
PHYSICAL REVIEW A 100, 033406 (2019)
Editors’ Suggestion

Floquet heating in interacting atomic gases with an oscillating force
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We theoretically investigate the collisional heating of a cold atom system subjected to time-periodic forces. We
show within the Floquet framework that this heating rate due to two-body collisions has a general semiclassical
expression P ∝ ρσvcolE0, depending on the kinetic energy E0 associated with the shaking, particle number
density ρ, elastic collision cross section σ , and an effective collisional velocity vcol determined by the dominant
energy scale in the system. We further show that the collisional heating is suppressed by Pauli blocking in cold
fermionic systems and by the modified density of states in systems in lower dimensions. Our results provide an
exactly solvable example and reveal some general features of Floquet heating in interacting systems.
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I. INTRODUCTION

Engineering novel Hamiltonians is central to quantum
simulations. In general, Hamiltonians can be implemented
directly and statically, or in a time-averaged way. The latter
implies periodic driving of the system. If the fast modulation
can be neglected, an effective time-averaged static Hamil-
tonian is realized as formally captured by Floquet theory
[1,2]. With proper driving, dynamically generated Floquet
Hamiltonians can be designed. Such Floquet systems poten-
tially exhibit novel properties which are difficult or impossible
to be realized in static settings. Examples include synthetic
gauge fields [3–6], spin-orbit coupling [7–9], and topological
bands and materials [10–13]. Experimental progress includes
creation of the Hofstadter Hamiltonian in optical lattices for
neutral atoms [14–17], realization of the topological Haldane
model with shaken optical lattice [18], and the demonstration
of dressed recoil momentum for radio-frequency photons in
ultracold gases with modulated magnetic fields [19].

However, higher-order terms beyond the time average,
related to fastmicromotion, can cause heating via interactions,
limiting experimental studies of many-body physics. In gen-
eral, a driven system constantly exchanges energy with the
driving field. Interactions redistribute this energy into other
degrees of freedom, leading to an increase of the total en-
tropy and energy. Although this heating can be suppressed in
specific scenarios, e.g., via many-body localization [20–22],
a generic closed quantum system will eventually thermal-
ize at infinite temperature when driven [23], limiting the
experimental studies of many-body Floquet systems. There-
fore, understanding and potentially controlling the heating in
Floquet systems has triggered both theoretical [22–28] and
experimental efforts [29,30].

The dynamics of a Floquet system are studied with Floquet
theory. Systems heat by absorbing energy from the driving
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field in multiples of the energy quanta related to the mod-
ulation frequency ω, caused by the scattering of the driven
particles [26]. The heating rate reads

P =
∑
n

�nnh̄ω, (1)

which is determined by the transition rates �n for the pro-
cesses of absorption and emission of n energy quanta. In this
description, the energy exchange is quantized.

On the other hand, in the limit of lowmodulation frequency
where the system’s intrinsic energy scales dominate, the quan-
tization of the driving field should not have a prominent effect.
The system’s behavior can be described semiclassically. As a
result, it is anticipated that the heating dynamics of a Floquet
system have a corresponding semiclassical counterpart in this
low-frequency regime. Moreover, the quantized and the semi-
classical description should exhibit a continuous crossover as
a function of the modulation frequency ω and amplitude.

In this work, we investigate the Floquet heating and the
crossover between the quantum and semiclassical regimes for
systems subjected to periodic forcing in free space, motivated
by the recent experimental demonstration of Floquet-dressed
recoil momentum for photons in a two-spin mixture of cold
gases [19], where the two spins are shaken relative to each
other. Such a setting is the key ingredient of many Floquet
schemes proposed for generating synthetic gauge fields and
topological matter [2,7–10]. The corresponding semiclassical
description of the heating in such a system is the following:
the force modulates the particles’ velocities and consequently
generates extra kinetic energy E0. Thismicromotion energy E0

can be transferred into the secular motion of the particles via
interparticle collisions when the micromotion is out of phase
for the colliding particles, causing an increase of the system’s
total energy, and consequently heating. The resulting heating
rate can be estimated with the two-body elastic collision rate
ρσv and the associated energy E0 as

P ∝ ρσvE0, (2)
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with the atomic density ρ, elastic collisional cross section σ ,
and the relative speed of the two particles v. This heating
rate is continuously variable depending on the strength of
the driving, characterized by E0, and is independent of the
driving frequency ω, which seems to contradict the Floquet
description of quantized energy transfer.

In this paper, we calculate the collisional heating rates
in periodically shaken atomic gases with a full Floquet
treatment. We identify several distinct regimes determined
by the energy hierarchies in the system and show that the
semiclassical and the Floquet picture are two limiting cases
of a unified general description of the heating rate as P ∼
ρσvcolE0. The key parameter vcol is an effective collisional
velocity parametrizing the final density of states. This can be,
for example, the averaged thermal velocity

√
kbT/m with kb

being the Boltzmann constant,
√
h̄ω/m, or

√
E0/m, depending

on the dominant energy scales. In addition, we show that
collisional heating is suppressed in a cold fermionic system
by Pauli blocking, and due to the modified density of states in
systems in lower dimensions.

The paper is organized as follows. Section II is a concise
review on the Floquet theory and scattering of Floquet-Bloch
states, which serves as the theoretical basis for the main results
presented in Sec. III. We first analyze the Floquet heating for
two atoms in Sec. III A. We then analyze different regimes of
the collisional heating in Sec. III B and subsequently extend
the analysis to atomic ensembles in Sec. III C, including a
specific discussion on fermionic systems in Sec. III D. A
discussion of heating rates in lower-dimensional systems is
presented in Sec. III E, followed by a summary and outlook in
Sec. IV.

II. FLOQUET THEORY AND FLOQUET HEATING

Our work is based on Floquet theory, which describes
the evolution of a periodically driven system. Evolution of a
Floquet system has been studied in different scenarios with
different approaches, for example, through high-frequency
expansion [1,2,31], Floquet-Magnus expansion [32], and ex-
tended Hilbert space [33]. We summarize here the basic
concepts and formalism in Floquet theory and the scattering
of the Floquet-Bloch states. This section mainly follows the
description in Ref. [26]; comprehensive discussions can be
found in Refs. [2,26,32,33].

A. General aspects of Floquet theory

Floquet theory describes the behavior of a system governed
by a time-periodic Hamiltonian Ĥ (t + T0) = Ĥ (t ). This tem-
poral translational symmetry allows simple descriptions of the
time evolution. Solutions of the time-dependent Schrödinger
equation

Ĥ (t ) |�(t )〉 = ih̄∂t |�(t )〉, (3)

known as Floquet-Bloch states, can be decomposed into
Fourier modes as

|�(t )〉 =
∑
l

e−iEt/h̄+ilωtCl |φl〉. (4)

Here, ω = 2π/T0 is the modulation frequency and E is the
eigenenergy of the corresponding nondriven system. The am-
plitude of each of the Fourier modes Cl generally depends
on parameters such as the strength and the frequency of the
driving.

The system does not conserve energy, due to the external
drive. In the literature, two different conventions are adopted
to describe the energy structure of such a system [26]. Some
authors define quasienergies Eq = E modh̄ω lying between
(−h̄ω/2, h̄ω/2). Others distinguish between the carrier en-
ergy E , describing the secular motion, and the energy side-
bands E ± l h̄ω, describing the micromotion. This distinction
can be understood by considering an adiabatic ramp of the
amplitude of the driving. In this work, we adopt the second
convention.

B. Scattering of Floquet-Bloch states

The dressed energy sidebands of the Floquet-Bloch states
modify the scattering between two states caused by interac-
tions. Scattering can occur not only between the carriers but
also from the carrier of the initial state to the sidebands of the
final state. In the latter case, the final and the initial carrier
energy are different by multiples of the energy quanta h̄ω,
representing the energy exchange between the driving field
and the system via scattering. This process is formulated with
the so-called Floquet Fermi’s golden rule [26]. The transition
amplitude between two Floquet-Bloch states is calculated
using time-dependent perturbation theory [26]:

A(i → f , t ) = − i

h̄

∫ t

0
dt ′ 〈
f (t

′)| V̂ |
i(t
′)〉

= − i

h̄

∑
p,q

∫ t

0
dt ′ei[Ef−Ei+h̄(p−q)ω]t/h̄V p,q, (5)

whereV p,q = 〈φq
f | V̂ |φp

i 〉 is the coupling between two Fourier
modes p, q belonging to the final and the initial state re-
spectively via, for example, collisions. The corresponding
transition rate is readily obtained as

�(i → f ) = lim
t→∞

|A(i → f , t )|2
t

= 2π

h̄

∑
n

⎛
⎝∑

l,m

V l,l+nV ∗m,m+n

⎞
⎠δ(Ef − Ei−nh̄ω).

(6)

The sum over the index n explicitly reveals an important
feature of the scattering between two Floquet-Bloch states.
In the n = 0 scattering channel, the initial and final states
have the same carrier energy, and therefore no net energy
is exchanged between the colliding particles and the driving
field (Floquet elastic processes), which resembles the con-
ventional elastic scattering. Scattering channels with n �= 0
characterize the processes where the energy of the atomic
system is changed by exchanging n quanta with the driving
field (Floquet inelastic processes), leading to Floquet heating.
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C. Heating rates

We define the heating rate P of the system as the rate of the
average increase in the system’s total energy Ėtot, which can
be expressed with the scattering rate �n and the related energy
transfer nh̄ω as

P =
∑
n

�nnh̄ω. (7)

As shown above, heating of a periodically driven system
originates from the absorption of energy from the driving
field through interparticle interactions. The heating rate of a
Floquet system can be calculated by first finding the exact
Floquet-Bloch state wave function. Then the energy exchange
rate can be obtained by calculating the transition rates for
all quantized absorption and emission processes and their
associated energy change. Generally, the explicit form of the
wave function of the Floquet-Bloch state |�(t )〉 is obtained by
inserting Eq. (4) into Eq. (3) and solving the infinite number
of coupled equations for amplitudes Cl . However, for some
special cases, the exact solutions have a simple form, such as
the system presented in Sec. III.

III. COLLISIONAL HEATING FOR PERIODIC FORCES

We apply the method described in Sec. II to the system of
interest: a spin mixture of atoms with different magnetic mo-
ments for a periodically modulated magnetic-field gradient, as
implemented in Ref. [19] (Fig. 1). For simplicity, we assume
the two spins to have equal but opposite magnetic moments,
such that they experience opposite forces. We first derive the
exact analytic form of the corresponding Floquet-Bloch state
wave function, then calculate the collisional heating for a
single pair of atoms with opposite spins, before generalizing
the results to atomic ensembles. In this section, we focus on
three-dimensional systems. The results are extended to lower
dimensions in Sec. III E.

A. Collisional heating for two atoms

1. Single-particle Floquet-Bloch states

The Hamiltonian we consider is

Ĥ (t ) = h̄2k̂2

2m
+ h̄k0zσ̂z sin (ωt + φ), (8)

where the time-dependent term arises from a spin-dependent
periodic force F = h̄k0σz sin (ωt + φ)êz. The corresponding
Floquet-Bloch states defined in Eq. (3) have the compact and
intuitive form


k(r, t ) = 1√
V

exp [ik(t ) · r − i�(t )], (9)

where

h̄k(t ) = h̄k + h̄k0êz

∫ t

0
sinωt ′ dt ′ (10)

and

�(t ) =
∫ t

0

h̄2k(t ′) · k(t ′)
2m

dt ′ (11)
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FIG. 1. Scattering between two particles subjected to a periodic
force. Atoms with different spins are represented by black and
gray spheres. (a) The oscillating force dresses each particle with
energy sidebands spaced by h̄ω. The scheme has been implemented
in Ref. [19], where atoms with different magnetic moments are
driven by a periodic magnetic-field gradient. (b) Elastic collisions
couple two Floquet-Bloch states. Gray and black arrows represent the
incoming and the outgoing states, respectively, and θ is the scattering
angle. (c), (d) Illustration of the Floquet elastic (c) and Floquet
inelastic (d) process. Besides the regular elastic collisions where the
final and the initial state have the same carrier energy (Floquet elastic
process), the existence of the energy sidebands allows transitions
between states whose carrier energies are different by a multiple of
h̄ω (Floquet inelastic process), leading to the exchange of energy
between the system and the driving field.

are the instantaneous momentum and the cumulative dynamic
phase at time t . The physical interpretation of the wave func-
tion Eq. (9) is made transparent by considering a stationary
Gaussian wave packet |φ〉t=0 = ∫

dk exp (−k · k/σ 2
k ) |φ〉k at

the origin. The expectation values of the position r and the
momentum h̄k of the wave packet at time t under the periodic
driving

〈r〉t = h̄

m

∫ t

0
k(t ′)dt ′, 〈h̄k〉t = h̄k(t ) (12)

are identical to those of a driven classical particle. We further
identify the secular motion of the particle with the time
average of 〈r〉t , 〈h̄k〉t over a period T0.

The periodic modulation at the driving frequency ω ap-
pears in both the dynamic phase �(t ) and the wave vector
k(t ). The amplitude Cl of each Fourier mode defined in
Eq. (4) can be readily obtained via the expansion eia sinωt =∑∞

n=−∞ Jn(a)einωt as Cl = ∑
i+ j+2k=l Ji(k0z)Jj (α)Jk (β ) with

the first-order Bessel functions Jν and two parameters defined
as

αk = h̄kzk0
mω

, β = h̄k20
8mω

. (13)
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These motional sidebands dressed by the periodic driving
have been directly observed via resonant fluorescence spec-
troscopy in trapped-ion systems [34]. The result is also con-
ceptually similar to an optical modulator where the carrier
frequency is dressed with frequency sidebands due to the
periodic modulation of the medium’s optical properties.

2. Two-particle collisions and the heating rates

The two-body problem is reduced to a single particle prob-
lem by decomposing the dynamics into relative and center-
of-mass parts. The center-of-mass motion is unaffected by
collisions and is therefore omitted in further calculations. The
two-body Hamiltonian reads

Ĥ (R, r, t ) = h̄2K̂2

2M
+ h̄2k̂2

2μ
+ h̄k0σ̂zz sin (ωt + φ)

+ gδ(r), (14)

with μ = m/2 being the reduced mass. r = (r1 − r2)/2 and
k = (k1 − k2)/2 are the relative coordinate and momentum.

The wave functions for the relative motion have the same
structure as Eq. (9), except that the mass is replaced by the
reduced massμ and the momentum by the relative momentum
h̄k.

Collisions are captured by the s-wave pseudopotential
V̂ = gδ(r) described by Eq. (14). Here g = 4π h̄2a/m is the
strength of the interaction and a is the s-wave scattering
length between the two spin states. The interaction V̂ couples
two Floquet-Bloch states in Eq. (9). Without the periodic
driving, elastic collisions couple only states with the same
kinetic energy Ek = Ek′ = h̄2|k|2/2μ. However, the energy
sidebands introduced by the periodic driving, formulated in
Eq. (9), allow the scattering between states whose carrier
energies differ by a multiple of h̄ω, giving Ek′ − Ek = nh̄ω
[Figs. 1(b)–1(d)]. The associated quantized energy change
nh̄ω is transferred to the secular motion, leading to heating
(or cooling). The transition rate from the ingoing state |
 i

k〉 to
the outgoing state |
 f

k′ 〉 can be readily calculated from Eq. (6).
By combining Eqs. (6) and (9), we derive the coupling matrix
element

Mn(k → k′) = g
∑
l

∫
dr δ(r)Cl (k)∗Cl+n(k′)

= gJn(αk − αk′ ), (15)

which gives the total transition rate from |
 i
k〉 to |
 f

k′ 〉

�(k → k′)

=
∑
n

�n(k → k′)

=
∑
n

2π

h̄
|Mn(k → k′)|2δ(Ek′ − Ek − nh̄ω), (16)

explicitly showing the scattering rate of channels with differ-
ent numbers of energy quanta h̄ω exchanged. The scattering
matrix element Mn reveals the microscopic process of the
energy exchange with the driving field (n �= 0 processes):
it occurs only when αk �= αk′ , i.e., when the projection of
the relative momentum k to the shaking axis changes. A

0
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180 ° 0.5
1.

n�1

n�0

(a)

n��1 0

60 °120 °

180 ° 0.5
1.

n�0

n�1

(b)

FIG. 2. Differential scattering cross sections for Floquet scatter-
ing processes with n = 0 (black), n = 1 (gray), and n = −1 (light
gray). The angular coordinate corresponds to θ as depicted in Fig. 1.
(a) For Ek > h̄ω, both absorption (n > 0) and emission (n < 0)
processes are allowed. Scattering between the Floquet-Bloch states
is anisotropic in angle due to the sidebands. The figure is plotted
for α = 0.4, β = 0.003. (b) For strong driving the micromotion
dominates and the forward and backward scattering are symmetric as
expected. The maximum scattering cross sections are normalized to
unity, except for the process with n = −1 in (a) which is normalized
with the maximal cross section of the n = 1 process in (a).

feature of the scattering between two dressed particles is the
anisotropy in the scattering cross section, as shown in the
differential scattering cross section (Fig. 2),

d2σn

d� dE
= 2σ√

m

|k′|
|k| |Mn|2δ(Ek′ − Ek − nh̄ω). (17)

Though the potential V̂ is isotropic, the scattering cross sec-
tions are anisotropic for each channel. This anisotropy in the
scattering could be potentially observed in the time-of-flight
pattern of a spin-mixed driven condensate.

We calculated the heating rate P = ∑
n �nnh̄ω for a single

pair of colliding particles with a relative momentum h̄k by
summing over the allowed final states k′ and scattering chan-
nels n, leading to

Pk =
∑
n

∑
k′

�n(k → k′)nh̄ω

=
∑
n

2π

h̄

g2

V
D3D(Ek + nh̄ω)γ 2(k, n)nh̄ω, (18)

where

γ 2(k, n)

= 1

2g2

∫ π

0
dθ sin θ |Mn(|k| →

√
|k|2 + 2μnω/h̄ cos θ )|2

(19)

characterizes the transition amplitude and D3D(E ) =
(2μ/h̄2)3/2

√
E/(2π )2 is the three-dimensional density of

states of a free particle with energy E . Here we have assumed
for simplicity that the initial relative momentum k is along
the direction of modulation.

B. Regimes and crossovers

One of the major results of this paper is to show the
connection between the Floquet picture, where energy transfer
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is quantized, and the semiclassical picture, where the energy
transfer is continuous. The consolidation of the two pictures
can be demonstrated already by examining the two-particle
calculation presented above.

We recognize three fundamental energy scales in the sys-
tem: (1) E0 = h̄2k20/(4m) characterizing the micromotion, and
the strength of the modulation, (2) h̄ω characterizing the mod-
ulation quanta, and (3) Ek characterizing the relative motion
between the two colliding particles, e.g., kbT for a thermal
system or EF for a cold Fermi gas. The heating behavior of the
system is qualitatively different depending on the relationship
between these quantities.

We identify the following regimes from Eq. (18).
a. Rapid-modulation regime. h̄ω � Ek,E0: a system with

this condition has three features. First, only energy absorption
is allowed. Second, the energy of the final states, Ek + h̄ω,
is now dominated by the modulation energy and D3D(Ek +
h̄ω) ∼ √

h̄ω. Finally, since Mn ∼ 1/ωn/2, the transition rate
for the multiquanta processes scales with 1/ωn and is there-
fore negligible. The heating rate can be obtained analytically
by considering only the n = +1 process and reads

Pk ≈ 4

3

σ

V

√
2h̄ω

μ
E0. (20)

This is the regime where the quantum and the semiclassical
picture diverge. Though the amplitudes of the sidebands drop
with increasing modulation frequency, the system’s heating
rate increases due to the larger final density of states and the
energy transfer h̄ω.

b. Semiclassical regime. Ek � h̄ω,E0: in this regime, as
realized in Ref. [19], the final density of states is approximated
to be D3D(Ek + nh̄ω) ≈ √

Ek[1 + nh̄ω/(2Ek )]. Both the en-
ergy absorption (heating) and emission (cooling) processes
are allowed. The heating of the system comes from the imbal-
ance between absorption and emission of energy quanta h̄ω,
due to the higher density of states and the larger value of the
scattering matrix element for the energy absorption process. If
a stronger criterion Ek � h̄ω � √

E0Ek is fulfilled such that
αk � 1, only sidebands with l = ±1 are relevant. In this case,
we obtain from Eq. (18)

Pk ≈ 8
σ

V

√
2Ek

μ
E0, (21)

showing the same dependence on parameters as the semiclas-
sical picture. The heating of the system can be understood in
the semiclassical picture where the collision rate is propor-
tional to the initial relative velocity and the modulation energy
gets transferred as heat to the secular motion.

Contributions from multiquanta transfer processes |n| > 1
can be important. Indeed, as shown in Fig. 3, results obtained
with the single-quantum transfer assumption deviate at small
ω from the results where higher-energy transfer processes are
considered. However, the heating rate at lower ω with all
the higher-energy transfer processes included still converges
to the semiclassical limit Eq. (21) obtained from the single-
sideband approximation.

c. Strong-drive regime. E0 � h̄ω,Ek: in this limit, the
strongly driven oscillation dominates over the particle’s initial
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FIG. 3. Numerical calculations of the heating rate involving mul-
tiquanta process |n| � 1 for a thermal cloud at temperature T =
380 nK (experimental condition in [19]), 800 nK and for T = 0
(i.e., an ideal Bose-Einstein condensate) at ω = 2π × 5 kHz. (a) For
the thermal cloud, the heating rates scale with

√
ω at high fre-

quencies and become independent of ω around h̄ω ≈ 4kbT , which
is the ensemble averaged Ek. The heating rates then plateau at
the semiclassical value given by Eq. (25), illustrated by the dotted
lines. The solid gray and the dashed gray lines represent the results
obtained from the single-sideband approximation Eq. (24) for T =
380 nK. The blue dot indicates the parameter implemented in [19].
(b) For a condensate, the heating rate scales quadratically with the
modulation strength characterized by E0 when h̄ω � E0 and shows
semiclassical behavior at h̄ω � E0. The black line is the numerical
result; the dashed gray line is the heating rate calculated with the
single-sideband approximation which matches the numerical result
in the regime h̄ω � E0. In this calculation we use n3D = 1012 cm−3

and scattering length a = 53.8a0.

motion. The scattered particles, therefore, behave as if each
particle were moving at velocity

√
E0/m. Multiquanta pro-

cesses contribute significantly to the heating rate due to the
large modulation index β ∼ √

E0/(h̄ω) of the final state. The
heating rate reads

Pk=0 = 2π

h̄
g2

∞∑
n=0

[
D3D(nh̄ω)nh̄ω

×
∫

dθ
sin θ

2

∣∣∣∣∣Jn
(
4

√
nE0

h̄ω
cos θ

)∣∣∣∣∣
2
⎤
⎦

= 3.36σ

√
E0

m
E0, (22)

where the coefficient 3.36 is found numerically.
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C. Ensemble heating rates

We now apply the two-particle results above to thermal
ensembles with total atom number N by averaging over the
ensemble as

Pens =
∫

d3k1
(2π )3

d3k2
(2π )3

d3k′
1

(2π )3
d3k′

2

(2π )3
δk1+k2,k′

1+k′
2

× f (k1) f (k2)P (k1,k2 → k′
1,k

′
2), (23)

where f (k) is the particles’ velocity distribution and
P (k1,k2 → k′

1,k
′
2) = P (k → k′) with k = (k1 − k2),k′ =

(k′
1 − k′

2). We calculate the heating rates at different regimes
for (1) thermal clouds at temperature T , (2) a Bose-Einstein
condensate, and (3) a degenerate Fermi gas.

The analytic results presented in this section are obtained
by assuming the single-sideband approximation unless other-
wise stated, as justified in the previous section. Multiquanta
results are presented as numerical results in Fig. 3.

d. Thermal ensemble. For a classical ensemble at a temper-
ature T , the distribution f (k) is the Boltzmann distribution.
The resultant ensemble heating rate is

P thermal
ens = 2

3
Nn3Dσ

√
h̄ω

m
E0 (24)

for the rapid-modulation regime, and

P thermal
ens = 16

3
Nn3Dσ

√
kT

πm
E0 (25)

for the semiclassical regime. Along with the general ex-
pression P ∼ ρσvcolE0, we identify vcol ∝ √

kbT/m to be
the ensemble averaged thermal velocity, which reproduces
the semiclassical picture where the micromotion energy is
transferred to the secular motion via elastic collisions at a rate
proportional to the thermally averaged relative speed between
the two colliding particles.

e. Bose-Einstein condensates. ABose-Einstein condensate
at T = 0 is treated as an ensemble with f (k) = δ(0). Follow-
ing Eqs. (20) and (22), the heating rate reads

PBEC
ens = 3.36Nn3Dσ

√
E0

m
E0 (26)

at E0 � h̄ω and

PBEC
ens = 2

3
Nn3Dσ

√
h̄ω

m
E0 (27)

at E0 � h̄ω, as shown in Fig. 3(b). The result suggests
a collisional velocity vcol ∝ √

E0/m and vcol ∝ √
h̄ω/m,

respectively.
To compare with the experimental results in Ref. [19], we

numerically calculate the heating rates for various cases by
directly calculating the sum Eq. (18) for the experimental
parameters (Fig. 3). Our result is consistent with the weak
Floquet heating observed.

D. Fermionic systems

The heating effect studied in this work relies on atomic
collisions which can be affected by particle statistics. For
deeply degenerated Fermi gases, Pauli blocking effectively re-
duces the elastic collisional cross section σ , as experimentally

demonstrated in [35–37]. As a result, collisional heating from
periodic driving is suppressed in a fermionic system.

Fermi statistics dominates when EF is the largest energy
scale. At this condition, collisions occur on the Fermi surface.
More formally, the heating rate for a fermionic system is
expressed as

PF
ens =

∫
d3k1
(2π )3

d3k2
(2π )3

d3k′
1

(2π )3
d3k′

2

(2π )3
δk1+k2,k′

1+k′
2

× f↓(k1) f↑(k2)[1 − f↓(k′
1)][1 − f↑(k′

2)]

×P (k1,k2 → k′
1,k

′
2). (28)

Here, f = 1/(gi + 1) is the occupation number with g =
exp [(h̄2k · k/(2m) − μ)/kbT ] and μ is the chemical poten-
tial. Pauli blocking is captured by the extra factor [1 −
f↓(k′

1)][1 − f↑(k′
2)], accounting for the occupation of the final

states. Here we consider an equal mixture of spin-up and
spin-down atoms.

When h̄ω is the largest energy scale in the system, the
entire Fermi sea is involved in the collisional heating process
since all possible final states are unoccupied. The heating rate
scales with ω in a similar way as in the case where Fermi
statistics is absent as in Eq. (24).

When h̄ω < EF, Pauli blocking occurs. At T = 0, f ap-
proaches a step function with μ = EF. Collisions occur in a
shell with a thickness of ∼(h̄ω/EF)kF around the sharp Fermi
surface. We show in Appendix B that the heating rate of the
3D system becomes

PF
ens ≈ π√

2
Nn3Dσ

(
h̄ω

EF

)2
√
EF

m
E0 (29)

when h̄ω < EF, where the factor (h̄ω/EF)2 characterizes the
effect of Pauli blocking. The power law of h̄ω originates from
three effects: (1) scattering occurs in a shell at the surface
of the Fermi sphere, accounting for a factor of (h̄ω/EF)3,
(2) the scattering matrix elements contribute 1/(h̄ω)2, and
(3) the energy transfer per Floquet inelastic scattering process
gives h̄ω.

For T �= 0, thermal excitations smear the Fermi surface,
affecting the number of states involved in the collisional
processes. When kbT < h̄ω, the modulation energy still domi-
nates the scattering. The result is similar to the T = 0 cases, as
shown in Fig. 4. When kbT > h̄ω, the thickness of the colli-
sional shell in momentum space is on the order of (kbT/EF)kF.
We show in Appendix B and also numerically that the heating
rate scales as

PF
ens ∝ Nn3Dσ

(
T

TF

)2
√
EF

m
E0 (30)

at low temperature and is independent of the modulation
frequency.

When the micromotion energy E0 is large compared with
both the thermal energy kbT and the modulation energy h̄ω,
the heating rate of the system becomes

PF
ens ∝ Nn3Dσ

(
E0

EF

)√
EF

m
E0, (31)

which can be explained by considering the collision between
two Fermi spheres displaced by k0 from each other. Collisions
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FIG. 4. Collisional heating rates in a periodically driven spin
mixture of degenerated Fermi gases at T = 0.1TF, 0.05TF, 0.02TF.
The heating effects are Pauli suppressed for a cold Fermi gas when
the energy quantum h̄ω is smaller than the Fermi energy EF. Dashed
line: heating rate calculated at T = 0.05TF in the absence of the
Pauli blocking factor [1 − f↓(k′

1)][1 − f↑(k′
2)] for comparison. The

discrepancies at high modulation frequencies are numerical artifact.
Inset: heating rates at h̄ω = 0.016EF and fixed EF for various tem-
peratures where h̄ω < kbT < EF. The heating rate is proportional to
(T/TF )2.

are only allowed within a Fermi shell with a thickness of
k0. The number of available states is therefore ∝(k0/kF)

2N2,
which implies the Pauli blocking factor (E0/EF).

E. Lower-dimension systems

Though our calculations are done for a specific system,
several conclusions are generally valid. The result that P ∼√
h̄ω at high frequencies is valid for any three-dimensional

systems in free space with quadratic particle dispersion due to
the density of states. Since the Floquet elastic collisional rate
is bounded, such Floquet systems cannot be studied in ther-
mal equilibrium in the limit of fast modulation frequencies.
However, it is often desirable to have the modulation energy
scale h̄ω greater than all the other dynamic energy scales.

One possible solution is to go to lower dimensions, sug-
gested by the observation that heating at high frequency
originates from the increased density of states with higher
energy D3D ∼ √

h̄ω. In a 2D system, the density of states
is independent of the energy, so that excessive collisional
heating can be suppressed.

We consider here quasi-2D scenarios where the atomic
motion is constrained in a two-dimensional pancake but scat-
tering is still described by the 3D s-wave pseudopotential.
This can be achieved in the case where the scattering length
a is much larger than the interaction range but smaller than
the oscillator length l0 = √

h̄/(mν⊥) in the strongly confined
direction, with trapping frequency ν⊥. The modulation is in
plane.

In these cases, the Floquet-Bloch wave function is written
as


(x,ρρρ, t ) = φ⊥(x)
1√
A
exp [ik(t ) · ρρρ − i�(t )], (32)

where ρρρ = {y, z} and k = {ky, kz} are the 2D radial vector and
wave vectors. A is the system area. The component along the
strongly confined direction x has been explicitly separated
as φ⊥. We assume that φ⊥(x) = π1/4l1/20 exp (−x2/2l20 ) and
particles stay in the ground-state wave function.

With these parameters, results obtained for the 3D case can
be readily extended to quasi-2D by replacing the scattering
strength gwith the effective 2D scattering strength [38]

g2D = 2
√
2π h̄2

m

a

l0
. (33)

Together with the 2D density of states D2D = μ/(2π h̄2) and
σ = 4πa2, the heating rate can be expressed as (see Appendix
A 2 for details)

P2D = 16Nn2D
h̄

m

σ

l20

(
8kbT

h̄ω
+ 1

)
E0 (34)

in the rapid-modulation regime and

P2D = 32Nn2D
h̄

m

σ

l20
E0 (35)

in the semiclassical regime. This can be interpreted as a
3D density n3D = n2D/l0 = N/(Al0) and a velocity vcol =
h̄/(ml0). The heating rates are bounded in both regimes.

Similarly, for a quasi-1D system with length L, g1D =
h̄2a/(ml20 ) is the interaction strength. We obtained

P1D ∝ Nn1D

(
h̄

m

)2√ m

h̄ω

σ

l40
E0 (h̄ω � kbT ),

P1D ∝ Nn1D

(
h̄

m

)2√ m

kbT

σ

l40
E0 (h̄ω � kbT ),

(36)

with n1D = N/L. The heating is now suppressed at high
frequencies.

However, we note that the modulation frequency ω is
assumed to be smaller than the trapping frequency along
the direction of the strong confinement ω � ν⊥ to avoid
excitations to higher oscillation states. In the opposite regime,
systems are expected to reduce to the 3D case. These effects
are addressed in the studies of collisional heating in modulated
optical lattices [25,27,30], which is beyond the scope of this
work.

For Fermi gases in lower dimensions, heating rates are sup-
pressed compared to 3D both at high modulation frequencies
h̄ω � EF through the reduced density of states and at low
frequencies by Pauli blocking. The exponents γ1, γ2, γ3 in
the Pauli blocking factors (h̄ω/EF)γ1 , (kbT/EF)γ2 , (k0/kF)γ3

depend on the system’s dimension and can be found nu-
merically, as shown in Fig. 5(c). For the 2D case, we find
γ1 ≈ γ2 ≈ 1.71. We postulate with no further evidence that
γ1 = γ2 = γ3 for all dimensions. Our results show that, for
Fermi gases in lower dimensions, the heating is suppressed in
both the fast and slow modulation limits.

IV. DISCUSSIONS AND SUMMARY

In this work we have shown how a Floquet system acquires
energy from the external drive and heats up via interparticle
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FIG. 5. Numerical calculations for the collisional heating rates
in a quasi-2D (a), quasi-1D system (b), and quasi-2D fermionic
system for various temperatures (c). The heating rate is independent
of ω at high modulation frequencies in the quasi-2D regime, and is
suppressed with increasing modulation frequency h̄ω in quasi-1D.
The oscillations in (b) are numerical artifacts. For fermionic systems
(c), collisional heating is suppressed at both fast and slowmodulation
regimes. Dashed line: heating rate calculated at T = 0.05TF in the
absence of the Pauli blocking factor [1 − f↓(k′

1)][1 − f↑(k′
2)] for

comparison. Inset of (c): heating rates at h̄ω = 0.016EF and fixed
EF for various temperatures where h̄ω < kbT < EF. The heating rate
is proportional to (T/TF )1.71.

interactions. Using the scattering theory of Floquet-Bloch
states, we have calculated the collisional heating rates for a
cold atomic gas driven by time-periodic oscillating forces. We
have shown that the heating of such systems can be described
by a general expression by introducing the effective collisional
velocity vcol parametrizing the density of states:

P ∝ ρσvcolE0. (37)

The velocity vcol is determined by the dominant energy in the
system and is summarized in Table I. For fermionic systems,
the collisional heating is further suppressed by Pauli blocking.

In systems with lower dimensions, collisional heating is also
reduced due to the modified density of states.

Our calculation can also help to understand the collisional
heating in other similar Floquet systems by using appropriate
interparticle potentials and Floquet-Bloch states wave func-
tions. One such system is a combined trap for ions and neu-
tral atoms, where ions are sympathetically cooled by atoms,
limited by heating effects due to the micromotion of the ions
[39–42].

In this work, we considered collisions between particles
which are periodically driven by opposite forces. This is
different from radio-frequency ion traps or the time-orbital
potential (TOP) trap [43], where all particles experience the
same periodic force. In those cases, heating occurs due to
nonadiabatic motion and the inhomogeneous strength of the
drive or long-range Coulomb interactions [44].

A major motivation for studying Floquet heating is to
assess the feasibility of preparing interesting Floquet many-
body states. An essential question is whether a quantum
state can be prepared before excessive heating occurs, es-
pecially under rapid modulation. This is often captured by
a dimensionless parameter η defined as η ∼ τ/τev, which
characterizes the number of cycles of evolution the system
can experience before the system’s total energy increases
by its characteristic energy E due to the heating. Here τev
is the time scale for the system’s evolution and τ ∼ (E/P )
is the system’s lifetime. Floquet engineering of quantum
states requires η � 1. We can use the results of this pa-
per to estimate the parameter η for various systems. For
a thermal ensemble with τev ∼ n3Dσvth and E = kbT , we
obtain η ∼ kbT/E0 in the semiclassical regime and η(ω) ∼
(kbT/E0)

√
kbT/h̄ω for rapid modulation. For experimental

parameters E0 ≈ h × 30 Hz and ω = 2π × 5 kHz [19], we
obtain η ∼ 60 with our model. For condensates, evolution
of the system is characterized by the mean-field interac-
tion strength h̄/τev ∼ U = gn3D in 3D, which leads to η ∼
U 2/(h̄P ). For typical experimental parameters U/h̄ ∼ 2π ×
1 kHz, we estimate η ∼ 103 [19]. For Fermi gases, h̄/τev ∼
EF, giving η(ω) ∼ E2

F/(h̄2ω2E0). This illustrates the benefit
of using systems with large Fermi energy. Assuming E =
0.1EF and a typical Fermi energy EF ∼ h × 20 kHz, we have
η � 1. However, as shown in our work, the parameter η(ω)
approaches zero as ω increases in 3D. On the other hand,
in lower-dimension systems η(ω) behaves qualitatively dif-
ferently at high frequencies. For instance, our models show
η(ω) ∼ (kbT/E0)

√
mkbT l0/h ∼ 200 being independent of ω

in 2D even for rapid modulations. Here we use T = 380 nK,
l0 ∼ 1 μm, and the sodium mass. These features suggest
that lower-dimension systems could be favorable for Floquet
engineering.

In this work, we looked at Floquet heating in a free gas
using perturbation theory. Qualitatively different effects occur
in spin and lattice systems due to quantum coherence or
quasiconserved quantities, where Floquet systems can reach
a steady state [23], show exotic freezing at high frequencies
[45], or feature a threshold for heating in the drive amplitude
[46].

The purpose of this paper was a transparent treatment of
heating in different regimes for a particularly simple Floquet
system. Our discussion provides a starting point for more
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TABLE I. Effective collisional velocities vcol for various systems. The heating rates follow a unified description P ∝ ρσvcolE0, where E0

is the strength of the drive and ρ is the corresponding particle density.

vcol Condition Dominating energy scale
√
h̄ω/m h̄ω � E0, kbT Rapid-modulation regime, where h̄ω dominates√
kbT/m kbT � h̄ω,E0 Semiclassical regime, where the thermal motion dominates√
E0/m E0 � h̄ω, kbT Strong-drive regime where micromotion dominates as in, for example, condensates and

cold atomic samples√
EF/m EF � h̄ω, kbT,E0 Fermi energy dominant as in a degenerate Fermi gas. The heating rate is further

suppressed by Pauli blocking with a suppression factor, (h̄ω/EF )2, (k0/kF )2, or
(kbT/EF )2, depending on the relation between h̄ω, kbT,E0. The exponents are different
in lower dimensions

h̄/ml0 h̄ν⊥ � h̄ω, kbT,E0 Confinement energy dominant as in systems of lower dimension

complex systems where we expect similar regimes depending
on the hierarchy of the relevant energy scales.
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APPENDIX A: ENSEMBLE AVERAGED HEATING RATES

1. 3D systems

We present the detailed calculation for Eq. (25). Rewriting
Eq. (23) with the center-of-mass and relative coordinates
K = (k1 + k2)/2 = (k′

1 + k′
2)/2, and �(k1,k2 → k′

1,k
′
2) =

�(k → k′) with k = (k1 − k2),k′ = (k′
1 − k′

2), one obtains

P =
∫

d3K
(2π )3

d3k
(2π )3

d3k′

(2π )3
f

(
k
2

+ K
)

× f

(
−k
2

+ K
)
P (k → k′), (A1)

with the Boltzmann distribution function

f (k) = N

(
h̄2

2πmkbT

)3/2

exp

(
− h̄2k · k
2mkbT

)
.

As discussed in Sec. III B, we consider only the processes
where n = ±1. The coupling matrix elements Mn, to the
lowest orders in αk , are shown in Table II.

TABLE II. Approximate coupling matrix elements Mn for vari-
ous Floquet collision processes.

M0/g M1/g M−1/g M2/g M−2/g

1 h̄k0 (kz−k′
z )

2mω
− h̄k0 (kz−k′

z )
2mω

1
2

[
h̄k0 (kz−k′

z )
2mω

]2
1
2

[
h̄k0 (kz−k′

z )
2mω

]2

With the single-sideband assumption, we obtain the
analytic expression of Eq. (18) by explicitly calculating
γ 2(k,±1):

Pk = 4
σ

V

∑
n=±1

√
Ek + nh̄ω

m

(
h̄2k2z
μh̄ω

+ h̄2|k|2
3μh̄ω

+ 2n

3

)
nE0,

(A2)

with n = ±1 for the semiclassical regime and n = 1 for the
rapid-modulation regime. The total heating rate P can be
readily obtained as

P = N2

(
4π h̄2

mkbT

)3/2 ∫
d3k
(2π )3

e− h̄2k·k
4mkbT Pk, (A3)

which gives Eq. (20) and Eq. (25) at the corresponding limits.

2. Quasi-2D systems

We start with the Floquet-Bloch states wave function for a
quasi-2D system written as Eq. (32). The scattering strength,
defined as

g =
∫

dr φi(r)V (r)φ f (r),

has the form [38]

g2D = 2
√
2π h̄2

m

a

l0

in quasi-2D. The results obtained for 3D cases can be readily
extended to quasi-2D by replacing g with g2D and using the
corresponding 2D density. We therefore obtain the coupling
matrix element between two quasi-2D Floquet-Bloch states

Mn(k → k′) = g2DJn(αk − αk′ ) (A4)

and obtain

γ 2
2D(k, n)

= 1

2g22D

∫ π

0
dθ |Mn(k →

√
|k|2 + 2μnω/h̄ cos θ )|2.

(A5)

Following similar procedures as in the 3D calculation and
using the 2D density of states lead to

P2D
k = πμg22D

4h̄3A

∑
n=±1

(
2h̄2k2z
μh̄ω

+ h̄2|k|2
μh̄ω

+ 2n

)
nE0. (A6)
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Together with the 2D Boltzmann distribution f (k) =
N ( 2π h̄2

mkbT
) exp (− h̄2k·k

2mkbT
), we obtain the heating rate of the

ensemble

P2D =
∫

d2K
(2π )2

d2k
(2π )2

d2k′

(2π )2
f

(
k
2

+ K
)

× f

(
−k
2

+ K
)
P (k → k′)

= 2N2

(
2π h̄2

mkbT

) ∫
d2k
(2π )2

e− h̄2k·k
4mkbT P2D

k ,

(A7)

which gives Eqs. (34) and (35).

3. Quasi-1D systems

For a quasi-1D system, we use the 1D wave function, a
scattering strength g1D, and Mn


(x, y, z, t ) = φ⊥(x, y)
1√
L
exp [ik(t )z − i�(t )],

g1D = h̄2a

ml20
,

Mn(k → k′) = g1DJn(αk − αk′ ),

D1D(E ) = 1

2π h̄

√
μ

2E

(A8)

to obtain

γ 2
1D(k, n) = 1

2g21D
[|Mn(k →

√
k2 + 2μnω/h̄)|2

+ |Mn(k → −
√
k2 + 2μnω/h̄)|2], (A9)

yielding

P1D
k = 8g21D

h̄2ωL

∑
n

k2 + nμh̄ω/h̄2√
k2 + 2μnh̄ω/h̄2

nE0. (A10)

With the 1D Boltzmann distribution f (k) =
N ( 2π h̄2

mkbT
)
1/2

exp (− h̄2k2

mkbT
), we calculate the heating rate of

the ensemble

P1D =
∫

dK

2π

dk

2π

dk′

2π
f

(
k

2
+ K

)
f

(
−k

2
+ K

)
P (k → k′)

=N2

(
π h̄2

mkbT

)1/2 ∫
dk

2π
e− h̄2k2

4mkbT P1D
k , (A11)

which results in Eq. (36).
We add the note that the scaling ∼1/

√
kbT in the regime

h̄ω � kbT cannot be directly obtained in the same way as
for other dimensions. In 1D, terms in zeroth, first, and second
order in h̄ω/Ek cancel between the n = ±1 processes if both
processes are allowed for two particles with k2 > 2μnh̄ω/h2

∑
n=±1

k2 + nμh̄ω/h̄2√
k2 + 2μnh̄ω/h̄2

n

= −
(
h̄ω

Ek

)3( h̄2

mEk

)2

+ O

[(
h̄ω

Ek

)4
]
. (A12)

Therefore, even for kbT � h̄ω, the leading contribution
comes from the regime k2 < 2μnh̄ω/h2, where only the
n = +1 process is allowed. We obtain

P1D = N2

(
π h̄2

mkbT

)1/2 ∫
dk

2π
e− h̄2k2

4mkbT P1D
k

≈ N2

(
h̄

m

)3
σ

l40

E0

π2ωL

√
mπ

kbT

×
∫ √

2μh̄ω/h̄2

−
√

2μh̄ω/h̄2
dk e− h̄2k2

4mkbT
k2 + μh̄ω/h̄2√
k2 + 2μh̄ω/h̄2

∼ N2

√
2

π2L

(
h̄

m

)2√mπ

kbT

σ

l40
E0 (h̄ω � kbT ). (A13)

The obtained scaling is consistent with the numerical results.

APPENDIX B: DERIVATION OF THE PAULI BLOCKING FACTOR

1. Zero-temperature Fermi gases

In this part we present the calculation for Eq. (29). The interspin collision rate of a two-component Fermi mixture is written
as

PF
ens =

∫
d3k1
(2π )3

d3k2
(2π )3

d3k′
1

(2π )3
d3k′

2

(2π )3
δk1+k2,k′

1+k′
2
f↓(k1) f↑(k2)[1 − f↓(k′

1)][1 − f↑(k′
2)]P (k1,k2 → k′

1,k
′
2). (B1)

We denote εi = h̄2|ki|2/2m, ε′
i = h̄2|k′

i|2/2m, and rewrite the integral in spherical coordinates with ki = ki
(sin θi cosφi, sin θi sin φi, cos θi ),k′

i = k′
i (sin θ ′

i cosφ′
i, sin θ ′

i sin φ′
i, cos θ ′

i ).
Momentum conservation k1 + k2 = k′

1 + k′
2 gives

P (k1,k2 → k′
1,k1 + k2 − k′

1) = C�

[
(k1 − k2)z − (k′

1 − k′
2)z

4

]2

δ(ε1 + ε2 + h̄ω − ε′
1 − ε′

2)

= C�

[
k1 cos θ1 − k′

1 cos θ ′
1

2

]2

δ(ε1 + ε2 + h̄ω − ε′
1 − ε′

2), (B2)
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where C� = 2π
h̄

g2 h̄3k20
μ2ω2 is a constant and ε′

2 = h̄2

2m |k1 + k2 − k′
1|2. The heating rate Eq. (B1) now has the form

PF
ens =

∫
d3k1
(2π )3

d3k2
(2π )3

d3k′
1

(2π )3
δ(ε1 + ε2 + h̄ω − ε′

1 − ε′
2) f↓(k1) f↑(k2)[1 − f↓(k′

1)]

× [1 − f↑(k1 + k2 − k′
1)]C�

[
k1 cos θ1 − k′

1 cos θ ′
1

2

]2

= C�

[
(2m)3/2

2h̄3

]3 ∫ √
ε1ε2ε

′
1

(2π )9
dε1dε2dε′

1d�1d�2d�′
1 f↓(ε1) f↑(ε2)[1 − f↓(ε′

1)][1 − f↑(ε1 + ε2 + h̄ω − ε′
1)]

×
[
k1 cos θ1 − k′

1 cos θ ′
1

2

]2

δ

(
ε1 + h̄ω − ε′

1 − h̄2q2

2m
+ h̄2

m
q · k2

)
, (B3)

where q = k1 − k′
1 and q = |q|. Integrating over the solid angle d�2 = sin θ2dθ2dφ2 gives

PF
ens = (2π )C�

[
(2m)3/2

2h̄3

]3 ∫ √
ε1ε2ε

′
1

(2π )9
dε1dε2dε′

1d�1d�′
1 f↓(ε1) f↑(ε2)[1 − f↓(ε′

1)][1 − f↑(ε1 + ε2 + h̄ω − ε′
1)]

×
[
k1 cos θ1 − k′

1 cos θ ′
1

2

]2 m

h̄2q
√

ε2

∫ 1

−1
dx δ

(
x − −ε1 − h̄ω + ε′

1 + h̄2q2

2m

h̄2q
√

ε2/m

)
, (B4)

with x = cos θ2. We subsequently integrate over �1 and �′
1. When k1,k′

1 vary over their respective solid angles �1,�
′
1 with

fixed lengths k1 = √
ε1, k′

1 = √
ε′
1, the differential vector q also varies over the entire solid angle �q with the length varying

from
√

ε′
1 − √

ε1 to
√

ε′
1 + √

ε1. Therefore, we have the equivalence

d�1d�2 = Cqq
2dq sin θqdθqdφqdφl ,

whereCq = 6/(
√

ε′
1 + √

ε1)3 is the normalization factor and φl is the angle between the planes expanded by {k1,k′
1} and {q, ez}.

The heating rate follows as

PF
ens = (2π )3C�

[
(2m)3/2

2h̄3

]3 ∫
Cq

√
ε1ε2ε

′
1

(2π )9
dε1dε2dε′

1q
2dq sin θqdθq f↓(ε1) f↑(ε2)[1 − f↓(ε′

1)]

× [1 − f↑(ε1 + ε2 + h̄ω − ε′
1)]

m(q cos θq)2

4h̄2q
√

ε2

∫ 1

−1
dx δ

(
x − −ε1 − h̄ω + ε′

1 + h̄2q2

2m

h̄2q
√

ε2/m

)

=C�

[
(2m)3/2

2h̄3

]3 ∫
Cq

√
ε1ε2ε

′
1

(2π )6
dε1dε2dε′

1 f↓(ε1) f↑(ε2)[1 − f↓(ε′
1)][1 − f↑(ε1 + ε2 + h̄ω − ε′

1)]

×
∫ √

ε′
1+

√
ε1

√
ε′
1−

√
ε1

mq3dq

6h̄2
√

ε2

∫ 1

−1
dx δ

(
x − −ε1 − h̄ω + ε′

1 + h̄2q2

2m

h̄2q
√

ε2/m

)

=C�

[
(2m)3/2

2h̄3

]3 ∫
Cq

√
ε1ε2ε

′
1

(2π )6
dε1dε2dε′

1 f↓(ε1) f↑(ε2)[1 − f↓(ε′
1)][1 − f↑(ε1 + ε2 + h̄ω − ε′

1)]

×
[∫ √

ε′
1+

√
ε1

√
ε′
1−

√
ε1

mq3dq

6h̄2
√

ε2
θ
(√

2ε′
2 − ε2 + √

ε2 − q
)
θ
[
q − (√

2ε′
2 − ε2 − √

ε2
)]]

.

(B5)

Note that so far the only approximation adopted is the single-sideband approximation, and that the first sideband is weak,
implying J1(x) ≈ x/2.

When h̄ω < EF, we have
√
2ε′

2 − ε2 + √
ε2 ≈ √

ε′
1 + √

ε1 ≈ 2
√
h̄2/(2m)kF and

√
2ε′

2 − ε2 − √
ε2 ≈ √

ε′
1 − √

ε1 ≈
h̄ω/(2

√
EF). The integral over q in Eq. (B5) now gives

PF
ens ≈C�

[
(2m)3/2

2h̄3

]3 ∫
Cq

√
ε1ε2ε

′
1

(2π )6
dε1dε2dε′

1 f↓(ε1) f↑(ε2)[1 − f↓(ε′
1)][1 − f↑(ε1 + ε2 + h̄ω − ε′

1)]
8mk4F
3h̄2

√
ε2

(
h̄2

2m

)2

≈C�

[
(2m)3/2

2h̄3

]3

E3/2
F

(h̄ω)3

8(2π )6
8m

3h̄2
.

(B6)
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Here we adopt the approximation∫
Cq

√
ε1ε2ε

′
1dε1dε2dε′

1
1√
ε2

f↓(ε1) f↑(ε2)[1 − f↓(ε′
1)][1 − f↑(ε1 + ε2 + h̄ω − ε′

1)]

≈ E−1/2
F

(h̄ω)3

8
.

(B7)

With the definition of the Fermi energy (2mEF)3/2 = 3n3Dh̄
3π2, we eventually obtain

PF
ens ≈ π√

2
Nn3Dσ

(
h̄ω

EF

)2
√
EF

m
E0, (B8)

which shows explicitly the Fermi suppression factor (h̄ω/EF)
2. The calculations above can be extended to the regime of small

h̄ω where multiquanta transfer processes are relevant.

2. Finite temperature Fermi gases

In this section we present the calculation for the Pauli blocking factor (T/TF)2 when T/TF � 1. We further assume that
h̄ω � kbT . The nonzero temperature case is different from the zero temperature Fermi gas mainly in two aspects: first, as
discussed briefly in the main text, the active Fermi shell formed by the accessible states has a thickness of kbT instead of h̄ω.
Second, energy quanta emission processes are now allowed. In the lowest-order approximation, the heating rate can be calculated
with only n ± 1 processes and leads to∫

Cq

√
ε1ε2ε

′
1dε1dε2dε′

1
1√
ε2
[ f↓(ε1) f↑(ε2)[1 − f↓(ε′

1)][1 − f↑(ε1 + ε2 + h̄ω − ε′
1)]

− f↓(ε1) f↑(ε2)[1 − f↓(ε′
1)][1 − f↑(ε1 + ε2 − h̄ω − ε′

1)]]

=
∫

Cq

√
ε1ε2ε

′
1dε1dε2dε′

1
1√
ε2

f↓(ε1) f↑(ε2)[1 − f↓(ε′
1)]

(
−∂ f (ε)

∂ε
h̄ω

)∣∣∣∣
ε=ε1+ε2−ε′

1

∼ E−1/2
F (kbT )2h̄ω. (B9)

Together with Eq. (B6), the Fermi suppression factor is readily recognized to be (kbT/EF)2.
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