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ABSTRACT: The first copper-mediated diastereoselective C–H thiolation of ferrocenes has been developed. A chiral oxa-
zoline directing group with tert-butyl substituent is essential to the high diastereoselectivity ratio and the suppression of 
overreaction of mono-thiolated products. This reaction tolerated various functional groups on arylthoils, implying its po-
tential application in N, S-bidentate planar chiral ligands. 

Since the discovery and confirmation of its unique sand-
wich-like structure in 1950s, ferrocene has been widely 
investigated in academic and industry community.1 One 
of the most prominent features of ferrocene derivatives is 
their application in asymmetric reactions as planar chiral 
ligands2 or catalysis.3 (Figure 1.) Traditionally, the synthe-
sis of planar chiral ferrocenes was realized through dia-
stereoselective directed ortho-metalation (DoM),4 enanti-
oselective DoM,5 and resolution.6 However, in these DoM 
reactions, combustible butyl lithium is needed and must 
be handled with great care.7 

Figure 1. Chiral planar ligands and catalysis based on fer-
rocene. 

Transition metals-catalyzed C–H functionalizations has 
seen significant progress in the past two decades and en-
riched the toolbox in retrosynthesis analysis. One emerg-
ing challenge in this field is to realize asymmetric C–H 
activation and this has inspired chemists to apply it on 
ferrocenes to construct planar chiral structures (Scheme 
1, a).8  You and other groups have made great progress in 
palladium-catalyzed enantioselective C–H functionaliza-
tions of ferrocene.9 Shibata and coworkers have reported 
the first iridium(I)-catalyzed ferrocene C–H activation 
alkylation reaction to date.10 Recently, rhodium(I)-
catalyzed intramolecular silylation of ferrocene has been 

reported too.11 In addition, some examples of transition 
metal-catalyzed non-asymmetric C–H functionalizations 
of ferrocene are reported.12 In contrast to these noble 
metals, cheap metals such as copper-, iron- and nickel-
catalyzed or mediated asymmetric C–H functionalizations 
of ferrocene are still underdeveloped.13 To the best of our 
knowledge, there is no report of copper-catalyzed or -
mediated directed asymmetric C–H functionalization to 
date,14 except for few examples of copper-catalyzed non-
directed C(sp3)–H functionalizations.15 Since our group 
have developed a series of copper catalyzed or mediated 
transformations of aryl C–H bond with an oxazoline 
based directing group,16 we envisioned that with a chiral 
oxazoline amide as directing group, diastereoselective C–
H functionalization might be realized on ferrocene. Here 
we communicate the first copper-mediated diastereose-
lective C–H thiolation of ferrocene with a chiral oxazoline 
directing group (Scheme 1, b).17 

Scheme 1. Transition Metal-Catalyzed or -Mediated 
C–H Functionalizations of Ferrocene 

 



 

We initiated the research with 1a as substrate, which 
was tethered a phenyl group on the oxazoline ring and 4-
methylbenzenethiol as thiolation reagent. Firstly, differ-
ent copper complexes were tested, including cupric ace-
tate, copper(II) trifluoromethanesulfonate, copper(II) 
pivalate and copper(I) halides. The results showed that 
copper(II) pivalate gave the best result (8% mono-
thiolated yield and 41% di-thiolated product). While cop-
per(I) alone could not promote this reaction (see Support-
ing Information), the combination of copper(II) pivalate 
and copper(I) bromide could increase the yield of mono-
thiolated product remarkably. Then other substituents 
like isopropyl (1b), benzyl (1c), methyl (1d) and tert-butyl 
(1e) groups with different steric size on the oxazoline ring 
were investigated (entries 6-9, Table 1). To our delight, 
tert-butyl group could suppress the overreaction of 
mono-thiolated product. What is more, with tert-butyl 
group on the oxazoline, the diastereoselectivity ratio was 
increased to more than 20:1 (entry 9, Table 1). When the 
loadings of both CuBr and Cu(OPiv)2 were increased to 1.5 
equivalence, the yield of 3a was increased to 41% (entry 11, 
Table 1). 

Table 1. Optimization of the Reaction Conditions a 

 

With the optimized conditions confirmed, the generality 
of the asymmetric C–H thiolation was explored (Table 2). 
A series of substituted arylthoils were applicable in this 
reaction to give high diastereoselectivities (> 20:1) and 
moderate yields (36%-55%). Various substituents on the 
para-position were tolerated in this reaction (3a-3f). Tri-
fluoromethyl substituted phenylthiol gave the best result 
of 55% yield (3e). The others afforded the corresponding 
products in yields around 40%. Thiophenols with elec-
tronic withdrawing and donating groups at meta-position 
gave the desired products in yields from 40% to 50% 
with >20:1 dr. This reaction also tolerated a small hin-
drance on the ortho-position. Ortho-fluoro substrate gave 
3m in 43% yield. In addition, when substrate bearing an 
ester group on the other Cp (Cp = cyclopentadienyl) ring 

is subjected to typical condition, 40% of sulfenylated 
product 3o is formed. 

Table 2. Substrates Scope of Cu-Mediated Asymmet-
ric C–H Thiolation of Ferrocenea 

 
The detailed mechanism of this reaction was still intri-

guing. Here we proposed a Cu(II)/(III) reaction model to 
explain the C–H activation thiolation reaction. Firstly, 
Cu(II) complex coordinated to the bidentate directing 
group of 1e and C–H activation of Cp ring take place with 
the assistant of pivalate anion to give intermediate A, 
which was oxidized by Cu(II) to give Cu(III) complex B. 
Intermediate C was formed through anion exchange, fol-
lowed by reductive elimination to release the desired 
product 3a and Cu(I) species (a, Scheme 2). 

In another aspect, the excellent diastereoselectivity and 
mono- vs di-thiolated product ratio could be rationalized 
through conformational analysis of the substrate and 
product. Through the X-ray analysis of product 3f, we 
could see that C–H activation take place when the tert-
butyl group was above the tethered ferrocene plane, 
which process determined the diastereoselectivity of this 
reaction. Compared with phenyl, isopropyl, and methyl, 
tert-butyl group is bulkier and the conformational ratio of 
1e :1e’ (b, Scheme 2) is much higher than those of others 



 

statistically (X-ray of 1e), thus rendering its excellent dia-
stereoselectivity. Once 3a was formed, directing group 
was pushed to the other side and tert-butyl group was 
below the tethered Cp ring due to steric repulsion with 
the installed aryl thioether group. This conformation is 
unfavorable for further C–H activation at the other side of 
ferrocene, thus suppressing the formation of di-thiolated 
product. 

Scheme 2. Mechanism Discussion 

 

In summary, we have developed the first copper-mediated 
diastereoselective C–H thiolation of ferrocenes with a 
chiral oxazoline directing group. The reaction proceeds 
with high diastereoselectivity and mono-thiolation selec-
tivity. This new method provides an alternative to the 
synthesis of chiral planar ligands for asymmetric trans-
formations. 
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