
PCC 0.0171 0.0133 0.0118 0.0130 0.0082 0.0045 0.0044
PAC 0.0089 0.0077 0.0082 0.0072 0.0058 0.0035 0.0034
HDy 0.0075 0.0063 0.0071 0.0057 0.0055 0.0054 0.0062

Table 2: Mean Absolute Error (AE) by class for all the CNN tested. CNNs with * have not been fine-tuned to plankton im-

ages.

NF RN-18* RN-18 RN-34* RN-34 RN-50 RN-101

CcC 1764 9.15 9.69 8.53 4.45 2.13 2.08
AC 9.99  67.03 7.87 69.85 94.16 1.88 1.87
PCC 2034 11.96 12.18 11.11 6.67 3.71 3.37
PAC 1024  7.07 8.95 5.95 4.09 2.50 241
HDy 7.9 5.71 8.19 5.16 4.67 11.31 13.97

Table 3: Mean Relative Absolute Error (MRAE) by class for all the CNN tested. CNNs with * have not been fine-tuned to
plankton images.

quantification problem like this one, the conditions for a perfect adjustment are only met to a certain

degree (tpr and fpr estimations are not perfect and P(x|y) varies across the dataset).

For other quantification methods, it is interesting to see that adjustments usually work better than the
CC method. For instance, AC improves the results in four out of seven experiments. Taking a closer
look at experiments where AC has underperformed CC (RN-18*, RN-34* and RN-34), the problem is
caused by a few classes (such as Stephanopyxis) with very few training examples and nearly zero preva-
lence over all samples. With such a low number of examples for a class, it is possible for AC to com-
pute a tpr and fpr almost zero. In this case, it is easy to see how a very small denominator in Equa-
tion 6 can lead to a high error in the adjustment. Since Table 2 and Table 3 errors are averaged by class,
giving the same importance to every class in the dataset, the errors can be misleading without consider-

ing each class individually.

Similar conclusions can be drawn looking at the Mean Relative Absolute Errors (see Table 3). The
same problem is observed with class Stephanopyxis, where the relative error is very high for the AC
method in three experiments. In the rest of the experiments, values are equivalent to those in the Abso-
lute Error table and show how well RN-50 and RN-101 with AC work, with an error lower than 2%.

Another interesting conclusion is that PAC outperforms PCC in all seven experiments (both in absolute
and relative errors). The adjustment in PAC works similarly to AC (see Equation 8), but seems more
resistant than AC to the problems due to very infrequent classes, mainly because PAC does not use a

threshold when deciding if an example belongs or not to a certain class, as this method works with the
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NF RN-18 RN-34 RN-50 RN-101

Fine-tuning CNN X 11 17 36 65
Compute deep features X 27 30 32 45
Quantification 72 96 96 224 226

Table 4: Comparative of times (in hours) needed for making the experiments using 2 GPUs NVIDIA Tesla K80 for GPU
tasks (fine-tuning and compute deep features) and 2 processors Haswell 2680v3, 24 cores with 120Gb RAM memory for
CPU tasks (quantification).

raw probabilities returned by the classifier. Also, HDy appears as a very solid method, giving very good

results even with normal features.

Mean absolute errors by class (see Table 2) show errors for shallower residual networks. It is impor-
tant to note than even the smaller network with 18 layers and without fine-tuning (RN-18%*) outperforms
normal features. This result leads to the conclusion that the process of fine-tuning is desirable but not
required. Previous studies (Sharif Razavian et al., 2014) have shown how off-the-shelf deep features
work better than hand-coded features and this claim is confirmed by our work. Nonetheless, it is impor-
tant to note that fine-tuning is a process that is done only once in the model building phase and it is not
very computationally expensive (65 hours of GPU computing for the biggest network tested: RN-101).
Fine-tuning leads to an improvement over 7% in absolute error for RN-18 and a 36% improvement for
RN-34.

It is important to notice how errors decrease with deeper networks. The largest difference takes place
from 34 layers to 50 layers, where absolute error for the CC method decreases from 0.0070 to 0.0036
(49% improvement). From there, even doubling the number of network layers (from 50 to 101) only re-
sults in a 2% decrease in absolute error. This improvement also has a drawback in computation time.

In addition, the number of deep features computed with RN-50 is four times higher than for RN-34
(2048 vs. 512). Table 4 shows how time increases from 96 hours to more than 200 hours for building
the model and applying quantification algorithms. Part of this time increment has its origin in the mem-
ory requirements to fit a dataset four times bigger. With a machine with 120Gb of RAM, we were able
to build up to twelve binary models at the same time for 512 deep features, but only four parallel mod-

els for 2048 deep features.

4. Discussion

We have evaluated how well deep features perform when trying to estimate the abundances of plank-
ton species in a water sample. Conforming with current computer vision literature, deep features have
proven far more powerful than traditional hand-designed descriptors. Even the smallest networks, pre-

trained with out-of-domain data, are able to compete against traditional features.

http://mc.manuscri%central.com/jplankt
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Deep features are applicable to most problems in the computer vision field. Nowadays they should be
considered above hand-designed descriptors given their robust performance, as shown by this and many
other recent studies. Even if a dataset is not big, and fine-tuning is not an option, pre-trained CNNs

should still remain as a viable alternative.

The power of the improved quantification accuracy achieved with deep features is most evident when
we consider the implications for understanding important ecological problems. A major objective of
IFCB deployments at MVCO is to characterize taxon-specific bloom occurrences and temporal changes
in community structure in the plankton. The number of images in the multi-year dataset (nearly 1 bil-
lion) makes full expert validation of image classifications prohibitive. Traditional hand-descriptor based
classification has been employed with some success, but even low overall false positive rates can in-
terfere with the ability to separate critical species and provide adequate estimates of bloom trajectories

through time.

We highlight the relative strengths of quantification with deep features with several contrasting plankton
taxa in the MVCO records, fully analyzed to reflect absolute concentration in the environment (count
estimate scaled to seawater volume) and known sample date and time (Figure 6). The chain-forming
diatom species Guinardia delicatula commonly dominates the phytoplankton biomass at MVCO, with
large wintertime blooms occurring in many years. While traditional features and a random forest clas-
sification approach have previously been used to study bloom dynamics in this species (Peacock et al.,
2014), quantification from AC coupled with RN-101 provides fewer cases of incorrectly predicted small
peaks during non-bloom periods. For the less abundant diatom, Ditylum brightwellii the improvement
is even more evident, with AC-RN101 estimates almost entirely removing the false bloom events and
overestimates that plague quantification with CC and traditional feature-based classification. Appropri-
ately interpreted random forest classification has also been useful for studying temporal dynamics in the
ciliated micrograzer Laboea strobila (Brownlee et al., 2016) but, as for the low concentration diatom,
quantification with deep features provides striking fidelity even during period of very low concentration
(< 1ml~Y). Notably, quantification with deep features also works extremely well for some challenging
cases, such as heterogeneous groupings of small ciliated protozoan taxa with a range of morphologies
and relatively small cell types including the nanoflagellate Pyraminomnas longicauda, that have proven

difficult to distinguish reliably from other nanoplankton on the basis of traditional features.

New CNN architectures are emerging rapidly, with innovations that are expected to lead to even better
results going forward(Huang et al., 2016). The availability of these models pre-trained with a dataset
such as ImageNet makes it relatively easy for researchers from different domains to take advantage of
transfer learning and apply these models to their problems. Even a low-end computer, equipped with
an inexpensive GPU, would be able to compute deep features for an automatic plankton system in real
time. For instance, with a GPU GTX 1080, and a 100-layer resnet, deep features for all the images in

an IFCB sample (we have taken 3500 images as the average sample size), can be computed in less than

http://mc.manuscri?ic?central.com/jplankt



Journal of Plankton Research Page 26 of 35

e True
CC-NF
— AC-RN101

100 GuinardIIa de/icatqula

1
=

2008 2009 2010 2011 2012 2013 2014 2015
10 T T T T T T
$ Ditylum brightwellii 8

2008 2009 2010 2011 2012 2013 2014 2015

T T T T T

2 L Laboea strobila

2008 2009 2010 2011 2012 2013 2014 2015

P

Concentration (ml™)

Mixed ciliates I ~
S & g f~ @

2008 2009 2010 2011 2012 2013 2014 2015

T T

20 | Pyraminlvonas loné;icauda

10 -

0 J
2008 2009 2010 2011 2012 2013 2014 2015

Figure 6: Daily resolved estimates of plankton concentration in the ocean at MVCO for several taxa that exhibit a range of
concentrations and patterns of temporal variability during a 7-year period after collection of the images used for classifier
training. True concentration (manually verified by experts) is shown along with estimates contrasting the simple CC method
with traditional features (CC-NF) with the AC method with fully trained 101-layer network (AC-RN101). Guinardia delicat-
ula and Ditylum brightwellii are diatoms. Laboea strobila is a distinctive species of ciliated protozoa, while ”"Mixed ciliates”
corresponds to a heterogeneous grouping of smaller-sized ciliates of unknown identity. Pyramimonas longicauda is a small
(< 10pm) flagellate.
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a3 five minutes.

a4« The methods described in this work are fully applicable to other plankton capture systems capable of
s05 obtaining and processing water samples containing plankton data. Parameters such as the period be-
a6 tween samples, the number of ROIs in each sample or the plankton classes to be identified, are not

s07 determining as long as the system is trained and validated with a sufficiently high number of samples.
a8 This number is a parameter that should be analyzed carefully while validating the system and that will

a9 depend on the complexity of the data to which the system is exposed.

a0 In this work, quantification algorithms have been tested against the traditional Classify and Count (CC)
a1 method. Our results show that the improvement of quantification methods as AC, PAC or HDy over CC
sz 1s typically small. Nonetheless, results also indicate that these quantification methods make the biggest
s13 difference when the underlying classifier performs less well, as the adjustments made are bigger and

s14 have a greater impact on the final result.

a5 The set of experiments conducted in this work were carried out following a very thorough method (Gonzalez
se et al., 2017a). Quantification algorithms were tested in the most similar way to actual working con-

s17  ditions. Also, the error measures used, are appropriate for abundance estimation problems, and allow

ss us to detect potential problems in the built system. It is very interesting to note that all numerical and

a9 graphical data generated during the experiments are available online, favouring the detailed analysis of

220 the system performance and its refinement.

21 Finally, it is important to highlight the importance of the effort of making public and available for down-
222 load a dataset as the WHOI-Plankton dataset. Researchers from the Woods Hole Oceanographic In-

.23 stitution have made public not only the annotated data used in this paper, but also all data captured by
224 IFCB since 2006. On the one hand, the use of publicly available dataset is important to guarantee exper-
s25 1mental reproducibility in studies such as the one described in this paper. On the other hand, the fact of
226 having all this raw data accessible will enable future exploration of different approaches such as autoen-
427 coders (Hinton and Salakhutdinov, 2006). The idea behind autoencoders is to build a neural network

228 where the input and output layers are fed with the pixel values of the images. Thus, the network learns
29 how to reconstruct each image in the dataset and the activations in the internal layers can be considered
s30 as a compressed representation of the image. Future work with the full IFCB image dataset will make it
a3t possible to assess the utility of this unsupervised method that can exploit the huge amount of unlabelled

42 data available.
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Short quantifier label

WHOI-Plankton dataset la-
bels

Taxonomic range in class,
other description

Asterionellopsis Asterionellopsis Asterionellopsis spp.

Cerataulina Cerataulina pelagica Cerataulina pelagica

Ceratium Ceratium Ceratium spp.

Chaetoceros Chacetoceros, Chaetoceros didymus  Chaetoceros — spp.,  Chaetoceros
didymus

Corethron Corethron hystriz Corethron hystriz

Coscinodiscus Coscinodiscus Coscinodiscus spp.

Cylindrotheca Cylindrotheca Cylindrotheca spp.

DactFragCerataul Dactyliosolen fragilissimus Dactyliosolen fragilissimus

Dactyliosolen Dactyliosolen blavyanus Dactyliosolen blavyanus

Dictyocha Dictyocha Dictyocha spp.

Dinobryon Dinobryon Dinobryon spp.

Dinophysis Dinophysis Dinophysis spp.

Ditylum Ditylum brightwellii Ditylum brightwelli

Ephemera Ephemera Ephemera spp.

Eucampia Fucampia FEucampia spp.

Euglena Euglenia (subclass) Euglenia (subclass)

Guinardia Guinardia delicatula Guinardia delicatula

Guinardia_flaccida

Guinardia flaccida

Guinardia flaccida

Guinardia_striata

Guinardia striata

Guinardia striata

Gyrodinium Gyrodinium, Amphidinium, Ka- Gyrodinium spp., Amphidinium
todinium, Torodinium, Protery- spp., Katodinium spp., Toro-
thropsis dinium spp., Proterythropsis spp.

Laboea Laboea strobila Laboea strobila

Lauderia Lauderia Lauderia spp.

Leptocylindrus Leptocylindrus Leptocylindrus spp.

Licmophora Licmophora Licmophora spp.

Myrionecta Mesodinium_sp Mesodinium spp.

Odontella Odontella Odontella spp.

Paralia Paralia Paralia spp.
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Phaeocystis Phaeocystis,  Parvicorbicula so- Phaeocystis globosa, Parvicorbic-

cialis ula socialis
Pleurosigma Pleurosigma Pleurosigma spp.
Prorocentrum Prorocentrum Prorocentrum spp.
Pseudonitzschia Pseudonitzschia Pseudonitzschia spp.
Pyramimonas Pyramimonas longicauda Pyramimonas longicauda
Rhizosolenia Rhizosolenia Rhizosolenia spp.
Skeletonema Skeletonema Skeletonema spp.
Stephanopyxis Stephanopyzis Stephanopyzis spp.
Thalassionema Thalassionema Thalassionema spp.
Thalassiosira Thalassiosira Thalassiosira spp., other similar

centric diatom species

Thalassiosira_dirty

Thalassiosira with external detri-
tus

Thalassiosira spp.with external
detritus

bad

contains only camera field back-
ground

contains only camera field back-
ground

ciliate_mix

Didinium, Fuplotes, Leegaardiella
ovalis, Pleuronema, Strobilidium,
Tiarnia, Tontonia, and unidenti-
fied ciliates

Didinium spp., Euplotes spp., Lee-
gaardiella ovalis, Pleuronema spp.,
Strobilidium spp., Tiarnia spp.,
Tontonia spp., and unidentified
ciliates

clusterflagellate Corymbellus Corymbellus spp.

detritus detritus detritus

dino30 ameoba, Akashiwo, Hetercapsa tri- Akashiwo spp., Hetercapsa trique-
quetra, Karenia, Protoperidinium, tra, Karenia spp., Protoperidinium
Vicicitus globosus, unidentified di- spp., Vicicitus globosus, unidenti-
noflagellates fied dinoflagellates and amoeba

kiteflagellates Chrysochromulina lanceolata Chrysochromulina lanceolata

mix Cryptophyta, Pyramimonas, Cryptophyta, Pyramimonas spp.,
Chrysochromulina, Hetero-  Chrysochromulina  spp.,  Hete-
capsa  rotundata,  unidentified rocapsa rotundata, unidentified
nanoplankton nanoplankton

mix_elongated

miscellaneous diatom fragments

miscellaneous diatom fragments
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dino10, other, diatome_flagellate,
other_interaction, Leptocylindrus
mediterraneus, pennates on di-
atoms,  Delphineis, Bacillaria,
Bidulphia, Cochlodinium, Emil-
1ania huxleyi, Pseudochattonella
farcimen, bead, bubble, pollen,
spore, zooplankton

Page 34 of 35

Other rare and/or unidentified
taxa

pennate

miscellaneous pennate diatoms

miscellaneous pennate diatoms

tintinnid

Tintinnida

Tintinnida
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Appendix B. Mean absolute error by class

RN-101

Class CC (107%) AC (107%) CC (107%) AC (107%)

Asterionellopsis 56.97 / 1.60 43.16 / 2.50 264 / 0.25 2.61 / 0.26
bad 148.35 / 15.04 162.01 / 18.44 40.43 / 5.16 40.78 / 5.31
Cerataulina 89.25 / 4.39 61.97 / 4.61 28.44 | 287 27.52 / 2.79
Ceratium 0.97 / 0.07 0.95 / 0.07 0.32 / 0.05 0.31 / 0.05
Chaetoceros 334.28 / 6.17 136.26 / 5.47 4249 / 1.86 38.81 / 1.97
ciliate_mix 148.76 / 3.96 71.13 / 4.29 6.56 / 0.40 6.47 / 0.36
clusterflagellate 80.33 / 3.14 67.71 / 5.56 0.61 / 0.09 0.57 / 0.09
Corethron 75.28 / 2.32 39.16 / 3.01 204 / 0.21 1.89 / 0.19
Coscinodiscus 242 / 0.17 2.61 / 0.29 0.82 / 0.11 0.87 / 0.12
Cylindrotheca 58.14 / 2.82 63.26 / 3.00 23.18 / 1.98 22.50 / 1.93
DactFragCerataul 192.36 / 4.97 75.18 / 5.29 20.19 / 1.06 14.69 / 1.04
Dactyliosolen 72.64 / 2.14 60.30 / 3.11 9.49 / 0.85 9.61 / 0.87
detritus 555.91 /20.27  652.58 / 24.07 409.26 / 23.09 387.54 / 23.79
Dictyocha 20.72 / 1.02 14.98 / 1.22 1.13 / 0.19 1.13 / 0.20
dino30 14890 / 4.82 128.98 / 4.78 138.26 / 5.05 121.86 / 5.20
Dinobryon 27.72 / 0.92 18.52 / 1.04 3.54 / 0.33 3.30 / 0.32
Dinophysis 18.10 / 0.83 15.44 / 1.49 1.59 / 0.16 1.66 / 0.17
Ditylum 791 / 0.43 6.11 / 0.52 1.86 / 0.22 1.67 / 0.20
Ephemera 3.99 / 0.20 229 / 0.23 0.57 / 0.11 0.58 / 0.11
Eucampia 20.93 / 1.02 2528 / 1.66 2.01 / 0.26 2.00 / 027
Euglena 17.63 / 0.60 460 / 0.51 408 / 0.37 3.91 / 037
Guinardia 6217 / 442  50.89 / 3.97  20.88 / 127  20.48 / 1.28
Guinardia_flaccida 456 / 0.23 3.49 / 0.30 0.72 / 0.08 0.72 / 0.08
Guinardia_striata 12.56 / 1.28 8.64 / 1.22 425 / 1.24 4.18 / 1.24
Gyrodinium 33.73 / 1.60 2501 / 2.14 480 / 0.34 4.81 / 0.34
kiteflagellates 14.35 / 0.79 16.26 / 1.13 0.75 / 0.21 0.75 / 0.22
Laboea 2.02 / 0.15 1.85 / 0.17 0.50 / 0.09 0.47 / 0.08
Lauderia 2.22 '/ 0.30 761 / 1.14 0.19 / 0.04 0.22 / 0.05
Leptocylindrus 217.77 / 16.64 184.05 / 12.26 91.86 / 7.48 87.28 / T7.17
Licmophora 3.61 / 0.16 245 / 0.22 042 / 0.06 0.42 / 0.06
mix 3135.64 / 29.01 1296.29 / 39.10 583.80 / 23.05  459.72 / 22.77
mix_elongated 305.75 / 7.28 17742 / 9.49 119.55 / 6.54  111.25 / 6.81
Myrionecta 65.59 / 1.92 2591 / 2.15 2.33 / 0.17 238 / 0.16
na 484.27 / 793 12558 / 9.29 19.33 / 0.88 18.90 / 0.90
Odontella 0.68 / 0.06 113 / 0.14 0.10 / 0.02 0.12 / 0.03
Paralia 2252 / 0.93 17.57 / 1.49 0.60 / 0.06 0.60 / 0.06
pennate 101.97 / 2.83 3042 / 2.28 8.05 / 0.79 835 / 0.79
Phaeocystis 13.62 / 0.58 20.35 / 1.28 1.98 / 0.32 1.94 / 0.31
Pleurosigma 243 / 0.17 240 / 0.21 0.76 / 0.09 0.75 / 0.09
Prorocentrum 15.38 / 0.58 10.92 / 0.66 4.35 / 0.49 436 / 0.48
Pseudonitzschia 69.37 / 2.54 28.30 / 2.34 11.66 / 0.74 11.80 / 0.75
Pyramimonas 24.49 / 0.82 15.42 / 1.14 .12/ 0.27 1.04 / 0.25
Rhizosolenia 82.21 / 3.95 61.50 / 3.55 2099 / 141 20.00 / 1.39
Skeletonema 27294 / 9.43 229.31 / 13.01 28.52 / 2.65 28.57 / 2.66
Stephanopyxis 0.38 / 0.04 0.51 / 0.09 0.04 / 0.01 0.04 / 0.01
Thalassionema 10.25 / 0.37 5.55 / 0.37 1.48 / 0.11 148 / 0.11
Thalassiosira 21093 / 4.94 75.49 / 5.07 19.93 / 0.98 19.32 / 0.99
Thalassiosira_dirty 48.70 / 2.29 25.04 / 2.61 6.13 / 0.83 5.45 / 0.79
tintinnid 871 / 0.43 6.09 / 0.57 1.75 / 0.17 177 /017

Table B.1: Absolute Errors (AE) Mean / Standard Error by class over all test samples. Results for CC and AC
methods using normal features (NF) and RN-101 features. Lowest errors per class shown in bold.
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