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We show that recent high-precision measurements of relative on-site interaction energies �U in a Mott
insulator require a theoretical description beyond the standard Hubbard-model interpretation, when combined
with an accurate coupled-channels calculation. In contrast to more sophisticated lattice models, which can be
elaborate especially for parameter optimization searches, we introduce an easy to use effective description of
U valid over a wide range of interaction strengths modeling atomic pairs confined to single lattice sites. This
concise model allows for a straightforward combination with a coupled-channels analysis. With this model we
perform such a coupled-channels analysis of high-precision 7Li spectroscopic data on the on-site interaction
energy U , which spans over four Feshbach resonances and provide an accurate and consistent determination of
the associated resonance positions. Earlier experiments on three of the Feshbach resonances are consistent with
this analysis. Moreover, we verify our model with a more rigorous numerical treatment of the two atom system
in an optical lattice.
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I. INTRODUCTION

Precise knowledge and control of the atomic interactions
is essential to a wide range of modern ultracold atom ex-
periments. Coupled-channels models can accurately describe
ultracold collision properties [1] of a two-atom system by
detailed interaction potentials that are fine tuned by just a few
parameters, to match atom loss spectra [2], photoassociation
rates and collisional cross sections [3], interference patterns
between s-wave and d-wave collisions [4], and rf molecule
association data [5]. Accurate information on the interaction
strength close to Feshbach resonances [6] is needed to de-
termine the three-body parameter of a strongly interacting
Bose gas [7,8]. Also the collisional energy dependence can be
substantial, when operating a cesium microgravity clock [9],
or for the determination of the nature of a spinor condensate
[10,11]. Approximate or effective descriptions like a contact
interaction or a harmonic trapping potential are often required
to embed the microscopic collisional properties of two atoms
into the macroscopic environment of the ultracold gas, where
atoms may be held by magnetic or optical traps [12–14],
or by optical lattices [15]. Given the collisional properties
of two atoms one can then correctly account for collisional
energy shifts; however, the collisional properties themselves
depend on those energy shifts via the relative kinetic energy
of the colliding atoms that is linked to the total energy of
the two particles, which is shifted by the collisional energy
shift. Therefore a self-consistent approach is needed and
the accuracy of the coupled-channels interaction parameters
depends crucially on the accuracy of the model connecting
the microscopic processes to the macroscopic environment.
Using a less accurate model may result in inconsistencies with

respect to the two-body parameters when comparing between
different experiments, or even when comparing data within a
single experiment.

In this paper, we want to utilize a coupled-channels model
in combination with an accurate but easy to use theoretical lat-
tice model description of the on-site interaction energy U , to
find a consistent description of high-precision spectroscopic
data of a two component Mott insulator with two particles
per site, where the on-site energy was varied by using Fes-
hbach resonances [16]. In this experiment, atoms in different
spin states were confined in a cubic optical lattice geometry.
Such systems can implement a spin-Heisenberg model [17],
which is of interest to study quantum magnetism. In the Mott
insulating phase with doubly occupied sites individual atom
pairs localize around each lattice site [18,19]. At the same
time the interactions between different spin components of the
atoms can be controlled utilizing Feshbach resonances. This
condition results in an ideal situation to study the isolated two-
particle system. Then, the strength of the atomic interaction
characterized by the scattering length aS can be linked to
the energy per localized atom pair E (aS ) and thus to the
on-site interaction energyU defined asU = E (aS ) − E (0). In
Ref. [16] high-precision data on the on-site interaction energy
have been acquired in such a two component Mott insulator
using interaction spectroscopic techniques.

We show that the standard Hubbard model approximation
[18] leading to a linear relation between the on-site interaction
energy U and the scattering length aS is not accurate enough
to describe the experimental data to the required precision
even for moderate scattering lengths. Instead we offer a simple
effective description to approximate the effects of a cubic
lattice potential for two identical particles of mass m, in
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which the on-site interaction energy U is parametrized by a
harmonic oscillator model with contact interactions [12]. The
harmonic oscillator frequency ωeff should be adjusted to best
represent the on-site potential. Note that this is not necessar-
ily the frequency related to the second-order approximation
around a lattice potential minimum. We choose ωeff, such that
the harmonic model matches the linear description from the
Hubbard model close to the noninteracting case, where the
Hubbard model should give the correct description up to first
order. The effective trapping frequency ωeff is then completely
determined by the noninteracting lattice parameters

h̄ωeff = 2πEr

(
1

kr

∫
|w0(r)|4dr

)2

, (1)

where w0 is the lowest band Wannier function of the one-
dimensional single-particle system, Er = h̄2k2r /(2m) is the
recoil energy with kr = 2π/λ, and λ is the wavelength of
the lattice light. All in all our effective model is meant to
describe the two-particle system with contact interactions
including the full lattice potential. This system has been theo-
retically studied in detail [15,20]. To make the connection to a
more complete description of the interparticle interactions, the
strength of the contact interaction is gauged to match the free
scattering properties of the full coupled-channels system for
a fixed collision energy ε. In ultracold experiments it is often
sufficient to take ε ≈ 0 and thus to match the scattering length
aS . To achieve a more accurate description we want to match
the full coupled-channels and contact system at the correct
relative collision energies ε in a self-consistent manner. We
find an approximate expression ε(aS ) ≈ E (aS ) − E0, which is
given by the total energy per localized atom pair depending on
the scattering length minus the energy in the center-of-mass
(c.m.) mode. For example, in a harmonic oscillator potential
of frequency ω the energy in the c.m. mode would be E0 =
3h̄ω/2.

By gauging the contact interaction strength and matching
the collision energy we can thus find the on-site interaction
energy U for a full coupled-channels description in a lattice
environment. To check the validity and limitations of the
effective description we compare to the full contact system in
the lattice using a direct diagonalization approach as presented
in [20,21]. In addition we investigate the collision energies
from the full contact bound-state wave functions to match the
contact to the coupled-channels solution at the correct relative
energies. This analysis also enables us to identify regimes in
which the simple contact approximation is likely to fail, for
example, close to narrow resonances, where the full systems
scattering properties show strong dependence on the relative
collision energy. Finally we apply our approach to perform a
full coupled-channels analysis of recent experimental data on
7Li [16].

II. THEORY

We start with some remarks on the system we aim to
model. All in all we have a many-body system in mind,
but since we assume the system to be in a Mott insulating
phase with two atoms per lattice site in a regime where the
interaction with atoms at neighboring sites may be neglected
we restrict to a simple two-particle model system with both

particles well localized at a single lattice site. The two-particle
system in a lattice is described by the following Hamiltonian:

H = p21
2m

+ p22
2m

+Vopt(r1, r2) +Vint(r1 − r2), (2)

with pi and ri the momentum and position operators of parti-
cle i ∈ {1, 2}, m the mass of the particles, Vint the interaction
between the particles, and Vopt the lattice potential.

To simplify the system further one can mimic the inter-
actions between the particles with a contact interaction of
variable interaction strength. By adjusting this interaction
strength we can correctly represent the physics at length scales
bigger than the range r0 of the real interaction potential. Note,
however, that this approximation will only be good around
some fixed relative energy ε between the particles.

In the following we give a detailed analysis of the contact
interaction case and focus in the second part on the connection
of contact to coupled-channels model. We include a discus-
sion of effects related to the nonconserved relative collision
energy in the lattice scenario.

A. Contact interaction

To mimic the interactions between the particles we in-
troduce a contact interaction of variable interaction strength,
implemented with a Bethe-Peierls boundary condition [22].
We parametrize the interaction strength by the scattering
length aS of the interaction such that we have

Vint(r1 − r2) = 4π h̄2aS
m

δ(r1 − r2). (3)

Let us first consider the case of a weakly interacting system
where aS → 0 and a perturbative analysis is possible. We
closely follow the derivation of the Hubbard model and thus
also make the connection to the many-body theory. We start
from the noninteracting case (aS = 0), such that we can
restrict to the single-particle scenario. We consider a cubic
optical lattice

Vopt(r1, r2) =
∑
i∈{1,2}

V0 Er[sin(krxi )
2 + sin(kryi )

2 + sin(krzi )
2],

(4)

with V0 the lattice depth in recoil energies Er. In this case the
band structure as well as the single-particle wave functions are
known and can be expressed in terms of solution to Mathieu’s
equation [19]. However, the so-called Bloch solutions to the
problem are not localized, but one can combine the Bloch
waves of each band n to find the band’s Wannier function
wn(r j ) [23]. The Wannier function is real valued and well
localized around r j = 0 for deep lattices Er → ∞. Together
with versions wn(r j − Ri ) shifted by a lattice vector Ri the
Wannier function provides a complete basis set for the nth
band subspace. In addition theWannier functionswn approach
eigenfunction solutions of a harmonic approximation around
the lattice sites in the deep lattice limit and they are approxi-
mate solutions to the Schrödinger equation up to the width of
the respective bands. To approximate the system’s low-energy
part around a single lattice site it is therefore reasonable to
project onto the lowest band Wannier function w0(r j ) such
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that the first-order correction in energy will be

U = 〈W |Vint|W 〉, (5)

where W = w0(r1)w0(r2). For the contact interaction we
therefore obtain

U = 4π h̄2aS
m

∫
|w0(r)|4dr, (6)

which leads to a linear correspondence between the energy
correction U and the scattering length aS . Note that this
corresponds exactly to the on-site interaction energy in the
Hubbard model. Further we note that this treatment assumes
the two-body wave function and therefore also the atomic den-
sity around a given lattice site to stay unaltered. To include the
deformation of the wave function or atomic density caused by
the interaction potential a higher-order treatment is necessary.

To go beyond the linear regime Eq. (6) we can approximate
around a single lattice site with an interacting harmonic model
[12]:

H0(ωeff ) = p21
2m

+ p22
2m

+ 4π h̄2aS
m

δ(r1 − r2)

+ 1

2
mω2

eff r
2
1 + 1

2
mω2

eff r
2
2. (7)

The harmonic oscillator frequency ωeff should be adjusted
to best represent the lattice potential. Note that this is not
necessarily the frequency related to the second-order approx-
imation around a lattice potential minimum. We rather adjust
the harmonic oscillator frequency such that it matches up
with the first-order result from the Hubbard model close to
vanishing interaction strength [see Eq. (1)]. The spectrum of
this effective harmonic model can be determined analytically
and the shift in ground-state energyU is determined by [12]

√
2�

(− U
2EHO

)
	HO�

(− U
2EHO

− 1
2

) = 1

aS
, (8)

where � denotes the gamma function, EHO = h̄ωeff, and
	HO = √

h̄/(mωeff ). Since the solutions to the harmonic model
Hamiltonian are exact it naturally includes also the deforma-
tion of the wave function caused by the interaction, which
manifests itself in the radial s-wave component of the relative
wave function ψn,	=0(r) given explicitly below in Eq. (16).

To analyze the accuracy and limitations of such an ef-
fective harmonic approach we calculate the spectrum of the
contact system described by H using a direct diagonalization
approach similar to [20,21,24] making use of the eigenstates
of the harmonic model. Such a numerical approach is accurate
only around a single lattice site, therefore the population of
neighboring lattice sites might be underestimated. This can
lead to slight deviations between the numerical and Hubbard
model description of the system, which we will discuss later.

We start by singling out the harmonic Hamiltonian in the
full system by adding and substracting the harmonic potential:

H = H0(ωeff ) +Vopt(r1, r2) − 1
2mω2

eff

(
r21 + r22

)
(9)

= H0(ωeff ) +V�. (10)

We will project on the eigenbasis of H0(ωeff ), therefore the
major task is to determine the coupling matrix elements

resulting from the deviation from the lattice potential V�. But
before analyzing those in more detail let us first change to
relative r and c.m. coordinates R with

r1 = 1√
2
(R − r) and r2 = 1√

2
(R + r). (11)

Note that this is not the standard definition of relative and
c.m. coordinates. We adopted the conventions of [12], where
relative and c.m. directions are rescaled to have equal effective
mass. In addition we introduce units natural to the harmonic
model system H0(ωeff ), so all energies will be given in multi-
ples of h̄ωeff and all lengths in multiples of

√
h̄/(mωeff ). The

difference in potentialsV� separates into x, y, and z directions:

V� = v�(X, x) + v�(Y, y) + v�(Z, z), (12)

where the components v� are given by

v�(X, x) = V0
2
√
Veff

[
sin2

(
X − x√
2V 1/4

eff

)
+ sin2

(
X + x√
2V 1/4

eff

)]

− 1

2
x2 − 1

2
X 2 (13)

= V0√
Veff

[
sin2

(
X√
2V 1/4

eff

)
cos2

(
x√
2V 1/4

eff

)

+ cos2
(

X√
2V 1/4

eff

)
sin2

(
x√
2V 1/4

eff

)]
− 1

2
x2

− 1

2
X 2 (14)

=
∑
i, j

αi j (V0,Veff )x
2iX 2 j . (15)

In the last step we performed a Taylor series expansion and we
have introduced the effective lattice depth parameter Veff =
h̄2ω2

eff/(2Er )2. Note that in the series expansion only even
powers of x as well as X occur. This leads to the symmetry
properties of the system that have been discussed in a more
general setting in [21].

We now change to a basis of eigenstates
|NX ,NY ,NZ , n, 	,m〉 of the effective harmonic system. The
N◦ are integers labeling the Harmonic oscillator eigenstates
in the respective c.m. direction, whereas n, 	, and m are
quantum numbers in the relative direction, with 	 the angular
momentum quantum number, m the magnetic quantum
number, and n the solutions in the relative separation r. For
	 
= 0 the quantum numbers n, 	, and m just describe the
usual noninteracting harmonic oscillator states, while, for
	 = 0, n labels the solutions of the interacting harmonic
model in the relative separation r. The general solution with
correct behavior for r → ∞ and relative energy εrel(n) is
given up to a normalizing constant by

ψn,	=0(r) ∝ e− r2

2 rU

(
3

4
− εrel(n)

2
,
3

2
, r2

)
, (16)

where U is Tricomi’s confluent hypergeometric function. The
quantization condition determining εrel(n) is then given by the
boundary condition at r = 0 and can be expressed in terms of
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the scattering length aS:
√
2�

(
1
4 [3 − 2εrel(n)]

)
�

(
1
4 − εrel (n)

2

) = 1

aS
. (17)

We can now give the Hamiltonian H0(ωeff ) in its diagonal
form:

H0(ωeff ) =
∑

NX ,NY ,NZ ,n,	,m

[E (NX ,NY ,NZ , n, 	,m)

× |NX ,NY ,NZ , n, 	,m〉〈NX ,NY ,NZ , n, 	,m|],
(18)

where eigenenergies corresponding to the states
|NX ,NY ,NZ , n, 	,m〉 are given by

E (NX ,NY ,NZ , n, 	,m) = h̄ωeff{3 + NX + NY + NZ

+ 	 + δ	,0[εrel(n) − 3/2]

+ [1 − δ	,0]2n}. (19)

To reduce the states we project on, we can use the symmetry
properties of the Hamiltonian as we mentioned earlier. We
have reflection symmetries in X → −X , Y → −Y , and Z →
−Z , therefore there will be just coupling between even or
odd values of NX , NY , and NZ respectively. We also have
the symmetry of inversion of r → −r equivalent to particle
exchange, which leads to separation between even and odd
values of 	. For bosons we obviously need the even 	 values.
The symmetry under (x, y) → (−x,−y) leads to the restric-
tion to even or odd values in m. Finally we could also change
to a base

|NX ,NY ,NZ , n, 	, |m|〉S/A
:= 1√

2 + 2δm,0
(|NX ,NY ,NZ , n, 	,+|m|〉

± |NX ,NY ,NZ , n, 	,−|m|〉) (20)

of symmetric and antisymmetric combinations in the sign
of m. The reflection symmetry in z → −z guaranties the
separation in S/A. We are interested in the component with
NX , NY , NZ , 	, and |m| even and symmetric combinations
(S) in ±|m|, which corresponds to the ground state of the
interacting harmonic model H0(ωeff ) and thus to our solution
up to zeroth order in the corrections V� introduced by the full
lattice potential.

We want to determine the spectrum of the full Hamilto-
nian close to the ground-state energy of the noninteracting
full system. To do so we restrict to a finite expansion of
v�(X, x) ≈ ∑max

i, j αi j (V0,Veff )x2iX 2 j . We choose to expand up
to tenth order in 2i + 2 j. This leads to a deviation of less than
0.05V0Er to the full potential when restricting to a region up
to ±0.7d around the lattice site at the origin. Here d denotes
the lattice constant. We then project on a finite set of states
|NX ,NY ,NZ , n, 	, |m|〉S/A and obtain the energy spectrum by
diagonalizing the resulting Hamiltonian matrix. The base set
is chosen big enough to obtain a converged spectrum around
the energy of the lowest band.

In Fig. 1 we compare the energy shifts U from the first-
order perturbative and the effective description to our full
numerical solution for an optical lattice of depth V0 = 35Er.
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FIG. 1. Comparison of the full contact system (gray dots, black
dotted line) to the linear model (blue dashed line) and the effective
harmonic model (orange full line) for a lattice depth of V0 = 35Er.
(a) Energy spectrum as a function of the scattering length aS . The
black dotted line describes the energy of the state connected to the
lowest band Wannier state at aS = 0, the gray dots crossing it are
related to the deeply bound dimer state in different excited center-of-
mass bands, while the remaining gray dots are connected to excited
bands. (b) Energy spectrum relative to the effective harmonic model.
Linear model (blue dashed), the full contact model (black dotted), or
the effective harmonic model determined from the systems Wannier
function including side peaks (yellow full). The gray shaded array
indicates our estimate of the models theoretical error, which we
estimate to be the maximum of the deviation to the full numerical and
the effective harmonic model determined from the systems Wannier
function (black dotted and yellow full lines).

We assume here a lattice constant d of 532nm = 100 53a0,
but the result will depend only on the ratio aS/d . We get good
agreement with the full result for the effective harmonic model
with a maximal relative deviation of about <0.8% for |aS| <

0.05d ≈ 500a0. Note that the numerical results presented here
rely on the two-particle wave function to be localized around a
single lattice site ±0.7d , since we needed to cut the expansion
in v�. We want to estimate the error caused by this approxi-
mation. Therefore we compare the effective harmonic models
determined from the numerical approach and the Wannier
function of the system [see Fig. 1(b)]. The models differ since
the Wannier function of the system possesses side peaks at
neighboring lattice sites. Those are absent in our numerical
approach since the neighboring lattice sites lie in a classically
forbidden region due to the finite expansion in v�. This leads
us to an estimate of the theoretical accuracy of our model
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indicated by the gray shaded area in Fig. 1(b). With that we
still have a maximal relative systematic error inU of 1.3% for
|aS| < 0.05d .

When interpreting experimental data on U the refined
harmonic description leads to corrections in the position and
width of Feshbach resonances as compared to the linear
model. With the refined model one finds resonance positions
shifted towards the direction of negative scattering lengths as
well as increased resonance widths. The shifts in resonance
positions result from non-anti-symmetric behavior ofU , while
the increase in width is related to the flattening off of U for
diverging aS .

B. Connection to a coupled-channels model

So far we considered particles interacting via a contact po-
tential. In ultracold gas experiments the collisions are usually
considered to happen at zero energy and thus the scattering
lengths of the coupled-channels and contact systems need to
be matched. For the considered lattice geometry, however,
we can estimate the relative energy at which the particles
collide to be around the energy ε of the lowest single-particle
band, which is for our parameters ε/kB ≈ 20 μK. This is
estimated from two noninteracting particles in the lowest band
with energy 2ε. Approximately half of this is relative energy,
which is also the collision energy at zero separation. Adding a
repulsive interaction leads to an increase in collision energy
since the wave function needs to shift to higher energies,
which also leads to an increase in size of the wave function
in relative direction. Despite the wider spatial and therefore
narrower momentum distribution at low momenta of the two-
particle wave function, there is an increase in average relative
kinetic energy due to an increase in the high momentum tail.

In general a contact model can be adjusted to correctly
represent the s-wave component of any short-range potential
for far separation of the particles at a fixed collision energy
ε = h̄2k2/(2μ). To do so one has to choose the following
scattering length for the contact system [25]:

1

aS (k)
= −kcot[δcc(k)], (21)

with δcc(k) the scattering phase shift of the full coupled-
channels interaction. The right-hand side can be expanded in
powers of k with

kcot[δcc(k)] = − 1

accS
+ Re

2
k2 + O(k4), (22)

with accS the scattering length of the coupled-channels model
and Re the effective range. This leads us to the implications
of including collisions at a finite energy. Effects due to finite
collision energy ε are relevant especially close to narrow reso-
nances, where the effective range Re can take large values. For
narrow resonances the resonance position at finite collision
energy B0(ε) defined by

kcot[δcc(B0, k)] = 0 (23)

can thus be subject to shifts of order �B0(ε) ∼ ε/μB ≈
0.3 G.

Similar to the free case Eq. (21) we want to arrive at
a matching condition for the lattice environment. Since the

lattice system cannot be reduced to relative and c.m. motion
there will be no well-defined collision energy. Instead the col-
lision is happening in different c.m. channels simultaneously,
where each of those c.m. channels has an assigned collision
energy. The c.m. channels are not to be confused with the
internal spin channels of the coupled-channels model, which
describes the collision in the relative direction. To see that the
collision is happening in different c.m. channels we first split
the Hamiltonian into three components:

H = P2

2m
+ p2

2m
+Vint(r) +Vopt(r,R) (24)

= P2

2m
+Vopt(0,R) + p2

2m
+Vint(r) + Ṽ�(r,R) (25)

= HR + Hr + Ṽ�(r,R), (26)

one acting solely on the c.m. component HR, one acting
solely on the relative coordinate Hr, and a part acting on
both Ṽ�(r,R). Here HR describes a lattice system in the c.m.
coordinate [see Eq. (28)]. We note that the c.m. lattice is
effectively four times deeper then the single-particle lattice
when transformed to lattice units with all lengths in multiples
of d and all energies in multiples of ER = Er/2.

We can get an approximate expression for the full Hamilto-
nian valid around a single lattice site by projecting on the c.m.
Wannier functions |i〉 at that given site, thereby neglecting the
coupling to other lattice sites in the c.m. direction:

H ≈
∑
i,i′

|i〉〈i′|[δii′ (Hr + Ei ) + 〈i|Ṽ�|i′〉]. (27)

Here i labels the c.m. bands with associated c.m. energies
Ei that we set to be in the center of the corresponding c.m.
bands. In addition we find that the coupling term Ṽ� vanishes
up to second order in r as r → 0. For clarity we give the terms
Vopt(0,R) and Ṽ�(r,R) explicitly:

Vopt(0,R) = 2ErV0[sin(krX/
√
2)2 + sin(krY/

√
2)2

+ sin(krZ/
√
2)2], (28)

Ṽ�(r,R) = ErV0{[1 − cos(
√
2krx)]cos[

√
2krX ]

+ [1 − cos(
√
2kry)]cos(

√
2krY )

+ [1 − cos(
√
2krz)]cos(

√
2krZ )} (29)

≈ (krr)
2Ṽ (2)

� (r̂,R) + O[(krr)
4]. (30)

For a contact interaction the inner boundary condition in all
c.m. channels is determined by the scattering length. Upon
investigating the full numerical contact solutions� we can get
a lower bound for the population of the lowest c.m. channel |0〉
by

|〈�|(|0〉〈0| ⊗ 1r )|�〉| � α2β2 − 2αβ
√
1 − α2

√
1 − β2,

(31)

with α = |〈0|0〉| and β = |〈�|(|0〉〈0| ⊗ 1r )|�〉|, where |0〉 =
|NX = 0,NY = 0,NZ = 0〉 denotes the lowest harmonic oscil-
lator state in the c.m. component. For the bound state consid-
ered we find that the lowest c.m. channel is always populated
to more than 99% in the considered scattering length regime.
Therefore we expect to get a good approximation by matching
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the contact solution in this c.m. channel to the full coupled-
channels result.

The solution � thus approximately obeys the following
Schrödinger equation when the separation between the par-
ticles is small:

E� ≈ H� (32)

≈ |0〉〈0|[(Hr + E0) + 〈0|Ṽ�|0〉]� (33)

−−→
r→0

|0〉〈0|[(Hr + E0)]�, (34)

where Hr describes the free scattering process in the relative
direction. The energy of this free collision is determined by
the energy E of the full state � minus the energy E0 stored
in the center-of-mass component of the system. Therefore the
collision energy of the particles is determined by

h̄2k2

2μ
≈ E − E0 = U (k) + E (0) − E0. (35)

The strength of the contact interaction and thus the scattering
length aS (k) can then be determined from a coupled-channels
model by justifying the condition [see Eq. (8)]

√
2�

(− U (k)
2EHO

)
	HO�

(− U (k)
2EHO

− 1
2

) = −kcot[δcc(k)]. (36)

This ensures that the full contact and the coupled-channels
wave function are properly matched in the lowest c.m. band.
The boundary condition in the other populated collision chan-
nels is, however, not exactly satisfied. Therefore this limits the
contact model approach to regimes where either the effective
range correction terms are small or the lowest c.m. channel is
dominating.

To sum up in Eq. (36) we combine an effective harmonic
parametrization ofU representing a contact interaction model
with the phase-shift behavior δcc(k) of a full coupled-channels
calculation. This enables us to perform a coupled-channels
analysis of on-site interaction data [16] in the following
section.

III. COMPARISON TO EXPERIMENT

Our model is captured by Eq. (36). We apply it to recent
experimental data taken for 7Li [16]. For 6Li and 7Li the ul-
tracold interatomic interactions already have been accurately
characterized by different experiments; however, also discrep-
ancies are known to exist directly related to the two-body
interactions, for instance, in the determination of three-body
parameters near an | f ,mf 〉 = |1, 1〉 Feshbach resonance of
7Li [5,26]. In [16] a sample of ultracold 7Li atoms is prepared
in a Mott insulating state with doubly occupied sites in a
cubic optical lattice with a depth of 35Er . The experiment
involves the two lowest hyperfine states labeled as |a〉 and |b〉.
More precisely, at each doubly occupied lattice site one of the
three symmetric combinations in spin |aa〉, |ab〉S = (|ab〉 +
|ba〉)/√2 or |bb〉 can be realized and correspond to one of
three different interaction channels. With the help of radio-
frequency pulses transitions between the different spin states
can be driven. From the resonance frequency positions the
difference in on-site interaction energy between the scattering

channels (Uab −Uaa) and (Ubb −Uab) can be inferred. This
can be done for a wide range of external magnetic fields B.

We note that the analysis presented here relies on the
effective harmonic model using the oscillator frequency de-
termined from the numerical model [orange line in Fig. 1(a)].
We include the gray shaded area in Fig. 1(b) as our theoretical
error estimate.

As a first test we want to verify that the effective model in-
deed leads to an improvement compared to the linear Hubbard
description. For that purpose, we compare the experimental
interaction spectroscopic data to a coupled-channels model
gauged to earlier experiments [5]. We use the scattering
length data determined from this model and map it with
either the linear Eq. (6) or the effective harmonic description
Eq. (8) onto the experimental data. In Fig. 2 we show that
the effective harmonic model leads to improved agreement
with the experimental data. There we compare the differences
in on-site interaction energy �U by showing the deviations
�Uexp − �Ucc between experiment and theory for better vis-
ibility. We find as expected that the resonance positions in
�U for the linear conversion appear at too high magnetic-field
values.

We use the effective harmonic approximation including fi-
nite collision energy effects Eq. (36) to map coupled-channels
phase-shift data δcc to on-site interaction energy U . We take
the coupled-channels model presented in detail in [5], where
it was used to interpret rf-spectroscopy data taken for 7Li. The
most crucial parameters in the coupled-channels model are the
van der Waals coefficientC6 and the adjustments in the singlet
S and triplet T boundary conditions parametrized in the form
of phase parameters �φS and �φT [5]. We take those as free
parameters that we fit to the experimental data by performing
a χ2 minimization. Our fit results are presented in Fig. 3 and
Table I. The theoretical error estimate has been included into
our error analysis by adding the theoretical error determined
from the model of Ref. [5] to the experimental error bars prior
to the fit. We find good agreement with the experimental data
(see Fig. 3); just close to the narrow resonance our model
seems to underestimate the width of the resonance. Note
that we identified the regime close to the narrow Feshbach
resonances to be less well approximated by the contact model.
In Table I we compare to the results obtained in [16] with a
linear Hubbard model in combination with dispersive shapes
to parametrize aS in the different interaction channels. For the
positions of the broad resonances (at 738, 795, and 894 G) we
find values corrected by 0.2 to 0.7 G to higher magnetic fields.
We attribute the major contribution to these corrections to the
effective harmonic model. However, for the narrow resonance
(at 845 G) we find a correction to lower magnetic fields of
0.1 G as a result of the finite collision energy effects included.
Comparing to previous results we find improved agreement
for the broad resonances, while the deviation in the position
of the narrow resonance increased.

Similar good agreement can be achieved by fitting with
the effective harmonic model without finite collision energy
corrections Eq. (8). For comparison we give those results also
in Table I. The resulting resonance positions for the broad
resonances are generally in agreement within the two different
models while the narrow resonance is significantly shifted to
lower values for the energy corrected model.
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FIG. 2. Comparison of the experimental to the coupled-channels model determined in [5]. We show the residuals between experimental
data and theoretical data for �U in the |aa〉 to |ab〉 transition (top) and the |bb〉 to |ab〉 transition (bottom). The plots on the left-hand side
have been obtained with the linear and the plots on the right-hand side with the effective harmonic model. The color scale indicates the shift
δBres required in the theoretical resonance positions to reach agreement. Thus the color scale can serve as a simple measure for the quality of
agreement between the unfitted coupled-channels model and the experimental data. The color map has been obtained starting from a dispersive
model fitted to the coupled-channels result.

IV. CONCLUSION AND OUTLOOK

We presented a full coupled-channels description of the
on-site interaction energy U of a Mott insulator state with
two atoms per lattice site. Our description is based on a
parametrization of the on-site interaction energy with an ef-
fective harmonic model adjusted to match the linear behavior
at small interaction strengths that can be determined from the

Hubbard model. A matching condition has been obtained in
Eq. (36) that combines the effective harmonic parametrization
of U with the relative collision energy in the lowest c.m.
band from the noninteracting scenario. We verified that for
moderate scattering lengths up to 0.05d and a lattice depth
V0 = 35Er our effective approach gives good agreement with
the full contact scenario. We applied our effective description
to perform a successful coupled-channels analysis of recent
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FIG. 3. Experimental data Uab −Uaa [orange (light gray) points] and Ubb −Uab [blue (dark gray) points] and best fit with the coupled-
channels description to the combined data set [orange (light gray) and blue (dark gray) lines]; the lower half shows the difference of the data
points and the fitted model along with the experimental error bars taken to be one σ of the fit to the resonance spectra, while the systematic
error on the experimental side has been estimated to 0.1 kHz. Our estimate of the theoretical uncertainties is indicated by the orange (lighter
gray) and blue (darker gray) shaded areas.
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TABLE I. Comparison of the coupled-channels (CC) fit results with collision energy corrections Eq. (36) and without collision energy
corrections Eq. (8) to the results obtained in [16] where the linear Hubbard model is used in combination with dispersive shapes to parametrize
aS and to previous works. Only the resonance positions have been determined directly from our coupled-channels fit. The error in the resonance
positions is taken to be one standard deviation and has been determined from the fit to the experimental data. We give the background scattering
lengths abg and resonance widths � for completeness. abg and � have been determined by fitting a dispersive model as in [16] to the scattering
length data obtained from our best fit with the coupled-channels code. For that we chose magnetic-field values between 650 and 950 G and
restricted to points with |accS /a0| < 1000. The errors we give on abg and � are the errors of the fit to the best theoretical model. Note, however,
that the values of abg and � depend strongly on the magnetic-field range and the maximum scattering length used for the fit, since the dispersive
shape is just an effective description.

Channel abg/a0 � (G) Bres (G) abg/a0 � (G) Bres (G)

CC fit energy corrected Previous works

aa −20.75(2) −168.0(1) 737.81(2) −20.98 [5] −171.0 [5] 737.88(2) [5]
737.8(2) [27]

−20.0 [26] −174 [26] 737.69(12) [26]
ab −21.09(1) −133.4(1) 795.20(2)
bb −17.72(7) −19.02(8) 845.322(5) −18.24 [5] 845.54 [5]a

bb −17.72(7) −227.5(9) 894.00(4) −18.24 [5] 893.95(2) [5]

CC fit not energy corrected Taken from [16]

aa −20.62(2) −168.3(1) 737.88(2) −25.8(1.2) −135.9(6.9) 737.58(10)
ab −20.95(2) −133.6(1) 795.31(2) −29.8(1.3) −90.5(4.0) 794.64(07)
bb −17.60(3) −19.03(3) 845.505(5) −23.0(1.4) −14.9(0.9) 845.42(01)
bb −17.60(3) −227.8(4) 893.98(4) −23.0(1.4) −172.7(10.0) 893.34(12)

aThere is no error bar given in [5].

experimental data on 7Li [16]. The high precision of the
data enabled us to demonstrate that our effective harmonic
description is an improvement to the linear Hubbard model.
We show that including finite collision energy effects leads to
a change in the predicted resonance positions especially for
narrow resonances. We believe that the results including finite
collision energy effects are more accurate. However, since
both the model with and the model without finite collision
energy lead to agreement with the experimental data, when
the coupled-channels parameters are adjusted accordingly,
we cannot undermine the improved accuracy of the refined
model. Still a precise independent determination of the reso-
nance position especially for the narrow resonance in the |bb〉
channel could easily lead to such a distinction. Overall we find
that our model is in good agreement with the experimental
data, but close to the narrow resonance our model seems to
slightly underestimate the width of the resonance. Note that
we identified the regime close to narrow Feshbach resonances
to be the one least well approximated by the contact model.
However, a refined description valid also close to narrow
resonances could be obtained by matching the effective har-
monic model to the coupled-channels model for each base
state involved before the direct diagonalization method is
applied, or by introducing the lattice potential directly into
the coupled-channels calculation, as it has been done for the
single-channel case [21,28]. The energy matching condition
could thus be satisfied exactly in those cases, but the advan-
tage of having a single matching condition would be lost.

Measurements of the on-site interaction energy shift for
different lattice depths could reveal the dependence of the
resonance positions as a function of collision energy. Also
note that the points in magnetic field, where the scattering
lengths of two channels are equal, should be independent
of the conversion model, in a regime where the scattering
lengths determines the interaction. These are the points where
(Uab −Uaa) or (Ubb −Uab) cross zero or each other. A precise
determination of those points might be valuable information
in addition to the resonance positions.
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