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Abstract. The majority of terrestrial net primary production decomposes, fueling detrital food webs and
converting dead plant carbon to atmospheric CO,. There is considerable interest in determining the sensitiv-
ity of this process to climate warming. A common approach has been to use spatial gradients in temperature
(i.e., latitude or elevation) to estimate temperature sensitivity. However, these studies typically relate decom-
position rates to average temperatures at each site along such gradients, ignoring within-site temperature
variation. To evaluate the potential effects of temperature variation on estimates of temperature sensitivity,
we simulated plant litter decomposition using both randomly generated and real time series of temperature.
This simulation approach illustrated how temperature variation leads to higher decomposition rates at a
given mean temperature than is predicted from simulations in which temperature is held constant. Increases
in decomposition rate were most evident at cooler sites, where temporal variation in temperature tends to be
greater than at warmer sites. This unbalanced effect of temperature variation shifted the slope of the relation-
ships between average temperature and decomposition rate, resulting in lower estimated temperature sensi-
tivities than were used to simulate decomposition. For example, estimates of activation energy (E,) were as
much as 0.15 eV lower than the true E, when decomposition was simulated with the true E, set to the canon-
ical respiration value of 0.65 eV. We found that the estimated E, was lower than the true E, for surface, soil,
and air temperatures, but not for stream temperatures, for which there was only a weak relationship between
temperature variation and mean temperature. Our results suggest that commonly used methods may under-
estimate the temperature dependence of litter decomposition, particularly in terrestrial environments. We
encourage publication of temperature data that include variation estimates and suggest an alternative
method for calculating temperature sensitivity that accounts for variation in temperature.
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INTRODUCTION is fixed annually by terrestrial plants (Beer et al.
2010), and the decomposition of this material is

The temperature sensitivity of organic carbon both a critical part of the carbon cycle (Brown
processing is a key control on the global carbon and Lugo 1982) and the basis of many terrestrial
cycle (Kirschbaum 2006, Yvon-Durocher et al. and aquatic food webs (Moore et al. 2004).
2012). About 120 billion tonnes of organic carbon Higher temperatures are expected to increase
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rates of biological reactions exponentially (within
the range of 0°-40°C; Brown et al. 2004), includ-
ing that of heterotrophic respiration—a key pro-
cess underlying the decomposition of
terrestrially derived litter and wood in both
aquatic and terrestrial systems (Webster et al.
1999, Bradford et al. 2016). However, it is unclear
whether the temperature sensitivity of cellular
respiration (i.e., activation energy, E, of 0.60-
070 eV or 57.89-67.54 k]/mol) accurately
describes the complex process of detrital decom-
position (Follstad Shah et al. 2017). A common
approach to determine the temperature sensitiv-
ity of decomposition is to take advantage of spa-
tial temperature gradients (e.g., latitudinal;
Boyero et al. 2011, Bradford et al. 2016, Follstad
Shah et al. 2017, Tiegs et al. 2019). However,
such studies generally relate decomposition only
to mean temperatures and ignore temperature
variation, which can also vary across spatial
gradients.

Studies that model soil decomposition have
noted that temperature sensitivity estimates
made using mean temperature can be biased
(Agren and Axelsson 1980, Kirschbaum 2010).
This occurs because higher temperatures increase
heterotrophic respiration rates exponentially
(Enquist et al. 2003, Brown et al. 2004, Allen
et al. 2005); thus, deviations above a mean tem-
perature will increase decomposition to a greater
degree than deviations below will reduce it
(Fig. 1). Accordingly, increases in variation with-
out increases in mean temperature can increase
decomposition rates (Dang et al. 2009, Sierra
et al. 2011). This effect of variation can be prob-
lematic because intra-annual variation in air tem-
peratures tends to increase as mean annual air
temperatures decline across global gradients
(Kirschbaum 2010, Wang and Dillon 2014). For
example, tropical regions typically experience
warmer, more stable climates, while temperate
regions experience cooler, more variable cli-
mates. Consequently, we expect the degree to
which variation increases observed rates of
decomposition to increase with distance from the
equator (Savage 2004). This deviation biases rela-
tionships between decomposition and average
temperatures and leads to lower estimated tem-
perature sensitivities of decomposition when
decomposition is considered over longer (e.g.,
multi-season) periods and temperature variation
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is ignored (Kirschbaum 2010). While the basis of
this phenomenon has been well described theo-
retically (Agren and Axelsson 1980, Savage 2004)
and demonstrated empirically in the context of
soil decomposition (Kirschbaum 2010), studies
estimating the temperature sensitivity of plant
litter decomposition have generally ignored the
influence of temperature variation (Boyero et al.
2011, Follstad Shah et al. 2017, Tiegs et al. 2019).
Litter decomposition studies may be particu-
larly susceptible to bias in estimates of tempera-
ture sensitivity caused by temperature variation
because of their relatively long duration. Mea-
surements of litter decomposition use sampling
units (typically coarse-mesh bags containing
senescent plant litter, hereafter litterbags) that
are deployed for periods of time ranging from
weeks to years (Karberg et al. 2008, Benfield
et al. 2017) and that typically experience a wide
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Fig. 1. Illustration of how increased variation
around a decomposition rate may lead to higher aver-
age decomposition rates over time. The shape of an
exponential curve implies that a process rate increases
more when a temperature is one standard deviation
above its mean than it decreases when temperature is
one standard deviation below its mean. This should
lead to higher observed average rates over time. The
difference between the rates one standard deviation
above and below the mean should be greater when a
process is more sensitive to temperature, for example,
higher temperature sensitivity or E,.
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range of temperatures over the duration of each
study. Thus, we expect the resulting estimates of
temperature sensitivity of litter decomposition to
be somewhat lower than the true temperature
sensitivity driving the process (Agren and Axels-
son 1980, Kirschbaum 2010). Furthermore, we
expect these estimates of temperature sensitivity
to be contingent on the length of time that the lit-
ter has been incubated and the specific relation-
ship between mean temperatures and variation
present in the study. As such, published esti-
mates of temperature sensitivity may not accu-
rately estimate litter decomposition under
different experimental or future climatic condi-
tions.

While it is known that there is a relationship
between intra-annual variability and mean tem-
peratures in air, it is unclear whether this trend
is as strong in the environments in which plant
litter actually decomposes. Most terrestrial plant
litter decomposes in soil, on the soil surface, or
in streams. Temperatures in these environments
generally display a dampened response to
changes in ambient air temperature (Zheng
et al. 1993, Caissie et al. 2001), and water tem-
peratures rarely fall below 0°C. Additionally,
respiration increases across the 0°-40°C temper-
ature range, but tends to drop to very low levels
outside of this range (Brown et al. 2004), which
may modulate responses of decomposition rates
to temperature variability in very cold or warm
environments.

Our overall goal was to explore potential bias
introduced into large-gradient estimates of the
temperature sensitivity of plant litter decomposi-
tion and provide guidance for interpretation of
their results. However, true temperature sensitiv-
ities are always unknown when estimates are
made using empirical measurements of decom-
position, making it impossible to evaluate
whether an estimate is biased. Our approach,
therefore, is to use simulations in which true
temperature is known. We first characterize
empirical relationships between temperature
means and standard deviations across gradients
within decomposition environments (soil, soil
surface, and streams). To do this, we use publicly
available datasets of temperature to assess the
degree to which mean annual temperatures and
the standard deviations of daily temperature are
related. We next quantify the influence of

ECOSPHERE *%* www.esajournals.org

TOMCZYK ET AL.

temperature variation on observed decomposi-
tion rates. We do this using randomly generated
time series of temperature to simulate decompo-
sition across a range of mean temperatures and
standard deviations of temperature. Third, we
estimate the degree to which global relationships
between mean temperatures and variation in
temperature could result in biased estimates of
E.. To do this, we return to the global tempera-
ture data and simulate decomposition using a
range of true (i.e.,, known) E, values to simulate
decomposition. We use standard methods to cal-
culate an estimated E, from these data, which we
then compare with the true E, used to generate
them. Finally, we highlight an alternative
approach to calculating the activation energy of
decomposition that is not biased by temperature
variation and that has been used in similar con-
texts (Yvon-Durocher et al. 2012), but which has
yet to be adopted in estimating the temperature
dependence of plant litter decomposition.

METHODS

Our general approach to simulating decompo-
sition assumes that instantaneous decomposition
rates are a function of temperature only. Under
natural conditions, rates of decomposition are
not just a function of temperature, as moisture
and substrate quality are also dominant controls
(Tuomi et al. 2009, Bradford et al. 2016). Further,
macroconsumers and other processes such as
photodegradation can be important in some
instances (Austin 2011, Bush et al. 2017). While
these factors may confound estimates of temper-
ature effects if they are correlated with the tem-
perature gradient, we argue that we must first
understand their effects individually before we
can consider them in combination (Tuomi et al.
2009). Here, our focus is on temperature.

Relationships between mean temperature and
temperature variation

To quantify how relationships between mean
temperature and variation in temperature differ
among the environments in which plant litter
decomposes (streams, on the soil surface, and in
the upper layers of soil), we used regional-level
temperature data from several environments and
a dataset of global air temperatures. We combined
two regional databases of stream temperature for
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the western and eastern United States (NorWeST
and SHEDS), both of which report daily mean
stream temperatures (Isaak et al. 2017, SHEDS
Development Team 2018). We also used data
from the U.S. Climate Reference Network
(USCRN), which contains paired measurements
of air, land surface, and soil temperature measure-
ments at 5 cm below the surface taken daily at
sites throughout the United States (Bell et al.
2013, Diamon et al. 2013). Because we could not
locate soil, soil surface, or stream temperature
data collected at the global scale, we used air tem-
perature data to explore global trends in tempera-
ture using the National Oceanic and Atmospheric
Administration product Global Summary of the
Day (GSOD), which provides daily air tempera-
ture measurements across the globe (Menne et al.
2012). We only included sites in our analysis that
had measurements for at least 360 days a year,
though we did not require these days to be con-
secutive and simply omitted missing values
(Table 1; Appendix S1: Figs. S1 and S2). As these
are all published datasets that already had under-
gone quality checks, we performed no additional
processing or error checking assuming that any
residual errors were random and served to add
noise but not bias to our results. To address our
first question and understand how relationships
between mean temperature and variation in tem-
perature differ across these datasets, we used
mixed-effects models. We regressed mean annual
temperature against the standard deviation of
daily temperatures over a year for each dataset
and included a random effect for site to account
for repeated measurements. Mixed-effects models
were run using the Ime4 package in R (Bates et al.
2014).

TOMCZYK ET AL.

Influence of temperature variation on
decomposition

To address our second goal and estimate the
impact that temperature variability can have on
decomposition rates, we generated 200,000 time
series of temperature. Each simulation comprised
one year of daily temperature values, which were
normally distributed without seasonal structure,
with a randomly selected mean (between 0° and
25°C) and standard deviation (between 0° and
15°C). By randomly generating these time series,
we ensured that temperature means and stan-
dard deviations were orthogonal.

We simulated decomposition using a daily
time step, allowing the instantaneous rate of
decomposition (rinst) to be set by temperature. At
each time step (i.e., one day), we used the Boltz-
mann-Arrhenius equation,

()
Tinst = Tref X € ; (1)

to calculate the instantaneous decomposition rate
("inst) at the respective temperature and a known
true E,. In this equation, kg is the Boltzmann con-
stant (8.617 x 107> eV/K), and the reference
decomposition rate (r.ef) and reference tempera-
ture in degree K (T.f) are set to arbitrary realistic
values (0.0204 d~! and 15°C, or 288°K, through-
out; Manning et al. 2015). We constrained this
model to estimate 7, only when temperatures
were >0°C and <40°C. Outside of this range, we
set 7ihst to 0. We ran simulations for our random
datasets at three plausible values of true E, (i.e.,
0.45, 0.65, and 0.85 eV; Kirschbaum 2010). We
then used the modeled instantaneous decompo-
sition rates (rins in Eq. 1) to calculate the mass
(M) remaining after the time step as a function of

Table 1. Sources and attributes of the datasets that were used in our analysis of relationships between mean tem-
perature and temperature variation in different habitats.

Resolution of

Database Geographical Number of Range of temperature
abbreviation ~ Environment extent sites years data Citation
NorWeST Streams NW United States 3504 1993-2015 Daily means Isaak et al. (2017)
SHEDS Streams NE United States 397 1999-2017 Daily means SHEDS Development
Team (2018)
USCRN Air, soil surface, United States 115 soil, 137 2000-2017 Daily means, and ~ Diamon et al. (2013)
5cm below surface, 226 air hourly means
soil surface
GSOD Air Global 9541 1973-2017 Daily means Menne et al. (2012)

ECOSPHERE ** www.esajournals.org

February 2020 ** Volume 11(2) ** Article e03050



the mass remaining at the beginning of the time
step (Mp) and the length of the time step
(t, which was always 1 d):

M = Moe*rinstt )

In order to treat our simulations like a litterbag
experiment, we only used a subset of this time
series of mass remaining data by extracting the
values at 0, 60, 120, 180, 240, 300, and 350 d.
Finally, we estimated the decomposition rate by
linearizing the exponential decay model, in
which the slope between sampling day and the
natural log-transformed percent mass remaining
data is the estimated decomposition rate, or
Testimated-

To determine the influence of temperature
variation on 7egtimated, W€ used linear models to
estimate the relative influence of temperature
variability (i.e.,, standard deviation of tempera-
ture) and mean temperature on festimated g€NEr-
ated from the randomly distributed datasets.
Estimated decomposition rates were first logo-
transformed so that regression coefficients could
be interpreted as percent changes in restimated-

Estimating E, from temperature gradients

To address our third goal, we estimated the
activation energy based on festimatea from the
simulated data and the site mean temperatures.
For each of the publicly available temperature
datasets described above, we simulated decom-
position using a daily time step as we did with
the randomly generated data. Then, we deter-
mined the temperature sensitivity, as it has been
interpreted elsewhere, as the slope between natu-
ral log-transformed values of egtimatea and the
inverse of the Boltzmann constant times the
mean temperature in degrees Kelvin (Boyero
et al. 2011, Follstad Shah et al. 2017, Tiegs et al.
2019). Due to the sampling effort involved in
measuring plant litter decomposition, most
experiments have a relatively small number of
sites across a wide spatial gradient (e.g., Boyero
et al. 2011, Tiegs et al. 2019). We attempted to
mimic this constraint in experimental design by
conducting a bootstrapped sampling of our
Testimated data and using subsets of the data to
estimate E,. First, we binned our data by abso-
lute latitude; the global data were grouped into
ten 5° bins ranging from 0° to 45° absolute

ECOSPHERE *%* www.esajournals.org

TOMCZYK ET AL.

latitude, while the U.S. data (i.e., USCRN and
stream data) were grouped into ten 2° bins rang-
ing from 30° to 50° latitude. We then selected
random subsets, with one site from each bin,
10,000 times for each dataset (e.g., stream data,
or global air temperatures). When multiple years
of data existed at a given site, one year of data
was picked at random. Then, for each of these
randomly selected subsets of data and true E,,
the E, was estimated as the slope of the regres-
sion between the natural log-transformed
Testimated and 1/kgT, where T is the average tem-
perature during the year and kg is the Boltzmann
constant. We present mean estimates of E, and
confidence intervals from these 10,000 simula-
tions for each dataset, as well as the value of the
true E,.

Estimating E, while accounting for temperature
variation

We also used a second approach to estimate E,
based on methods used to address similar prob-
lems with temperature variation in models of
annual ecosystem respiration (Yvon-Durocher
et al. 2012). We estimated both E, and 7, by fit-
ting the equations we used to generate the data
to the mass remaining data and all of the temper-
ature data. While E, and ¢ are both constants in
our initial simulations, neither would be known
parameters when collecting data from the field
so we must estimate both from the simulated
data. A key difference between this approach
and the one described above is that this approach
uses the complete time series of temperature and
values of mass remaining, whereas the first
approach collapses temperature down to a single
mean value and mass remaining measurements
down to a single restimatea Value. As described
above, we fit these models to subsets (i.e., ten
sites at a time) of the whole datasets to mimic the
constraints of real studies (Table 2). To fit these
alternative models, we simulated decomposition
for each site in each subset of data in the same
way that we did when generating the data
(Egs. 1 and 2). Initial estimates of E, and r,.f were
made based on values from the literature (i.e.,
0.65 eV and 0.001 dfl; Boyero et al. 2011), and
decomposition was simulated at each site, allow-
ing daily temperature, estimated E,, and 7. to
determine ;... Then, the estimated mass remain-
ing values from days 0, 60, 120, 180, 240, 300,
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and 350 were extracted. We then calculated the
log-likelihood of the differences between these
newly modeled values and the true simulated
values, assuming a normal probability density
distribution with a mean of zero. We then opti-
mized the estimated E, and 7. to maximize the
log-likelihood of the model using the mle2 func-
tion in the bbmle package (Bolker 2017; method
described more fully in Appendix S1). Due to the
high amount of computational time involved, we
only performed 100 estimations for each dataset
and only made estimates for the data in the three
USCRN datasets. All analyses were performed in
R version 3.4.0 (R Core Team 2016).

RESULTS

Relationships between mean temperature and
temperature variation

We generally found mean temperature and the
standard deviation of temperature to be nega-
tively related. The global air temperatures had
an average decline in variation of 0.35 (£0.001
SE) standard deviations per one-degree increase
in mean temperature. The USCRN data had
declines of 0.32 (£0.13 SE), 0.29 (+0.21 SE), and

TOMCZYK ET AL.

0.16 (£0.02 SE) standard deviations per one-de-
gree increase in mean temperature in the air, soil,
and surface temperature datasets, respectively
(Fig. 2). However, stream temperature variation
showed only a weak relationship with mean tem-
perature (R*=0.04) and variation actually
increased with temperature by 0.09 (£ 0.007 SE)
standard deviations per one-degree increase in
mean temperature (Fig. 2; full regression equa-
tions in Appendix S1: Table S1).

Impacts of temperature variation on
decomposition rates

Manipulating variation in temperature result-
ed in a wide range of Festimated at @ given mean
temperature, with increases in variation tending
to increase festimated (Fig. 3). Increasing tempera-
ture variation by one standard deviation led to
increases in fegtimated that were equivalent to an
increase in temperature ranging from 0.17° to
0.57°C depending on the true E, (Fig. 3;
Appendix S1: Table S2). Decomposition rates
increased with increased temperature variation
(SD) in all true E, scenarios, with variation effects
greatest in the highest true E, scenario (Fig. 3;
Appendix S1: Table S2). At low temperatures,

Table 2. Summary of difference between methods 1 and 2 of estimating the temperature sensitivity of decomposi-

tion, or the activation energy E,.

Number Observations of
of decomposition

Method Data requirements General approach estimates  per estimate ~ Examples of use
One estimate of decomposition ~ Decomposition rates are natural 9 for the U.S. Boyero et al.
rate, measurement of mean log-transformed, and E, is data, 10 for the  (2011), Follstad
temperature estimated as the slope of the line global data Shah et al.
between natural log-transformed (2017), Tiegs
rates and the inverse of the mean et al. (2019)
temperature in degrees Kelvin
times the Boltzmann constant
Model is fit to raw mass To estimate E,, decomposition is 9 for the U.S. Yvon-Durocher
remaining data from simulated (using Eq. 2) where data, 10 for the et al. (2012)
decomposition experiment on each day the instantaneous global data
and requires continuous breakdown rate is determined
temperature data (daily means) by the Boltzmann-Arrhenius
equation. The mass remaining
data are extracted on each day
that “measured” mass remaining
data exist and the estimates of E,
and ¢ are subsequently
optimized to minimize the
difference between the
“measured” and estimated mass
remaining data
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Fig. 2. Relationships between annual mean temperatures and the standard deviation of temperature for global
air temperature sites (a), U.S. Climate Reference Network (USCRN) sites (b), and stream temperature throughout
the United States (c). The USCRN data contain sites with temperature measurements in air, soil, and the soil

surface.

increased variation tended to increase Festimated;
however, at higher temperatures, increased
variation tended to increase restimatea ONly up to
an intermediate level of variation, after which
Testimated  Plateaued or  declined  (Fig. 3;
Appendix S1: Table S2). This plateau effect was
likely due to greater variation in warmer simula-
tions that led to more days of decomposition
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over 40°C, at which 7, Was set to zero. To con-
firm that our handling of temperatures over 40°C
was the cause of this effect, we ran simulations
that set i, at temperatures above 40°C to the
rate of decomposition at 40°C, which showed
that variation increased restimated at all tempera-
tures (Appendix S1: Fig. S2). Thus, whether
decomposition ceases at extremely high
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temperatures such as 40°C will dictate how this
function is actually affected in high-temperature/
high-variation conditions. However, our analysis
indicates these conditions are not commonly
observed in meteorological databases (Fig. 2).

Comparing estimates of E, and true E,

Estimates of E, made by relating restimated toO
mean temperatures were generally lower than
the true E, values used to simulate the decompo-
sition data, with the exception of the stream data-
set (Figs. 4, 5, Appendix S1: Table S3). When the
true E, was 0.65 eV, the estimated E, ranged
from 0.50 eV for the USCRN surface temperature
data to 0.65 eV for the stream temperature data
(Figs. 4, 5). These differences between true E,
and estimated E, were due to different levels of

(%)

Decomposition rate In(restimated)
1'!1

=}

0.65 eV

TOMCZYK ET AL.

temperature variation in the warm and cool sites.
In the warm terrestrial sites, where there was less
variation in temperature, restimateda Was similar to
the simulations with a constant mean tempera-
ture (ie, black line in Fig. 4). Conversely,
Testimated Values in cool sites were often much
greater than expected at their mean temperature
(Fig. 4a, b). This unbalanced distribution of tem-
perature variation, and the subsequent increases
IN 7estimated, 1€d to E, estimates lower than the
true E,. The magnitude of the difference between
true and estimated E, generally increased at
higher true E, (Fig.5). Unlike the other
datasets, the stream temperature dataset pro-
duced estimates of E, that were similar to the
true E, (Fig. 5). This appeared to be due to a
lower amount of variation in temperature

Temperature

15
10

5

0 5 10 15 0 5

10 15 0 5

N
-
=
-
m

Standard deviation of temperature

Fig. 3. Relationship between variation in temperature and decomposition rates (restimated) aCross a range of
mean temperature. Decomposition was simulated across a range of mean temperatures and levels of variation at
three different activation energies (0.45, 0.65, and 0.85 eV; panels a, b, and c, respectively). The first-order decom-
position rate (Festimated) Was calculated from the simulated mass remaining data. Regression equations that com-
pare the effect of mean temperatures and temperature variation on decomposition are presented in Appendix S1.
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at the lower-temperature stream sites, compared
to the lower-temperature terrestrial sites
(Figs. 2, 4).

The second method of estimating E, was able
to reproduce the values of true E, we used to
simulate the data. In each case, with only 100
bootstrapped  simulations, this alternative
approach was able to closely estimate the values
of true E, (Appendix S1: Table S4). This repre-
sents a considerable improvement over the
results obtained by the first method with the
USCRN data (Figs. 4b, 5) but has some caveats
that we discuss below.

DiscussioN
Plant litter decomposition studies may be

underestimating temperature sensitivity by
ignoring the influence of temperature variation

TOMCZYK ET AL.

on decomposition. Previous estimates of the tem-
perature sensitivity of decomposition are likely
biased low because spatial relationships between
mean temperature and temperature variation
can shift the slope of the relationship between
temperature and decomposition rates. It is
important to consider these effects of tempera-
ture variation explicitly because climate change
is altering both mean temperatures and tempera-
ture variability (Wang and Dillon 2014). Further-
more, we observed that the deviation between
the true E, and the estimated E, tends to be
greater at higher true E, because temperature
variation tends to have greater positive effects on
decomposition when the true E, is higher. Simi-
larly, when there is only a weak relationship
between mean temperature and variation, as in
our stream data, we do not observe the same bias
in estimates of E,.
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Fig. 4. Inverse temperature compared to the natural log-transformed estimated decomposition rates (Vestimated)-
The panels represent the different datasets: global air temperatures (a), U.S. Climate Reference Network
(USCRN) data for air, soil, and soil surface (b), and stream temperatures throughout the United States (c). All
simulations were run with a true E, of 0.65 eV. The solid black line represents simulations which occurred at a
constant mean temperature, and the slope equal to 0.65 eV. The dashed lines are the slopes of the simulated data
and represent the estimated Ea which were 0.50, 0.51, 0.59, 0.51, and 0.65 eV, respectively, in the global, U.S. air,

U.S. soil, U.S. surface, and stream datasets.
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Fig. 5. Estimated activation energies (E,) estimated
from simulated data compared to true E, used to sim-
ulate the data. The black line indicates a 1:1 relation-
ship between true and estimated activation energies,
and the other lines represent the different datasets: glo-
bal air temperature data (orange), stream temperature
data (dark blue), air temperature data in the U.S. Cli-
mate Reference Network (USCRN, yellow), soil tem-
peratures in the USCRN (light blue), and surface
temperatures in the USCRN (green). Regression equa-
tions are given in Appendix S1: Table S3.

Current approaches to measuring temperature
effects on decomposition of litter in terrestrial
environments likely underestimate the true tem-
perature sensitivity of the process. Our simula-
tions resulted in estimates of E, that were
generally lower than the true E, for the global air
temperature dataset and for all the USCRN data,
and that were much lower at high true E,. Quan-
tifying temperature sensitivity using mean tem-
peratures tends to lead to flatter response to
temperature and adds noise around the regres-
sion line, even in our simulated system in which
all variation in decomposition is attributed to
temperature. Thus, by simultaneously lowering
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the value of a temperature coefficient and adding
variability, ignoring temperature variation may
lead to underestimates of the relative influence of
temperature in studies comparing the effect of
multiple factors on plant litter decomposition
(e.g., Silver and Miya 2001, Bradford et al. 2016).
However, the greater risk is in using estimates of
temperature sensitivity derived from large-scale
comparisons of decomposition rates and average
temperatures. Because variation in temperature
can significantly impact decomposition rates at a
mean temperature, the usefulness of an estimate
of E, will depend on the underlying relationship
between mean temperatures and variation in
temperature remaining unchanged. Thus,
because an estimate of E, is conditional on the
underlying temperature-variation relationship, it
will likely not be transferable. We observed this
in our data, when using air temperature data
from different spatial scales (i.e., regional vs. glo-
bal) led to somewhat different estimates of E,
(e.g., estimated E, of 0.53 and 0.49 at a true E, of
0.65, respectively; Fig. 5), and we found even lar-
ger differences in E, estimates between different
decomposition environments at the regional
level (Fig. 4b). Furthermore, there is evidence
that intra-annual temperature variability has
been changing, with larger shifts in polar regions
than in temperate or tropical latitudes (Wang
and Dillon 2014). This raises concerns about
whether current spatial relationships between
mean temperatures and variability in tempera-
tures will persist over ecologically relevant time
periods and whether empirical estimates of tem-
perature sensitivity will be robust to these
changes.

Some recent studies of the temperature sensi-
tivity of decomposition in stream ecosystems
have estimated E, values that are lower than the
canonical value for cellular respiration (0.65 eV;
Brown et al. 2004, Enquist et al. 2003). Boyero
et al. (2011) conducted a global litterbag experi-
ment and estimated an apparent E, of 0.41 eV,
while a meta-analysis by Follstad Shah et al.
(2017) estimated an apparent E, of 0.34 eV; both
values are considerably lower than the E, of cel-
lular respiration. However, a global experiment
using cellulose fabric as an analog for plant detri-
tus found an apparent E, similar to the canonical
value in streams (0.68 eV) and an E, of 0.40 eV
in riparian zones (Tiegs et al. 2019). We observed
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lower and less variable decomposition rates at
low temperatures in the stream dataset than in
the other datasets. While atmospheric conditions
are a dominant influence on stream temperature,
hydrology can also significantly influence the
thermal regime of streams as groundwater, melt-
ing snow, and glaciers can stabilize temperatures
(Caissie 2006, Ficklin et al. 2013). While our
results suggest that temperature variation causes
less of a problem in estimating E, in stream envi-
ronments, there may still be situations in streams
where relationships between temperature means
and variation are important to consider. Our
stream temperature datasets were limited in size
and scope, and relationships between tempera-
ture means and variations in streams should be
examined over larger spatial scales and different
time periods.

While this study focused solely on the influ-
ence of temperature on decomposition, tempera-
ture is not the only factor that influences
decomposition rates, and other factors may be
more important in some situations (Bradford
et al. 2014, Djukic et al. 2018). Temperature may
not limit decomposition in all areas (e.g., very
dry areas), but because global temperatures are
changing, it is important to have accurate esti-
mates of the temperature sensitivity of decom-
position to predict future rates (Davidson et al.
2006). Factors such as moisture may also covary
with temperature across landscapes and so
influence estimates of temperature sensitivities
(Tiegs et al. 2019). Ideally, to predict future rates
of decomposition researchers should make unbi-
ased estimates of each effect (e.g., temperature
and moisture) and model the influences of each
effect and interaction (Tuomi et al. 2009). Fur-
thermore, while we elected to simulate decom-
position over 360 d, decisions about when and
how long to incubate plant litter are often made
with consideration of logistics, litter lability, and
plant phenology and can range from a few
weeks to multiple years (Spanhoff and Meyer
2004, Imberger et al. 2008). These differences in
study duration can influence the underlying
relationship between temperature means and
variation,  altering the bias introduced
(Appendix S1: Fig. S6). Accordingly, our results
do not offer a direct path for revision of any
estimates of temperature sensitivity made else-
where, but they do serve to illustrate that
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temperature variation can affect these estimates
of temperature sensitivity.

The improved method for calculating the tem-
perature sensitivity of decomposition we present
offers a promising solution to the problems we
highlight in this paper. This approach accurately
estimated the true E, used to simulate the data in
all cases (Appendix S1: Table S4). However, it
requires some assumptions that must be consid-
ered carefully before being implemented with
real data. Both in simulating our decomposition
data and in estimating E, we assume that E, is
constant throughout decomposition and across
sites. These assumptions are commonly made
elsewhere (Boyero et al. 2011, Follstad Shah et al.
2017), but recent work suggests that the tempera-
ture sensitivity of respiration may vary substan-
tially from site to site (Song et al. 2018), and it is
possible that changes in chemical composition
during decomposition also alter temperature sen-
sitivity (Davidson et al. 2006, Adair et al. 2008).
We also assumed that no decomposition occurs
outside of the 0°-40°C window, based on the lim-
its described by the MTE (Brown et al. 2004). We
found that the response of decomposition at high
temperatures to increased temperature variation
changed substantially when we altered this
assumption (Fig. 3; Appendix S1). How to han-
dle these high temperatures is an important con-
sideration, and our two scenarios are maximally
simple bookends on the idea of a thermal win-
dow (Portner 2010). Finally, we assume that
instantaneous rates respond to mean daily tem-
peratures. We made this assumption in part
because decomposition rates are typically pre-
sented on a day ' basis (Benfield et al. 2017; note
that hourly temperature data are considered in
Appendix S1). Because all of these assumptions
were the same when we simulated the data and
estimated E,, we were able to reproduce the true
E, values used to simulate the data. Thus, this
demonstration is only meant to illustrate that this
method has the potential to alleviate the issues
with temperature variation that we have identi-
fied. Further testing with real decomposition
data is needed to evaluate the sensitivity of E,
estimates to these assumptions—and ideally to
test them directly.

The difference in timescale at which the under-
lying processes driving organic matter decompo-
sition (e.g., respiration) respond to temperature
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and the timescale at which we measure decom-
position rates represents the fundamental source
of bias in estimates of temperature sensitivity.
While we have elected to use the framework of
activation energies to describe and model tem-
perature sensitivity, these phenomena should be
common to any exponential relationship of a rate
with temperature (Kirschbaum 1995, Tuomi et al.
2009). While other ecological processes (e.g.,
growth of poikilotherms, population-level pro-
cesses; Hung et al. 1993) are measured over simi-
larly long timescales, most biogeochemical
processes are quantified over much shorter time
periods, ranging from hours to days (e.g., pri-
mary production, respiration, and nitrogen fixa-
tion), suggesting that the issues highlighted here
are not common to all processes. There is now an
understanding that using mean observations of
controlling factors (e.g., climate) across replicates
within a site can give misleading results in regio-
nal litterbag decomposition studies (Bradford
et al. 2016), and our studies have highlighted
that there are similar issues with analyzing mean
values of controlling factors over long periods of
time (as have previous studies, e.g., Savage 2004,
Yvon-Durocher et al. 2012).

We have several suggestions for future best
practices and new lines of research. We encourage
studies of the effect of temperature on decomposi-
tion to report not only mean temperatures but
also temperature variation, and preferably to
include raw temperature data in online supple-
ments. We also suggest further exploration of the
improved approach to estimating temperature
sensitivities that we present here. This approach
to estimating temperature sensitivity includes
some assumptions that should be tested empiri-
cally: Temperature sensitivity does not vary by
site or through time; instantaneous decomposi-
tion rates respond to temperature at some fixed
timescale (i.e., daily or hourly temperature); and
microbial decomposition ceases at temperatures
over 40°C. Incorporating these recommendations
will improve estimates of the temperature sensi-
tivity of decomposition, allowing better predic-
tion of rates under future temperature regimes.
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