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ABSTRACT: The first copper-mediated diastereoselective C-H thiolation of ferrocenes has been developed. A chiral oxa-
zoline directing group with tert-butyl substituent is essential to the high diastereoselectivity ratio and the suppression of
overreaction of mono-thiolated products. This reaction tolerated various functional groups on arylthoils, implying its po-

tential application in N, S-bidentate planar chiral ligands.

Since the discovery and confirmation of its unique sand-
wich-like structure in 1950s, ferrocene has been widely
investigated in academic and industry community.! One
of the most prominent features of ferrocene derivatives is
their application in asymmetric reactions as planar chiral
ligands? or catalysis.3 (Figure 1.) Traditionally, the synthe-
sis of planar chiral ferrocenes was realized through dia-
stereoselective directed ortho-metalation (DoM),* enanti-
oselective DoM,5 and resolution.® However, in these DoM
reactions, combustible butyl lithium is needed and must
be handled with great care.”
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Figure 1. Chiral planar ligands and catalysis based on fer-
rocene.

Transition metals-catalyzed C-H functionalizations has
seen significant progress in the past two decades and en-
riched the toolbox in retrosynthesis analysis. One emerg-
ing challenge in this field is to realize asymmetric C-H
activation and this has inspired chemists to apply it on
ferrocenes to construct planar chiral structures (Scheme
1, a).® You and other groups have made great progress in
palladium-catalyzed enantioselective C-H functionaliza-
tions of ferrocene.? Shibata and coworkers have reported
the first iridium(I)-catalyzed ferrocene C-H activation
alkylation reaction to date.® Recently, rhodium(I)-
catalyzed intramolecular silylation of ferrocene has been

reported too." In addition, some examples of transition
metal-catalyzed non-asymmetric C-H functionalizations
of ferrocene are reported.> In contrast to these noble
metals, cheap metals such as copper-, iron- and nickel-
catalyzed or mediated asymmetric C-H functionalizations
of ferrocene are still underdeveloped. To the best of our
knowledge, there is no report of copper-catalyzed or -
mediated directed asymmetric C-H functionalization to
date, except for few examples of copper-catalyzed non-
directed C(sp3)-H functionalizations.> Since our group
have developed a series of copper catalyzed or mediated
transformations of aryl C-H bond with an oxazoline
based directing group,® we envisioned that with a chiral
oxazoline amide as directing group, diastereoselective C-
H functionalization might be realized on ferrocene. Here
we communicate the first copper-mediated diastereose-
lective C-H thiolation of ferrocene with a chiral oxazoline
directing group (Scheme 1, b).””

Scheme 1. Transition Metal-Catalyzed or -Mediated
C-H Functionalizations of Ferrocene

a) Transition metal-catalyzed enantioselective C-H functionalizations of ferrocenes.
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We initiated the research with 1a as substrate, which
was tethered a phenyl group on the oxazoline ring and 4-
methylbenzenethiol as thiolation reagent. Firstly, differ-
ent copper complexes were tested, including cupric ace-
tate, copper(Il) trifluoromethanesulfonate, copper(Il)
pivalate and copper(I) halides. The results showed that
copper(Il) pivalate gave the best result (8% mono-
thiolated yield and 41% di-thiolated product). While cop-
per(I) alone could not promote this reaction (see Support-
ing Information), the combination of copper(Il) pivalate
and copper(I) bromide could increase the yield of mono-
thiolated product remarkably. Then other substituents
like isopropyl (1b), benzyl (1c), methyl (1d) and tert-butyl
(1e) groups with different steric size on the oxazoline ring
were investigated (entries 6-9, Table 1). To our delight,
tert-butyl group could suppress the overreaction of
mono-thiolated product. What is more, with tert-butyl
group on the oxazoline, the diastereoselectivity ratio was
increased to more than 20:1 (entry 9, Table 1). When the
loadings of both CuBr and Cu(OPiv), were increased to 1.5
equivalence, the yield of 3a was increased to 41% (entry 11,
Table 1).

Table 1. Optimization of the Reaction Conditions

S
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F.e g 3 MePhS.H [Cu] (0.5 equvlv) . DG H
80 °C, 12 h, air Fe N o
DMSO 3
1 2a 3 R
Entry R= Cu(ll) Cu(l) Mono Di dr
1 Ph(1a)  Cu(OAc);H,O0 — 16 - 5:1
2 Ph Cu(OTf), - - - -
3 Ph Cu(OPiv), - 8 41 6:1
4 Ph - CuX (Br, Cl 1) - - -
5 Ph Cu(OPiv), CuBr 22 34 10:1
6 i-Pr(1b)  Cu(OPiv), CuBr 17 34 1:1
7 Bn(1c)  Cu(OPiv), CuBr 12 38 1:1
8 Me(1d)  Cu(OPiv), CuBr 15 41 6:1
9 t-Bu(1e) Cu(OPiv), CuBr 22 3 > 20:1
10°  tBu Cu(OPiv), CuBr 30 6 >20:1
11¢ t-Bu Cu(OPiv), CuBr 41(36%)° 9 >20:1

@ Conditions:1 (0.1 mmol), 2 (0.2 mmol), [Cu] (0.5 equiv) in DMSO (5.0 mL) under
air in a 15 mL sealed tube at 80 °C for 12 h; Yields were determined by TH-NMR
with 1,3,5-trimethoxybenzene as an internal standard. ? With Cu(OPiv); (1.0 equiv)
and CuBr (1.0 equiv). ¢ With Cu(OPiv), (1.5 equiv) and CuBr (1.5 equiv). ¢ isolated
yield of 3a.

With the optimized conditions confirmed, the generality
of the asymmetric C-H thiolation was explored (Table 2).
A series of substituted arylthoils were applicable in this
reaction to give high diastereoselectivities (> 20:1) and
moderate yields (36%-55%). Various substituents on the
para-position were tolerated in this reaction (3a-3f). Tri-
fluoromethyl substituted phenylthiol gave the best result
of 55% yield (3e). The others afforded the corresponding
products in yields around 40%. Thiophenols with elec-
tronic withdrawing and donating groups at meta-position
gave the desired products in yields from 40% to 50%
with >20:1 dr. This reaction also tolerated a small hin-
drance on the ortho-position. Ortho-fluoro substrate gave
3m in 43% yield. In addition, when substrate bearing an
ester group on the other Cp (Cp = cyclopentadienyl) ring

is subjected to typical condition, 40% of sulfenylated
product 30 is formed.

Table 2. Substrates Scope of Cu-Mediated Asymmet-
ric C-H Thiolation of Ferrocene®

H SH  Cu(PivO), (1.5 equiv) sar D6 ?L
@—DG i .
v . AN CuBr (1.5 equiv) DG - N
Fe R4 80 °C, 12 h, air ] H
Z DMSO Fe N“ "0
<> -
1 2 3a-30 -

\/R 3a: R=4-Me, 36%, dr > 20:1 3g: R = 3-Me, 42%,” dr > 20:1
Q 3b: R = 4-H, 42%,%°dr> 20:1 3h: R = 3-OMe, 45%,” dr > 20:1

3c: R=4-OMe, 45%,%9dr >20:1  3i: R = 3-CF3, 50%, dr > 20:1
S 3d: R=4-F, 37%", dr > 20:1 3j: R = 3-Br, 44%,° dr > 20:1
@—DG 3e: R=4-CF;, 55%, dr > 20:1 3k: R =3-Cl, 40%, dr > 20:1
Fe 31: R = 3-F, 43%,° dr > 20:1

S @ :” m f
@ “N —
N =
N0
/

(¢]
Fe
@ B Uf

3f, 50%, dr > 20:1

Fe

<

n, 47%,%¢ dr > 20:1

Fe

<

3m, 43%,° dr > 20:1

COOEt
30, 40%, dr > 20:1

CF3
Q FSCQ Fsc—Q
F S S S
Se G G
Fe
3

4Reaction conditions: 1 (0.1 mmol), 2 (0.2 mmol), Cu(PivO), (1.5 equiv), CuBr
(1.5 equiv) in DMSO (5 mL) under air in a 15 mL sealed tube at 80 °C for 12 h;
Isolated yield; Disteroselecitivity ratio values were determined by HPLC-MS analysis.
bWith BHT (0.2 equiv).° 2b was diphenyl disulfide (1.0 equiv). ¢ With 2 (1.3 equiv). ®
With 2n (1.0 equiv).

The detailed mechanism of this reaction was still intri-
guing. Here we proposed a Cu(II)/(IIl) reaction model to
explain the C-H activation thiolation reaction. Firstly,
Cu(Il) complex coordinated to the bidentate directing
group of 1e and C-H activation of Cp ring take place with
the assistant of pivalate anion to give intermediate A,
which was oxidized by Cu(Il) to give Cu(Ill) complex B.
Intermediate C was formed through anion exchange, fol-
lowed by reductive elimination to release the desired
product 3a and Cu(I) species (a, Scheme 2).

In another aspect, the excellent diastereoselectivity and
mono- vs di-thiolated product ratio could be rationalized
through conformational analysis of the substrate and
product. Through the X-ray analysis of product 3f, we
could see that C-H activation take place when the tert-
butyl group was above the tethered ferrocene plane,
which process determined the diastereoselectivity of this
reaction. Compared with phenyl, isopropyl, and methyl,
tert-butyl group is bulkier and the conformational ratio of
1e 1€’ (b, Scheme 2) is much higher than those of others



statistically (X-ray of 1e), thus rendering its excellent dia-
stereoselectivity. Once 3a was formed, directing group
was pushed to the other side and tert-butyl group was
below the tethered Cp ring due to steric repulsion with
the installed aryl thioether group. This conformation is
unfavorable for further C-H activation at the other side of
ferrocene, thus suppressing the formation of di-thiolated
product.

Scheme 2. Mechanism Discussion
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t-Bu 0

t-Bu
v\o
e ,Nb Pivo-(C"l')_N__
U ~nN
N
cuorm, 2w SN S
e

i A @ B

4-MePh-SH
HOPiv

t-Bu B
Me o Me FBu
SPh-4-Me N= o
o S SN

s\
@ (mecu,
F'e HN 1 [e] 3 @—sNo
< N=¢ ;Fe; cul)  Fe

+BU ¢— ynder ferrocene
3a plane D c

b. Preferential conformation for reaction

above —»t-Bu \(\O

ferrocene plane N=
: HN
HN - Fe

t-Bu‘<_ under ferrocene
1e e plane

In summary, we have developed the first copper-mediated
diastereoselective C-H thiolation of ferrocenes with a
chiral oxazoline directing group. The reaction proceeds
with high diastereoselectivity and mono-thiolation selec-
tivity. This new method provides an alternative to the
synthesis of chiral planar ligands for asymmetric trans-
formations.
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