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Abstract— Mechanics-based models of thin elastic structures
are prevalent in robotics research, both in soft/continuum
robot modeling, and in robotic manipulation of strings, sutures,
needles, and endoscopes. In all these applications, distributed
loads along the device’s length can affect its shape in space.
Estimation of the distributed loading based on observation
of the object’s shape constitutes a classical mechanics inverse
problem that would be useful in many applications, but this
problem has received relatively little attention to date. In this
paper, we propose methods to estimate distributed loads on
an elastic rod using a large-deflection Cosserat-rod model and
constrained nonlinear optimization. We perform experiments
that illustrate the feasibility of using these methods to locate
regions of high contact force along the rod, and to estimate
magnitudes of the forces that are applied. Results show that
overall force magnitudes and locations can be estimated with
average error of 0.29 N (6.7% of average resultant magnitude)
and 4 mm (2% of rod length) for complex double-bend shapes,
and the shape approximation has near-zero error.

I. INTRODUCTION

In both medical robotics, soft/continuum robots and other
slender elastic devices are increasingly being investigated.
Many applications (e.g. flexible endoscopy, therapy with
steerable needles, and surgical intervention with continuum
robots) involve distributed forces between the device and the
anatomy and/or point contact forces at unknown locations,
and estimating these forces is key to increasing safety
and effectiveness. The compliant nature of soft robots and
continuum robots can potentially enable sensing of interaction
forces using the deflection of the robot itself [1], [2]. This
deflection-based estimation paradigm is especially attractive at
small scales where dedicated force sensors are size prohibitive
[3]. Many shape-sensing methods have been explored, based
on imaging [3], [4], electromagnetic trackers [5], [6], and
fiber-optic strain sensors [7], [8]. Sensing external end-effector
forces based on sensed actuation load has been explored for
multi-backbone [9] and parallel [10] continuum robots. In
this paper, we focus on the deflection-based sensing problem,
but estimation approaches that combine both shape data and
actuation load data may provide additional advantages in the
future. Beyond medical applications, the distributed force
sensing problem is also important for robotics in general, e.g.
in soft robot interactions with humans or in the manipulation
of elastic objects like strings or sutures [11].
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Fig. 1. Our approach to the distributed force estimation problem is to find
a set of forces which minimizes the error between discrete shape data and a
continuous rod model.

So far, most deflection-based force sensing efforts have
focused on sensing a single force at the tip or end-effector
[11-[3], [8], [12], [13], while estimation of continuous force
distributions along the length of the device remains a major
challenge. Some research has explored sensing contacts along
the shaft of a manipulator. Bajo [14], [15] designed a scheme
to detect contact locations based on 6 DOF screw motions
obtained through magnetic tracking, but did not estimate
the forces themselves. Other soft robot modeling work has
included inverse approaches to determine contact forces
during simulation of soft robots in prescribed simulation
environments [16]. Recently, a Kalman smoothing approach
has been considered for the problem of estimating the full
set of continuum robot state variables, potentially including
discrete reaction forces at known locations [17], but the
approach is not formulated to estimate general applied load
distributions. For soft robot structures of general 3D shapes,
[18] proposed a method that solves an finite-element inverse
problem to estimate a number of point forces given the
displacements of an equal number of feature points.

A. Approach and Contributions

In this paper, we use discrete shape data to estimate
general force distributions on elastic rods by using a 3D large-
deflection Cosserat rod model and a constrained optimization
framework. We explore two variants of this approach based
on different functional representations of the distributed load:
(1) a truncated Fourier series, and (2) a set of discrete point
forces with variable locations and magnitudes. Validation
experiments with a spring steel rod subject to multiple loads
along its length demonstrate the method’s accuracy.



II. FORCE SENSING APPROACH
A. Constrained Optimization Framework

Given a set of IV, measured 3D positions d; (i = 1...Np)
at nominal arc length positions s; ordered and evenly spaced
along a cantilevered elastic rod with known geometry and
material properties, we propose to estimate the distributed
force function f(s) along the arc length s of the rod by
numerically solving the following constrained, nonlinear
optimization problem based on the root-mean-squared error:

N

1 P
. . . —d. 2
mml’{mze N, ; ||P1(X) sz

subject to
c(x)=0

where p;(x) is the 3D position generated by the Cosserat
rod model evaluated at arc length s;. The vector of unknown
parameters x includes parameters which define the distributed
load function f(s) (which we will detail later in the paper) in
the Cosserat model, as well as unknown conditions at the base
of the rod (the position pg € R3, the orientation Ry € SO(3)
(parameterized with Euler angles), the internal force vector
ny € R3, and the internal moment vector my € R3 at
s = 0). Note that for a cantilevered rod, we generally have
a good initial estimate of the base position and orientation,
but including them as unknown parameters in x allows our
optimization framework to compensate for uncertainty and
“register” the model to the data as it simultaneously estimates
the forces.

The arc lengths s; at which the Cosserat model is evaluated
should be close to the nominal arc length locations s; of
the data points. We use the optimization algorithm itself
to identify the best model evaluation arc lengths (the ones
eventually closest to the data points) by parameterizing each
evaluation point (while keeping them ordered) as

sp=s; + §sinai

where h is the nominal spacing between the data points. The
parameters «; are then included in the unknown vector x.

The constraint function c¢(x) includes the residual errors
of any known boundary conditions. For the cantilevered rod
with a free distal end that we experimentally investigate
in this paper, this involves conditions on the internal force
and moment at the distal end, as we detail in the next
section. Under this constrained optimization formulation of
the estimation problem, evaluation of the objective function
only requires integrating an initial value problem defined by
the Cosserat rod equations (as detailed in the next section).
While we are using a standard Cosserat rod model as a test
case in this paper, our basic framework is applicable to many
continuum robot models which are commonly expressed
as differential equations in arc length subject to various
boundary conditions and constraints, e.g. [10], [19], [20].
We solve (1) numerically using the interior point algorithm
as implemented in Matlab’s fmincon (). While this paper
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Fig. 2. The Cosserat equations are derived by performing a static balance
over a section of rod. All the state variables are defined with respect to arc
length and are referenced to an arbitrary global frame.

focuses on feasibility instead of computational speed, we
note that Cosserat models can be integrated very efficiently
[21], and the Jacobian of the objective function residuals with
respect to x can also be computed efficiently [22].

B. Cosserat Rod Model

Here we provide a brief review of the classic Cosserat
rod equations and describe how to use them to evaluate
the objective function defined in (1). The shape of a rod is
described by the position of its centerline p(s) € R3, and
a rotation matrix, R(s) € SO(3), representing its material
orientation as a function of arc length s, as shown in figure
2. The derivatives of p and R with respect to s are defined
by

p = Rv

2
R’ = Rau, @

where the kinematic variables v(s) and u(s) are the linear
and angular rates of change of of a material attached

transformation
R
g(s) = {0 Il)}

expressed in the local body-frame coordinates. The ~ operator,
as defined in [23], maps R? to s0(3) (the skew-symmetric
matrices, the Lie algebra of the Lie group SO(3)).

Performing a static balance on a section of rod (Figure 2)
and taking a derivative, we can describe the rates of change
of the internal force vector n(s) and the internal moment
vector m(s) with respect to arc length:

n =—f

m =-p' xn-1,

3)

where f and 1 are vectors defining the external distributed
force and distributed moment per unit arc length applied
to the rod. In this paper we assume 1 = 0, and we aim to
estimate f(s)

The internal force and moment vectors are related to v
and u via a material constitutive law. Commonly, a linear
law is used for static applications:

n=RK, (v—-v"), m=RKy(u—u") ()



where v* and u* are appropriate kinematic variables of the
rod in its stress free reference state (u* = 0 and v* = [00 1] "
for an initially straight rod), and K, = diag (GA,GA, EA)
and Ky = diag (E'1, EI,GJ) are stiffness matrices in terms
of the rod’s cross-sectional area A, Young’s modulus F, shear
modulus G, area moment of inertia I, and polar moment of
inertia .J. Combining Equations 2, 3, and 4, we have a system
of differential equations that describe the evolution of p, R,
n, and m with respect to s.

The parameter vector x specifies a full set of conditions
at s = 0, and the distributed force function f(s). Thus
any numerical integration routine for solving initial value
problems can be used to obtain p(s) and evaluate the objective
function in (1). In this paper, we use the adaptive step-size,
5" order, Dormand-Prince algorithm as implemented by
oded5 () in Matlab.

Similarly, c¢(x) can also be evaluated after numerical
integration of the rod model given the initial conditions
specified in x. If there is a known point force F and moment
M acting at the tip of a rod then the constraint function can

be written as () F

In this paper we explore the special case where the tip loads
are zero (a cantilevered rod with a free end), but known tip
loads could arise, for example, in robots actuated by cables
with known tensions. Note that if zero tip loads are assumed
when there is actually some unknown applied tip force, the
solution to the optimization problem will simply yield an
estimated distributed force which exhibits a concentrated peak
near the tip which approximates the true tip load (as we show
in our experiments).

C. Parameterization of Distributed Loads

We outline two possible ways to parameterize the unknown
force distribution in the rod model. Each parameterization
defines two functions fL(s) and f.(s) which specify the
x and y components of the distributed force expressed in
the local frame R(s). As mentioned above, we assume that
the distributed force has zero component in the local axial
(tangent) direction. The distributed load vector f(s) expressed
in the global frame is then

fi(s)
f(s) = R(s) | fy(s) (6)
0
1) Fourier Series: First, we consider a truncated Fourier
series approximation representation of the form

N kms N kms
fglc(s) R g0 + Zaack sin I + Z by cos I
k=1 k=1
N N (7
1 . kms kms
fy(s) R Gy + Z Ayl Sin A + Z by cos A
k=1 k=1
The number of Fourier terms N determines the resolution

of the distributed force approximation, and the number of
associated coefficients included in the unknown parameter

vector x is 4N + 2. One must use enough terms to adequately
capture general distributed loads but not too many so that
the algorithm remains efficient and is not overfitting the data.
In our experimental analysis we used N = 21 terms.

2) Sliding Dirac Deltas: While the Fourier series param-
eterization can accurately represent most smooth, slowly-
varying (in arc length) distributed loads, a very large number
of terms would be required to accurately estimate discon-
tinuous loadings such as square waves or point loads. In
these difficult cases, a Fourier approximation will tend to
underestimate the peak magnitude of the distributed force,
even if the shape data is well matched. This motivates the
second distributed force representation that we explore in
this paper, namely a collection of point loads distributed at
variable points along the shaft as follows:

N
fals) = Z%MS(S — o%)

N (®)
fy(5) = D eyd(s — o)

k=1

where §(-) is the Dirac delta function, ¢, and ¢y are
magnitudes of the k' point force in the local x and y
directions, and o}, is the arc length location of the Lkt force.
To implement this force distribution in the Cosserat model,
we apply a step change to the internal force at each oy as
follows:

Cxk
n(o;’) = n(oy;) — R(ow) | cyn
0

Note that the force locations oy, can vary in this representation.
We allow them to “slide” to arbitrary locations along the rod
by parameterizing them within the unknown parameter vector
x to be optimized, along with the coefficients c;; and cyy.
To keep the force application points o, on the interval [0 L]
we define each one in terms of a parameter ;. as follows

_L+L in 3
O'k—2 2sm;c

Thus, the sliding Dirac delta representation is able to exactly
capture the effect of IV point loads at N arbitrary points
using a total of 3N variables.

To summarize, in the case of the Fourier series repre-
sentation, the full unknown parameter vector in (1) has the
following form:

X = [pOT 6, nj mj a' a' bT]T )
where 6y = [0, 0, 0.]T contains Euler angles which
define the base orientation Ry, a@ = Jag- ~osz]T

contains the parameters that define the comparison arc
lengths, a = [azo - Quk- "ayo- -ays] and b =
[b21 bk - by1 -+ - byk] 7. In the case of the sliding Dirac
delta representation, x is

x=[p; 6 ng myg a' c' ,BT]T (10)

where ¢ = [cxl---cxk---cylu-cyk]T and B = [B1--- Bl ".



Fig. 3. The experimental setup consisted of a painted green rod, an ATI
6-DoF force/torque sensor, a mounted camera, and pegboard. The images
shown above were used by the sensing algorithms for the single load test
14 (in Table 1), the double load test 6 (in Table II), and a three load test.

D. Dealing with 1ll Conditioning

Initial simulation results on simple beam problems revealed
that a variety of different force distributions can approximate
the same discrete shape dataset with near-zero shape error.
This is the classic ill-conditioning issue that is typical of
such “inverse problems” across many fields, as reviewed in
[24]. However, identifying a possible force distribution that
minimizes shape error is still potentially useful: the basic
shape of the distribution as well as regions of high interaction
force can be identified. We would also like to identify, in
some sense, the “worst-case” force distribution. Among all
distributions that fit the data well, we could postulate that the
“worst-case” is the one in which the force is concentrated at
the fewest locations. Based on this idea, we propose a simple
sequential optimization procedure to estimate the “worst-
case” force distribution. We solve a series of optimization
problems where the distributed force is represented by a
collection of N point forces (8), incrementing N by one
for every new problem. The first problem assumes only one
point force (N=1), the second two (N=2), and so on. If a
solution yields an RMS shape error less than a specified
tolerance (the expected shape measurement error), we use the
current estimated force distribution without exploring larger
numbers of point forces. Thus, we find the solution with the
minimum number of point forces which also minimizes the
objective function within a predefined tolerance. This may be
a good proxy for the “worst-case” force distribution, and the
estimated contact force magnitudes could be used for user
feedback.

III. EXPERIMENTAL VALIDATION

To test our proposed force sensing framework we performed
a series of experiments which compare the performance of
the Fourier series representation with the set of point loads
representation. We consider planar experimental cases, but the
full 3D Cosserat model and optimization framework is used to
fit the planar data. The experimental conditions included a set
of 18 cases where a single point force was applied at various

unknown locations along a rod and a set of 6 cases where
two point forces were applied at various unknown locations.
An appropriate number of terms for the Fourier series (for
adequate resolution of point loads without over-fitting) was
determined to be 21 using two cases from the data set. The
number of discrete terms used in the point load method
was determined during the optimization using the iterative
process detailed in the previous section. Point loads are the
most difficult cases for the Fourier series to approximate. In
contrast, the sliding Dirac deltas should be able to determine
the appropriate number of forces and represent these cases
exactly. We will see that both methods perform well in terms
of attaining near-zero shape error and determining the location
of high-force regions and load magnitudes.

A. Experimental Setup and Data Capture

The setup, shown in Figure 3, consisted of an elastic metal
rod, a pegboard, an ATT 6-DoF force/torque sensor Nano 43
SI-36-0.5 (used only for validation), and an HD 1920x1080
Logitech digital camera held by a Noga Articulated Holder
MG71003. We performed experiments on two different rods
(of lengths 0.2 m and 0.3 m), both with a diameter of 1.4
mm (I = J/2 = 1.89x10~*® m*) and made from ASTM
A228 spring steel, which has a Young’s modulus of 207
GPa and shear modulus of 79 GPa. The rods were painted
green for enhanced visibility, mounted to the force sensor,
and subjected to point loads by small plastic cylinders.

In each experiment, a set of discrete shape data points d;
is obtained by processing a single camera image (shown in
figure 4). We used color thresholding to isolate the pixels that
correspond to the rod shape and obtain an ordered list of shape
data points and arc lengths by employing a sliding window of
pixels starting at the base of the rod and iteratively propagating
the window forward along the approximate tangent vector. At
each step we calculate the centroid of the rod pixels within
the current window and then slide the window by a fixed
distance in the the direction of the centroid until the end of
the rod is reached. For the 30 cm and 20 cm rod experiments,
N, =134 and N, = 98.

B. Procedure

In the first set of experiments, a single peg was used to
create loading conditions at varying contact locations along
each rod, which are listed in Table I, some of which are shown
in the top row of Figure 4. In a second set of experiments,
we used two pegs to deform the rods by applying a set of
two loads at various locations. 3 different loading conditions
were analyzed for each rod, which are listed in Table II. The
three two-peg experiments for the 30 cm rod are shown in
the second row of Figure 4.

To measure the ground-truth arc-length location of the
applied forces, the undeformed rod was marked with ticks,
Imm apart, using a ruler, and the locations were identified
manually. In the single-load experiments we obtained the
ground-truth applied force vector directly from the base
mounted force sensor (since for a single peg, the measured
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Fig. 4. A subset of our experimental results is shown in the plots above, comparing the performance of our optimization approach with the two different
force representations. In the single force cases on the top row, the estimated loads are compared to the ground truth load as measured by the base mounted
sensor. Sub-figures (a), (b), and (c) correspond to tests 18, 14, and 12 in Table I. On the second row, the ground-truth force locations are compared to the
estimated loadings. Note that the magnitudes of the distributed forces and point forces on the plot should not be directly compared since they have different
physical units and are scaled by different arbitrary amounts for visibility. Sub-figures (d), (e), and (f) correspond to tests 4, 5, and 6 in Table II.

base force should equal the applied force from the peg). The TABLE I
sensor is used only for validation and does not provide any SUMMARY OF SINGLE LOAD EXPERIMENTAL RESULTS
information to the estimation algorithms. In the two-load case, VST F T WYPTTRTn
. o s . Rod T
the individual ground-truth loads are not directly measurable . b Error (mm) (mm) ™
- . Length | Number Fourior | SHE [ o T TSNS | Gromma | Fourier | SHME
using only the base measured force, but we can still compare el | Dirac | SEO TP pirac [ STMhE IO Dirac
. ; Delt: ) Delt: i Delt:
the measured force at the base to the resultant of the estimated — — =
. . . . . . . 1 0.085 0.086 67 62 65 4.17 5.44 4.44
force distribution, computed by integrating it over the entire
. . . . 2 0.067 0.067 922 84 90 1.71 2.10 1.82
length (where the integral of a Dirac delta function is 1 by 3 0,093 | 0001 o 90l  oa| a2 s39] 460
definition, so integrating merely sums up the discrete loads). 200mm |, 0071| 0060 | 17| 123| 15| o089 098] 093
5 0.079 | 0.075 123 127 118 2.32 2.46 2.38
C. Results 6 0.099 | 0.097 133 134 130 3.15 3.17 3.12
F th . tf t t th dt th f 7 0.082 | 0.079 167 179 159 0.32 0.36 0.36
or the point-force representation, the ground-truth force N 006s | ooes | 1 tes | el oss| 1o0| oo
vector and location can be directly compared to the estimated 5 00s6 | oozl 10l 1ss| 17| 134l 113| 126
ones, as shown in Figure 4. For the Fourier series repre- 10 0075 | 0.068 68 66 ol 496 s06| 452
sentation, we compare the ground-truth load location to the 11 0.124] 0076 93 91 83| 224| 25| 274
location of the highest peak on the force distribution, and we - 12 [ oist| o136 | 100 93| 93| 443| s571| 517
. . mm
compare the ground-truth load magnitude to the integral of 13 | 0130| 0078 169] 161] 156] 040] 046] 045
- . . . 14 0.112 0.069 173 167 163 0.99 0.96 1.02
the Fourier force distribution over the length. Note that the
. fth d t b t d f d . tf h . F 15 0.148 0.118 182 185 179 1.35 1.28 1.29
size of the distributed forces and point forces shown in Figure o [ osl ol 20l 20l 2l on1l o1al oo
4 should not be directly compared since they have different 7 | oazs| oozl 221 2581 20| o027] o10| on2a
units and are scaled by different amounts for visibility. 18 | 0127] oose| 278 277 213] 040| o049] 037

Table I lists the RMS shape error of both methods, the
arc-length location, and the load magnitude for all the single



TABLE I
SUMMARY OF DOUBLE LOAD EXPERIMENTAL RESULTS

RMS Shape Arc Length Locations Base Force Magnitude
Rod Test
Error (mm) (mm, mm) N)

Length | Number STidin STiding STidin
Fourier M8 1 Ground | Fourier .= | Ground | Fourier cing

Series | DI | “mun | Series | P | Trum | Series | DIFC
>N Deltas U eres Deltas U 1 | Deltas
1 0.157 | 0.073 | 67,194 | 72,175 | 62,198 8.60 7.87 9.61
200 mm 2 0.206 | 0.072 | 92,168 | 87,178 | 92, 166 5.16 6.10 5.18
3 0.100 | 0.248 | 108, 193 | 125, 190 | 117, 197 3.62 3.18 3.53
4 0.187 | 0.087 | 94,272 | 90,289 | 87,276 4.01 4.18 4.48
300 mm 5 0.147 | 0.084 | 169, 300 | 179, 284 | 166, 300 1.89 2.21 1.85
6 0.141 0.084 | 173, 275 | 175, 273 | 171, 277 2.67 2.21 2.58

force cases, comparing estimated values to the true applied
values in each case. Over the 18 single load cases, the average
error in load location was 6 mm (2-3% of total rod length)
for the Fourier series approximation and 5 mm for the Dirac
delta approximation. The average error in load magnitude
was 0.30 N and 0.16 N, respectively. The 6 two loads cases
are listed in Table II. The average error in load location was
9 mm for the Fourier series and 4 mm for the for the Dirac
delta. The average base force magnitude error was 0.51 N
and 0.29 N, respectively.

The results indicate that the Dirac delta approximation
provided an overall more accurate representation of the loads.
This was expected as the Fourier series is fundamentally
limited when describing point loads. We chose this set of
experiments because we believe that the most important
application of the distributed force estimation problem is to
identify the locations and magnitudes of highly concentrated
forces. Since this is also the most difficult case for the Fourier
series to represent, these experiments are a good stress test
for finding the limits of its ability.

D. Further Examples: Complex and 3D Load Cases

In addition to our main experimental dataset, we further
demonstrate the generality of the approach by including
two ad hoc experimental examples of more complex cases.
First, Figure 5 shows an experiment with 3 point loads that
create multiple inflection points. The results are consistent
with our main dataset indicating that more complex loadings
can be handled. Second, we show the results from a much
more challenging 3D loading experiment in Figure 6. We
used a 3D printed rod with a 4mm square cross section
made of thermoplastic polyurethane. To achieve a 3D, non-
planar deformed shape, the rod was printed into a precurved
“U” shape, and gravity was used to apply an out of plane
distributed load. In this large-deflection scenario, torsion is
a significant contributor to the deformed shape. We used
orthogonal camera views to determine the 3D shape, and
applied our Fourier estimation method with N = 21 terms.
Despite the fact that a global gravity load violates our
modeling assumption that the loading is orthogonal to the
rod tangent vector, the results shown in Figure 6 display
an estimated load of approximately the right magnitude and
direction. The RMS shape error over the length is 2.64 mm
(whereas the width of the rod is 4 mm, and the total length
is 190 mm). This example indicates that the inverse problem
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Fig. 5. We include this additional ad hoc example of a three-load case to
further demonstrate the generality of the approach. Even with alternating
curvatures, both distributed load approximations are capable of achieving
near-zero shape error, and the estimated distributions have peaks near the
true contact points.
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Fig. 6. In theory, the algorithms presented are capable of force estimation

for 3D rod shapes and distributed loading. Here we present a test example
where a soft “U” shaped rod structure is deformed by gravity.

is perhaps more ill-conditioned in 3D cases with significant
torsion, but the method still gives useful information about
loading conditions consistent with the observed shape.

IV. CONCLUSIONS

Our conclusion from these studies is that even though the
distributed force estimation problem is an ill-posed inverse
problem, approaching it from a constrained optimization
perspective has the potential to yield useful information about
the location and magnitudes of forces on soft/continuum
robots and flexible devices. Experimental results on a single
large-deflection rod showed that image-based shape data can
be matched extremely well by a Cosserat model with various
force distributions that corresponded in certain respects to
the true force distribution on the rod. In future work, we
aim to adapt this approach and increase its speed in order to
estimate forces on actuated soft/continuum robots in real-time
for operator feedback and/or force control.
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