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The recently published GWTC-1 [1] - a journal article summarizing the search for gravitational
waves (GWs) from coalescing compact binaries in data produced by the LIGO-Virgo network of
ground-based detectors during their first and second observing runs - quoted estimates for the rates of
binary neutron star, neutron star black hole binary, and binary black hole mergers, as well as assigned
probabilities of astrophysical origin for various significant and marginal GW candidate events. In
this paper, we delineate the formalism used to compute these rates and probabilities, which assumes
that triggers above a low ranking statistic threshold, whether of terrestrial or astrophysical origin,
occur as independent Poisson processes. In particular, we include an arbitrary number of astrophysical
categories by redistributing, via mass-based template weighting, the foreground probabilities of
candidate events, across source classes. We evaluate this formalism on synthetic GW data, and
demonstrate that this method works well for the kind of GW signals observed during the first and
second observing runs.
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I. INTRODUCTION

The detection of gravitational waves from a coalescing black hole binary, on September 14, 2015, by
the Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory) network of ground based
detectors, announced the arrival of gravitational-wave astronomy [2, 3]. Since then, a number of additional
gravitational-wave detections have been made. These include 10 from merging binary black holes (BBHs)
[1, 4–7] and 1 from a coalescing binary neutron star [8] that also produced an electromagnetic counterpart
amply identified by a number of telescopes worldwide [9]. All of these detections are reported in “GWTC-1:
A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during
the First and Second Observing Runs” [1]. We will refer to these observing runs as O1 and O2.
A plethora of interesting astrophysical questions can now be asked, and answered with appropriately

quantified uncertainties. Among them is the question: how many compact binary coalescence (CBC) events,
of a specific astrophysical source class, occur per unit spacetime volume? The determination of these
coalescence rates is a high-profile science target of the LIGO-Virgo collaboration, and for good reason.
Prior to the first gravitational-wave detection, estimates of BBH merger-rates spanned many orders of
magnitude [10]. These were based on population models that remained unconstrained due to a paucity
of electromagnetic observations. GW events allow these rates to be better constrained in a largely model-
independent manner. Using the results from O1 and O2, credible intervals and upper limits on the rate of
binary black hole (BBH), neutron star - black hole (NSBH) binary, and binary neutron star (BNS) mergers
have been previously published in [5, 8, 11–14].

The rates (at 90% confidence) for the same astrophysical source classes were re-estimated after O2, details
of which may be found in [1], which we shall hereafter call the “catalog”. The BNS merger rate was updated
to 110 − 3840 Gpc−3yr−1, the BBH merger rate to 9.7 − 101 Gpc−3yr−1, and a rate upper limit for NSBH
mergers was placed at 610 Gpc−3yr−1. The goal of this write-up is to serve as a complement to the catalog. In
particular, we delineate the formalism and method used to determine the rates of compact binary mergers,
and probabilities of astrophysical origin for various highly significant events in O1 and O2, quoted in the
catalog for the GstLAL search [15].
The method we present in this paper is a non-trivial extension of one that was developed in the context

of gravitational wave data analysis by W. Farr, J. Gair, I. Mandel, and C. Cutler (henceforth FGMC) [16].
(Note that a related formalism was developed earlier, in the context of gamma-ray burst data analysis [17]).
The FGMC formalism itself is an application of Poisson statistics to determine the rate of astrophysical
events when supplied with a mixture of foreground and background events, given that the foreground and
background models are known (or assumed) even though the membership of each event to either one of
these classes is unknown.
The FGMC formalism was employed in the determination of BBH rates using data from O1 [11]. The

scarcity of confirmed BBH detections prompted the use of a method prescribed by Kim et al [18] where each
BBH detected was assumed to be a distinct astrophysical source. On the other hand, the rate upper limits
of BNS and NSBH mergers were computed by formally assuming that exactly zero BNS and NSBH events
occurred during observation time, and then employing the Poisson distribution for zero events [14]. This
assumption is based on the fact that no BNS and NSBH events, with a false alarm rate (FAR) of less than
1/100 years, were found. While changing the threshold by a few orders of magnitude does not vastly alter
the results [14], the choice of threshold is in itself somewhat arbitrary.
What we propose, as an alternative to what was done in O1, is a self consistent, threshold-independent,

counting method that simultaneously estimates the rates of BNS, NSBH and BBH mergers. In essence, this
method extends the FGMC formalism by constructing a joint posterior on the Poisson expected counts
for an arbitrary choice of foreground categories by redistributing, via mass-based template-weighting, the
foreground probabilities of candidate events across astrophysical source classes. Thus, the method presented
here, while used in the catalog paper to handle the three astrophysical categories mentioned above, can
handle any number of categories. For example, it could set limits on the rates of BBH mergers in the
proposed mass gaps [19] and possibly including a higher mass black hole region too.

The template-weights themselves are computed from simulation runs (software injection campaigns), each
targeted at a distinct astrophysical source type. An injection campaign involves adding synthetic signals
pertaining to a source class with clearly defined mass and spin distributions, into the detector data, and
recovering them via a detection pipeline. To construct the weights, we count how many times injections
of a given category are recovered in a given template bin and divide this by the total number of recovered
injections pertaining to that category.
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In the following sections, we describe this “multi-component” extension of the FGMC method, by first
constructing the joint posterior on the Poisson expected counts for each source category, followed by details
on how to estimate the spacetime volume sensitivities of the detectors to each of the source categories and
how to incorporate uncertainties in their measurements into the rates posterior. We then apply this extension
to synthetic data, in order to assess its ability to accurately categorize and count a mixture of CBC signals.
We end by summarizing the multi-component FGMC method, evaluating its performance, and suggesting
other applications of the method.

II. CONSTRUCTING THEMULTI-COMPONENT COUNTS POSTERIOR FROM CANDIDATE EVENTS

A. Posterior on Terrestrial and Astrophysical counts

The original FGMC method [16] constructs a two-component likelihood on the expected number of
astrophysical (Λ1) and terrestrial (Λ0) counts, per experiment, assuming that the foreground and background
triggers above a low ranking statistic threshold where background triggers 1 dominate, occur as independent
Poisson processes. More specifically, the expected counts (Λ) referred to here are the Poisson means for the
duration of the experiment (the total observing time), given which one can compute the discrete probability
distribution on the number k of occurrences of events :

p(k|Λ) ∝Λ
k exp(−Λ). (1)

The two-component FGMC likelihood has the following form [16]:

p(~x|Λ0,Λ1) = e−Λ0−Λ1

N
∏

j=1

[Λ0b(xj ) +Λ1f (xj )] (2)

where ~x = {xj }, j = 1,2,3, ...,N , are the ranking statistics of the triggers above threshold, and b(xj ), f (xj ) are
the background and foreground distributions (normalized density functions, also called the background
and foreground models), evaluated at xj (b(xj ) ≡ p(xj |noise) and f (xj ) ≡ p(xj |signal)). It is worth noting here
that the foreground count Λ1 is directly proportional to the astrophysical rate of mergers R, which can be
determined if the population averaged spacetime volume sensitivity 〈VT〉 of the detector is known:

Λ1 = R · 〈VT〉. (3)

The FGMC likelihood may therefore also be written in terms of R and 〈VT〉. One is thus at liberty to choose
a prior, either on Λ1, or on R and VT jointly. We will come back to this in an upcoming section where we
discuss incorporating uncertainties in the measurement of the spacetime volume sensitivity into the rates
posteriors. For the moment, we proceed by choosing a prior on Λ0,Λ1, and writing the FGMC posterior
[11, 16]:

p(Λ0,Λ1|~x) ∝ p(Λ0,Λ1)e
−Λ0−Λ1

N
∏

j=1

[Λ0b(xj ) +Λ1f (xj )] (4)

where p(Λ0,Λ1) is the prior on the counts. We wish to extend this method to include an arbitrary number of
astrophysical components (BNS, NSBH, BBH, possibly others), in place of a single aggregated astrophysical
component.

B. Multi-component counts posterior

To a very good approximation, the foreground distribution of ranking statistics is independent of source
category [12, 20, 21]. Symbolically:

p(x|α) ≈ p(x|signal) (5)

1 A trigger is a gravitational wave candidate event acquired during a templated matched-filtering based analysis of detector strain data.
A background trigger is one that was most likely produced by terrestrial processes.
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where α is an astrophysical source category. However, it is necessary to re-weight the foreground distribution
with source-category specific weights Wα(x). This re-weighting would allow us to split the foreground
distribution into multiple, source-specific foreground distributions fα(x), where x could now encapsulate
multiple properties of a trigger, and not necessarily only the ranking statistic. The general mathematical
form of the posterior becomes:

p(Λ0, ~Λ1|~x) ∝ p(Λ0, ~Λ1)e
−Λ0−~Λ1·~u ·

N
∏

j=1

[Λ0b(xj ) + ~f (xj ) · ~Λ1] (6)

where ~f (x) ≡ {fα(x)} (for α = {BNS,NSBH, . . .}) is a vector of source-specific foreground distributions, ~Λ1 ≡
{Λα} (for α = {BNS,NSBH, . . .}) is a vector of source-specific Poisson expected counts, and ~u is a vector of 1s
(See Appendix A).

Gravitational waves from different CBC sources are expected to activate (ring-up) templates from different
(though not necessarily disjoint) regions of a template-bank’s parameter space. By dividing the template bank
into multiple bins (which we denote as m), we can assign to each trigger source-specific template-weights
based on the bin in which the template lives. As derived in Appendix A, the source-specific foreground
distributions are constructed using template-weights and bin-dependent foreground distributions:

fα(x) ≡ p(L,m | α) ≈ p(L | m,signal) ·Wα(m). (7)

Assuming that the detector data was analyzed with the GstLAL detection pipeline [15, 22], L is the log-
likelihood-ratio ranking statistic [23],m is the bin number,Wα(m) ≡ p(m | α) are the bin-dependent template
weights, and p(L | m,signal) are the bin-dependent foreground distributions. On the other hand, the
background distribution is given by:

b(x) ≡ p(L,m | noise) = p(L | m,noise) ·W0(m) (8)

where W0(m) ≡ p(m | noise).
It is convenient to define source-specific Bayes-factors for a trigger x, using the foreground and background

distributions evaluated at x’s ranking statistic value L, as well as the template weights:

~K(x) ≡
~f (x)

b(x)
=
p(L |m,signal)

p(L | m,noise)

~W1(m)

W0(m)
(9)

where ~W1(m) = {WBNS(m),WNSBH(m), . . .}. The multi-component counts posterior can now be written more
compactly as:

p(Λ0, ~Λ1|~x) ∝ p(Λ0, ~Λ1)e
−Λ0−~Λ1·~u ·

N
∏

j=1

[Λ0 + ~Λ1 · ~K(xj )]. (10)

C. Useful Approximations to the Multi-component Counts Posterior

In this section, we recast the counts posterior ((10)) in approximate forms that make it computationally
efficient to marginalize out the terrestrial count Λ0.
If the number of candidate events is sufficiently large (N >> 1), and the number of background events

vastly exceeds the number of foreground events, then, using the method of Laplace:

Λ
N
0 e−Λ0 ≈NN e−N e−(Λ0−N )2/(2N ) (11)

The multi-component counts posterior then assumes the form:

p(Λ0, ~Λ1|~x) ∝NN e−N e−(Λ0−N )2/(2N )p(Λ0, ~Λ1)e
−~Λ1·~u ·

N
∏

j=1

[1 +
~Λ1

Λ0
· ~K(xj )] (12)
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From the perspective of determining astrophysical rates, the posterior on the terrestrial counts is generally
not of much interest, and is usually marginalized out. Writing the multi-component posterior in the above
form makes the marginalization over terrestrial counts amenable to Gauss-Hermite quadrature.
A further simplification to the counts posterior can be written down, again in the limit of large N

dominated by background events. In this simplification, the posterior on the terrestrial count is modeled
as a Dirac-delta function centered on N . Thus, when marginalizing out the terrestrial count, the multi-
component counts posterior assumes the form:

p(~Λ1|~x) ∝ p(N, ~Λ1)e
− ~Λ1·~u ·

N
∏

j=1

[1 + ~Λ1 ·~k(xj )] (13)

where ~k(x) ≡ ~K(x)
N is the reduced Bayes factor for trigger x.

Note that kα(xj ) << 1 for the majority of triggers, since the majority are background events. Conversely,
kα(xj ) >> 1 for certain highly significant foreground events, i.e, events that are almost unambiguously of
astrophysical category α.

D. Bin-dependent template weights

The key to constructing the multi-component counts posterior is to determine the weightsWα(m) ≡ p(m|α),
which is a measure of how the astrophysical signals of a specific source category distribute themselves in the
template bank. This subsection outlines how these weights are approximately computed for the GstLAL
detection pipeline.
The GstLAL pipeline splits the template bank into sub-banks (which we simply refer to as bins) [24], in

the “M−χeff” space, whereM is the template’s chirp mass, and χeff is the template’s effective spin parameter.
The chirp mass is defined as:

M =
(m1m2)

3/5

(m1 +m2)1/5
(14)

and the effective spin parameter is defined as:

χeff =
m1χ1 +m2χ2

m1 +m2
(15)

withm1,m2,χ1,χ2 as the component masses and spin angular momenta (or more precisely, their components
parallel to the orbital angular momentum) of the binary.
While this binning was originally designed to speed-up the extraction of GW signals from detector data,

one can also exploit it for the construction of template-weights and the multi-component counts posterior.
These bins can be thought of as coarse-grained templates; when a template is “rung-up”, the corresponding

bin in which it lives is said to be “activated”. Thus, during a run, we can count the number of times each bin
gets activated, and thus determine an “activation count” for each bin. Intuitively, one can see that signals
from a specific astrophysical source-class will tend to predominantly activate only a subset of all the bins.
BNS signals for example will tend to activate low-mass bins, whereas BBH signals will tend to activate
high-mass bins.

Now, suppose we run distinct injection campaigns targeted at specific source categories (BNS, NSBH, BBH,
...). In other words, we inject simulated waveforms of a specific source class, and recover these injections
using the binned template bank. Considering only those injections that were recovered with false alarm rate
(FAR) of less than 1/30 days, we determine activation counts Aα , (α = 1,2, ...,Q, where Q is the total number
of astrophysical categories) corresponding to these injections, and construct a set of weights as follows:

Wα(m) =
Aα(m)

∑Nbins−1
m=0 Aα(m)

(16)

where m is the bin number and Nbins is the total number of bins. (Note that GstLAL-based CBC rate
estimations quoted in the catalog paper were computed with analyses that split the template bank into 686
bins. A visual representation of these weights is shown in Figure 1 .)
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To define specific source categories, injection campaigns were designed to reflect the choices made for
parameter boundaries of the astrophysical sources in the catalog paper. The BNS source category included
neutron stars with component masses mi distributed uniformly in lnmi between 1 ≤ mi /M⊙ ≤ 3.0 such
that the total mass M was less than 6.0M⊙. The lower mass limit is motivated by a 6σ deviation from
masses of components in double neutron star systems [25] while the upper mass limit is motivated by
certain models and observations which allow neutron stars to form up to 3M⊙ [26–30]. Spin vectors for
BNS components were allowed to be isotropic in direction and uniform in magnitude, with a maximum
allowed spin magnitude of 0.4. This maximum magnitude constraint is motivated by observations of the
fastest spinning pulsar with χ . 0.4 [31]. The BBH source category included black holes with component
masses distributed uniformly in lnmi between 5 ≤ mi /M⊙ ≤ 50 such that M ≤ 100M⊙. The lower mass
limit is motivated by the possible existence of a minimum black hole mass [32–34] while the upper mass
limit is motivated by evidence of an upper cutoff in the BBH mass spectrum based on the first few LIGO
detections [35–37]. Spin vectors for BBH components were allowed to be isotropic on the sphere with a
maximum allowed spin magnitude of 0.99. The relativistic Kerr bound provides a theoretical constraint on
black hole spin magnitude of 1.0 although we are also constrained by the limit of the waveform approximant.
The NSBH source category included neutron stars with component masses distributed uniformly in lnm1
between 1.0 ≤m1/M⊙ ≤ 3.0 and black holes with component masses distributed uniformly in lnm2 between
5.0 ≤m2/M⊙ ≤ 100.0. The total mass for the NSBH category was constrained to M ≤ 103.0M⊙. Both the NS
and BH components were allowed to be isotropic on the sphere with maximum allowed spin magnitudes of
0.4 and 0.99, respectively. These mass and spin limits are motivated by the NS and BH observations and
theoretical constraints already mentioned.2

Injections in each source category were distributed uniformly in co-moving volume out to redshift of
0.2 for BNS and NSBH and out to 0.7 for BBH. In order to maximize the number of recoverable injections
included in the injection campaign, an initial cut on expected signal-to-noise ratio less than 3.0 was applied
to exclude injections that would be too far away or in a poor sky location for either of the Hanford or
Livingston detectors. The parameters of these injections were tabulated and stored as unrecoverable.

E. Probability of Astrophysical Origin

From the original, two-component, FGMC counts posterior, one can compute the posterior probability
that an event, with foreground and background distribution values f (x) and b(x), evaluated at the event’s
ranking statistic x, is of astrophysical origin, given the data ~x [11]:

P1(x | ~x) =
∫ ∞

0
p(Λ0,Λ1 | ~x)

Λ1f (x)

Λ0b(x) +Λ1f (x)
dΛ0dΛ1. (17)

Its complementary quantity is the posterior probability P0(x | ~x) that the same event originated from the
Earth, with P0(x) +P1(x) = 1.
These posterior probabilities can be straightforwardly extended to the case when we have a multi-

component counts posterior. The source-specific foreground distributions of the multi-component posterior
allow one to compute posterior probabilities pertaining to specific astrophysical source categories:

Pα(x|~x) =
∫ ∞

0
p(Λ0, ~Λ1|~x)

ΛαKα(x)

Λ0 + ~Λ1 · ~K(x)
dΛ0d~Λ1. (18)

The complementary terrestrial posterior probability is once again related to the astrophysical probabilities
via P0(x|~x) +

∑

α Pα(x | ~x) = 1, where α is summed over all astrophysical source categories corresponding to
the multi-component posterior.
Astrophysical probabilities of candidate events are of considerable interest, from the perspective of

following up gravitational wave events with telescopes sensitive to various parts of the electromagnetic
spectrum. For instance, if PBNS were high, the probability that this event would produce an electromagnetic

2 To ensure appropriate coverage of the component mass space, an additional injection set where at least one of the components lies in
the range 3−5M⊙, was constructed. The masses were distributed uniformly in ln mi , with the other component spanning 1−100M⊙.
The spins were assumed to be isotropic, with a maximum value of 0.4 for the first component, and 0.99 for the latter.
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counterpart also becomes high; such information could therefore be of great value to astronomers interested
in hunting for electromagnetic signals associated with GWs, if reported with a sufficiently low latency from
the time of occurrence of a GW candidate event.
With low-latency in mind, it is possible to re-write astrophysical probabilities as a function of the mean

values of the Poisson expected counts. We define the mean values in the standard way:

〈Λα〉 =
∫ ∞

0
Λαp(Λ0, ~Λ1| ~x)dΛ0d~Λ1 (19)

Suppose now we have a set of N candidate events ~xN = {x0,x1, . . . ,xN−1}, from which we compute the mean

value for the terrestrial Poisson count 〈Λ0〉N and astrophysical Poisson counts 〈~Λ1〉N = {〈Λ1〉,〈Λ2〉, . . . ,〈ΛQ〉}.
The astrophysical probability, for category α, of a new candidate event xN+1 can now be computed as (See
Appendix B):

Pα(xN+1|~xN+1) =
〈Λα〉NKα(xN+1)

〈Λ0〉N + 〈~Λ1〉N · ~K(xN+1)
(20)

The above expression can be readily derived using Eq. (18) and Eq. (B7). Thus, if the mean values 〈Λ0〉N
and 〈~Λ1〉N are pre-computed, then the the astrophysical probabilities Pα(xN+1|~xN+1) for a new candidate
event can be computed almost instantaneously using only a handful of floating point operations. (Of course,
the mean values would then need to be updated using Eq. (B12)).

III. DETERMINING THE SPACETIME-VOLUME SENSITIVITY 〈VT〉

In order convert the posterior on counts to a posterior on rates, we need to determine the population
averaged spacetime volume sensitivity 〈VT〉α of the detectors, for every astrophysical source category α.
This sensitivity is written as [1]:

〈VT〉α = T

∫

dzdθ
dVc

dz

1

1+ z
pα(θ)f (z,θ) (21)

where T is the duration over which the sensitivity is estimated, z is the redshift, Vc is the co-moving volume,
pα(θ) is an assumed distribution of source-parameters θ for source-category α, and f (z,θ) is a selection
function that estimates how likely it is to detect sources with parameters θ at redshift z.
The above quantity is typically estimated using Monte-Carlo integration. Simulated signals (injections),

with parameters drawn from pα(θ) and placed in redshift assuming standard cosmology, are added to the

detector data. They are then searched for by the GstLAL pipeline, and assigned Bayes factors ~K(x). An
estimate is then made of the number of injections that were recovered, Nrec. Since the number that was

injected, N
inj
α , and the spacetime volume into which the injections were made, 〈VT〉injα , are both known,

the measured spacetime volume is simply the injected spacetime volume re-scaled by the ratio of number-
recovered to number-injected [38]:

〈VT〉α =
Nrec

N
inj
α

〈VT〉injα . (22)

The crucial step then in the evaluation of the sensitive spacetime volume is the determination of Nrec. In
order to be consistent with the way the multicomponent counts posterior was constructed, we choose the
same low-ranking statistic threshold when counting the number of recovered injections. However, it is not
trivial to map a given trigger to an injection, and count that trigger as a recovered injection, given the low
ranking statistic threshold used and the resulting preponderance of background triggers. We therefore
propose the following method. (Note that a similar method, using the two-component counts posterior, was
used for the determination of 〈VT〉, in [5].)
Let [x1, ...,xN ] be the list of triggers produced during a search, and let [γ1,γ2, ...,γI ] be the list of triggers

produced during the injection campaign. Suppose now we include one trigger from the injection campaign,
to the list of triggers from the search. We now have the following list [x1,x2, ...,xN ,γi]. The contribution
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of γi to the mean value of the count for category α can be computed using Eq. B10. We also compute the
contributions to the mean values pertaining to all the other astrophysical source categories, due to γi , and
determine an aggregated contribution:

∆Λγi =
∑

α

covN (Λ0,Λα) +
∑

β covN (Λα ,Λβ)Kβ(γi )

〈Λ0〉N +
∑

β Kβ(γi )〈Λβ〉N
(23)

where both α and β are summed over astrophysical source categories, and covN is defined in Appendix B.
We repeat this procedure for all triggers from the injection campaign, adding each one separately (with

replacement) to the triggers from the search, and determining the change in the mean due to each addition.
Nrec is estimated as the sum of the contributions to the mean due to all γis in [γ1,γ2, ...,γI ]:

Nrec =

I
∑

i=1

∆Λγi (24)

IV. RATES POSTERIORWITH UNCERTAINTIES

As such, going from the counts posterior to the rates posterior is a trivial change of variables. Thought of
in another way, rates and counts are essentially the same quantity expressed in different units:

~R =

{

Λα

(VT)α

}

,α = 1,2, ...,Q (25)

where, as before, Q is the total number of astrophysical components.
There are, however, uncertainties associated with the determination of the spacetime volume sensitivity,

arising from calibration errors when measuring the detector strain h 3:

Scal ≈ 3
∆h

h
(26)

as well as statistical Monte Carlo errors when evaluating Eq. 21:

Sstat =
1√
Nrec

. (27)

Let S be the total fractional error associated with these uncertainties:

S =

√

S2
stat + S2

cal . (28)

One can then model the measurement distribution on VT as a log-normal:

p(VT | 〈VT〉,S) = 1

VT · S
√
2π

exp













−1
2

(

lnVT − ln〈VT〉
S

)2










(29)

where 〈VT〉 is assumed to be the same as the measured population-averaged spacetime volume in Eq. (21).
There are now two ways in which the distributions on the Poisson counts, and the distribution on the

spacetime volume sensitivity, can be combined to evaluate the posterior on the rates.
The first method is a direct application of the ratio distribution: given two positive random variables, y1

and y2, with joint distribution f (y1, y2), the distribution on the ratio of these two variables goes as:

p(u ≡ y2/y1) =

∫ ∞

0
y1f (y1,uy1)dy1. (30)

3 The uncertainty in the GW amplitude h measured from detector data gets translated to an uncertainty in the detector range d at

leading order (d ∼ h), or equivalently, an uncertainty in volume (V ∼ h3⇒ dV
V ∼ 3 dh

h );(see [12], specifically section 5 therein.)
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Using the ratio in Eq. (25), we identify y1 as VT and y2 as Λ, with y1 distributed as given in Eq. (29) and y2
distributed as given in Eq. (10). And assuming the joint distribution f (y1, y2) is the product of Eqns.(29) and
(10), we can put down a distribution on the rate:

p(Rα | ~x,〈VT〉α ,Sα) =
1

Sα
√
2π

∫ ∞

−∞
p(Rα · evα | ~x,〈VT〉α)exp













−1
2

(

vα
Sα

)2

+ vα













dvα (31)

where vα = ln
(

(VT)α
〈VT〉α

)

, and p(Rα · eνα | ~x,〈VT〉α) is the marginalized counts posterior (cf. Eq.10) for source-

category α with the change of variable Λα → Λα/ < VT >α= Rαe
να , given a measured spacetime volume

sensitivity 〈VT〉α).
The second method starts by asserting that R and VT are independent random variables, and the joint

probability distribution on these two variables (we have dropped the subscript α for notational simplicity):

p(R,VT | 〈VT〉,S) = p(R) · p(VT | 〈VT〉,S) (32)

acts as the prior for the joint posterior on R and VT :

p(R,VT | ~x,〈VT〉,S) ∝ p(R,VT | 〈VT〉,S) · p(~x | R,VT). (33)

Here, p(~x | R,VT) is the FGMC likelihood, and p(VT | 〈VT〉,S) is modeled with the log-normal distribution
as in Eq. (29). Marginalizing out VT from the above equation gives the sought after rate posterior. Assuming
further that the prior on the rate p(R) follows a power law, the rate posterior becomes up to a normalization
constant (re-introducing the subscript α to simplify comparing the equation below with (31)):

p(Rα | ~x,〈VT〉α ,Sα) ∝
∫ +∞

−∞
p(Rα · evα | ~x,〈VT〉α )exp













−1
2

(

vα
Sα

)2

− avα












dvα (34)

where a is the exponent of the power-law priors on R. The rate posteriors in the catalog either use a uniform
prior (a = 0) for categories with no confirmed detections (viz. NSBH), and a Jeffreys prior (a = −0.5) for the
other categories (viz. BNS, BBH, Terrestrial).

V. ILLUSTRATIVE RESULTS

As a proof of principle, we apply this multi-component extension of the FGMC method to a mixture of
synthetic BNS, NSBH and BBH signals added to real detector data from O1 and O2 devoid of astrophysical
GW signals. Making the data free from GW signals is achieved by a method referred to as “time-sliding”:
the detector strain time series from one of the detectors is translated in time, with respect to the strain time
series in another detector, by an amount greater than the light-travel time between the detectors; coincident
events post this time-shifting are then used.
The BNS, NSBH and BBH signals were injected into O1 and O2 detector data, and recovered with the

GstLAL pipeline, separately. From those injections that were recovered, as determined by whether a trigger
exists within a 1 second time window of the injections, 30 BNS injections, 30 NSBH injections, and 100 BBH
injections were selected at random. Their corresponding triggers were then added to the list of triggers
produced when analyzing the time-slid data.
The set of CBC signals used for the injection campaigns were selected as follows:
BNS signals were drawn at random from a “broad” distribution of synthetic BNS signals. The component

masses mi were distributed uniformly between 0.8 ≤mi /M⊙ ≤ 2.3. The component spins were isotropically
distributed on the sphere with a maximum spin magnitude of 0.4.
NSBH signals were drawn at random from each of three delta-function distributions of synthetic

NSBH signals. The delta-functions were centered at component masses (1.4M⊙,5M⊙) (low-mass NSBHs),
(1.4M⊙,10M⊙), (1.4M⊙,30M⊙) (high-mass NSBHs), and the spins for each of these sets were aligned with the
orbital angular momentum of the binary, with a maximum allowed spin magnitude of 0.05 for the neutron
star component, and 0.99 for the black hole component.

BBH signals were drawn at random from a “broad” distribution of synthetic BBH signals. The component
masses mi were distributed uniformly in lnmi , between 5 ≤mi /M⊙ ≤ 100, and a total mass cutoff at 100M⊙.
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counted as BBHs and BNSs, respectively, and there is no confusion between these two categories. This can
again be understood with the help of Figure 1: the regions of the template bank activated by BNS and BBH
signals are almost disjoint. On the other hand, the overlap in the regions activated by BNS and NSBH signals,
and BBH and NSBH signals, causes low-mass NSBH signals to be partially counted as BNS signals, and
high-mass NSBH signals to be partially counted as BBH signals. There is also some correlation between the
Terrestrial category and the astrophysical categories, resulting in weaker signals being partially counted as
noise, and vice-versa. These misclassifications are discussed further in the next section.
Note that the aggregated categorical astrophysical probabilities are approximately equal to the mean

values of the Poisson counts 4:

N
∑

j=1

Pα(xj | ~x) = 〈Λα〉 − a− 1 (35)

where, like in section IV, a is the exponent on the Poisson count for category α in the joint prior for the

multi-component FGMC posterior, assuming that the prior has the form p(Λ0, ~Λ1) = p(Λ0,Λα <
~Λ1)Λ

a
α (see

appendix D). An identical formula also exists connecting the terrestrial probabilities with the mean of
the terrestrial Poisson count. Thus, the right-hand side values (aggregated astrophysical and terrestrial
probabilities) in the Sankey diagram of Figure 2 may be thought of as mean values on the Poisson counts.

VI. SUMMARY AND OUTLOOK

Inferring rates of compact binary mergers from gravitational-wave data is an important science goal of the
LIGO-Virgo Collaboration (LVC). GWTC-1 [1] (or the “catalog”, as we’ve been calling it in this paper), quoted
rate estimates for the mergers of BNSs, NSBHs, and BBHs, using GW data from the LIGO-Virgo network
of ground-based interferometric detectors, and analyzed by two separate matched-filter based pipelines
(GstLAL and PyCBC). This paper serves as a supplement to the catalog, by describing the formalism used to
produce rate estimates from data analyzed by GstLAL. The formalism itself is inspired by a Poisson-statistics
based counting method developed by W. Farr, J. Gair, I. Mandel, and C. Cutler (abbreviated to “FGMC” in
this paper) in the context of GW data analysis [16] (although similar work in non-GW contexts was done
earlier, e.g: [17]).
Assuming that candidate events triggered by terrestrial phenomena or astrophysical GWs occur as

independent Poisson processes, the original FGMC formalism constructs a joint posterior conditional
probability distribution from the significance of triggers assigned by a detection pipeline (e.g: GstLAL),
as measured by the Bayes-Factor (see Section II), above a low-ranking statistic threshold, on the Poisson
expected counts for astrophysical and terrestrial CBC events.
The multi-component extension of the FGMC formalism delineated in this paper constructs, from the

foreground distribution of ranking statistics estimated by GstLAL, an arbitrary number of foreground
probability distributions, each targeted at a specific astrophysical source class. This is achieved by a mass-
based template-weighting method. The weights are determined via injection campaigns, by studying the
distribution of templates, across the template bank, that got “rung-up” during the recovery of injections.

A proof-of-principle application of this multi-component extension was conducted on time-slid O1 and O2
data, added with synthetic BNS, NSBH and BBH signals, and analyzed with the GstLAL detection pipeline.
We find that BNS and BBH signals are for the most part counted appropriately as BNS and BBH. On the
other hand, there exist correlations between low-mass NSBH signals and BNS signals, as well as between
high mass NSBH signals, and BBH signals, causing partial mis-categorization of NSBH signals. There are
also correlations between the astrophysical categories, and the terrestrial category.
Is the confusion in counting and labeling of triggers a cause for concern? It is worth pointing out here

that the partial mis-classification of the astrophysical signals as terrestrial signals, and vice-versa, is not a
limitation of this method per se, but rather a consequence of the significance assigned to these events by the
detection pipeline. Nevertheless,from the perspective of computing rates, the partial mis-classification of

4 Equation 35 suggests that the choice of prior becomes increasingly irrelevant as 〈Λα〉 becomes sufficiently large. This is simply an
indication that, when we’ve accumulated many events of category α, the counts posterior is informed primarily by the data, and not
any prior assumption on the distribution of the counts.
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astrophysical and terrestrial signals is somewhat compensated for by the fact that the same threshold on
the ranking statistic is used when determining the counts posterior, and the spacetime volume sensitivity.
The ratio of these two quantities, which gives the astrophysical rate, is largely unaffected by this choice of
threshold, provided the threshold ensures a preponderance of terrestrial triggers [16].

However, the confusion between low (high) mass NSBH signals and BNS (BBH) signals, would be a concern,
if this significantly changed the counts of these types of signals. Nevertheless, the extensive follow-up
analysis using the parameter estimation given in Sec. V and Table III of the catalog show that there were no
NSBH signals of any sort detected. Thus, the misclassification of NSBH events at the border between source
categories, is not a concern for the data set being analyzed, viz. O1 and O2 data.
Parameter estimation studies show that 10 significant BBH detections and 1 significant BNS detection,

were uncovered from the data. These findings are consistent with the multi-component rates results given in
the catalog and computed using the methods described in this paper. The multi-component rates are also
consistent with separate (albeit simpler) rates analyses described in the catalog, which serves as a nice sanity
check for the method described in this paper.

However, we will need to extend the methods described here in the future to better identify astrophysical
signals at the boundaries between source-categories. For example, a computationally intensive method
involving a synergy of the formalism delineated in this paper and the samples provided by accurate
parameter estimation studies, such as the one described in [40], might be required.
It is worth noting here that the application of the multi-component extension of FGMC used in the

catalog is by no means unique. One need not restrict oneself to just BNSs, NSBHs, and BBHs. Additional
astrophysical source classes could be added, like, for example, CBCs from the putative “mass-gaps” (with
binary component mass range 3M⊙ − 5M⊙ and above 45M⊙ [19]), and different categories of black holes.
Moreover, the redistribution of foreground events need not involve mass-based weighting alone; for example,
work on constructing redshift dependent foreground distributions, to study redshift dependent rates of
BBHs, is expected to be published soon [41].
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[28] F. Özel, D. Psaltis, R. Narayan, and A. S. Villarreal, The Astrophysical Journal 757, 55 (2012).
[29] J. M. Lattimer, Annual Review of Nuclear and Particle Science 62, 485 (2012), https://doi.org/10.1146/annurev-

nucl-102711-095018.
[30] B. Kiziltan, A. Kottas, M. D. Yoreo, and S. E. Thorsett, The Astrophysical Journal 778, 66 (2013).
[31] J. W. T. Hessels, S. M. Ransom, I. H. Stairs, P. C. C. Freire, V. M. Kaspi, and F. Camilo, Science 311, 1901 (2006),

astro-ph/0601337.
[32] C. D. Bailyn, R. K. Jain, P. Coppi, and J. A. Orosz, The Astrophysical Journal 499, 367 (1998).
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Appendix A: Derivation of the multicomponent FGMC counts posterior

The derivation follows [16, 17].
Consider a time interval T during which gravitational-wave (GW) observations are made. We divide this

interval into Nt time-fragments:

δt =
T

Nt
. (A1)

We make Nt large enough to ensure that at most 1 event occurs over time interval δt.
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Let us assume that there are N intervals containing exactly 1 event and Nt −N intervals containing exactly
0 events. We denote by x the properties of an event. Previously (i.e, in [16]), this was simply the ranking
statistic. Here, x→ {L,m}, where L is the ranking statistic and m is a set of template parameters. Thus, xi is
the only trigger in the ith time interval, with detection statistic value Li and template parameters mi . We
denote by ∅ a time interval that contains no events. Thus, ∅j is the jth time interval that contains no events.
The joint probability of these N propositions gives us the likelihood up to a combinatorial constant:

L ∝
N
∏

i=1

p(xi |Λ0, ~Λ1)×
Nt
∏

j=N+1

p(∅j |Λ0, ~Λ1). (A2)

Computing p(∅j |Λ0, ~Λ1) is a straightforward application of the Poisson distribution for 0 counts in a time
interval δt:

p(∅j |Λ0, ~Λ1) ∝ exp(−λ). (A3)

where λ is the expected number of counts (terrestrial and astrophysical combined) in interval δt. Meanwhile:

p(xi |Λ0, ~Λ1) = p(xi |1,Λ0, ~Λ1)p(1|Λ0, ~Λ1). (A4)

where p(1|Λ0, ~Λ1) is the probability of acquiring exactly 1 event in an interval of duration δt, which in turn
can be computed via straightforward application of the Poisson distribution:

p(1|Λ0, ~Λ1) = λexp(−λ) (A5)

and λ, the mean number of triggers in interval δt is:

λ =
1

Nt
·












Λ0 +
∑

α

Λα













. (A6)

On the other hand, p(xi |1,Λ, ~Λ1) is the fraction of triggers with detection statistic Li in bin mi ,

p(xi | 1,Λ0, ~Λ1) =
Λ0p(Li ,mi |noise) +

∑

αΛαp(Li ,mi | α)
Λ0 +

∑

αΛα
. (A7)

Therefore, the likelihood becomes:

L ∝ exp


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−
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·
N
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Λ0 · p(Li ,mi |noise) +
∑

α

Λα · p(Li ,mi |α)
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







. (A8)

The multicomponent counts posterior, up to a normalization constant, thus has the following general form:

p
(

Λ0, ~Λ1 | ~x
)

= p
(

Λ0, ~Λ1

)

· exp

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−
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·
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Λ0 · p(Li ,mi |noise) +
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Λα · p(Li ,mi |α)
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



. (A9)

The distributions (normalized density functions), p(Li ,mi |noise) and p(Li ,mi |α) in Equation A9 can be
divided into two pieces each:

p(Li ,mi | noise) = p(Li | mi ,noise) ·W0(mi ) (A10)

p(Li ,mi | α) = p(Li | mi ,α) · p(mi | α) ≈ p(Li | mi ,signal) ·Wα(mi ). (A11)

where the weights W are defined as:

W0(mi ) ≡ p(mi | noise), (A12)

Wα(mi ) ≡ p(mi | α). (A13)

p(Li | mi ,α) ≈ p(Li | mi ,signal) is a statement of the universality of the ranking statistic distribution L
under the foreground model [12, 20, 21]; in other words, the foreground model is not expected to change
appreciably for different classes of astrophysical signals.
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Appendix B: Evolution of the Counts posterior with the addition of candidate events

1. Updating the Multicomponent counts posterior

Having constructed the multi-component counts posterior, it is useful to investigate how the posterior
evolves with the addition of candidate events.
Let pN (~Λ1 | ~x) be the counts posterior constructed from a set of N candidate events, appropriately

normalized. Suppose we now acquire an additional trigger, xN+1. We wish to determine how the inclusion
of this trigger modifies the counts posterior. It is straightforward to see, from equation 10, that:

pN+1(Λ0, ~Λ1 | ~x) = A · pN (~Λ1 | ~x) ·
[

Λ0 + ~Λ1 · ~K(xN+1)
]

(B1)

where A is a constant that we can determine via normalization:
∫ ∞

0
pN+1(Λ0, ~Λ1 | ~x)dΛ0d~Λ1 = 1. (B2)

Writing pN+1(Λ0, ~Λ1 | ~x) in terms of pN (~Λ1|~x) and carrying out the above integral yields:

∫ ∞

0
pN+1(Λ0, ~Λ1 | ~x)dΛ0d~Λ1 =

∫ ∞

0
A · pN (Λ0, ~Λ1 | ~x) ·

[

Λ0 + ~Λ1 · ~K(xN+1)
]

dΛ0d~Λ1 (B3)

= A


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

〈Λ0〉N +
∑

α

Kα(xN+1)〈Λα〉N












(B4)

where the quantities in the angular brackets are the mean values of the counts (whether of terrestrial or
astrophysical origin), defined as:

〈Λβ〉N ≡
∫ ∞

0
ΛβpN (Λ0, ~Λ1)dΛ0d~Λ1. (B5)

Thus, from equation B2:

A(xN+1) =
1

〈Λ0〉N +
∑

αKα(xN+1)〈Λα〉N
. (B6)

Therefore, the multicomponent counts posterior is updated to be:

pN+1(Λ0, ~Λ1 | ~x) = pN (Λ0, ~Λ1 | ~x) ·
Λ0 + ~Λ1 · ~K(xN+1)

〈Λ0〉N +
∑

αKα(xN+1)〈Λα〉N
. (B7)

2. Updating the mean value of the counts

The change in the posterior due to the addition of an event leads to changes in the mean values of the
Poisson expected counts for each source category.
From equations B5 and B7:

〈Λβ〉N+1 ≡
∫ ∞

0
ΛβpN+1(Λ0, ~Λ1 | ~xN+1)dΛ0d~Λ1 (B8)

=
〈Λ0Λβ〉N +

∑

α〈ΛαΛβ〉NKα(xN+1)

〈Λ0〉N +
∑

αKα(xN+1)〈Λα〉N
. (B9)

The change in the mean value due to the addition of the N +1th trigger is:

〈Λβ〉N+1 − 〈Λβ〉N =
〈Λ0Λβ〉N +

∑

α〈ΛαΛβ〉NKα(xN+1)

〈Λ0〉N +
∑

αKα(xN+1)〈Λα〉N
− 〈Λβ〉N (B10)

=
covN (Λ0,Λβ) +

∑

α covN (Λα ,Λβ)Kα(xN+1)

〈Λ0〉N +
∑

αKα(xN+1)〈Λα〉N
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where:

covN (ΛA,ΛB) ≡ 〈ΛAΛB〉N − 〈ΛA〉N 〈ΛB〉N (B11)

is the covariance. The updated mean may be written in terms of the original mean as:

〈Λβ〉N+1 = 〈Λβ〉N +
covN (Λ0,Λβ) +

∑

αKα(xN+1)covN (Λα ,Λβ)

〈Λ0〉N +
∑

αKα(xN+1)〈Λα〉N
. (B12)

It is interesting to note here that the addition of a highly significant candidate event of a certain astrophysical
source category could increase the mean values of the count for that category by more than unity. Indeed,
if Kβ(xN+1) ≫ 〈Λ0〉N , and Kβ(xN+1) ≫ Kα,β(xN+1), as is the case for certain highly significant events of
category β, then Eq. B10 is approximated as:

〈Λβ〉N+1 − 〈Λβ〉N ≈
varN (Λβ)

〈Λβ〉
(B13)

where varN (Λβ) ≡ covN (Λβ ,Λβ). If the variance exceeds the mean, then the addition of that highly significant
event would cause an increase in the mean of more than one. This is not so surprising, though perhaps
counter intuitive at first. In effect, the addition of a highly significant event of a certain source-category
informs the posterior that the rate of events of that source-category is higher than was inferred from the
previously available set of triggers.

Appendix C: Recursive Counts Posterior

Given distinct chunks of GW data over which the spacetime volume sensitivity is assumed to be constant,
we can construct FGMC counts posteriors for each chunk separately. However, comparing candidate events
directly between chunks is not meaningful, because in general the spacetime volume sensitivity will differ
from chunk to chunk. Therefore, in order to construct a posterior with all the events from all the chunks, we
require some form of weighting involving the spacetime volume sensitivities of the chunks.

The key idea here is that while the Poisson expected counts (theΛs), and the spacetime volume sensitivities
(the 〈VT〉s), will change from chunk to chunk, what is assumed to remain constant between chunks is the
astrophysical rate of compact binary mergers that we seek to determine.

In the following, we put superscripts to various quantities to identify the chunk of data they correspond
to, and the subscripts label the source-category type, as earlier.

We define the total spacetime-volume sensitivity, across all chunks c, for an astrophysical source-category
α, as:

〈VT〉totα =
∑

c

〈VT〉cα (C1)

and the total Poisson expected counts for category α as:

Λ
tot
α =

∑

c

Λ
c
α (C2)

Working with the “astrophysical-rate is time-independent” assumption, the following must be true:

Rα =
Λ

tot
α

〈VT〉totα
=

Λ
c
α

〈VT〉cα
,∀c (C3)

where Rα is the astrophysical rate for category α.
An important point to make here is that the background counts Λc

0 across chunks are not connected in any
way: there is no unchanging R0 corresponding to these counts. We can, however, resort to the delta-function
approximation, and fix the terrestrial counts, for each chunk c, to the total number of candidate events for
that chunk: Λc

0→N c.
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One can now combine the likelihoods from different chunks to construct a single posterior on the total
counts Λtot

α of each astrophysical source category by making the following change of variables:

Λ
c
α =

〈VT〉cα
〈VT〉totα

Λ
tot
α (C4)

We can now write the combined counts-posterior as:

p(Λ0, ~Λ
tot |~x) = p(~Λtot)



















∏

c

N c
∏

j=1

[N c + ~Λtot · ~Kc(xcj )]



















e−
~Λtot ·~u (C5)

where:

~Kc =

{

Kα ×
〈VT〉cα
〈VT〉totα

}

,α = 1,2,3, ...,Q (C6)

and:

~Λtot =
{

Λ
tot
α

}

,α = 1,2,3, ...,Q (C7)

with Q as the number of astrophysical source categories.
It is worth noting here that the Gstlal pipeline incorporates spacetime volume sensitivity into its ranking

statistic, and therefore the need to employ a method to weight candidate events by the sensitive spacetime
volume sensitivity, as is done here, is redundant for the Gstlal pipeline. This however may not be true for all
gravitational wave detection pipelines.

Appendix D: Connecting terrestrial and astrophysical probabilities with mean values of the Poisson counts

Suppose the prior on the multi-component FGMC posterior (cf. Eq. (10)) has the form: p(Λ0, ~Λ1) =

p(Λ0,Λα <
~Λ1)Λ

a
α . Taking the derivative of Λαp(Λ0, ~Λ1 | ~x) with respect to Λα yields:

d

dΛα

(

Λαp(Λ0, ~Λ1 | ~x)
)

= (a+1)p(Λ0, ~Λ1 | ~x)−Λαp(Λ0, ~Λ1 | ~x) + p(Λ0, ~Λ1 | ~x)
N
∑

j=1

ΛαKα(xj )

Λ0 + ~Kα(xj ) · ~Λ1

(D1)

The derivative was chosen so that its antiderivative vanishes at Λα = 0 and∞ when marginalizing.
If the multi-component posterior is appropriately normalized, then, marginalizing out both sides of the

above equation with respect to Λ0 and ~Λ1, yields:

0 = a+1− 〈Λα〉+
N
∑

j=1

Pα(xj | ~x) (D2)

which, upon rearranging, gives Eq (35).
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