
Real-Time Dynamics of Soft and
Continuum Robots based on
Cosserat-Rod Models

Journal Title
XX(X):1–21
©The Author(s) 2018
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

John Till1, Vincent Aloi1, and Caleb Rucker1

Abstract
The dynamic equations of many continuum and soft robot designs can be succinctly formulated as a set of partial
differential equations (PDEs) based on classical Cosserat rod theory which includes bending, torsion, shear, and
extetension. In this work we present a numerical approach for forward dynamics simulation of Cosserat-based robot
models in real time. The approach implicitly discretizes the time derivatives in the PDEs and then solves the resulting
ODE boundary value problem (BVP) in arc length at each time step. We show that this strategy can encompass a wide
variety of robot models and numerical schemes in both time and space, with minimal symbolic manipulation required.
Computational efficiency is gained due to the stability of implicit methods at large timesteps, and implementation is
relatively simple which we demonstrate by providing a short Matlab-coded example. We investigate and quantify the
tradeoffs associated with several numerical subroutines, and we validate accuracy compared to dynamic rod data
gathered with a high-speed camera system. To demonstrate the method’s application to continuum and soft robots, we
derive several Cosserat-based dynamic models for robots using various actuation schemes (extensible rods, tendons,
and fluidic chambers) and apply our approach to achieve real-time simulation in each case, with additional experimental
validation on a tendon robot. Results show that these models capture several important phenomena, such as stability
transitions and the effect of a compressible working fluid.

Keywords
Continuum Robot, Soft Robot, Forward Dynamics

1 Introduction

1.1 Motivation

Slender elastic objects are becoming increasingly prevalent
in robotics, e.g. in the study of soft (Rus and Tolley (2015))
and continuum (Burgner-Kahrs et al. (2015)) manipulators,
and in interactions with objects such as ropes, sutures,
needles, and catheters (Tang et al. (2010)). Forward dynamic
models are essential in these applications as they provide
a way to simulate and develop robot designs and control
schemes and enable the study of dynamic events. Even for
tasks where desired task accelerations are slow compared to
robot dynamics, dynamic models are sometimes valuable.
In some robots, elastic instability due to robot structure
(Webster et al. (2009)) or loading conditions (Till and Rucker
(2017b)) can result in a sudden, dynamic movement of the
robot even when actuator commands are slowly changing.
Further, discontinuous changes in loading associated with
tasks such as cutting, grabbing, and releasing objects may
result in dynamic motion even for robots which behave
quasi-statically in free space. Forward dynamics simulation
allows one to study and anticipate these phenomena. For such
simulation-based research, design, and control, we believe
that the competing goals of approximation accuracy and
computational speed are the most important considerations
of a potential forward dynamics approach for soft/continuum
robots and slender elastic objects.

1.2 Related Work
Modeling and simulating the dynamics of continuum/soft
robots is an ongoing research problem. In Table 1 we
give a non-exhaustive, representative sampling of journal
publications on the topic of dynamic simulation of elastic
rods and/or continuum/soft robots in 3D. For each method,
we have listed the principle or method upon which the
derivation of the dynamics was based, how the shape is
represented or discretized in space, and the method of
integration in time if specified in the paper. Robot-focused
works such as Rone and Ben-Tzvi (2014); Falkenhahn
et al. (2015); Godage et al. (2015, 2016); Marchese
et al. (2016) have predominantly started with a piecewise-
constant curvature representation of robot shape which
is naturally suited to the serial segment structure and
actuation of continuum robots. Application of variational
principles then leads to the governing equations for
the generalized coordinates (segment curvatures or arc
parameters) analogous to conventional rigid-link dynamics
equations. The coordinate accelerations are then obtained
and integrated using standard explicit ODE solver packages.

1University of Tennessee, USA

Corresponding author:
John Till
REACH Laboratory
The University of Tennessee, Knoxville
Knoxville, Tennessee 37996, USA
Email: JTill@vols.utk.edu

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

2 Journal Title XX(X)

Table 1. Representative Papers on Forward Dynamics Simulation of Spatial Elastic Rods and Continuum/Soft Manipulators
Dynamics Geometric Time Application /

Ref. Derivation Representation Integration Robot Type

Hadap (2006) Newton-Euler Discrete Rigid Bodies DASPK DAE Solver Graphics
Bergou et al. (2008) Euler-Lagrange, Discrete Framed Curve Symplectic Euler, Graphics

Quasistatic Torsion Constraint Projection
Spillmann and Teschner (2009) Energy Minimization Discrete Framed Curve Semi-Implicit Euler Graphics

with Penalty Forces
Bertails (2009) Euler-Lagrange Helical Segments – Graphics
Lang et al. (2011) Lagrangian DAE Staggered-Grid DAE Solvers Rods

Finite-Difference e.g. RADAU5
Rucker and Webster III (2011) Cosserat PDEs Lax-Wendroff Lax-Wendroff Cable-driven
Rone and Ben-Tzvi (2014) Virtual Power / Constant Curvature Segments – Cable-driven

Kane’s Method with Discrete Torsional Joints
Umetani et al. (2014) Gauss’s Principle of Discrete Points and Pos.-Based Dynamics Graphics

Least Constraint Point-Based Orientation with Gauss-Siedel
Renda et al. (2014) Cosserat PDEs Upwind Finite-Difference ODE23 Cable-driven
Falkenhahn et al. (2015) Euler-Lagrange Constant Curvature Segments – Pneumatic
Godage et al. (2015) Euler-Lagrange with Modal Constant Curvature ODE15s Pneumatic

CoG Lumped Mass
Godage et al. (2016) Euler-Lagrange Modal Constant Curvature ODE15s Pneumatic
Marchese et al. (2016) Euler-Lagrange Constant Curvature Segments – Pneumatic
Kugelstadt and Schömer (2016) Newton-Euler Discrete Rigid Bodies Semi-Implicit Euler, Graphics

Constraint Solver
Sadati et al. (2018) Virtual Work / Lagrange Polynomials ODE113 Pneumatic

Ritz-Galerkin
Ours Cosserat / Kirchhoff Any ODE Method (e.g. RK4), Any Implicit Method Various

PDEs Solve BVP by Shooting (e.g. BDF2) Examples

However, when external loads or inertial dynamics are
considered, the constant-curvature representation may no
longer be appropriate due to the presence of torsion,
shear, extension, or variations in curvature over an actuated
segment. These limitations can be somewhat overcome
by simply using a finer constant-curvature discretization
as in (Rone and Ben-Tzvi (2014)), and torsion can be
incorporated by adding a discrete torsional DOF at each
segment (Rone and Ben-Tzvi (2014)) or by generalizing the
approach to piecewise helical segments (Bertails (2009)).
However, as the number of segments grows, the computation
can scale badly (typically O(n3) (Godage et al. (2016)))
because the mass matrix is dense due to the use of a
minimal coordinate representation. Some O(n3) algorithms
are tractable for small n, which is the case for the real-
time modal dynamics of a three-segment, variable-length,
piecewise-constant-curvature arm demonstrated by Godage
et al. (2016), but scalability becomes important if one wishes
to accurately capture higher-resolution curvature dynamics.
Bertails (2009) adapted the O(n) recursive articulated-
body algorithm of Featherstone and Orin (2008) to helical
segments.

Alternative maximal coordinates approaches (Bergou
et al. (2008); Spillmann and Teschner (2009); Lang
et al. (2011); Umetani et al. (2014); Kugelstadt and
Schömer (2016)) are primarily pursued in the computer
graphics literature and typically represent the shape with a
discrete geometry convention (e.g. a chain of points with
adapted frames on the line segments between them). This
requires resolving extensibility and shearability constraints
numerically during the integration process, which has been
done by projection (Bergou et al. (2008)), sequential
enforcement (Umetani et al. (2014); Kugelstadt and Schömer

(2016)), methods for differential algebraic equations (Hadap
(2006)), and penalty forces (Spillmann and Teschner (2009);
Tang et al. (2010)).

Using penalty forces to approximately enforce extensibil-
ity and shearability constraints is equivalent to adopting a
full Cosserat rod model instead of a Kirchhoff rod model.
In this vein, Lang et al. (2011); Rucker and Webster III
(2011); Renda et al. (2014) use various numerical methods
for solving the partial differential equations of a Cosserat rod,
and Renda et al. (2016) has recently proposed a piecewise-
constant strain representation that generalizes the constant-
curvature framework to include the Cosserat strains of tor-
sion, shear, and extension. While such Cosserat models
are essentially unconstrained and thus efficiently solvable
(typically in O(n) time), the dynamics are stiff due to the
high-frequency vibrational modes of the shear and extension
DOF. This creates difficulties for efficient simulation of
the slower modes of interest (bending-torsion) because the
Courant-Friedrichs-Lewy stability condition puts a signifi-
cantly restrictive upper bound on the timestep length that can
be stably used for any explicit time integration method.

Thus, a main theme of the existing literature is the set
of computational difficulties and tradeoffs associated with
minimal coordinates vs. constraint enforcement vs. stiff
dynamics, which are all different sides of the same problem.
We aim to address these issues with a new implicit dynamics
framework for Kirchhoff and Cosserat rod models.

1.3 Contributions
Our contribution in this paper is to derive, validate, and
demonstrate a new approach for the numerical solution of the
Cosserat and Kirchhoff PDEs with application to continuum
and soft robots. We eschew the predominant approach of

Prepared using sagej.cls

Till, Aloi, and Rucker 3

first establishing a geometric representation followed by
dynamics derivation and explicit time integration. Instead,
we start with the continuous set of Cosserat or Kirchhoff
PDEs and then discretize the time derivatives using an
implicit differentiation formula. This creates a continuous
ODE in the spatial dimension and a boundary value problem
(BVP) which we can solve using any numerical integration
scheme in the spatial dimension and a shooting method
to obtain the solution for the rod/robot state at each time
step. Variants of this approach have been explored in Gatti-
Bono and Perkins (2002); Lan and Lee (2006); Lan et al.
(2009) for planar dynamics of fly-fishing lines and compliant
mechanisms, but not rods or continuum robots in 3D.

It is a commonly held view that Cosserat-rod based
models for continuum and soft robots are overly complex
and too costly for real-time implementation. Contrary to
this, we hope to demonstrate that our implicit approach
to the Cosserat/Kirchhoff PDE models has the following
advantages:

• Adaptability: Various model assumptions and numeri-
cal schemes are handled with minimal reformulation.

• Real-time: Typical simulations can be computed faster
than the corresponding physical systems evolve.

• Scalability: Computation time increases linearly with
spatial resolution, which can be adapted online.

• Accuracy: High-order methods provide a good error
vs. effort trade-off and exhibit low numerical damping.

• Stability: Large time steps can be taken stably. Static
solutions are simply obtained with an infinite timestep.

• Consistency: The continuous theory is approached as
the resolution is increased, and bulk moduli are used.

Our preliminary work on this topic was presented in Till
and Rucker (2017a), where we proposed and validated an
implicit discretization approach for a dynamic Kirchhoff
rod with negligible cross section rotational inertia. Beyond
this, our additional advances here include (1) derivation
and application to the full Cosserat rod model including
shear, extension, and rotational cross section inertia, (2)
a performance characterization of several variants of the
method on a benchmark test problem, (3) additional
experimental validation and speed characterization of the full
Cosserat model and a tendon robot model, and (4) derivation
and application of our method to three different continuum
and soft robot designs, including a novel soft robot model,
with real-time simulation demonstration in each case.

The development of the rod model in Sections 2.1-2.4 is
foundational to the rest of the paper. A working MATLAB
implementation of a dynamic cantilever problem is provided
in Appendix B for the reader to confirm their understanding
of the basic model before proceeding. After the theoretical
rod model development, the remaining sections are largely
independent, including each robot model in Section 5.

2 Cosserat Models and Methods
In this section we detail our specific numerical approach
to solving continuum robot partial differential equations
(PDEs) accurately and stably in real-time. In order to
make the discussion of the discretization more concrete, we

Table 2. Notation and Definitions

Symbol Units Definition
s m Reference arclength
t s Time
p m Global position in Cartesian coordinates
R none Rotation matrix of material orientation
h none Quaternion for the material orientation
n N Internal force in the global frame
m Nm Internal moment in the global frame
f N/m Distributed force in the global frame
l Nm/m Distributed moment in the global frame
v none Rate of change of position with respect

to arclength in the local frame
u 1/m Curvature vector in the local frame
q m/s Velocity in the local frame
ω 1/s Angular velocity in the local frame
A m2 Cross-sectional area
ρ kg/m3 Material density
J m4 Second mass moment of inertia tensor
v∗ none Value of v when n = vt = 0.

For a straight rod v∗ = e3.
u∗ 1/m Local curvature when m = ut = 0.

For a straight rod u∗ = 0.
Kse N Stiffness matrix for shear and extension

Kse =

GA 0 0
0 GA 0
0 0 EA


Kbt Nm2 Stiffness matrix for bending and twisting

Kbt =

EIxx 0 0
0 EIyy 0
0 0 GIzz


E Pa Young’s modulus
G Pa Shear modulus
Bse N s Damping matrix for shear and extension
Bbt Nm2s Damping matrix for bending and twisting
C kg/m2 Square law drag coefficient matrix
g m/s2 Gravitational acceleration vector
e3 none Unit vector; e3 =

[
0 0 1

]T
α none Coefficient of the BDF-α method
ci 1/t Implicit difference coefficient for a state

at t− iδt
di none Implicit difference coefficient for a time

derivative at t− iδt
y misc. General ODE state vector
z misc. General vector with relevant time

derivatives, but elements not in y
(·)b Local-frame representation of variable,

e.g. nb = RTn
h

(·) Historical part of time derivative,

e.g. qt ≈ c0q +
h
q

·̂ or (·)∧ Mapping from R3 to se(3),

e.g. û =

 0 −u3 u2

u3 0 −u1

−u2 u1 0


(·)∨ Mapping from se(3) to R3, û∨ = u

begin by presenting the PDE system describing a single
Cosserat rod. Then we discuss the general implicit time
discretization strategy for PDE problems, and demonstrate
how this method may be applied to the dynamic Cosserat
rod to obtain numerical solutions.

Toward providing a real-time simulation tool for
the continuum and soft robotics community, we have
emphasized the presentation of self-contained model
equations and examples that can be directly implemented.

Prepared using sagej.cls

4 Journal Title XX(X)

Sample Matlab code which implements our approach for a
cantilevered elastic rod is provided in the Appendix. This
code was tested for the MATLAB 2017a release version.

2.1 Cosserat Rod PDEs
A related statement of Kirchhoff rod dynamics was
developed in Till and Rucker (2017a). The derivation here
is more general: we consider the effects of shear, extension,
and rotational inertia of the rod cross section. Our choice of
notation is summarized in Table 2.

2.1.1 Dimensions A Cosserat rod is approximated as a
one-dimensional slender object so that all state variables
are parametrized by a reference arc length parameter along
the undeformed rod centerline s ∈ [0 L] ⊂ R and by the
time t ∈ R. We will use the convention of denoting partial
derivatives by subscripting s or t, for example ∂y/∂s ≡
ys. Note that s is merely a coordinate used to identify
material points, and in general, L does not correspond to
the member’s deformed arc length since axial elongation
and compression modes are included in the model. The
actual deformed length of the member would be obtained by
integrating the axial strain over the interval [0 L] and adding
the result toL. This makes the method suitable for describing
variable-length robots.

2.1.2 State Variables The rod has a centerline p(t, s) ∈
R3 and orientation represented by a rotation matrix R(t, s) ∈
SO(3). The partial derivative of p with respect to arclength
in the local frame is denoted by v, that is v := RTps.
Likewise there is a term for the curvature in the local frame
u(t, s) := (RTRs)

∨, where the (·)∨ operator maps so(3) to
R3 (Murray et al. (1994)). There are also analagous terms for
partial derivatives in time q := RTpt and ω := (RTRt)

∨.
The inernal force in the global frame is represented by
n(t, s) ∈ R3, with the sign convention that n(t, s) represents
the force which the material at p(t, s+ ds) exerts on the
material at p(t, s− ds) for infinitesimal ds. The internal
moment m ∈ R3 is defined similarly.

2.1.3 General Parameters and Inputs The material
density is represented by ρ ∈ R+ and the cross-sectional
area is A ∈ R+. The rotational inertia matrix is J ∈ R3x3.
We will consider cases where p coincides with the cross-
sectional centroid and with constant density over the cross
section, in which case J is a diagonal matrix

J =

Ixx 0 0
0 Iyy 0
0 0 Izz

 .
For a circular rod Ixx = Iyy = πr4/4 with the radius r ∈
R+, and Izz = Ixx + Iyy.

There is also a general distributed force f(t, s) ∈ R3

acting on the rod. This may be independent of the rod
state, for example a rod in free space at rest has f =
ρAg, where g ∈ R3 is the gravitational acceleration vector.
Other scenarios dictate that f is dependent on the state, e.g.
including viscous damping results in f = −RCq with some
damping coefficient matrix C. In addition to the distributed
force, there is a distributed moment l(t, s) ∈ R3.

2.1.4 Partial Differential Equations We rely on Equations
(23, 25-27) in Rucker and Webster III (2011) as the initial
statement of the PDE system. These equations are consistent
with the derivation in chapter eight of Antman’s classic
text (Antman (2005)). We express the equations in the
global frame here for compactness, but equivalent local-
frame formulations are often used, and our method applies
to either local or global PDE expressions. The dynamics of
an elastic rod are then given by the PDE set

ps = Rv, pt = Rq

Rs = Rû, Rt = Rω̂

ns = ρAR (ω̂q + qt)− f

ms = ∂t(RρJω)− p̂sn− l

qs = vt − ûq + ω̂v

ωs = ut − ûω,

(1)

where ·̂ represents the mapping from R3 to so(3). This is
defined by

â =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 , (2)

and satisfies (â)∨ = a.
We can expand the distributed force term f to explicitly

consider various forces. In subsequent sections we will apply
actuation forces within f and l (as well as in the boundary
conditions) in order to model various robots, but here as an
example we can simply consider the member’s self-weight
and square law drag air resistance so that

f = ρAg −RCq � |q|+ f̄ , (3)

where the Hadamard product � performs element-wise
multiplication, so that

q � |q| =
[
q21 sgn (q1) q22 sgn (q2) q23 sgn (q3)

]T
.

f̄ contains any remaining forces not explicitly considered
yet. In many cases the rotational inertia term may reasonably
be neglected, but we include it for generality as its influence
will be more significant for less slender soft robots. The
rotational momentum derivative term is expanded by

∂t (RρJω) = RtρJω + RρJωt

= ρR (ω̂Jω + Jωt) .

The system (1) has independent variables v and u; an
appropriate material constitutive law must be chosen to relate
these to internal loading. Here we use a linear elastic law with
material damping

n = R[Kse(v − v∗) + Bsevt]

m = R[Kbt(u− u∗) + Bbtut],
(4)

where the “se” subscript refers to shear and extension, and
“bt” refers to bending and torsion. The matrices Bse,Bbt ∈
R3x3 contain coefficients for Kelvin-Voigt type viscous
damping as described in Linn et al. (2012). The Kse,Kbt ∈
R3x3 matrices are stiffness coefficient matrices which are
determined by the material properties and cross-sectional
geometry. Note that a rod cross-section does not need to be

Prepared using sagej.cls

Till, Aloi, and Rucker 5

circular; it is only required to be slender. For a symmetric rod
with isotropic material properties, the stiffness matrices are

Kse =

G 0 0
0 G 0
0 0 E

A, Kbt =

E 0 0
0 E 0
0 0 G

J ,

where E ∈ R+ and G ∈ R+ are the Young’s and shear
moduli. The variables v∗ ∈ R3 and u∗ ∈ R3 represent the
undeformed reference shape the rod will take when it is
unstressed and resting. If we ignore the possibility of plastic
deformation, then these parameters are constant with respect
to time, although they may vary with arc length. An initially
straight rod has v∗ = e3 := [0 0 1]T and u∗ = 0. For ease
of reference we summarize the notation in Table 2.

2.2 Semi-discretization in Time for General
PDE Solution

An ordinary differential equation (ODE) in the spatial
dimension can be obtained by replacing all the time
derivative terms with an implicit differentiation formula for
them. For discretized variables we denote the time index with
a left superscript, e.g. for any subset of state variables y ∈
Rn, y(ti, s) = (i)y(s). Any general implicit differentiation
formula for a first derivative can be written in the form

(i)yt ≈ c0 (i)y +

∞∑
k=1

[
ck

(i−k)y + dk
(i−k)yt

]
:= c0

(i)y + (i) h

y

(5)

The only term in (i)yt corresponding to time ti is c0 (i)y.
(i) h

y is defined as the sum of all remaining terms which
rely on the past history of y. In general we will use
this notation for the history-dependent part of a variable’s
derivative approximation. Lumping all the history-dependent
terms together is useful for the shooting method we employ
later, because 1) the separate terms for current and previous
state allow one to decouple the details of the implicit time
discretization from the spatial shooting method, and 2) each
shot has a new value for the current state y, but the history
term

h

y is common for all shots taken at a single time step.
In applying (5), one could choose from a variety of

implicit differentiation formulas, such as backward-Euler
(which is first order and exhibits high numerical damping),
the trapezoidal rule (which is second order with low damping
and error but is only marginally stable for conservative
systems), or any of the family of backward differentiation
formulas (denoted BDF#, e.g. BDF2 denotes the the second-
order formula). In this paper we explore and compare several
different choices for the particular implicit differentiation
formula used. In addition to the methods mentioned above,
we will evaluate a less well-known approach called the BDF-
α method (Celaya and Jos (2013)), which for a timestep δt is
O(δt2) accurate. This is described by

(i)yt = c0
(i)y + c1

(i−1)y + c2
(i−2)y + d1

(i−1)yt

:= c0
(i)y + (i) h

y

where

c0 = (1.5 + α)/[δt(1 + α)]

c1 = −2/δt

c2 = (0.5 + α)/[δt(1 + α)]

d1 = α/(1 + α).

The variable α ∈ [−0.5 0] ⊂ R is a parameter which may
be assigned and which essentially interpolates between the
trapezoidal method and BDF2. The trapezoidal method
is obtained for α = −0.5 and the second-order backward
differentiation formula BDF2 is obtained for α = 0. Using
this approximation, the solution to the ODE in s at ti is only
dependent on the solutions to previous ODEs at times ti−1
and ti−2.

2.3 Application to Rod PDE System
Following discretization of the time derivative we have
vt ≈ c0v +

h

v and ut ≈ c0u +
h

u, so the linear constitutive
relationship can be solved as

v = (Kse + c0Bse)
−1
(
RTn + Ksev

∗ −Bse
h

v
)

u = (Kbt + c0Bbt)
−1
(
RTm + Kbtu

∗ −Bbt
h

u
) (6)

Our implicit time discretization is particularly convenient
since the step from (4) to (6) is the only symbolic
manipulation required after discretizing, whereas spatially
discretized rod models tend to have an involved process
of solving for node accelerations (Spillmann and Teschner
(2009); Bergou et al. (2008)). For this reason our method
is especially useful for applications where the underlying
equations are subject to change (e.g. continuum robotics).

Substituting the distributed force and rotational inertia
terms into the system, the PDE set is reduced to the following
system of ODEs in arc length:

ps = Rv

Rs = Rû

ns = R [ρA (ω̂q + qt) + Cq � |q|]− ρAg − f̄

ms = ρR (ω̂Jω + Jωt)− p̂sn− l

qs = vt − ûq + ω̂v

ωs = ut − ûω,

(7)

where u, v, and all time derivative terms above are computed
algebraically from state variables at the present and/or
previous timesteps by the following equations,

v = (Kse + c0Bse)
−1
(
RTn + Ksev

∗ −Bse
h

v
)

u = (Kbt + c0Bbt)
−1
(
RTm + Kbtu

∗ −Bbt
h

u
)

vt = c0v +
h

v

ut = c0u +
h

u

qt = c0q +
h

q

ωt = c0ω +
h

ω.

The initial conditions for the PDE system will often be
given as some steady-state solution to the system, which is

Prepared using sagej.cls

6 Journal Title XX(X)

defined by the following ODEs in arc length.

v = v∗ + K−1se R
Tn

u = u∗ + K−1bt R
Tm

ps = Rv

Rs = Rû

ns = −ρAg − f̄

ms = −p̂sn− l

(8)

2.3.1 Orientation as a Quaternion Truncation error from
numerically integrating Rs = Rû can result in R(s) /∈
SO(3). This rotation matrix degeneration may be acceptably
small (since the integration occurs only over arc length
and not over time), but the issue can be avoided altogether
by integrating the orientation in quaternion form (Rucker
(2018)). We may replace the rotation matrix differential
equation with the equivalent equation for a quaternion h ∈
H. We use the notation h = h1 + h2i+ h3j + h4k so that

hs =
1

2


0 −u1 −u2 −u3
u1 0 u3 −u2
u2 −u3 0 u1
u3 u2 −u1 0



h1
h2
h3
h4

 . (9)

We can continue to use a rotation matrix in any required
calculations, where the orthonormal rotation R is calculated
from the quaternion by

R(h) = I +
2

hTh

[
−h2

3−h
2
4 h2h3−h4h1 h2h4+h3h1

h2h3+h4h1 −h2
2−h

2
4 h3h4−h2h1

h2h4−h3h1 h3h4+h2h1 −h2
2−h

2
3

]
(10)

Note that in this approach the quaternion magnitude does not
need to be constrained to unity. The normalization is already
embedded in (10), and (9) is correct and consistent with (10)
even for non-unit quaternions.

2.3.2 Kirchhoff Case Oftentimes the shear and extension
strains have a negligible effect compared to bending and
torsion, particularly for slender robots since the bending
stiffness is proportional to r4 while the shear stiffness is
proportional to r2. The absence of shear and extension strains
implies that v = e3 and vt = 0. After neglecting these strain
modes, the system in (7) reduces to

ps = Re3

Rs = Rû

ns = R [ρA (ω̂q + qt) + Cq � |q|]− ρAg − f̄

ms = ρR (ω̂Jω + Jωt)− p̂sn− l

qs = −ûq + ω̂e3

ωs = ut − ûω,

(11)

where

u = (Kbt + c0Bbt)
−1
(
RTm + Kbtu

∗ −Bbt
h

u
)

ut = c0u +
h

u

qt = c0q +
h

q

ωt = c0ω +
h

ω.

Integrate
ODEs

Update ODE
Initial Conditions

Evaluate Distal
Boundary Residual

Error
within

tolerance?

Calculate
Time

Implicit
Difference

Terms

NOAdvance
Time

YES

Start with known
(likely static)
configuration

Use previous
solution as
initial guess

Evaluate
Residual
Function

Maximum
Iterations

Used?

Terminate
with Error

Calculate
Shooting Problem

Jacobian

Calculate
change in
guess with
TRDL or LM

YES

NO

Shooting Method Residual Function

Final
Time

Reached?

NO

Terminate
Successfully

YES

Evaluate
Residual
Function

Error
Reduced?

Adapt Solver
ParametersYES

NO

Figure 1. The simulation loop is illustrated. The leftmost loop
advances the simulation time. Many of the details of the
shooting method on the right may be handled by a prepackaged
solver.

In addition, for the slower modes of interest, the cross-
section’s rotational inertia ρJ often has a negligible effect
compared to that of the linear mass distribution ρA, which
can reduce complexity further (Till and Rucker (2017a)). We
will primarily rely on the full Cosserat rod equations in (7)
throughout the paper, but the Kirchhoff assumption can be a
useful step to reduce the problem’s complexity and improve
computational efficiency in some scenarios.

2.4 ODE Solution with the Shooting Method
When considering a specific problem, the ODE system in
(7) is accompanied by a set of boundary conditions. For
instance, a cantilevered rod has known values of p(ti, 0) =
p0, h(ti, 0) = h0, and q(ti, 0) = ω(ti, 0) = 0. If the rod
has a length L and no forces at the free end, the distal
constraints are n(ti, L) = m(ti, L) = 0. Such BVPs can be
solved iteratively by guessing the unknown initial values, for
example n(ti, 0) and m(ti, 0) for the cantilever problem.
The guessed values are then iteratively updated by a chosen
nonlinear optimization routine in order to reduce the residual
error of the distal boundary conditions to zero. This aspect
of the shooting method can be implemented by a Levenberg-
Marquardt algorithm with an adaptive damping coefficient
as described in Till et al. (2015) or by a trust-region-dogleg
method (Nocedal and Wright (2006)). The shooting method
process is depicted in Figure 1.

We hope to decrease the burden on the reader by including
an example code to solve this problem, which is presented
in the appendix. The program begins with declarations of
the various physical and numerical independent parameters,
then sets up boundary conditions for the cantilever problem
and calculates dependent parameters. The rod starts out in
a straight configuration and then falls under the influence

Prepared using sagej.cls

Till, Aloi, and Rucker 7

of its own weight. Gravitational acceleration is increased
by a factor of 10 to achieve an exaggerated movement.
After setting up initial conditions for the dynamic problem,
the program reaches the main simulation loop, where
it iteratively solves the dynamic problem and visualizes
the result. The discretization uses BDF2 for the implicit
approximation of time derivatives, MATLAB’s “fsolve” for
the shooting method solver, and either forward Euler or
the classical fourth-order Runge-Kutta method for spatial
integration.

As described in Till and Rucker (2017a), at very small time
steps implicit discretization inherently has a “catastrophic
cancellation” loss of floating-point precision caused by
subtracting nearly equal numbers. E.g. the backward Euler
method relies on the calculation

yt(t) ≈ [y(t)− y(t− δt)]/δt,

but for continuous y we have

lim
δt→0

y(t)− y(t− δt) = 0.

Despite this fundamental issue, we have observed that the
problem is well posed for reasonably small time steps,
and of course explicit methods have the opposite problem
of instability at large time steps. The modified shooting
method (Holsapple et al. (2003)) is used for the simulations
in Section 4 to aid solver convergence, particularly for
the numerically challenging impulse problem. This method
aims to prevent situations where the shooting BVP initial
conditions cause the integrated ODE state variables to
become unbounded. In all other sections we use standard
simple shooting.

There is significant freedom in the choice of spatial
numerical integration method used in the ODE shooting
problem. For the simulations herein we will consider and
compare both Euler’s first-order method and the classic
fourth-order Runge-Kutta integration, but any method is able
to be used. For instance, we have also used the 4th-5th
Dormand-Prince adaptive stepsize solver implemented by
Matlab’s “ode45”. Using a 4th order method in space should
provide excellent error scaling and computational efficiency,
and it will produce highly accurate steady-state solutions,
but it requires some extra effort to evaluate (i) h

y(sj+0.5)
since this lies between the grid points of previous ODE
solutions. For the purposes of this paper we use simple
linear interpolation, but we note that hermite interpolation
or a higher order interpolant could be used if a dense output
solver is used.

2.5 Generalized PDE Form
With the rod example in mind, we could also consider a
wider class of problems which may be solved by this implicit
time discretization method. A general form of PDEs that
is solvable by our approach and includes the various robot
models we consider herein as special cases, is

Ays + Byst = f1

Cz + Dzt = f2,
(12)

where y is a set variables for which spatial derivaideotives
appear, and z is a set of variables for which the spatial

derivative zs does not appear, and all the matrices are square.
A, B, and f1 are all functions of s, t,y,yt, z and zt. In the
second equation, C, D, and f2 are all functions of s, t,y,
and yt. After our implicit discretization, the solution for ys
which we will integrate over s is given by

ys = (A + c0B)−1
(
f1 −B

h

ys

)
z = (C + c0D)−1

(
f2 −D

h

z
)

where the inverted matrices must be nonsingular. Although
it would be possible to solve some problems where the
first equation is nonlinear in ys or yst, or where the
second equation is nonlinear in z or zt, it would be
difficult to generalize such solutions. The various examples
of continuum robots in this paper fit the form of (12), and we
assert that the method has a wide range of applications.

2.6 Inverse Dynamics
While this paper focuses on the forward dynamic simulation
problem, we would like to note that the Kirchhoff rod
equations naturally express a continuous version of the
conventional recursive Newton-Euler scheme for rigid-body
chains. The curvature vector u(s) is analogous to the set
of joint variables, and the internal force n(s) and moment
m(s) are analogous to the forces and moments across joints.
Thus if we are given a desired curvature acceleration utt(s),
we can integrate the kinematic equations from base to tip
to find all spatial velocities and accelerations, then integrate
the required internal forces and moments from tip to base.
This analogy has been previously made by Boyer et al.
(2012) and used to simulate snake-like locomotion gaits
for hyperredundant robots. However, it is unclear how to
use this continuous Newton-Euler procedure to control most
continuum manipulators because the analogy entails the
idealization that one has direct control over m(s) over s ∈
[0 L]. In practice, continuum robots are controlled by a finite
set of actuators that can only influence the internal moment
function in finite-dimensional ways, and not every desired
curvature acceleration will be achievable by some actuator
action. So practical approaches for the inverse dynamics
control of continuum manipulators will likely need to adapt
approaches from the control of underactuated systems.

2.7 Software Implementation
Aside from the example in the appendix, the simulations are
written in C++ to achieve our goal of real-time performance.
The only model we took the effort to parallelize was the
continuum Stewart-Gough robot model. All models could
potentially benefit from parallelism because approximating
the columns of the shooting problem Jacobian is a major
source of computational effort.

Our code relies on the matrix library “eigen” (Guennebaud
et al. (2010)) to implement the nonlinear solver and implicit
time difference. In our experience the main chokepoint of
simulations is the numerical ODE integration routine. We
have invested some effort to statically evaluate expressions
in the integration routines when possible to complement
the efforts of the optimizing compiler. Beyond the Matlab
example in Appendix B, additional code is available online
at https://github.com/JohnDTill/ContinuumRobotExamples.

Prepared using sagej.cls

https://github.com/JohnDTill/ContinuumRobotExamples

8 Journal Title XX(X)

3 Numerical Analysis of Benchmark Case
In this section we compare the properties and performance
of various implicit discretization schemes and numerical
integration methods on a benchmark problem for a
cantilevered rod. Our comparison table includes spatial
integration using Euler’s method and fourth-order Runge
Kutta, and implicit time discretization with backward Euler,
BDF2, BDF3, and the BDF-α (Backwards Differentiation
Formula) method with various choices of α. This section
is largely independent of the other sections, although
understanding the implications of choosing a numerical
scheme is useful when implementing and analyzing
simulations.

Artificial numerical damping is a primary factor affecting
accuracy for implicit methods. We will compare the schemes
listed above in terms of their stability, runtime, and numerical
damping by simulating a cantilevered rod with no physical
damping (Bse = Bbt = C = 0). At t = 0−, the rod has a
load attached at the tip and is in static equilibrium. At t = 0+

this load is removed from the rod.
The numerical damping exhibited by a method can be

measured by calculating the total amount of energy present
in the system. Since there is no physical damping in the
model, the system is conservative, and any energy decay will
be solely due to the numerical damping. We can then use
the decay rate to quantify the amount of numerical damping.
The energy in this benchmark test problem is composed of
kinetic, elastic potential, and gravitational potential terms so
that

E(t) =

∫ L

0

[
1

2
(u− u∗)TKbt(u− u∗)

+
1

2
(v − v∗)TKse(v − v∗) +

1

2
ρAqTq

+
1

2
ωT ρJω − ρAgTp

]
ds.

Over the long term, the energy decay is well approximated
as a first order exponential function E(t) = E0e

−2t/τ . (By
analogy with a simple harmonic oscillator, the energy decay
time constant is twice the time constant τ associated with the
position oscillation decay). We thus use the time constant τ
to quantify the amount of numerical damping of a method.
A large, positive time constant is desirable in this test. In this
benchmark example, one second of simulated time involves
25 oscillations of the lowest frequency mode in the rod. So
if a method exhibits an numerical damping time constant
of τ = 32 seconds in this example, we would only see an
energy loss of 0.25% per low-frequency cycle. Depending on
the desired accuracy, an engineer can choose an appropriate
timestep to reduce artificial energy loss to an acceptable
level. The exponential fit was found using MATLAB’s “fit”
function. The methods are also classified by simulation
runtime and “minimum stable timestep”, which is defined as
the minimum timestep for which the solution converges with
a positive time constant.

The rod parameters were E = 207GPa, G = 79GPa,
L = 0.4m, r = 1mm, and ρ = 8000kg/m3, which are
consistent with spring steel. The force applied at the tip
was 0.5N. The total time frame simulated was one second
(which corresponds to 25 cycles of vibration in the rod).

Table 3. Comparison of Numerical Methods for Cosserat
Equations

Spatial

Integration

Method

Time Discretization

Method

Numerical

Damping Time

Constant:

Δt = 5ms

Runtime:

Δt = 5ms

Timeframe=1s

Spatial Steps = 150

Minimum

Stable Time

Step

Backward Euler 0.13 s 0.35 s 0.8 ms

BDF2 3.86 s 0.46 s 1.3 ms

BDF-α, α = - 0.2 7.57 s 0.48 s 1.5 ms

BDF-α, α = - 0.48 161.8 s 0.56 s 3.8 ms

Trapezoidal Method *NA 0.62 s 4.2 ms

BDF3 Unstable Unstable 48.2 ms

Backward Euler 0.13 s 1.31 s 0.8 ms

BDF2 3.88 s 1.83 s 1.4 ms

BDF-α, α = - 0.2 7.63 s 1.88 s 1.6 ms

BDF-α, α = - 0.48 201.6 s 2.23 s 4.1 ms

Trapezoidal Method NA 2.46 s 4.4 ms

BDF3 Unstable Unstable 48.4 ms

Eu
le

r
Fo

u
rt

h
-O

rd
er

R
u

n
ge

 K
u

tt
a

* No discernible numerical damping

Table 4. Comparison of Numerical Methods for Kirchhoff
Equations

Spatial

Integration

Method

Time Discretization

Method

Numerical

Damping Time

Constant:

Δt = 5ms

Runtime:

Δt = 5ms

Timeframe=1s

Spatial Steps = 150

Minimum

Stable Time

Step

Backward Euler 0.13 s 0.20 s 0.5 ms

BDF2 3.87 s 0.26 s 1.0 ms

BDF-α, α = - 0.2 7.58 s 0.27 s 1.1 ms

BDF-α, α = - 0.48 161.8 s 0.29 s 1.7 ms

Trapezoidal Method *NA 0 .30 s 1.8 ms

BDF3 Unstable Unstable 32.8 ms

Backward Euler 0.13 s 0.36 s 0.5 ms

BDF2 3.84 s 0.50 s 0.9 ms

BDF-α, α = - 0.2 7.54 s 0.51 s 1.1 ms

BDF-α, α = - 0.48 186.7 s 0.54 s 1.4 ms

Trapezoidal Method *NA 0.57 s 1.5 ms

BDF3 Unstable Unstable 40.3 ms

Eu
le

r
Fo

u
rt

h
-O

rd
er

R
u

n
ge

 K
u

tt
a

* No discernible numerical damping

150 discrete points were used for the spatial integration. We
used a common timestep of 5 ms to compare the amounts
of numerical damping in each method. The comparison was
performed for both the Cosserat and Kirchhoff rod models
outlined in the previous section. The results can be seen in
Tables 3 and 4, respectively.

There are two apparent differences between the Cosserat
and Kirchhoff rod model results in the tables. For the
runtime, using the Kirchhoff assumption sped up the
simulations significantly, especially for the Runge Kutta
spatial integration method. The Kirchhoff assumption also
allowed the simulations to use smaller timesteps. The effect
was minimal for discretization methods with larger amounts
of damping, but for methods with little to no damping,
the Cosserat theory has a minimum time step about 2.5ms
greater than the Kirchhoff theory. Interestingly, both the
Kirchhoff assumptions and the method of spatial integration
had minimal effects on the amount of numerical damping.
The major factors affecting numerical damping were the
timestep and the method used.

The log-log plot in Figure 2 shows that there is an
approximate power-law relationship between timestep length
and the numerical damping time constant. Each time
discretization method maintained this relationship but with
different rates of decrease. The damping time constants in
Figure 2 were computed using simulations for the benchmark

Prepared using sagej.cls

Till, Aloi, and Rucker 9

Figure 2. Numerical damping time constant is plotted versus
timestep length for various methods using the benchmark case
over 10 seconds with the Cosserat model and RK4. Larger time
constants imply lower numerical damping and higher accuracy.

Figure 3. This plot shows average computation time per
timestep as a function of the number of spatial integration steps
n for a 1 second simulation with δt = 5ms using BDF2. The
linearity of the data substantiates our claim of O(n) scaling for
computation time. Any value below 5ms is faster than real time
for this simulation.

rod over a 10 second time interval using the Cosserat model
and fourth-order Runge Kutta.

The BDF3 method exhibits very little damping but
has a relatively large minimum timestep for stability.
The trapezoidal method appears more stable than BDF3;
however, its minimum timestep is 4.4ms for Cosserat rods
with fourth-order Runge Kutta integration in space. For
this benchmark simulation, BDF2 and BDF-α, where α =
−0.2, can both achieve a good balance of stability and
accuracy as they allow for small timesteps while maintaining
energy decay less than 1% per cycle. The spatial methods
of integration typically had no significant effect on the
numerical damping. Thus we advocate for using higher order

methods like RK4 due to the O(n4) scaling behavior of
accuracy versus spatial resolution.

We performed an additional set of simulations with
varying numbers of spatial integration steps (nodes) from
5 to 500 in increments of 5. Using the same simulation
parameters and BDF2 with a timestep of 5ms, the
computation time per timestep is plotted versus the number
of spatial nodes n in Figure 3 for both Kirchhoff and
Cosserat models with Euler and RK4 methods in the spatial
dimension. On this chart, computation times below 5ms
represent simulation solutions computed faster than real
time, and the linearity of all the data series indicates that
computation time using our proposed approach is O(n). In
the experimental validation in the following section, we will
further compare the runtime performance of these methods
in a physical experiment.

4 Experimental Validation
In this section we review the experimental procedure and
data from Till and Rucker (2017a) (which therein validated
the Kirchhoff model with J = 0), and we provide a new
validation of the full Cosserat model on the same dataset.
Further, beyond the performance characterization in Till
and Rucker (2017a), we also provide an updated analysis
of execution speeds for both models as a function of
timestep length for different spatial resolutions and spatial
integration methods. This section shows that the theoretical
developments in Section 2 are indeed useful to describe the
behavior of real, physical rods. However, the developments
in this section are not necessary to understand the rest of the
paper.

We experimentally validated the Cosserat (7) and
Kirchhoff (11) rod models by comparing simulation results
to high-speed footage of a cantilevered rod clamped to
a table. The simulations implement a full 3-dimensional
model, but the experimental data was taken from planar
cases to simplify the process of reconstructing the scene
and evaluating the results. The rod was spring steel with a
1.42mm diameter. There were two scenarios. First, a 20g
weight was hung by a string at the tip of a rod with a
cantilevered length of 0.408m, and after equilibrium was
reached, the string was cut. Second, the cantilevered length
was increased to 0.517m to obtain larger vibrations, and the
rod was hit with a rigid object near its base to excite high-
frequency vibration modes. The BDF-α coefficient was α =
−0.4 for all simulations, which is close to the trapezoidal
method and thus exhibits very little numerical damping.

The camera was placed about three meters from the rod
with the viewing plane parallel to the rod’s plane of motion.
The camera recorded a frame every millisecond. The rod
was darker than the background so that the experimental
rod position could be easily extracted by comparing pixel
brightness values, as shown in Figure 4.

4.1 Weight Release
The weight release trial was used to calibrate the rod
parameters EI , ρ, and C. This calibration is implemented
in MATLAB using “fsolve” to minimize error between

Prepared using sagej.cls

10 Journal Title XX(X)

Figure 4. The experimental rod shape was quantified by
obtaining binary data based on darkness. The rightmost pixel is
taken as the tip position, specifically the top rightmost pixel
when multiple rightmost pixels exist.

0 0.5 1 1.5 2 2.5 3 3.5 4

t (s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

x
(m

)

Weight-Release Tip Response

Experiment

Cosserat, Euler w/ N=400

Cosserat, RK4 w/ N=200

Kirchhoff, Euler w/ N=400

Kirchhoff, RK4 w/ N=200

Figure 5. A weight was attached to the free end of a
cantilevered rod by a string. After the weighted rod reached
equilibrium, the string was cut. This scenario was simulated,
and the simulation parameters were calibrated so that the
simulation response matches the experimental response. These
calibrated values were used while validating the other impulse
experiment.

experimental data and model prediction. The weight release
response is very nearly a decaying sine wave, as shown in
Figure 5. The calibration objective function was evaluated
by running the simulation for a set of parameters and
evaluating the characteristics of the simulated response
versus the experimental data. The magnitude of the first peak,
magnitude of the first valley, magnitude of the final peak, and
frequency are compared and combined to form the objective
function residual. MATLAB’s “findpeaks” command can
easily detect peaks in the smooth simulation data. The
experimental data has some noise, but since the experimental
response only needs to be analyzed once, this was done
manually. The calibrated values are shown in Table 5. For
steel, ρ is typically around 7800 kg/m3. With an assumed
Young’s modulus of 200GPa, the 1.42mm diameter rod
would have a bending stiffness EI of 0.03992 Nm2. Thus,
the calibrated values are within reason.

0.1 0.2 0.3 0.4 0.5 0.6

0

0.01

0.02

0.03

0.04

x
(m

)

Closeup - First Two Cycles

3.3 3.4 3.5 3.6 3.7 3.8

0.005

0.01

0.015

0.02

0.025

0.03

0.035

x
(m

)

Closeup - Last Two Cycles

0 0.5 1 1.5 2 2.5 3 3.5

t (s)

-0.01

0

0.01

0.02

0.03

0.04

0.05

x
(m

)

Impulse Tip Response

Experiment

Cosserat, Euler w/ N=400

Cosserat, RK4 w/ N=200

Kirchhoff, Euler w/ N=400

Kirchhoff, RK4 w/ N=200

Figure 6. An impulse was applied near the base of a
cantilevered rod. The experimental impulse response is
compared to two simulations that used the proposed method.
The multimedia attachment for this paper includes a video of
this trial.

Table 5. Calibrated Parameters

Cosserat Kirchhoff
Euler, RK4, Euler, RK4,

Parameter N=400 N=100 N=400 N=100
EI (Nm2) 0.0380 0.0380 0.0380 0.0380
ρ (kg/m3) 7602 7602 7602 7603
C (g/m2) 2.09 2.12 2.08 2.12

4.2 Impulse Near Base
After calibration of the model parameters using the weight
release dataset, we evaluated the model prediction versus
data taken from the impulse response experiment. The
impulse point force was modeled as a hat function in time
with

F (t) =

 M t
0.5d , t < 0.5d

M(2− t
0.5d), 0.5d ≤ t ≤ d

0, t > d.

Appropriate values for the impulse’s peak magnitude and
duration were found: M = 5N and d = 0.016s. The impulse
point force is included in the simulation by performing
piecewise integration of the ODEs in space and applying
the point force at the transition. The impulse response is
shown in Figure 6. A supplementary video to this paper
shows this simulation, and a still frame is shown in Figure
8. Figure 9 shows the error between the experimental and
simulated tip positions. The simulation responses are similar
for the Cosserat and Kirchhoff models, so we conclude that

Prepared using sagej.cls

Till, Aloi, and Rucker 11

Figure 7. We plot the real-time performance ratio versus the
time step on a log-log scale for various simulation datasets. The
real-time performance ratio is the amount of time simulated
divided by the wall-clock time spent running the simulation. A
ratio greater than or equal to one indicates soft real-time
performance, as shown by the green regions. The weight
release scenario requires significantly less effort to solve than
the impulse scenario. For the difficult impulse scenario, the
simulation can run in soft real-time with δt = 4ms. The smallest
time step for the impulse simulations is 2ms because of
convergence issues with small time steps.

Figure 8. An impulse point force is applied near the base of a
cantilevered rod, resulting in a variety of vibration modes. The
scenario is simulated using our proposed method and
visualized with Blender.

the shear and extension strains are indeed negligible for the
experimental rod.

0 0.5 1 1.5 2 2.5 3 3.5

t (s)

0

0.5

1

1.5

2

2.5

3

3.5

%
 E

rr
o
r

Impulse Error

0 0.5 1 1.5 2 2.5 3 3.5 4

t (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

%
 E

rr
o
r

Weight-Release Error

Cosserat, Euler w/ N=400

Cosserat, RK4 w/ N=200

Kirchhoff, Euler w/ N=400

Kirchhoff, RK4 w/ N=200

Figure 9. The percent error between measured and simulated
transverse tip position is shown for the two experiments. The
error is defined as the absolute difference in experimental and
simulated transverse tip displacements normalized by the
cantilever length, that is %Error = |px,exp − px,sim|/L ∗ 100%.

4.3 Real-Time Performance
To evaluate computational speed, we ran many simulations
of both the weight release and impulse response scenarios
using increasing values of δt (logarithmically spaced).
Results are shown in the log-log plots of Figure 7. The
real-time performance ratio is the amount of time simulated
divided by the wall-clock time spent running the simulation,
and the green regions indicate real-time performance. The
plot confirms that most of the simulations ran in real-time. At
higher time steps, the dependence of the run time on the time
step is nearly linear. The run time also appears linear in the
number of spatial steps, again confirmingO(N) computation
time as we showed in the previous section.

Not surprisingly, the impulse response case requires
higher computational times due to the increased presence of
faster dynamic modes that require more solver iterations per
time step. A time step of 2 milliseconds captured the high-
frequency dynamics very accurately, as shown in Figure 6,
but this simulation required more computation time than it
simulated, and the speed is further reduced when the solver
begins to encounter numerical ill-conditioning at smaller
time steps.

Prepared using sagej.cls

12 Journal Title XX(X)

Thus we have shown that the model presented in Section
2 accurately describes elastic rod behavior, and that the
mathematical model can be implemented in software to
achieve real-time simulation.

5 Application to Continuum Robots

As we discussed in Section 2.4 our proposed solution
approach is directly applicable to various PDE models of
a certain form. Beyond simple Cosserat rods, this PDE
form encompasses many different continuum and soft robot
models with actuation forces and/or constraints. In this
section we give the relevant PDEs for three example dynamic
robots and use our approach to seamlessly simulate their
dynamics in real-time. We consider (1) a 6-DOF continuum
Stewart-Gough platform, (2) a tendon-driven robot with
a continuum backbone, (3) a pneumatic or hydraulic soft
robot finger. The real-time simulations are also visualized
in a supplementary video. Each robot design may be
understood independently; the only prerequisite section is
the development of the rod model in Sections 2.1-2.4. Note
that in each case, the equations are developed based on the
continuous PDEs, independent of any specific discretization
strategy. A more conventional approach based on a priori
spatial discretization of the robot structure would involve
significantly more low-level symbolic manipulation effort
before implementation, and would likely entail a worse
speed/accuracy trade-off than our high-order approach as
discussed in the introduction.

5.1 Parallel Continuum Robots - Capturing
Dynamic Stability Transitions

As shown in Figure 10, a parallel continuum robot consists
of multiple compliant continuum links connected to an end-
effector platform in parallel, which can be actuated by
translating the bases of the compliant links independently.
In prior work, we have established the quasi-static modeling
(Black et al. (2018)) and explored the elastic stability (Till
and Rucker (2017b)) of static solutions for PCRs, but PCR
dynamics can also be significant, especially for larger scale
applications with potential human interaction, and dynamic
modeling has not yet been explored. A particular feature
that we would like our model to capture is the dynamic
transition from one stable static state to another when the
robot configuration becomes unstable due to actuation or
external loading. In this section, we outline the equations
necessary to solve this problem via the numerical approach
detailed above and demonstrate real-time simulation of a six-
DOF parallel Stewart-Gough platform undergoing a dynamic
stability transition.

A continuum Stewart-Gough platform is a parallel
continuum robot (PCR) with six flexible links arranged in the
traditional Stewart-Gough configuration (Bryson and Rucker
(2014)). The rods are numbered from 1 to 6, and the rod
state variables are denoted by a subscript so that pi refers
to the position of the i-th rod. The system is comprised of
six dynamic rod ODEs as in (7) subject to coupled boundary
conditions. The distal ends of the rods are attached to the
end-effector plate with a constant local-frame offset ri ∈ R3

Figure 10. A Parallel Continuum Robot is actuated to two
different poses in its 6-DOF workspace.

from the plate center of mass pe ∈ R3 so that

pe(t) + Re(t)ri = pi(t, Li) for i = 1...6, (13)

where Re ∈ SO(3) is the end-effector orientation. The distal
orientation of the rods is constrained to the plate so that

Re(t) = Ri(t, Li) for i = 1...6. (14)

The end-effector plate is governed by rigid body dynamic
equilibrium equations. The sum of forces has contributions
from the rod attachments, gravity, and external loads as
described by

F e(t) +meg −
6∑
i=1

ni(t, Li) = meae(t), (15)

where me ∈ R+ is the end-effector mass, ae ∈ R3 is the
end-effector acceleration in the global frame, and F e(t) ∈
R3 is an external force acting on the end-effector center
of mass. The moment balance equation, with end-effector
angular velocity ωe ∈ R3 defined in the global frame, is

M e(t)−
6∑
i=1

mi(t, Li) + [Re(t)ri]× ni(t, Li) =

Re(t)JeR
T
e (t)ωte(t) + ω̂e(t)Re(t)JeR

T
e (t)ωe(t).

(16)

The constraint equations (13), (14), (15), and (16) define
a complete set of distal boundary conditions. Proximal
boundary conditions include the known pose of each
link where it originates from a fixed location in a base
platform. The robot is actuated by extending or retracting
the individual links out of holes in the baseplate so that
the effective link length Li(t) of each leg is a control
input. Similarly to the single cantilevered rod problem, after
performing our implicit time integration, we are left with
multiple sets of ODEs in the arc length of each link. We
can solve this coupled boundary problem with a shooting
method, simultaneously solving for the unknown proximal
boundary conditions (reaction forces and moments at the
base of each rod) as well as other unknowns (end-effector
pose) which will satisfy the distal boundary conditions.
We define the residual equations which are zero when the

Prepared using sagej.cls

Till, Aloi, and Rucker 13

geometric and equilibrium constraints are satisfied as

E =
{
EF EM Ep

1 ER
1 ... Ep

6 ER
6

}
,

where

Ep
i = pe + Reri − pi

ER
i =

[
RT
eRi −ReR

T
i

]∨
EF = F e +me(g − ae)−

6∑
i=1

ni

EM = M e −
6∑
i=1

mi + (Reri)× ni

−ReJeR
T
e ωte − ω̂eReJeR

T
e ωe.

The above metric for rotation error ER
i which quantifies the

difference between two rotation matrices as a 3x1 vector is
described in Mahony et al. (2012). Function arguments were
omitted, but the rod state variables are functions of t and
s = Li, while the end-effector state variables are functions of
t. The shooting method we implement uses a set of guessed
variables

G =
{
pe k n1 m1 ... n6 m6

}
,

where the rod state variables are functions of t and s = 0,
while the end-effector state variables are functions of t, and
k(t) ∈ R3 is an angular displacement vector used to generate
the rotation matrix via Rodrigues’s formula,

Re =

{
I + sin ‖k‖ k̂

‖k‖ + (1− cos ‖k‖) k̂
2

‖k‖2 , ‖k‖ > 0

I, ‖k‖ = 0

The guessed set G and residual E form a square 42x42
system of nonlinear equations. There is some interesting
flexibility in forming the sets G and E, but we have found
this particular choice to be concise and simple to understand.

There is a potential for instability of parallel continuum
robots that we have observed experimentally, and we have
established a method based on optimal control theory to
assess the stability of a particular solution to the static model
equations (Till and Rucker (2017b)). However, this method
does not provide information about what actually happens to
the robot when it reaches a statically unstable configuration.
The physical robot will not stay at an unstable static solution
but will dynamically transition to a new stable equilibrium
elsewhere in the workspace. We demonstrate the ability of
our dynamic modeling framework to capture this behavior
by simulating the forward dynamics of a robot which is
actuated to a statically unstable configuration. The robot is
shown in Figure 11. In this scenario, slow changes in the
actuator positions translate the end effector in a straight line,
until eventually there is a bifurcation leading to dynamic end-
effector behavior.

This simulation had a real-time ratio of about 7-8 using
three threads working in parallel for the integration of (7).
The rods had identical parameters of E = 207GPa, r =
1mm, and ρ = 8000kg/m3. The Stewart-Gough leg-spacing
pattern used a major angle of 100◦ and a radius of 87mm. The
end effector was modeled as a short acrylic (ρ = 1180kg/m3)

Figure 11. As the continuum Stewart-Gough robot is translated
along a path which satisfies the equilibrium equations, the robot
encounters a bifurcation. A moment prior to instability is shown
on the left. On the right, the end-effector bends to an angle and
begins to sway dynamically. This scenario is shown in a video
attachment.

0.185 0.19 0.195 0.2 0.205 0.21
x (m)

0.49

0.495

0.5

z
(m

)

End-Effector Trajectory

Figure 12. As the CSG is actuated past a bifurfaction, the
end-effector sways back and forth dynamically as illustrated by
the trajectory plot. This scenario is shown in a video attachment.

cylinder with 3mm depth and radius of 91mm, which
results in a mass of 92.1g and a mass moment of inertia
J = diag(1.91, 1.91, 3.81)× 10−4 kg-m2. The damping
parameters were all zero. The discretization parameters were
δt = 1/120s, α = −0.2, and 200 points per rod with Euler’s
method. The shooting method solver was the Trust-Region-
Dogleg scheme.

In the attached video, we compare two simulations of this
same scenario: one using our quasi-static model (Black et al.
(2018)), and one using our dynamic model. The quasi-static
solution reaches the unstable configuration and stays on the
unstable solution branch. While our optimal control test can
predict that this quasi-static model solution is unrealistic
because it is elastically unstable, the quasi-static model has
no way of reliably finding the true stable configuration
or predicting the robot’s motion on the way to that state.
In contrast, the dynamic model successfully predicts the
dynamic transition to the new stable state and the ensuing
vibrations caused by the transition.

5.2 Cable-driven Robots
The statics and dynamics of cable-driven (tendon-driven)
continuum robots (as shown in Figure 13) and steerable
catheters were derived from the Cosserat rod framework in
Rucker and Webster III (2011). This prior work simulated

Prepared using sagej.cls

14 Journal Title XX(X)

the robot dynamics with an explicit Lax-Wendroff finite-
difference scheme which was severely limited by the
Courant-Friedrichs-Lewy numerical stability condition, even
for a model with less than ten spatial segments. In this
section, we review and extend the model of Rucker and
Webster III (2011), adding internal damping and drag terms
and demonstrating how to use our implicit approach to
achieve efficient real-time simulation of the dynamics.

We assume the robot consists of an elastic backbone
member (modeled as a Cosserat rod) with continuous
channels for actuation cables which apply shape-dependent
forces and moments to the backbone when tensioned. This
basic design describes many tools and is a reasonable
continuous approximation in cases with discrete routing
holes created by spacer disks. There are n cables, and each
cable experiences a tension τi and is offset from the cross-
section center of mass by a vector ri(s) in the local cross-
sectional plane, such that each tendon’s position in the global
frame is

pi = p + Rri

The cables cause distributed forces and moments on the rod
which are derived under the assumption of negligible tendon
friction and inertia as

f c = −
n∑
i=1

τi
p̂2
si

‖psi‖
pssi

lc = −
n∑
i=1

(p̂i − p̂) τi
p̂2
si

‖psi‖
pssi

These can be rewritten in terms of the backbone’s kinematic
variables as

f c = R (a + Avs + Gus)

lc = R
(
b + GTvs + Hus

)
.

where expressions needed to calculate a, b, A, G, and H
are defined below.

(psi)
b = ûri + rsi + v

Ai = −τi
(
((psi)

b)∧
)2

‖(psi)b‖
3

Gi = −Air̂i

ai = Ai

[
û
(
(psi)

b + rsi
)

+ rssi
]

bi = r̂iai

a =

n∑
i=1

ai, b =

n∑
i=1

bi, A =

n∑
i=1

Ai,

G =

n∑
i=1

Gi, H =

n∑
i=1

r̂iGi.

The differential equations for internal loading are then

ns = −R (a + Avs + Gus)− f̄

ms = −R
(
b + GTvs + Hus

)
+ ∂t(RρJω)− p̂sn− l̄,

Figure 13. A tendon-driven continuum robot with a helical
tendon is actuated to a variable-curvature shape with significant
inertial dynamics.

where f̄ and l̄ represent any distributed loading components
not caused by the tendons. These equations are implicit, that
is vs = vs(ns) and us = us(ms) because differentiating
the constitutive law (4) leads to

ns = Rs[Kse(v − v∗) + Bsevt] + R[Ksse(v − v∗)

+ Kse(vs − v∗s) + Bssevt + Bsevst]

ms = Rs[Kbt(u− u∗) + Bbtut] + R[Ksbt(u− u∗)

+ Kbt(us − u∗s) + Bsbtut + Bbtust].

Convenience motivates us to choose v and u as state
variables because the resulting equations are simpler than
those for m and n. We apply the time discretization, rotate
the equations, and introduce intermediate variables so that
the internal loading differential equations are described by

RTns = −Avs −Gus + Λn

RTms = −GTvs −Hus + Λm,

and the constitutive law by

RTns = (Kse + c0Bse)vs + Γv

RTms = (Kbt + c0Bbt)us + Γu,

where

Λn = −a + ρA(ω̂q + qt) + Cq � |q| −RT (ρAg + f̄)

Λm = −b + ρ (ω̂Jω + Jωt)− v̂nb −RT l̄

Γv = ûnb + Ksse(v − v∗)−Ksev
∗
s + Bssevt + Bse

h

vs

Γu = ûmb + Ksbt(u− u∗)−Kbtu
∗
s + Bsbtut + Bbt

h

us.

Note that the internal loads are calculated by

nb = Kse(v − v∗) + Bsevt

mb = Kbt(u− u∗) + Bbtut.

With the four coupled equations above, we may solve a
linear system for vs and us. The resulting set of ODEs for
the tendon robot is

Prepared using sagej.cls

Till, Aloi, and Rucker 15

ps = Rv

Rs = Rû[
vs
us

]
= Φ−1

[
−Γv + Λn

−Γu + Λm

]
qs = vt − ûq + ω̂v

ωs = ut − ûω,

(17)

where

Φ =

[
(Kse + c0Bse + A) G

GT (Kbt + c0Bbt + H)

]
.

We note that depending on the scenario and the value
of Bse, stiff shear and extension dynamics can cause
convergence issues for the tendon system. In many situations
it is appropriate to neglect the shear and extension strains.
If shear and extension are neglected, only us is directly
dependent on solving a linear system so that

us = (Kbt + c0Bbt + H)
−1[

−Γu − b + ρ (ω̂Jω + Jωt)− ê3n
b −RT l̄

]
ns = R [−Gus − a + ρA (ω̂q + qt) + Cq � |q|]
− ρAg − f̄ .

The state equation for vs is replaced by ns. The other
equations are unaffected, except of course that v = e3 and
vt = 0. Shear and extension are included in the simulation
here for the sake of generality.

Aside from the ODE describing the continuous behavior
of the backbone and tendons, the boundary conditions must
account for the final rigid attachment of a tendon to the
backbone which causes step changes in the backbone internal
loading as described in Rucker and Webster III (2011). The
termination of tendons at a point s cause point loads

F b
i = −τi

pbsi(s
−)∥∥pbsi(s−)
∥∥

Lbi = r̂iF
b
i

which change the internal force by

nb(s+) = nb(s−)− F b
i

mb(s+) = mb(s−)−Lbi .

This can be alternatively be written in terms of strains

v(s+) = v(s−)−K−1se F
b
i

u(s+) = u(s−)−K−1bt L
b
i .

We applied this dynamic tendon robot model and
computational approach to simulate a tendon robot
performing an object transfer task, as shown in Figure 14.
Depending on the design and scale of a tendon robot, the
inertial dynamics can give rise to significant vibrations even
with slow actuator movements. After the simulated tendon
robot picks up the object, its movement is highly influenced
by the inertial dynamics from the added tip mass. In this
simulation, the actuation to reach the object as well as
the loading and unloading associated with picking it up

Figure 14. To demonstrate dynamic tendon-robot motion, a
robot with four tendons and a “vacuum gripper” removes a
weighted object from a table and drops it into a bin. On the left,
the robot moves the object towards the bin, and on the right the
arm swings upward after releasing the object. This scenario is
shown in a video attachment.

and dropping it all involve underactuated robot dynamics
captured by our model in real time, as can be seen in the
video attachment.

The simulated robot contains four tendons offset from
the backbone by 9.5mm with an angular separation of 90◦

about the backbone. The backbone length was 0.24m. The
backbone had Young’s modulus E = 207GPa, r = 0.4mm,
and ρ = 1.6× 104 kg/m3, which is about twice as heavy
as steel to account for both the backbone and the support
disks. There is some damping with C = I ∗ 0.03 kg/m2 and
Bbt = I × 10−6 Nm2s. The object had a mass of 1g, and
the rigid-body dynamics were coupled to the robot system
through the distal boundary conditions by

F e(t) +meg − n(t, L+) = meae(t)

M e(t)−m(t, L+) = Re(t)JeR
T
e (t)ωte(t)

+ ω̂e(t)Re(t)JeR
T
e (t)ωe(t).

The ODE integration was performed with Euler’s method
using 200 points. The time discretization used the BDF-
α method with δt = 1/60s and α = −0.03. The simulation
achieved a real-time speed ratio greater than 3.5.

5.2.1 Experimental Comparison with Approximate
Tendon Damping Model To evaluate the physical realism
of the tendon robot dynamic model, a robot was constructed
from a spring steel backbone with acrylic spacer disks
and a single Kevlar tendon, shown in Figure 15. The
tendon displacement is controlled by a geared servo motor
(Dynamixel MX-28-AT), which is a prescribed-displacement
actuation setup as recently studied in Oliver-Butler et al.
(2019). A step input (shown in Figure 15) is applied to
pull the robot upward, then after steady state is reached,
another step input is applied to return to the original tendon
displacement as shown in Figure 15.

Friction between the robot and the actuation tendons is
more significant in bent configurations due to higher normal
forces on the tendons. To approximate the effect of tendon
friction without significantly altering the structure of our
model, we define a simple distributed damping force and
moment applied to the backbone. If the tendon is routed in
a straight path parallel to the backbone, the damping force
is approximately proportional to the tension τ (still assumed

Prepared using sagej.cls

16 Journal Title XX(X)

constant), the magnitude of the backbone curvature ||u||, and
the relative tangential velocity νi between the tendon and its
channel as follows:

ff,i = −βτ ‖u‖ νiRe3

lf,i = ri × ff,i,

where β is a damping coefficient, and we can compute νi
numerically from configuration variables at previous time
steps.

The backbone has a length of L = 0.7144 m and diameter
of d = 0.00135 m. The tendon is at a constant offset of
0.0151 m from the backbone. The frame convention is such
that the tendon offset vector is r = 0.0151e1 m and the
direction of gravity g = −9.81e1 m/s2. The whole arm was
weighed to have a mass of 0.034 kg. The initial tendon
displacement holds the tip tangent to the z-axis, and the
tendon is retracted 0.01619m by the step displacement.
The tip position of the robot and actual response of the
motor were measured with a stereoscopic camera tracking
system (MicronTracker H3-60, Claron Technology Inc.).
The actual motor response to the commanded step was
very nearly a linear ramp, which occurred over 0.31 s
for both the upward and downward motions. The tendon
compliance was calibrated to a value of 1.6× 10−3 m/m,
and there is an additional distance of 0.0518 m from the
baseplate to the motor. The simulation used BDF2 implicit
time discretization with δt = 0.05 s. The spatial integration
used Euler’s method with N = 200 points. The air drag,
material damping, and frictional coefficients are C = I ×
10−4 kg/m2, Bbt = I × 5× 10−4 Nm2s, and β = 5 s/m.

The model response roughly lines up with the observed
behavior. The friction model is simplified since it does not
include static friction effects (stiction), but it does reproduce
the experimentally observed effect of greater dissipation in
the bent state as shown in Figure 15. The magnitudes and
steady state behavior are accurately predicted.

5.3 Fluidic Soft Robots
Finally, motivated by the recent increase in research
activity around soft robotic structures actuated pneumatically
or hydraulically, we derive a Cosserat-rod based model
for fluidic soft robots with pressurizable chambers and
demonstrate real-time solution of its forward dynamics for
a soft robotic finger, using both air and incompressible water
as the transmission fluid.

We consider a soft robot with one or more hollow
actuation chambers offset from the neutral axis. There is a
vector ri from the cross-section center of mass to the center
of the ith chamber, which is similar to the tendon robot
variable ri. We restrict our attention to cases with rsi = 0 so
that the channel has a constant offset from the cross-section
centroid. Fluid pressure is applied in the chamber, which
results in a bending motion of the robot. We assume quasi-
static fluid dynamics in the chamber so that there is a single
uniform pressure Pi(t). The situation is illustrated in Figure
16. We note that robots with multiple sections connected in
serial can be modeled by piecewise integration with breaks at
each section transition, but we only consider a single section
here.

0 5 10 15 20 25
t (s)

-0.2

0

0.2

0.4

x
 (

m
)

Tip Displacement vs. Time

Simulation

Experiment

0 5 10 15 20 25
t (s)

-15

-10

-5

0

z
(m

)

*10
-3 Actuator Input Displacement

Steady State 1

Steady State 2

 Steady State 1

 Steady State 2

Figure 15. The dynamics model is validated against this
tendon robot. The attached markers allow the tip position to be
measured by a stereoscopic camera system. The composite
image shows the steady state configurations before and after
the step input. A pair of step responses is applied to the
displacement of a tendon, resulting in dynamic tip motion.

r

P

f(s), l(s)

n(L)

m(L)

Figure 16. A soft elastic rod has a hollow chamber offset from
the central axis which is subject to some quasi-static and
uniform pressure P (t). The chamber is offset from the central
axis by a vector r(s) in the local frame. The pressure results in
a force at the cap of the chamber, which also generates a
moment due to the offset. The outer curve of the chamber has
more surface area than the inner curve, resulting in a net
distributed force and moment.

The distributed loading and point wrenches caused by
pressurizing the chamber are similar to the effects of a tendon
robot, but the two are not quite equivalent because tendon
forces are transmitted along the tendon tangent line, while
pressure forces act normal to a cross-sectional plane. We

Prepared using sagej.cls

Till, Aloi, and Rucker 17

PA *R(s)e3c f (σ), l (σ)e e

n(s) m(s)

PA *-R(c)e3c

-n(c)

-m(c)

p(σ) + R(σ)r(σ)

p(σ)

Figure 17. The forces and moments acting on a segment of the
robot are shown for cuts at s and c with s > c. The segment is
subject to internal forces and moments at the centerline of the
cuts, forces maintaining the pressure where the chamber is cut,
and external distributed loading.

assume all chambers extend to the distal end of the robot,
with flat chamber caps of area Ai so that the magnitude of
the force on the cap is PiAi. The force and moment vectors
applied to the end of the elastic member are then

F b
i = PiAie3

Lbi = r̂iF
b
i .

The wrenches at the chamber ends cause a point change in
the internal loading by

nb(L) = nb(L−)−
n∑
i=1

F b
i

mb(L) = mb(L−)−
n∑
i=1

Lbi .

To obtain an expression for the distributed loading, we will
consider the force and moment balance for a cut section of
the soft robot as shown in Figure 17.

We write the acceleration ptt in terms of the local frame
velocity q so that

ptt ≡ R (ω̂q + qt) .

The dynamic force balance on the section is given by∫ s

c

fe(σ)dσ + n(s)− n(c)−
n∑
i=1

PiAi [R(s)−R(c)] e3

=

∫ s

c

ρAR (ω̂q + qt) dσ,

This can be differentiated and simplified to obtain

ns = −fe + ρAR (ω̂q + qt) +

n∑
i=1

PiAiRse3.

Similarly, we consider the moment balance

m(s)−m(c) + p(s)× n(s)− p(c)× n(c)

−
n∑
i=1

[p(s) + R(s)ri]× PiAiR(s)e3

− [p(c) + R(c)ri]× PiAiR(c)e3

+

∫ s

c

[le(σ) + p(σ)× fe(σ)] dσ

=

∫ s

c

∂t (RρJω) dσ,

which is differentiated to find

ms = −le − (p× n)s − p× fe + ∂t (RρJω)

+

n∑
i=1

PiAi
∂

∂s
[(p + Rri)×Re3] .

We note that additional terms are present if Ai varies as a
function of arc length. Expanding and canceling terms leads
to

ms = −le − ps × n + ∂t (RρJω)

+

n∑
i=1

PiAiR [(v + ûri)× e3 + ri × ûe3] .

To more clearly indicate the distributed loads caused by the
pressure, we define intermediate variables

fP := −
n∑
i=1

PiAiRse3

lP := −
n∑
i=1

PiAiR [(v + ûri)× e3 + ri × ûe3]

(18)

so that the differential equations are

ns = ρAR (ω̂q + qt)− fe − fP

ms = ∂t (RρJω)− ps × n− le − lP .

With the differential equations solved, we may consider
how the fluid properties influence the boundary conditions.
The robot configuration defines the fluid chamber volume by
integrating

V I
i =

∫ L

0

Ai

∥∥∥∥ ∂∂s (p + ri)

∥∥∥∥ ds,
where ∥∥∥∥ ∂∂s (p + ri)

∥∥∥∥ = ‖ûri + v‖ .

Note in this preliminary derivation we consider the cross-
sectional geometry constant in time, but future work should
consider the dependence of Ai on robot shape and chamber
pressure.

The fluid volume is coupled to pressure, temperature,
and molar quantity. Modeling approaches vary; it can be
adequate to assume direct input control of fluid pressure,
but in some cases the fluid response is sufficiently slow
that it is more appropriate to use sophisticated fluid
dynamics models (Polygerinos et al. (2017)). We assume
uniform fluid pressure subject to the ideal gas law, which
has precedent Although pump dynamics are potentially
significant (Katzschmann et al. (2016)), actuation problems
are often idealized as independent from the robot system,
and we neglect pump dynamics here so that the system input
is the mass of fluid in the chamber. We consider two cases:
1) incompressible fluid as in a hydraulic robot, so that fluid
volume is effectively controlled, and 2) compressible fluid as
in a pneumatic robot, so that molar quantity of fluid is the
input to the system.

Prepared using sagej.cls

18 Journal Title XX(X)

5.3.1 Incompressible Working Fluid

In the case of an incompressible working fluid, the volume
of fluid inside a chamber could be directly controlled by
a positive-displacement pump. We denote the controlled
volume by V C

i . For the shooting problem, we may guess the
chamber pressures Pi and obtain a residual equation from
comparing the controlled volume to the integrated chamber
volume V I

i . The error in volume may be poorly scaled in the
shooting method since it has units of distance cubed. Our
simulation code addresses this by normalizing the error by
the volume in the straight configuration so that the error is
EVi = (V I

i − V C
i)/(AiL). The full shooting method residual

function has guessed values

G =
{
n(t, 0) m(t, 0) P1(t) ... Pn(t)

}
,

and the residual terms include the force and moment balance
at the tip

E(G) =
{
EF EM EV1 ... EVn

}
.

5.3.2 Compressible Working Fluid

For compressible working fluids, the boundary conditions
must account for a gas law relating the mass of fluid to the
pressure. We consider the ideal gas law

(Pi + Patm)V G
i = niRiTi,

where ni is the moles of gas in the chamber, Ri is the gas
constant, and Ti the temperature of the fluid. One may form a
shooting method by guessing the pressures Pi and comparing
the resulting gas law volume V G

i = niRiTi/(Pi + Patm)
to the integrated volume V I

i . We note that the difference
between the compressible and incompressible working fluid
models is that the compressible model compares V I

i to
the volume according to the gas law V G

i (ni) involving the
controlled mass of fluid, whereas the incompressible model
simply compares V I

i to the controlled volume V C
i .

5.3.3 Simulated Comparison

We use the simulation to study the change in natural
frequency associated with compressibility of the working
fluid in soft robots. We compare two sets of fluid parameters,
the first has a controlled amount of air governed by the
ideal gas law, and the second has an incompressible fluid
of controlled volume. The air has R = 8.314 J/(mol K),
Patm = 101325Pa, and T = 20◦C = 293.15K. There are no
parameters for the incompressible fluid. Besides the fluids,
the robots have identical parameters, which are L = 0.1m,
E = 20MPa, radius = 0.015m, and ρ = 300kg/m3. There is
a single fluid chamber with a radius of 2.5mm and a constant
offset from the center of 0.01m in the negative x-direction,
which leads to an offset r1 ≈ −0.0103e1m from the neutral
axis. The discretization parameters were δt = 0.01s, α =
−0.3, and N = 50 for the number of points in space.

The robots began in the straight configuration and
increased either n or V at a constant rate. The first simulation
increases n to 2× 10−4mol, and the second simulation
increases the volume of the chamber linearly up to 2.65×
10−6m3. These two final configurations are equivalent at

Figure 18. Still frames convey the simulated soft robot motion.
Starting from zero gauge pressure, additional fluid is added to
the chamber, resulting in a bending motion.

steady state. For both simulations the changes occur over a
period of two seconds, and the dynamic response without any
additional actuation is simulated for another two and half
seconds. The results of the simulation are shown in Figure
18. The real-time ratio was in the range of 26-32 for the
incompressible fluid and about 28 with air as the fluid (a
single-chamber robot is a simple case).

The transverse tip response is shown in Figure 19. The
limit cycle amplitude is roughly twice as large for the
compressible air compared to an incompressible fluid. This
indicates that choosing a fluid with greater compressibility
results in larger vibrations. Also, we note that the shear and
extension strains turn out to be significant for this robot; at
the final steady-state solution the elongation strain average
over arclength is 0.12.

6 Conclusions

We have presented a numerical framework for solving
Cosserat-rod based dynamic models of soft and continuum
robots. The stability provided by the implicit time
discretization enables one to solve robot dynamics problems
at real-time rates. Computational effort of the method scales
linearly with respect to spatial resolution. Our comparison
of numerical schemes revealed the BDF-α method can be
used to achieve low numerical damping. Experimental trials
demonstrated the accuracy of the proposed model. The
framework is adaptable to various designs of continuum
robots with different operating principles as shown by the
examples considered here.

In the future, the process of converting a statement of
ODEs in the form of (12) to an efficient IVP computer
routine may even be amenable to automatic code generation.
We anticipate that our approach can be widely applied across
the spectrum of continuum robot designs, and future work
will address applications of this approach to the analysis and
control of specific prototype robots, including concentric-
tube robots.

Prepared using sagej.cls

Till, Aloi, and Rucker 19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t (s)

0

0.05

0.1
p

x
 (

m
)

Soft Robot Transverse Displacement

Quasi-static

Air

Incompressible

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t (s)

0.08

0.085

p
x
 (

m
)

Closeup of Limit Cycle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t (s)

0

5

10

P
 (

N
/m

2
)

*10
4 Pressure vs. Time

Figure 19. The dynamic responses for soft robots with
compressible and incompressible fluids are compared. The
robot with incompressible fluid experiences less vibration when
the fluid quantity is held constant at t = 2s. The two fluids have
similar fluctuations in pressure.

Acknowledgements

The high-speed camera was provided and operated by Christopher
Combs, Phillip Kreth, and John Schmisseur of the University of
Tennessee Space Institute. Kaitlin Oliver-Butler lent her experience
for the design and fabrication of the tendon robot.

Funding

This material is based upon work supported by the National
Science Foundation under CMMI-1427122 as part of the
NSF/NASA/NIH/USDA/DOD National Robotics Initiative and
under NSF CAREER Award IIS-1652588. Any opinion, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation.

Appendix A: Index to Multimedia Extensions

Table of Multimedia Extensions

Extension Type Description
1 Video Animations of robot simulations

and cantilever rod experiments
2 Code Example cantilever problem .m script

Appendix B: Dynamic Cantilever in MATLAB

1 f u n c t i o n C a n t i l e v e r R o d
2 %P a r a m e t e r s − S e c t i o n 2.1

3 L = 0 . 4 ; N = 4 0 ; E = 207 e9 ; r = 0 . 0 0 1 2 ;
4 rho = 8000 ; v s t a r = [0 ; 0 ; 1] ;
5 g = 1 0 * [−9 . 8 1 ; 0 ; 0] ; %10x g r e a t e r f o r e f f e c t
6 Bse = z e r o s (3) ; Bbt = z e r o s (3) ; C = z e r o s (3) ;
7 d e l t = 0 . 0 0 5 ; STEPS = 5 0 ;
8 F t i p = [0 ; 0 ; 0] ; M t ip = [0 ; 0 ; 0] ;
9 %Boundary C o n d i t i o n s − S e c t i o n 2.4

10 p0 = [0 ; 0 ; 0] ; h0 = [1 ; 0 ; 0 ; 0] ;
11 q0 = [0 ; 0 ; 0] ; w0 = [0 ; 0 ; 0] ;
12 %Dependent P a r a m e t e r C a l c u l a t i o n s
13 A = p i * r ˆ 2 ; G = E / (2 * (1 + 0 . 3)) ; ds = L / (N−1) ;
14 J = d i a g ([p i * r ˆ 4 / 4 p i * r ˆ 4 / 4 p i * r ˆ 4 / 2]) ;
15 Kse = d i a g ([G*A, G*A, E*A]) ;
16 Kbt = d i a g ([E* J (1 , 1) , E* J (2 , 2) , G* J (3 , 3)]) ;
17 %BDF2 C o e f f i c i e n t s
18 c0 = 1 . 5 / d e l t ; c1 = −2/ d e l t ; c2 = 0 . 5 / d e l t ;
19 %E x p r e s s i o n s e x t r a c t e d from s i m u l a t i o n loop
20 K s e p l u s c 0 B s e i n v = (Kse+c0 *Bse) ˆ−1;
21 K b t p l u s c 0 B b t i n v = (Kbt+c0 * Bbt) ˆ−1;
22 K s e v s t a r = Kse* v s t a r ;
23 rhoA = rho *A; rhoAg = rho *A*g ; r h o J = rho * J ;
24 %I n i t i a l i z e t o s t r a i g h t c o n f i g u r a t i o n
25 % y and z a r e g e n e r a l v a r i a b l e s a s i n Eq (12)
26 % y : = [p ; h ; n ;m; q ;w] and z : = [v ; u]
27 y = [z e r o s (2 ,N) ; l i n s p a c e (0 , L ,N) ; z e r o s (1 6 ,N)] ;
28 z = [z e r o s (2 ,N) ; ones (1 ,N) ; z e r o s (3 ,N)] ;
29 y p r e v = y ; z p r e v = z ;
30 %Main S i m u l a t i o n Loop − S e c t i o n 2.4
31 v i s u a l i z e () ;
32 G = z e r o s (6 , 1) ; %S h o o t i n g method i n i t i a l g u e s s
33 f o r i = 2 : STEPS
34 %S e t h i s t o r y t e r m s − Eq (5)
35 yh = c1 *y+c2 * y p r e v ; zh = c1 * z+c2 * z p r e v ;
36 y p r e v = y ; z p r e v = z ;
37 %M i d p o i n t s a r e l i n e a r l y i n t e r p o l a t e d f o r RK4
38 y h i n t = 0 . 5 * (yh (: , 1 : end−1) + yh (: , 2 : end)) ;
39 z h i n t = 0 . 5 * (zh (: , 1 : end−1) + zh (: , 2 : end)) ;
40 %S h o o t i n g method s o l v e r c a l l
41 G = f s o l v e (@getRes idua l , G) ;
42 v i s u a l i z e () ;
43 end
44

45 %F u n c t i o n D e f i n i t i o n s
46 f u n c t i o n v i s u a l i z e ()
47 p l o t (y (3 , :) , y (1 , :)) ; t i t l e (' C a n t i l e v e r Rod ') ;
48 x l a b e l (' z (m) ') ; y l a b e l (' x (m) ') ;
49 a x i s ([0 1 . 1 *L −0.55*L 0 .55*L]) ;
50 g r i d on ; d a s p e c t ([1 1 1]) ; drawnow ;
51 end
52

53 f u n c t i o n E = g e t R e s i d u a l (G)
54 %R e a c t i o n f o r c e and moment a r e g u e s s e d
55 n0 = G(1 : 3) ; m0 = G(4 : 6) ;
56 y (: , 1) = [p0 ; h0 ; n0 ; m0 ; q0 ; w0] ;
57 %Four th−Order Runge−K u t t a I n t e g r a t i o n
58 f o r j = 1 : N−1
59 y j = y (: , j) ; y h j i n t = y h i n t (: , j) ;
60 [k1 , z (: , j)]=ODE(yj , yh (: , j) , zh (: , j)) ;
61 [k2 , ˜] =ODE(y j +k1* ds / 2 , y h j i n t , z h i n t (: , j)) ;
62 [k3 , ˜] =ODE(y j +k2* ds / 2 , y h j i n t , z h i n t (: , j)) ;
63 [k4 , ˜] =ODE(y j +k3* ds , yh (: , j +1) , zh (: , j +1)) ;
64 y (: , j +1) = y j + ds * (k1 + 2*(k2+k3) + k4) / 6 ;
65 %y (: , j +1) = y j + ds *k1 ; %Eule r ' s Method
66 end
67 %C a n t i l e v e r boundary c o n d i t i o n s
68 nL = y (8 : 1 0 ,N) ; mL = y (1 1 : 1 3 ,N) ;
69 E = [F t i p−nL ; M tip−mL] ;
70 end
71

72 f u n c t i o n [ys , z] = ODE(y , yh , zh)
73 h = y (4 : 7) ; n = y (8 : 1 0) ; m = y (1 1 : 1 3) ;
74 q = y (1 4 : 1 6) ; w = y (1 7 : 1 9) ;
75 vh = zh (1 : 3) ; uh = zh (4 : 6) ;

Prepared using sagej.cls

20 Journal Title XX(X)

76 %Q u a t e r n i o n t o R o t a t i o n − Eq (10)
77 h1=h (1) ; h2=h (2) ; h3=h (3) ; h4=h (4) ;
78 R = eye (3) + 2 / (h ' * h) * . . .
79 [−h3ˆ2−h4 ˆ2 , h2*h3−h4*h1 , h2*h4+h3*h1 ;
80 h2*h3+h4*h1 , −h2ˆ2−h4 ˆ2 , h3*h4−h2*h1 ;
81 h2*h4−h3*h1 , h3*h4+h2*h1 , −h2ˆ2−h3 ˆ2] ;
82 %Solved C o n s t u t i t v e Law − Eq (6)
83 v= K s e p l u s c 0 B s e i n v *(R ' * n+ K s e v s t a r−Bse *vh) ;
84 u= K b t p l u s c 0 B b t i n v * (R ' *m−Bbt *uh) ;
85 z =[v ; u] ;
86 %Time D e r i v a t i v e s − Eq (5)
87 y t = c0 *y + yh ; z t = c0 * z + zh ;
88 v t = z t (1 : 3) ;
89 u t = z t (4 : 6) ;
90 q t = y t (1 4 : 1 6) ;
91 wt = y t (1 7 : 1 9) ;
92 %Weight and Square−Law−Drag − Eq (3)
93 f = rhoAg − R*C*q . * abs (q) ;
94 %Rod S t a t e D e r i v a t i v e s − Eq (7)
95 ps = R*v ;
96 ns = rhoA*R*(c r o s s (w, q) + q t) − f ;
97 ms = R*(c r o s s (w, r h o J *w) + r h o J *wt)−c r o s s (ps , n) ;
98 qs = v t − c r o s s (u , q) + c r o s s (w, v) ;
99 ws = u t − c r o s s (u ,w) ;

100 %Q u a t e r n i o n D e r i v a t i v e − Eq (9)
101 hs = [0 , −u (1) , −u (2) , −u (3) ;
102 u (1) , 0 , u (3) , −u (2) ;
103 u (2) , −u (3) , 0 , u (1) ;
104 u (3) , u (2) , −u (1) , 0] * h / 2 ;
105 ys = [ps ; hs ; ns ; ms ; qs ; ws] ;
106 end
107 end

References

Antman SS (2005) Nonlinear Problems of Elasticity Second
Edition, volume 107. New York, NY: Springer.

Bergou M, Wardetzky M, Robinson S, Audoly B and Grinspun E
(2008) Discrete Elastic Rods. ACM Transactions on Graphics
27(3): 1.

Bertails F (2009) Linear Time Super-Helices. Computer Graphics
Forum 28(2): 417–426.

Black CB, Till J and Rucker DC (2018) Parallel Continuum Robots:
Modeling, Analysis, and Actuation-Based Force Sensing.
IEEE Transactions on Robotics 34(1): 29–47.

Boyer F, Ali S and Porez M (2012) Macrocontinuous Dynamics
for Hyperredundant Robots: Application to Kinematic Loco-
motion Bioinspired by Elongated Body Animals. IEEE Trans-
actions on Robotics 28(2): 303–317.

Bryson CE and Rucker DC (2014) Toward Parallel Continuum
Manipulators. In: 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 778–785.

Burgner-Kahrs J, Rucker DC and Choset H (2015) Continuum
Robots for Medical Applications: A Survey. IEEE
Transactions on Robotics 31(6): 1261–1280.

Celaya EA and Jos J (2013) BDF-α : A Multistep Method
with Numerical Damping Control. Universal Journal of
Computational Mathematics 1(3): 96–108.

Falkenhahn V, Mahl T, Hildebrandt A, Neumann R and Sawodny
O (2015) Dynamic Modeling of Bellows-Actuated Continuum
Robots Using the Euler-Lagrange Formalism. IEEE
Transactions on Robotics 31(6): 1483–1496.

Featherstone R and Orin DE (2008) Dynamics. In: Springer
Handbook of Robotics. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 35–65.

Gatti-Bono C and Perkins N (2002) Physical and Numerical
Modelling of the Dynamic Behavior of a Fly Line. Journal
of Sound and Vibration 255(3): 555–577.

Godage IS, Medrano-Cerda GA, Branson DT, Guglielmino E
and Caldwell DG (2016) Dynamics for Variable Length
Multisection Continuum Arms. The International Journal of
Robotics Research 35(6): 695–722.

Godage IS, Wirz R, Walker ID and Webster RJ (2015) Accurate
and Efficient Dynamics for Variable-Length Continuum Arms:
A Center of Gravity Approach. Soft Robotics 2(3): 96–106.

Guennebaud G, Jacob B and Others (2010) Eigen v3.
http://eigen.tuxfamily.org.

Hadap S (2006) Oriented Strands: Dynamics of Stiff Multi-body
System. Proceedings of the 2006 ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation : 91–100.

Holsapple R, Venkataraman R and Doman D (2003) A Modified
Simple Shooting Method for Solving Two-point Boundary-
value Problems. IEEE Aerospace Conference Proceedings
6(0): 2783–2790.

Katzschmann RK, de Maille A, Dorhout DL and Rus D (2016)
Cyclic Hydraulic Actuation for Soft Robotic Devices. In: 2016
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 3048–3055.

Kugelstadt T and Schömer E (2016) Position and Orientation Based
Cosserat Rods. In: Kavan L and Wojtan C (eds.) Eurographics/
ACM SIGGRAPH Symposium on Computer Animation. Zurich,
Switzerland, pp. 169–178.

Lan CC and Lee KM (2006) Generalized Shooting Method for
Analysing Compliant Mechanisms with Curved Members.
Journal of Mechanical Design 128(July 2006): 765–775.

Lan CC, Lee KM and Liou JH (2009) Dynamics of Highly
Elastic Mechanisms Using the Generalized Multiple Shooting
Method: Simulations and Experiments. Mechanism and
Machine Theory 44(12): 2164–2178.

Lang H, Linn J and Arnold M (2011) Multi-body Dynamics
Simulation of Geometrically Exact Cosserat Rods. Multibody
System Dynamics 25(3): 285–312.

Linn J, Lang H and Tuganov A (2012) Geometrically Exact
Cosserat Rods with Kelvin-Voigt Type Viscous Damping.
Mechanical Sciences 4(1): 79–96.

Mahony R, Kumar V and Corke P (2012) Multirotor Aerial
Vehicles: Modeling, Estimation, and Control of Quadrotor.
IEEE Robotics & Automation Magazine 19(3): 20–32.

Marchese AD, Tedrake R and Rus D (2016) Dynamics and
Trajectory Optimization for a Soft Spatial Fluidic Elastomer
Manipulator. The International Journal of Robotics Research
35(8): 1000–1019.

Murray RM, Li Z and Sastry S (1994) A Mathematical Introduction
to Robotic Manipulation. CRC Press.

Nocedal J and Wright SJ (2006) Numerical Optimization. Springer.
Oliver-Butler K, Till J and Rucker C (2019) Continuum Robot

Stiffness Under External Loads and Prescribed Tendon
Displacements. IEEE Transactions on Robotics In Press: 1–
17.

Polygerinos P, Correll N, Morin SA, Mosadegh B, Onal CD,
Petersen K, Cianchetti M, Tolley MT and Shepherd RF
(2017) Soft Robotics: Review of Fluid-Driven Intrinsically Soft
Devices; Manufacturing, Sensing, Control, and Applications in
Human-Robot Interaction. Advanced Engineering Materials

Prepared using sagej.cls

Till, Aloi, and Rucker 21

19(12).
Renda F, Cacucciolo V, Dias J and Seneviratne L (2016) Discrete

Cosserat Approach for Soft Robot Dynamics: A New Piece-
wise Constant Strain Model with Torsion and Shears. In: 2016
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 5495–5502.

Renda F, Giorelli M, Calisti M, Cianchetti M and Laschi C (2014)
Dynamic Model of a Multibending Soft Robot Arm Driven by
Cables. IEEE Transactions on Robotics 30(5): 1109–1122.

Rone WS and Ben-Tzvi P (2014) Continuum Robot Dynamics
Utilizing the Principle of Virtual Power. IEEE Transactions
on Robotics 30(1): 275–287.

Rucker C (2018) Integrating Rotations using Non-Unit Quater-
nions. IEEE Robotics and Automation Letters 3(4): 2979–
2986.

Rucker DC and Webster III RJ (2011) Statics and Dynamics of
Continuum Robots With General Tendon Routing and External
Loading. IEEE Transactions on Robotics 27(6): 1033–1044.

Rus D and Tolley MT (2015) Design, Fabrication and Control of
Soft Robots. Nature 521(7553): 467–475.

Sadati SMH, Naghibi SE, Walker ID, Althoefer K and Nanayakkara
T (2018) Control Space Reduction and Real-Time Accurate
Modeling of Continuum Manipulators Using Ritz and
Ritz–Galerkin Methods. IEEE Robotics and Automation
Letters 3(1): 328–335.

Spillmann J and Teschner M (2009) Cosserat Nets. IEEE
Transactions on Visualization and Computer Graphics 15(2):

325–338.
Tang W, Lagadec P, Gould D, Wan TR, Zhai J and How T (2010)

A Realistic Elastic Rod Model for Real-time Simulation of
Minimally Invasive Vascular Interventions. Visual Computer
26(9): 1157–1165.

Till J, Bryson CE, Chung S, Orekhov A and Rucker DC (2015)
Efficient Computation of Multiple Coupled Cosserat Rod
Models for Real-Time Simulation and Control of Parallel
Continuum Manipulators. In: Proc. IEEE Conference on
Robotics and Automation. Seattle, Washington, pp. 5067–5074.

Till J and Rucker DC (2017a) Elastic Rod Dynamics: Validation
of a Real-Time Implicit Approach. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). Vancouver, Canada: IEEE, pp. 3013–3019.

Till J and Rucker DC (2017b) Elastic Stability of Cosserat Rods and
Parallel Continuum Robots. IEEE Transactions on Robotics
33(3): 718–733.

Umetani N, Schmidt R and Stam J (2014) Position-based Elastic
Rods. In: Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. Copenhagen, Denmark:
Eurographics Association, pp. 21–30.

Webster R, Romano J and Cowan N (2009) Mechanics of
Precurved-Tube Continuum Robots. IEEE Transactions on
Robotics 25(1): 67–78.

Prepared using sagej.cls

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions

	2 Cosserat Models and Methods
	2.1 Cosserat Rod PDEs
	2.1.1 Dimensions
	2.1.2 State Variables
	2.1.3 General Parameters and Inputs
	2.1.4 Partial Differential Equations

	2.2 Semi-discretization in Time for General PDE Solution
	2.3 Application to Rod PDE System
	2.3.1 Orientation as a Quaternion
	2.3.2 Kirchhoff Case

	2.4 ODE Solution with the Shooting Method
	2.5 Generalized PDE Form
	2.6 Inverse Dynamics
	2.7 Software Implementation

	3 Numerical Analysis of Benchmark Case
	4 Experimental Validation
	4.1 Weight Release
	4.2 Impulse Near Base
	4.3 Real-Time Performance

	5 Application to Continuum Robots
	5.1 Parallel Continuum Robots - Capturing Dynamic Stability Transitions
	5.2 Cable-driven Robots
	5.2.1 Experimental Comparison with ApproximateTendon Damping Model

	5.3 Fluidic Soft Robots
	5.3.1 Incompressible Working Fluid
	5.3.2 Compressible Working Fluid
	5.3.3 Simulated Comparison

	6 Conclusions

