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Abstract—We prove new barrier results in arithmetic com-
plexity theory, showing severe limitations of natural lifting (aka
escalation) techniques. For example, we prove that even optimal
rank lower bounds on k-tensors cannot yield non-trivial lower
bounds on the rank of d-tensors, for any constant d larger
than k. This significantly extends recent barrier results on the
limits of (matrix) rank methods by [EGOW17], which handles
the (very important) case k=2.

Our generalization requires the development of new tech-
nical tools and results in algebraic geometry, which are inter-
esting in their own right and possibly applicable elsewhere.
The basic issue they probe is the relation between numeric and
symbolic rank of tensors, essential in the proofs of previous
and current barriers. Our main technical result implies that
for every symbolic k-tensor (namely one whose entries are
polynomials in some set of variables), if the tensor rank is
small for every evaluation of the variables, then it is small
symbolically. This statement is obvious for k=2.

To prove an analogous statement for k larger than 2 we
develop a “numeric to symbolic” transfer of algebraic relations
to algebraic functions, somewhat in the spirit of the implicit
function theorem. It applies in the general setting of inclusion
of images of polynomial maps, in the form appearing in Raz’s
elusive functions approach to proving VP ## VNP. We give a toy
application showing how our transfer theorem may be useful
in pursuing this approach to prove arithmetic complexity lower
bounds.

Keywords-tensor rank; waring rank; rank methods; lifting;
barriers;

[. INTRODUCTION

One of the major goals of complexity theory is to prove
lower bounds for various models of computation. The theory
often proceeds in buckets of three steps. The first is to come
up with a collection of techniques. The second is to be frus-
trated at the fact that the collection is not powerful enough to
prove the lower bounds we want. The final step is to prove
a ‘barrier’ result on the collection of techniques, giving a
formal rigorous explanation as to why these techniques do
not suffice. Then, of course, one searches for new techniques
avoiding known barriers, and the process is repeated until
(hopefully!) the desired lower bounds are attained.

One common set of techniques, which is ancient but
whose prominence and use increases with recent successes
(and realization that past methods fit this mold) are [ift-
ing (or escalation) techniques. Here one aims to derive
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a lower bound for some strong model, via a reduction
to proving a related lower bound on a weaker model
(another variant is deriving a strong lower bound from
a weak one for the same model). This occurs across
computational complexity, in Boolean circuit complex-
ity (e.g. [Raz90], [AK10]), arithmetic circuit complexity
(e.g. [NW96a], [HWY10], [GKKS13]), proof complex-
ity (e.g. [BPR97], [GKRS18]), communication complexity
(e.g. [RM99], [GPW15], [GPW17]) and other computational
frameworks (where we only referenced few of many exam-
ples).

Here we work in the framework of arithmetic complexity.
By far the main technique used in proving lower bounds are
the so-called rank methods (which we will presently call
matrix-rank methods), which reduce proving lower bounds
on numerous arithmetic models and complexity measures to
the computations of matrix rank.

The two main complexity measures that we will be
studying in this paper are tensor rank and Waring rank
(defined in the subsequent section). For a long time, matrix-
rank methods were unable to prove any lower bounds
that were significantly better than the trivial ones (despite
independent work in complexity theory and in algebraic
geometry). A sweeping barrier result for this collection was
proved in [EGOW17], explaining why matrix-rank methods
will never deliver better results on these measures!

In this paper, we focus on extending these barrier results
to greater generality against stronger techniques. The usual
matrix rank is a special case of tensor rank, when we view
a matrix rank as a degree-2 tensor (tensors of degree k
will be termed k-tensors).! Generalized rank methods can
be thought of as lifting tensor rank lower bounds via linear
maps to k-tensors (polynomials) of degree k& > 2.

Our main result is a barrier to these potentially stronger
methods. More precisely, for d > k > 2, we prove barriers
to lifting lower bounds on tensor (Waring) rank for (small)
degree k-tensors (polynomials) to respective lower bounds
for (larger) degree d-tensors (polynomials). Indeed, as with

Matrices are naturally equivalent to bi-linear forms, which are degree-2
polynomials. Similarly, tensors naturally equivalent d-linear forms, which
are degree-d polynomials. This notation is consistent with Waring rank of
homogeneous degree-d polynomials.
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matrix-rank methods, even optimal lower bounds on the rank
of degree k tensors (polynomials) cannot yield any nontrivial
lower bounds for any d > k for any fixed d, (up to constant
factors).

Our generalization of [EGOW17] to lifting from & > 2
is far from obvious. To overcome the difficulties, we will
need an influx of new ideas and some algebro-geometric
tools. We point out that the technical results we prove for
this generalization are very natural and general statements,
in the spirit of the implicit function theorem, and potentially
applicable in other contexts in mathematics and complexity
theory. We also note that while the barriers of [EGOW17] are
valid in fields of arbitrary characteristic, our more general
results in this paper only hold for characteristic zero.

We make two comments of an informal nature, which
we believe require further exploration. The first is about the
power of the “weak” model we are trying to lift. Recall that
for k > 2, k-tensor rank is NP-hard to compute [Has90]. So,
unlike the barrier result of [EGOW17], where the “simpler
model” is a matrix (namely 2-tensor), and its rank (which
is the lower bound to be lifted) is computationally easy,
here the lower bound that we are assuming, and trying to
lift, is itself computationally difficult. Despite that, our new
barrier result says even such (possibly hard to prove) lower
bounds cannot be lifted to any non-trivial lower bounds in
higher degree tensors (or polynomials). A related second
point is that optimal lower bounds on k-tensors (for k
superconstant and < log(n)/log(log(n)) where n is the
local dimension) can be lifted to lower bounds on some
stronger arithmetic models; Raz [Raz10] shows how they can
imply super-polynomial formula lower bounds! We find that
better understanding and reconciling these results is needed.

We stress that the techniques in this paper are very
general, and can be applied to get a barrier to lifting
result between any two sub-additive complexity measures.
However, it is not always so easy to predict when the
obtained barrier would be non-trivial.

We now proceed to make precise definitions and state the
main results. Throughout this paper, our ground field (de-
noted [F) will be an algebraically closed field of characteristic
zero. We will restate this assumption again whenever it plays
an important role.

A. Various notions of rank

Let Mat,, , denote the linear space of p x ¢ matrices with
entries in IF. The rank of a matrix M € Mat,, (over IF),
has many equivalent definitions. For example, it equals the
dimension of the row span of M, as well as the dimension
of the column span of M, as well as the size of the largest
non-vanishing minor of M.

The definition of matrix rank we prefer will clarify why
it is a “sub-additive complexity measure”. First, note that
any rank 1 matrix of size p x ¢ is of the form ab’ for
some a € F? and b € F9. Let S C Mat,, denote the
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subset of rank 1 matrices; we will call these simple matrices,
and this notion will be used throughout. Also note that the
set S of “simples” is a spanning set of the linear space
Mat,, 4. The rank of any matrix M € Mat,, , is defined as
the smallest integer r such that M = A; + As +--- + A,
for some Ay, Ay, ..., A, € S. This definition of matrix rank
is equivalent to any of the definitions above. What is nice
about it is that it motivates the following vast generalization.

Definition 1.1 (S-rank): Let V be a vector space, and
S C V be a spanning subset. For v € V, we define
its S-rank rkg(v) to be the smallest integer r such that
v =581+ Sy + -+ s, for some s1,89,...,5. €S.

We want to think of S as a set of simple elements, and
rkg(v) as the sub-additive complexity of v with respect to
this set of simples .S. Both tensor rank and Waring rank
will be special cases of S-rank for particular choices of S
in vector spaces V.

We define

Ten(n,d) =F"F'®. .- F",
d

the space of degree-d tensors with (local) dimension? n. A
tensor which is a product of linear forms, namely of the
form vi @ vo ® --- @ v4 € Ten(n,d), is called a simple
tensor or a rank 1 tensor.

Definition 1.2 (Tensor rank): Let S:={vi @ vo® - ®
Vq | v; € F™ Vi} C Ten(n, d). For a tensor T' € Ten(n, d),
we define its tensor rank trk(7") £ rkg(T).

Example 1.3: There is a natural identification F? ® F? =
Mat,, , as follows. Let {e;}1<;<p and {f; }1<;<, denote the
standard basis for F” and F? respectively. Then {e; ®f;} is
a basis for FP ® F?. We identify e; ® f; with the elementary
matrix E,; that has an 1 in the (i,5)"" spot and 0’s
everywhere else.

A concise description of the isomorphism is given by
Zi a, ®b; — Zz aibﬁ, where a; € FP and b; € F4. This
elucidates the fact that under this identification, tensor rank
goes to matrix rank.

Let P(n) := F[z1,...,z,] denote the polynomial ring
in n variables. This has a natural grading given by (total)
degree. In other words, we have P(n) = &3 ,P(n,d),
where P(n,d) denotes the homogeneous polynomials of
degree d. Waring rank is S-rank, where the set of simples S
will be the subset consisting of d*" powers of linear forms.

Definition 1.4 (Waring rank): Let S = {¢¢ | ¢ €
P(n,1)} C P(n,d). For a degree d homogeneous poly-
nomial f € P(n,d), we define its Waring rank wrk(f) £
rks(f).

Example 1.5: Suppose d < n, and consider the monomial
x1-To---xq € P(n,d). We can write this as a sum of 2¢-!

2One can easily extend the definition to tensors with different local
dimensions in each coordinate, as when moving from square to rectangular
matrices.
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powers of linear forms (see [Gly10]):

X1 T2 --Tq
1

= 9d-1 Z s(8)(x1 + dawz + -+ + 6qza)?,

6=(82,...,04)€{1,—1}2-1

where s(8) = (—1)%2++%_ This means in particular that
wrk(xy - 29---xg) < 2971 But in fact (see [CCGI11],
[BBT12]), it is an equality!

B. Sub-additive measures

A natural approach to prove lower bounds on rank is
to use sub-additive measures. For this section, let .S be a
spanning subset of a vector space V.

Definition 1.6 (Sub-additive measure): A  sub-additive
measure for S-rank is a function p : V' — R>( such that
(v +w) < p(v) + p(w) for all v,w € V. For any subset
T CV, we define u(T) = max{u(v) | veT}.

The simple way in which this is used to prove lower bounds
is the inequality rkg(v) > u(v)/u(S).

Observe that rkg is itself a sub-additive measure, but it
is difficult to compute. So, one would like to use a different
sub-additive measure which is simpler to compute. Indeed,
the last two sentences of course apply to many other sub-
additive complexity measures, e.g. various forms of circuit
and proof complexity. Many important lower bounds in
arithmetic complexity are obtained in this fashion, such
as the partial derivatives method introduced in Computer
Science by [Nis91], [NW96b], its generalization, the shifted
partial derivatives method - introduced by [Kayl2] and
developed further in [GKKS14], [KS17].

Every sub-additive measure will give some lower bounds,
but the important question is whether these will be strong
enough. From our observations above, the best possible
lower bound that a sub-additive measure ( can give on any
element v € V (explicit or non-explicit) is (V) /u(S). We
will define this barrier as the potency of the sub-additive
measure /.

Definition 1.7 (Potency): For VS as above, and any sub-
additive measure p : V' — Ry, define its potency as

Pot () £ (V) /p(S).

In short: strong lower bounds require a potent sub-
additive measure. Typically in existing lower bounds, such
measures are (intuitively or computationally) easy to com-
pute (like matrix rank).

C. Matrix-rank methods

Due to the focus of this paper, we deviate in notation
from our precursor barrier paper [EGOW17] and from many
arithmetic lower bound papers, calling matrix-rank methods
what they all call rank methods. This highlights the fact that
in all these previous papers, the only rank methods used
were based on matrix rank, whereas here we extend this to
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study the power of using rank of higher degree tensors and
polynomials to prove new lower bounds.

Matrix-rank methods are a large collection of sub-additive
measures that are simple to compute. For tensor rank and
Waring rank, numerous known lower bounds fall under the
purview of matrix-rank methods, see for example [LO13],
[Lanl5], [DM18b], [DM18a], [IK99], [Kan99], [GL17],
[LMOS], [LT10], [Farl6].

Definition 1.8 (Matrix-rank method): Let V be a vector
space and let S C V be a spanning subset. Any linear
map ¢ : V — Mat,, is called a matrix-rank method.
The complexity measure associated with ¢ is given by
te 1V — Rxg where pig(v) = rk(o(v)).

From the definition above and the properties of matrix
rank, one sees immediately that 4 is a sub-additive mea-
sure. If we let 114 (S) = max{rk(4(s)) | s € S} as above,
then for all v € V' we can get a lower bound:

rk(¢(v))

1o (S)

We will often obfuscate the matrix-rank method ¢ with
the corresponding sub-additive measure ji4. In particular, we
will call Pot(¢) := Pot(u,) the potency of the matrix-rank
method ¢.

Example 1.9 (Trivial matrix-rank method): We  discuss
the most basic, naive example of a matrix-rank method
that can be used to prove lower bounds for tensor rank.
By grouping the different tensor factors into two groups
(sometimes called flattening, and can be pictured as such),
one can view a tensor in

rks(v)

%

Ten(n,d) = (F"F'®@ - F")F"@F'®- - F")

p

q

as a tensor in F"* ® F™". The latter can be interpreted as
an n? x n? matrix as in Example 1.3. This gives a linear
map ¢ : Ten(n,d) — Mat,» 5,0 i.e., a matrix-rank method.
Let S be the set of simple (or rank 1) tensors. We observe
that (14(S) = 1, and pe(Ten(n,d)) = min{n?,n?}, the
largest possible rank of an n? x n? matrix. Thus Pot(¢) =
min{n?, n?}. So, the potency of these ‘obvious’ matrix-rank
methods is at most nt%/2], which is attained when we take
p=ld/2).

By a simple dimension count, one can show that most
tensors in Ten(n, d) have tensor rank at least ”d(;l . This is
much larger than the potency of the obvious rank methods
in the previous example (for fixed d and large n). A
line of research that was pursued for over a decade with
little success was to find more potent matrix-rank methods.
While such methods with larger potency have been found
(often quite sophisticated with algebraic-geometric ideas),
the improvement they yield was very modest — only by small
constant factors. For example, for 3-tensors, the best known
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improvement is only by a constant factor of 2, see [Lanl5],
[DM18b], [DM18a]’.

Eventually this state of affairs was explained by the barrier
result of [EGOW17]; no matrix-rank method can do much
better than the naive flattening.

Theorem 1.10 ( [EGOWI17]): For  any
method ¢ : Ten(n, d) — Maty,, its potency

matrix-rank

Pot(¢) < 29nld/2],

In particular, for d constant, odd integer, matrix-rank
methods can only prove a lower bound of the form
Q(n(dfl)/Q), while most tensors have a quadratically larger
tensor rank Q(n9=1).

A similar barrier result for proving lower bounds on
Waring rank by matrix-rank methods was also proved in
[EGOW17].

Theorem 1.11 ( [EGOWI7]): For any
method ¢ : P(n,d) — Maty, its potency

matrix-rank

Pot(¢) < Yna+ Zn,a

where Y, 4 = (”Hf/ 2J) is the number of monomials of
degree < |d/2]| in n variables, and Z,, 4 is the number of
monomials of degree < d — (|2] + 1) in n variables.

Again, this result matches the “trivial” lower bounds on
Waring rank, and is quadratically away from the Waring rank
of most polynomials in P(n,d).

D. Generalized rank methods and statements of main results

The purpose of this paper is to investigate the potency
of a larger class of sub-additive measures, and prove bar-
riers for these. We consider two types of generalized rank
methods. Let d > k > 2. Matrix-rank methods lift degree-
2 lower bounds to degree d lower bounds (for tensors and
polynomials). Now we lift degree-k tensor and Waring rank
lower bounds to degree d ones for d > k. Again, it is best
to think of d,k as constants (although our results are for
all values), and n going to infinity as the main complexity
parameter. Repeating a comment made earlier, note that now
the assumed lower bounds (for & > 2) that we are trying
to lift are not easy to compute (in contrast to matrix-rank
methods where k = 2).

Summarizing this section, our main results naturally ex-
tend the ones in [EGOW17]. First, for these more general
methods, there is a trivial way to use them, analogous to
flattening in matrix-rank methods, which for every k& < d
give much weaker bounds than the tensor/Waring rank for
most degree d tensors/polynomials. Second, our barriers
show that any use of these general methods (despite lifting
hard-to-prove lower bounds) cannot improve their trivial use
by more than a constant factor (for constant d). Third, the
proofs of our barrier results also follow the general strategy

30ne can obtain a larger constant factor of 3 using techniques that do
not fall under rank methods, see [AFT11].

827

of [EGOW17]. However, the case k > 2 seems to raise
major, interesting difficulties in implementing that strategy,
which require new ideas, as well as more sophisticated
tools from algebraic geometry. These in turn lead us to
prove purely algebraic results regarding polynomial maps
which we believe can be useful way beyond the context of
this paper, both in algebraic complexity and in algebraic
geometry. We will encapsulate this main result in the next
subsection as well, and discuss at length the difficulties,
ideas and tools in Section III.

We now turn to formally define the generalized rank
methods we consider, and state our main results.

Definition 1.12 (Ty-rank method): Let V be a vector
space and let S C V be a spanning subset. A linear
map ¢ : V. — Ten(m,k) is called a Ty-rank method.
Thus, matrix-rank methods are simply 75-rank methods. The
function p4 defined by pg(v) = trk(¢(v)) for v € Vis a
sub-additive measure, and Pot(¢) = ps(V')/ e (S).

Example 1.13 (Trivial Ty-rank method): Consider
Ten(n,d), where d = rk for simplicity. In the spirit of
simple flattenings of Example 1.9, by clubbing together the
tensor factors into k£ groups of size r, we get a linear map
Ten(n,d) — Ten(n", k). This "trivial" Ty-rank method has
potency ((n")k~1). To give a frame of reference for the
theorem below, we note that n”*—1) = p “%2%],

Recall that we assume throughout the paper that the
ground field ' is algebraically closed and characteristic
zero. This is important in our main results (i.e., Theo-
rems 1.14, 1.16, 1.18 and 1.19), so we will restate this
assumption.

Theorem 1.14: Suppose that the ground field is alge-
braically closed and characteristic zero. Let S denote the
subset of rank 1 tensors in V' = Ten(n,d). Then for any
Ty-rank method ¢ : Ten(n,d) — Ten(m, k), its potency

J))

(k—1)d

Pot(¢) < Agy - (nl™*

where A, = k4.

The theorem holds for all values of k, d,n, m! Let us say
a few words on these parameters. First note that it recovers
(with £ = 2) Theorem 1.10 of [EGOW17]. Next note that, as
in [EGOW17], for constant d the upper bound is a constant
factor away from the trivial use of the method. Finally, note
that, again as in [EGOW17], our theorem holds for any value
(m here) of the dimension of the image space, and it does not
assume anything (in particular explicitness) of linear map ¢
used by the method!

Remark 1.15: The above theorem is especially interesting
in the case for Ten(n, 4). The trivial lower bound, the barrier
for matrix-rank methods and the barrier for 75-rank methods
are all quadratic in n, differing only in a constant factor.
Hence, even if one had access to an oracle for tensor rank
of 3-tensors, one could still not prove super-quadratic lower
bounds for the tensor rank of tensors in Ten(n,4).
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The following table puts the degree of tensors against
lower bounds obtainable by different classes of rank meth-
ods. We suppress constant terms.

Rank methods | Trivial T35 | Best T3 | Desired
3 — tensors n n? n? n?
4 — tensors n? n? n? n’
5 — tensors n? ns ns nt

The following three results are in the same spirit.

Theorem 1.16: Suppose that the ground field is alge-
braically closed and characteristic zero. Let S denote the
subset of all powers of linear forms in V' = P(n,d). For
any Tj-rank method ¢ : P(n,d) — Ten(m, k), its potency

Pot() < Bu - (7))

for some constant B, j depending only on d and k.

One can compute an explicit upper bound for the constant
Bg 1, but it is quite messy. If the reader is so inclined, they
may extract an explicit upper bound from Corollary 5.14.

Definition 1.17 (Wy-rank method): Let V be a vector
space and let S C V be a spanning subset. A linear map
¢:V — P(m,k) is called a W-rank method. The function
e defined by pg(v) = wrk(é(v)) for v € V is a sub-
additive measure, and Pot(¢) = (V) /e (S).

Theorem 1.18: Suppose that the ground field is alge-
braically closed and characteristic zero. Let S denote the
subset of rank 1 tensors in V' = Ten(n,d). For any Wj-
rank method ¢ : Ten(n,d) — P(m, k), its potency

Pot(¢) < Ca - (nt %),

where Cy ), = 28— 1k%.

Theorem 1.19: Suppose that the ground field is alge-
braically closed and characteristic zero. Let S denote the
subset of all powers of linear forms in V' = P(n,d). For
any Wy-rank method ¢ : P(n,d) — P(m, k), its potency

D,

where By j, is the same constant as in Theorem 1.16.

Remark 1.20: For matrix-rank methods, there is an al-
ternate approach to proving barriers for the potency using
the notion of cactus rank (see Section VIII). This approach
doesn’t seem to have an obvious generalization to 7} and
Wi-rank methods. It would be interesting to understand if
there is an appropriate generalization that would also lead
to the same barriers for 7} —rank methods and W) —rank
methods that we obtain in this paper.

Pot(¢) < 2671 By - (nl 7

E. Numeric to symbolic transfer

The key new ingredient in this paper is a very general
“numeric to symbolic transfer” statement. We will first state
the theorem and then explain its meaning.
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Theorem 1.21: Let I be an algebraically closed field of
characteristic zero. Suppose L : F* — F™™ is a polynomial
map, and M : F" — F™ is another polynomial map such
that Im(L) C Im(M). Let z = (z1,...,2,) be a vector
of indeterminates. Then there exists ¢ = (c1,...,¢,) € F"
such that

L(z+c¢) = M(p:1(z),...,p-(2)),

where p1(z),...,p.(z) are (n-variate) power series around
0.

That the map L = (Ly,...,L,,) is a polynomial map
simply means that each component L; : F* — F is a
polynomial function (similarly for M). For an exponent

vector e = (e1,...,e,) € N", we use the shorthand
z® = 2{'25? ...z to denote monomials. By an n-variate

power series around 0, we mean an expression of the
form q(z) = > .cyn ¢z, where ¢ € F. Addition and
multiplication on power series is defined in the standard way,
and so it makes sense to plug in a vector of power series
into M. Equality of power series is purely symbolic* — two
power series ¢(z) and p(z) are said to be equal if g = pe
for all e € N™.

The hypothesis Im(L) C Im(M) is a condition on the
numeric evaluations of L and M. To interpret the conclusion,
first observe that the right hand side is (apriori) a vector of
power series. The left hand side is a vector of polynomials,
and polynomials are power series. Thus the conclusion is
an equality as vectors of power series, which is a symbolic
statement — hence the interpretation of the above theorem as
a “numeric to symbolic transfer” statement.

Remark 1.22: The above result is very much in the spirit
of the implicit function theorem and the constant rank
theorem. However, it does not seem to be a straightforward
consequence. If this were the case, we should expect a
similar statement for smooth functions — if we take F = R,
L, M to be C* functions, the p;(z) to be C°° functions on
some small neighbourhood of 0, and ask for the conclusion
to be an equality (as functions) on a small neighbourhood.
No such statement seems to be known to the best of our
knowledge.

Our use of Theorem 1.21 will be in the context:

Corollary 1.23: Let F be an algebraically closed field
of characteristic zero. Let L : F* — Ten(m,k) be a
polynomial map. Let z = (z1,...,2,) be a vector of
indeterminates. If trk(L(8)) < a for all 8 € F", then
there exists ¢ € ™ such that we have a power series

4When F = C, one can interpret these power series as analytic functions
(provided they converge in some neighbourhood), and then equality of
power series is the same as equality of functions. For other fields, there is
not always a reasonable interpretation of power series as functions.

SExperts have suggested that it is likely false in this setting. However,
constructing an explicit counterexample seems to be difficult.
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decomposition
a
Liz+¢) =Y pi
i=1
where pgj )(z) is an m-dimensional vector of power series
in the variables z around 0.

The above corollary is an instantiation of the above
theorem, and we defer the details to Section IV. The barriers
for matrix-rank methods in [EGOW17] also required the
case k = 2 in the above corollary. However, that special
case is straightforward to prove, which we will see in
Section III. With the exception of the above result, the rest
of the arguments for proving our main results are natural
generalizations of the arguments for the £ = 2 case in
[EGOW17].

Theorem 1.21 requires non-trivial notions and results
from algebraic geometry to prove. On the other hand, the
statement itself is accessible and neat, and we speculate that
it will find more uses in complexity theory. One possible use
is to prove lower bounds via elusive functions (see [Raz10]).
The elusiveness of a function is a numerical condition and
fits precisely into the setup of the above theorem. Thus,
Theorem 1.21 allows us for a symbolic interpretation of this
condition. The advantage is that this brings new tools to the
table, which we demonstrate in toy cases (see Section IX).

(2

2)@p(2) @ @p(2),

F. Results on border rank, set-multihomogeneous rank and
cactus rank

We give a brief overview of some additional results that
we include in this paper, and we defer the details to the
appropriate sections.

1) Border rank: For simplicity, we have ignored the
notion of border rank in the introduction so far. In
Section VII, we prove barriers to lifting border rank
of tensors/polynomials. Incorporating the notion of
border rank is not straightforward, and again requires
results from algebraic geometry.

2) Matching barriers obtained from cactus rank:

For matrix-rank methods, the current barriers
in [EGOW17] do not match precisely the barriers
obtained by cactus rank arguments (the gap is
quite small). By introducing an additional idea, we
match the barriers obtained in both approaches in
Section VIII.
Set-multihomogeneous rank: We discuss barriers
for matrix-rank methods for set-multihomogeneous
rank (a generalization of tensor and Waring ranks) in
Section VIII.

3)

G. Organization

In Section II, we collect some notation. In Section III,
we give a proof sketch of the barriers for matrix rank
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methods (in [EGOW17]). We also discuss the issues with
generalizing the arguments and the new ideas to overcome
these; in particular we discuss the ingredients of the numeric
to symbolic transfer statement (Theorem 1.21). Section IV
contains a brief introduction of notions in algebraic geom-
etry we require, and a detailed proof of Theorem 1.21. The
barriers to tensor (resp. Waring) rank lower bound methods
are established in Section V (resp. Section VI), thereby
proving our main results.

We study border rank methods and establish barriers for
these in Section VII. This requires a careful interplay be-
tween algebraic and topological border rank. In Section VIII,
we discuss barriers for set multi-homogenous rank, as well
as match the barriers obtained from our techniques with the
barriers coming from cactus rank. Finally, in Section IX,
we discuss elusive functions and their importance in lower
bounds, and suggest a symbolic approach using our numeric
to symbolic transfer statement.

II. NOTATION

In this section we establish additional notation to the ones
given in the previous section, and state basic facts which will
be used throughout the paper.

For a ring R, we define Teng(n,d) := (R™)®? as the
module defined by the set of degree d tensors with local
dimension n and entries given by elements of the ring R.
When the ring is clear from the context, we omit it from the
definition, as we did in the previous section.

We will denote elements of a field or of a ring with
lowercase normal or greek letters, such as a,b,c,a, 3,7.
Given a vector space (or an R-module) V, such as F7,
we will denote elements of this vector space with boldface
letter, for instance v € V. Similarly, we will also denote
a set (or vector) of indeterminates with boldface letters
z:= (z1,...,2m). We will sometimes think of z as a set
and sometimes as a vector and this will be obvious from the
context. For example, we think of it as a set when we write
the function field F(z) = F(z1,...,2m,), and we think of it
as a vector when we write L(z) for some function L that
takes n inputs (as we do in Theorem 1.21).

We will use the following shorthand notation to refer
to a monomial: z¢ = [[", 2{*, where e € N™. Given a
polynomial f(z) € P(m), we will denote its degree by
deg(f). Thus, the degree of the monomial z°¢ is given by
deg(z®) = e1 + -+ + ey, We will also write deg(e) for
deg(z®) as it simplifies notation.

A power series in z around ¢ = (c1,...,¢y) € F™ is an
expression of the form p(z) = ) ym Pe(z — ¢)¢. Note that
(z —¢)® = [](2zi — ¢;)°". Given two power series p(z) and
q(z), we can add or multiply them in the obvious fashion.
This gives the collection of all power series in z around ¢ the
structure of a ring, which we call the ring of power series.

Definition 2.1 (Ring of Power Series): We denote by
Fllz — ¢|]] = Fl|z1 — c1,...,2m — ¢n|] the ring of power
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series in z around c.

III. PROOF STRATEGIES FOR PREVIOUS RESULTS AND
NEW IDEAS

The high-level strategy for proving our main results
is similar to the barriers for matrix-rank methods in
[EGOW17]. Hence, we will give a sketch of the arguments
in [EGOW17], which will help us identify the difficulties in
generalization, and the new ideas (primarily the numeric to
symbolic transfer) that are required to overcome this.

A. Barriers for matrix-rank methods: Proof sketch

The following observation is key on how potential upper
bounds, and thus barriers are obtained — any matrix of the

form
I

<o

%

nz

has rank at most n; + no. Let us also note that such
matrices form a closed set under addition, and in fact a linear
subspace. So, the sum of any number of such matrices will
also be of this form, and hence have rank at most n; +ns. In
particular, suppose ¢ : V' — Maty,; is a matrix-rank method
(for some spanning set of simples .S C V). Further, (under
a suitable basis change) suppose that for every s € S, ¢(s)
is of the form above. Now, for any v € V, we can write
v =81+ S+ -+ s, for some s; € S. Thus one sees
immediately that ¢(v) = ¢(s1) + ¢(s2) + -+ + ¢(s,) is
also of the same form (because matrices of such form are
closed under addition), and hence has rank < n; + ns. So,
te (V) = max{rk(¢(v)) | v € V} < ny + ng. Thus, this
gives an upper bound on potency

po(V) _ mi+ng
1e(S) = pe(S)

Let us identify Maty, ; with F* ®TF! in the natural fashion.
The condition discussed above can be rephrased as having
subspaces U; C F* and U, C F! (with dimU; = n; and
dim Uy = ny) such that for all s € S, ¢(s) € U @ F! +
F* @ Us,. We record this as a lemma for further use.

Lemma 3.1: Let ¢ : V. — Maty; be a matrix-rank
method such that ¢ = max{rk(s) | s € S} = pg(S).
Suppose we have subspaces U; C F¥ and U, C F' such
that for all s € S, ¢(s) C U; @ F' + F* @ U,. Then, we
have ¢(V) C U; ® F! + F* ® Uy, and consequently,

pe(V) < dim(U;) + dim(Us)
pe(S) ~ a '

Pot(¢) =

Pot(¢) =
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Definition 3.2 (Parametrization): An (algebraic)
parametrization of a spanning subset S C V is simply a
polynomial map ¢ : F™ — V such that ¢(F™) = S.

The ability to parametrize simples is crucial in the proofs
of barriers. In the setting of Waring rank, i.e, V = P(n,d)
and S = {¢? | ¢ € P(n,1)}, we have a parametrization
Y : F" — P(n,d) given by (a1,...,a5) = (3; ajx;)e,
which is a homogenous polynomial map of degree d (by
which we mean that when written in coordinates, it is
given by homogenous polynomials of degree d). The proof
of the barrier seems to depend only on the nature of the
parametrization (that it requires n variables and is homoge-
nous of degree d). We now proceed to give a proof sketch
of Theorem 1.11.

Proof sketch of Theorem 1.11: Let V P(n,d)
and S = {¢? | ¢ € P(n,1)}, and ¢ : F* — V be
the parametrization of S described above. Composing the
matrix-rank method ¢ : V' — Mat; with the parametriza-
tion 7 gives a map L := ¢ o) : F" — Maty ;.

1) The starting point: It is easy to see that
Im(L) = ¢(S). Thus, the map L has the property
that tk(L(B1,...,0n)) < a pe(S) for all
B=(01,...,0n) € F™

2) A symbolic decomposition in the function field: Let
z = (#1,...,%n) be a vector of indeterminates. The
above statement implies the symbolic statement that
tk(L(z1,...,2,)) < a. Note here that L(z1,...,z2,)
is a k x [ matrix with entries in the polynomial ring
Flz,...,%n] (and hence in the function field K =
F(z1,...,%n))- So, we take the rank of the matrix over
this function field K. So, for some p,(z) € K* and

q;(z) € K!, we can write

L(Zlv .- .,Zn) = va(z) ® qi(z)

3) A power series decomposition: Each p,(z)
(pir(z),.. ., pir(z)) and q;(z) = (gi1(2), ..., qu(2)),
where p;;(z), ¢;;(z) € K are rational functions. Ratio-
nal functions have power series expansions wherever
they are defined (i.e., where the denominator doesn’t
vanish). Since, we have finitely many rational func-
tions, we can choose a ¢ € F™ such that after the shift
Z — Z + ¢, they are all defined at 0 € F™. For such a

¢, we have power series expansions around 0:

pi(z +c Z pz eZ and qz z+ C) Z qz fz
ecNn fcNn
where p;, € F* and q,; € F', and z° = J]}_, 2§

We refer to the p; .’s and g, ¢’s as coefficient vectors.
This gives the power series decomposition:
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i=1

L(z+¢) (Z pi,eze> ® (Z qi,fzf> -
e f

4) A finite monomial decomposition using degree of
parametrization:
Since ¢ is a linear map, and v is homogenous of
degree d, the composition L is also homogenous of
degree d, i.e., L(z) is a matrix consisting of homoge-
nous polynomials of degree d. So, L(z+¢) is a matrix
consisting of polynomials of degree < d. Hence, if we
set I = {(i,e,f) | deg(e) + deg(f) <d,1 <i<al®,
we get the monomial decomposition:

Z pzez ®quz

(i,e,0) el

z+c

Now, observe that the right hand side is a finite sum
since [ is finite.

5) Extracting subspaces spanned by coefficient
vectors: We claim that we can take
Ur = span(p;, |degle) < [§]) and

Uz = span(q;; | deg(f) < d — (|3] +1)) to

satisfy the hypothesis of Lemma 3 1. Indeed,
take s € S. For some a € F™ we have
#(s) = L(a + ¢ Z(i,e,f)e] Pi 0’ ® Qi,faf-

Take one of the terms p;.a° ® q;a'. Since

deg(e) + deg(f) < d, we must have either
deg(e) < [§] or deg(f) < d — (5] + 1). If
deg(e) < | <], then

e f_
P; 0 ®q; por =

Nl

Otherwise, deg(f) < d — (4] + 1), and p, ,0° ®
q; ;o' € F*@U, . This means that ¢(s) = L(a+c) €
U, @ F! + F¥ ® U, as desired. Let J denote the
set of monomials of degree < [2] in n variables.
Then the defining spanning set of U; is indexed by
{1,2,...,a} x J. Hence dim(U;) < aY,q4, since
|J| = Y,,,q by definition of Y;, 4. Similarly dlm(Ug)
aZn,q. Applying Lemma 3.1 gives Theorem 1.11.

|
The proof of Theorem 1.10 is similar. The parametrization
of rank 1-tensors is of degree d, but one can additionally ob-
serve that the parametrization is ‘set-multilinear’. This forces
additional constraints in the finite monomial decomposition,
giving a sharper bound on potency. The full details can of
course be found in [EGOW17]. We also need to discuss the
notion of set-multilinearity for our purposes, but we defer
that discussion until necessary.

6Recall that we use deg(e) as shorthand for the degree of the monomial

z°.

pi,e®(qi,fae+f) € pi,e®Fl C U &F.
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B. New ideas from algebraic geometry

In adapting this proof strategy to prove barriers for
generalized rank methods, the first issue occurs in Step
(2). The crucial point in Step (2) is that rank of ma-
trices can be described by polynomial equations, namely
the vanishing of minors. This allows one to easily prove
rkp(,)L(z) = max{rkpL(a) | o € F"}’, which is what
allows for the symbolic decomposition over the function
field. This argument fails if we consider a T}-rank method
or a Wy-rank method because tensor rank and Waring rank
are not captured by polynomial conditions.

Further, step (3) runs into trouble as without some sort of
symbolic decomposition, one cannot hope for a power series
decomposition. Both these issues need to be addressed, and
to do so, we will turn towards algebraic geometry.

We fix these issues in two steps (which when put together
give Theorem 1.21). Roughly speaking, the first fixes step
(2) and the second fixes step (3). We will describe these
steps, and defer the proofs to Section IV. The key idea in
the first step is that one must pass from the function field to
its algebraic closure.

Proposition 3.3: Let F be an algebraically closed field.
Suppose L F* — [F™ is a polynomial map, and
M : F" — TF™ is another polynomial map such that
Im(L) C Im(M). Let z = (z1,...,2,) be indeterminates
and K = F(z1,...,2,). Then there are algebraic functions
bi(z),...,b.(z) € K=TF(21,...,2,) such that

L(z) = M(by(2),...,b(2)).

The need to pass to the algebraic closure is already evident
in the example at the end of this section. One ought to see the
above as an algebraic result in a similar vein to the implicit
function theorem. However, unlike the local nature of the
implicit function theorem, this statement is more global®.
Further, the implicit function theorem usually requires some
non-degeneracy condition to be satisfied, and this is not the
case for the above result (but we do have extra structure).

Our eventual goal is really to get power series rather
than algebraic functions. When F = C, we can get power
series by interpreting (an appropriate branch of) an algebraic
function as an analytic function. The analogous statement
holds for any algebraically closed field F of characteristic
zero, but formulating and proving this requires some care. In
particular, the notion of analytic does not exist, so we use the
notion of étale morphisms as a suitable replacement. Before
stating the second step, we will first recall the ring of power
series.

Letz = (21, ..., 2,) be a vector of indeterminates. Recall
from Section II that [F[|z—c|] denotes the ring of power series
in the variables z = (z1, ..., z,) around ¢ € F"

7All this requires is that I is infinite, or even sufficiently large.
8Branches of algebraic functions can be defined over a (large) Zariski
open subset of the domain, but not necessarily the whole domain.
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Proposition 3.4: Let F be an algebraically closed field of
characteristic zero. Suppose we have a finite collection of
elements by (z),...,b.(z) € K = F(z1,...,2,). Then for
some choice of ¢ € F” (a generic choice will do), we have
an F-algebra homomorphism

Flz1,..., 2n,01(2),...,b.(2z)] — Fl|lz — ¢|],

which extends the canonical inclusion F[zq,...
Fllz - cf).

Let us illustrate Theorem 1.21 in a very simple case. Let
L:F — F be given by L(z) = z. Let M : F — F be
given by M(y) = y?. Then, since L and M are surjective,
it is clear that Im(L) C Im(M), i.e., the hypothesis of
Theorem 1.21 is satisfied. If z is an indeterminate, then
L(z) = z = M(/z). Note that /z € F(z). In particular,
this demonstrates the need to pass to the algebraic closure
of the function field in Proposition 3.3. Now, consider +/z.
This does not have a power series around 0 € F. However,
it will have a power series around some other point, say
1 € F (as claimed by Proposition 3.4). To get this power
series expansion, we expand /z = (1 + (z — 1))/? using
the well known binomial theorem, to get

 Zn]

ﬁ:l—&-%(z—l)—l—%(z—lﬁ—i—....

So, we have

L(z)—z—M(lnL;(z1)+_81(z1)3+.“).

)

Or equivalently, we get

1 -1 .
L(z+1):z+1:M(1+2z+8z3+...

as claimed by Theorem 1.21.

IV. NUMERIC TO SYMBOLIC TRANSFER

This section will be devoted to developing the necessary
tools from algebraic geometry, and using them to prove the
numeric to symbolic transfer statement, i.e., Theorem 1.21.
We will begin with some basic definitions.

Let ' be an algebraically closed field. For a finitely
generated F-algebra A, we denote by MSpec(A) the cor-
responding affine variety (over F). As a set, MSpec(A)
consists of all the maximal ideals of A. We further give
it a topology called the Zariski topology by defining which
subsets are closed. A subset of MSpec(A) is closed if it is
of the form V(I) = {m € MSpec(A) | I C m} for some
ideal I of A.

Since F is algebraically closed, there is another de-
scription of MSpec(A) as F-algebra homomorphisms from
A to F. We denote by Hom(A,F) the set of F-algebra
homomorphisms from A to F. Indeed, consider the map ¢ :
MSpec(A) — Hom(A, F) defined by the canonical quotient
map m — {¢(m) : A — A/m = F}. Note that since A is
a finitely generated [F-algebra, and I is algebraically closed,
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there is a canonical isomorphism A/m = F. In the other
direction, consider the map 7 : Hom(A,F) — MSpec(A)
defined by ¢ — Ker(¢). We leave it to the reader to check
that the two maps are inverses to each other.

Lemma 4.1: The maps ¢ and 7 are inverses to each
other. In particular, we have a canonical bijection between
MSpec(A) and Hom(A,F).

Suppose A, B are finitely generated F-algebras with an
F-algebra homomorphism ¢ : A — B. Then this gives
a map ¢* : Hom(B,F) — Hom(A,F) by ¢ — ¢ o
Using the above lemma, we will also think of +* as a map
from MSpec(B) to MSpec(A), and this is continuous with
respect to the Zariski topology.

A. Symbolic decomposition in terms of algebraic functions

We will prove Proposition 3.3 in this subsection. The
proof will be based on Hilbert’s nullstellensatz.

Proof of Proposition 3.3: Let L; (resp. M;) denote
the coordinate functions of L, i.e., L = (L1, ..., L) (resp.
M = (My,...,My,)). Let y = (y1,...,y.) be a vector of
indeterminates. The hypothesis can be interpreted as follows
- for all &« = («q,...,a,) € F?, the system of equations
{Li(al, ce 7Ozn) = M,;(yl, ey yr)}lgigm has a solution.

Assume for the sake of contradiction that there are no
b;(z) € K such that L(z1,...,2,) = M(bi(2),...,b.-(2)).
This means that the system of equations

{Li(zl, .. .,Zn) = ]\/[l(yla e

has no solution. Just to be clear, we interpret these as m
equations in the indeterminates yi, ..., ¥y, and coefficients
in K. In other words, the zero locus of the collection of
polynomials {M;(y) — Li(2)}1<i<m € Kly1,...,yr] is
empty. By Hilbert’s nullstellensatz, we get that

Zfi(Y) (Mi(y) — Li(z)) = 1 (in K[yn, ..., 3 ]),

s Yr) F1<i<m

for some f; € K[y, ..., yr]. Write each fi = > o fie¥®
Let T := F[z1,. .., zn, fieVi, €], which is a finitely gener-
ated ring.

Observe that the above equality can be intepreted in
Tli,.-->y] € Klyi,...,y,]. Take any F-algebra ho-
momorphism ¢ : T — TF. That such a homomorphism
exists is a consequence of Lemma 4.1 and the fact that
maximal ideals always exist. We can extend ¢ to a map
Tly1,---,yr) = Fly1,...,y-] which we will also call ¢ by
abuse of notation.

Let ¢(z;) = B; € F, and let 8 = (fy, . ..
applying ¢ to the above equality, we get

Z¢(fi)(Mi(Y) —Li(B)) =1 (in Flya, ..., y])-

a/Bn) € F". By

which again by Hilbert’s nullstellensatz means that the sys-

tem of equations {L;(81,...,0n) = Mi(y1, .-, ¥r) h<i<m
has no solution, which contradicts the hypothesis. ]
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Remark 4.2: An alternate proof using more modern
algebro-geometric language is as follows. Consider L as
map of schemes rather than varieties, i.e., L : A" — A™,
where A™ defines the m-dimensional affine space (over
F). Similarly, consider M also as a map of schemes. The
hypothesis then tells us that L(p) € Im(M) for every
closed point p € A™. From this, one deduces that for the
generic point n € A", L(n) € Im(M). This means that
the fiber M ~1(L(n)) is non-empty. The symbolic vector
L(z1,...,2,) can be interpreted as a K-point lying over 1.
Since M ~1(L(n)) is non-empty, one can deduce that there
is a closed K-point of A™ which is sent to L(zy, ..., z,) by
M (this uses that K is algebraically closed). This just means
that there is (b (2),...,b.(z)) € (K)" such that

 Zn) = M(b1(2),...,b-(2)).

B. Power series representations of algebraic functions

L(Zl, ce

This subsection will be devoted to proving Proposi-
tion 3.4. The intuition for the result is as follows. We want to
give power series for each of the b;(z)’s. Roughly speaking,
power series around some point are analytic functions in
some small (analytic) neighbourhood. So, we want to inter-
pret all the b;(z) as analytic functions locally. The b;(z)’s are
in K are not ‘functions’ in n variables — at best they can be
interpreted as ‘multi-valued’ functions. Take for example the
algebraic function /= discussed at the end of Section IIL
At any non-zero point, there are two possible values for
vz, and there is no canonical choice®. On the other hand,
there is a natural algebraic variety on which the b;(z)’s
are naturally functions. This variety is MSpec(R) where
R="F[z,...,2n,01(2),...,b.-(2)].

Now, that the b;(z)’s have been interpreted as functions on
some algebraic variety, we observe that there is a morphism
of varieties f : MSpec(R) — F™ given by the inclusion
Flz1,...,2n] < R. Using the map f, we want to ‘push
down’ the functions b;(z) to functions on F" locally. If we
can do this, then we can interpret the b;(z) as functions in
some small analytic neighbourhood of F"*, which gives them
power series.

The (toy) picture to have in the mind is the above one
where the map f is pictorially represented by projecting
down (along the dotted arrows). The top curved picture
represents MSpec(R) and the line at the bottom represents

91n this particular case, there is a canonical choice over R, but for us F
is an algebraically closed field.
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F™. Around most points in the domain, the map f is an (an-
alytic) isomorphism in some small local neighbourhood (in
the analytic topology). So, using such a local isomorphism,
we can interpret the b;(z)’s as analytic functions in a small
neighbourhood of F”, thereby giving them a power series.

Of course, as we are working with algebraic varieties,
we do not have the analytic topology, but rather the very
coarse Zariski topology. The correct notion to fix this issue
is the notion of étale morphisms. We refer the reader to
[Sta], [Har13], [Vak13] for standard results.

We will now proceed to give a rigorous proof of Propo-
sition 3.4. As usual, let z = (21, ..., 2,) denote indetermi-
nates. In this section, F will be an algebraically closed field
of characteristic zero. We note that the characteristic zero
assumption seems to be crucial.

Lemma 4.3: Define the ring R =
Flz1,..., 2n,01(2),...,b.(2)] - K. Then
dim(MSpec(R)) = n.

Proof: We have an inclusion F[zy,...,2,] € R C K.

Thus R is an integral domain and a finitely generated F-
algebra. Thus, its Krull dimension is equal to its transcen-
dence degree. But we know F(z1, ..., 2,) C Frac(R) C K,
so the transcendence degree is n. Thus dim(MSpec(R))

n = dim(MSpec(F[z1, .. ., z,]). [ |
Recall that an inclusion of rings Flzq,...,2,] — R
gives a dominant map'® f MSpec(R) — F* =

MSpec(F[z1,...,2,]). We say that the map f is étale at
a point p € MSpec(R) if it is smooth at p and relative di-
mension zero at p, i.e., the fiber f~1(f(p)) is O-dimensional.
We refer to the standard sources [Sta], [Har13], [Vak13] for
the definition of smoothness of a morphism.

Lemma 4.4: There is a point p € MSpec(R) at which f
is étale.

Proof: Since we are in characteristic zero, we have
generic smoothness on the source!!, see for example [Vak13,
Thm 25.3.1]. This means that there is a dense open subset
U C MSpec(R) such that f is smooth on U. Further, since
f is dominant, there is an open subset V' C MSpec(R)
where f has relative dimension zero (see [Vak13, Proposi-
tion 11.4.1]). Let p € U N V. Then f is smooth at p with
relative dimension zero at p, i.e., f is étale at p. [ |

For a point p € MSpec(R), we denote by Og,p, == R,
the local ring at p. Roughly speaking the local ring at p is
the ring of functions which are polynomial in some small
neighbourhood of p. We denote by Og ,, the completion of
Og,p with respect to the maximal ideal pOp ,'*. We have
a canonical homomorphism from R — Ogr ), — @Rm.

Lemma 4.5: Let p € MSpec(R) be a point at which
f is étale. Let f(p) ¢ € F" Then the inclusion

10This just means that the image is dense.

"This is a highly non-trivial result, and the analog of Sard’s theorem.

'ngr a ring R, its completion with respect to an ideal I is the inverse
limit T" := li£1 R/I™.
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Flz1,...,2,] < R gives an isomorphism on the comple-
tions of local rings

Fllz — ¢[] = Or,.

Proof: Tt is a well known result that if f is étale at p,
then we have an isomorphism on the completions of the local
rings (at p and f(p)), see for example [Tsi, Theorem 1.6]
or [GD65, Proposition 17.6.3]. The completion of the local
ring at ¢ € F” is F[|z — ¢|]. Thus we get an isomorphism

Fllz —¢|] = Og,.

|
Proof of Proposition 3.4: The above discussion can be
summarized in the following commutative diagram.

Flz) — R

I !

Fllz —c|] —— Og,

By inverting the lower horizontal isomorphism, we get the
following commuting diagram, which is all we wanted.

Flz] — R

[

Fllz — ]

|
Proof of Theorem 1.21: From Proposition 3.3, we get
L(z1,...,2n) = M(bi(z),...,b.(z)). Then, we can ap-
ply the homomorphism F[z1, ..., z,,b1(2),...,b.(2z)] —
Fl|z — c|] given by Proposition 3.4. This replaces the b;(z)
by power series around c¢ for each ¢. Then, applying the shift
z — z + ¢, we get the required conclusion. ]
Proof of Corollary 1.23: This is a special case of
Theorem 1.21. To see this, we only need to find the right
M. Take M : ((F™)¥)® — Ten(m, k) given by

1 k
M((Vg )7 i .’VE ))7 trt (V((11)7 M ’V((Ik)))
=>vevPe e,
i=1
where all ng ) € F™. Observe that M parametrizes the set of

all tensors of rank < a. Hence, we have Im(L) C Im(M).
Thus, we can apply Theorem 1.21 and deduce the required
result. ]

V. TENSOR RANK LOWER BOUND METHODS

In this section, we will prove upper bounds on the potency
of Tji-rank methods. In the previous sections, we have
discussed the necessary algebraic geometry that allows us
to parallel the arguments in [EGOW17].

Let us first collect some general statements. Let S C V'
be a spanning set (of simples). Suppose we have a linear
map ¢ : V — Ten(m, k), i.e., a Tj-rank method.
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Definition 5.1: Suppose U C Ten(m, k) is a linear sub-
space. Then we define

r(U) = max{trk(T) |T € U}.

The following lemma is straightforward, and is in the
same spirit as Lemma 3.1.

Lemma 5.2: Suppose ¢(S) C > Uz for a finite collec-
tion of linear subspaces Uz, then ¢(V') C >, Uz. Thus, we

have
pe(V) <> r(Uz).
z

Now, let us consider some special subspaces.

Definition 5.3: A subspace U C Ten(m,k) is called
basic if there exist subspaces U; C F™ for 1 < ¢ < k
such that

U=U10U;®---®U, C Ten(m, k).

Lemma 5.4: Suppose U U @U; ® --- @ U, C
Ten(m, k) is a basic subspace. Then for any p such that
1 < p <k, we have

r(U) <[] dim(@y).
i#p

The idea for barriers is as follows. We will be given a
rank method ¢ with 114(S) = a. We will find a collection of
basic subspaces Uz that satisfy the hypothesis of Lemma 5.2.
This will give an upper bound on (V) in terms of
r(Uz)’s, which in turn can be computed by Lemma 5.4.
Since Pot(¢) = w, the upper bound on p14(V) gives an
upper bound on potency as well. So, all that is left to do is
to exhibit the required collections of basic subspaces in the
cases that we need to prove.

A. Set multi-grading

We will collect some notation and basic facts regarding set
multi-degree that we will use subsequently to prove our main
barrier results. Let z = (z;,...,2z4) be a set of variables,
where each set z; = (2;1,...,2y) corresponds to the it"
set of variables in z. We can identify the set of monomials
in z with their exponent vectors e € (N™)9, that is z° <+ e,
and we will do so whenever convenient.

We will define a set multi-grading on the polynomial ring
[F[z], which is an N¢-valued grading. This grading will be a
refinement of the grading by (total) degree. The indetermi-
nate z;; will be set multi-homogeneous, and its set multi-

degree will be sm-deg(z;;) =d; = (0,...,0, 1 ,0,...,0)
i
(i.e., a 1 in the #*" position). Hence, any monomial z¢ =

IL; 237 will have

sm-deg(z°) = sm-deg(e) = Z €ij0;

2,7
= (Z 61j7262j, .. .,Zedj).
J J J
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We now give the formal definition.

Definition 5.5 (Set multi-grading): We define an N¢-
grading on F[z] called the set multi-grading by writing
Flz] = ®geneF|z]s, where F[z]¢ is spanned by monomials
z° such that (3 ;e1;,> ;€25,...,> ;eq;) = f. For a set
multi-homogeneous polynomial ¢(z) € F[z]s, we write
sm-deg(q(z)) = f, and call this the set multi-degree of ¢(z).

Define a partial order on N¢ given by (ai,...,aq) =
(b1,...,bq) if a; < b; for 1 <i < d (in which case we say
(a1, ...,aq) is smaller than (by,...,bq)).

Zero-one vectors and subsets. A zero-one vector in N¢
is a vector whose coordinates are either zero or one. There
is a natural correspondence between zero-one vectors in N¢
with subsets of [d]. We will now make this precise. First,
given a zero-one vector in N¢, we define its support subset.

Definition 5.6 (Support subset): Given a zero-one vector
f = (fi,...,f4) € N? we define its support subset
supp(f) :={i € [d] | fi #0} ={ield] | fi =1} C [d]

In the other direction, we define indicator vector to a
subset.

Definition 5.7 (Indicator vector): Given a subset J C [d],
we define its indicator vector d; to be the zero-one vector
which has a 1 in the i*" position if and only if i € .J.

{Zero-one vectors € N} <— {subsets of [d]}
f — supp(f)
6J —J

The above correspondence takes a zero-one vector to its
support subset, and in the other direction takes a subset to its
indicator vector. Moreover, using the partial order < defined
above, we also get:

{feN?|f=<(1,1,...,1)} = {Zero-one vectors € N} +—

Set Partitions. A set partition of [d] := {1,2,...,d} into
k sets is a tuple of subsets Z = (I3, ..., I}), where Iy U5
-+ U Iy = [d]. Let SP(d, k) denote all set partitions of [d]
into k sets. Note that |SP(d, k)| = k%
Using the dictionary between subsets and zero-one vec-
tors, we get the following correspondence.

{f(l),...,f(k) eNt | YD =(1,1
J

.,1)} «—— SP(d, k)

B. Barriers for tensor rank lower bounds

This whole section parallels the proof sketch of The-
orem 1.11 given earlier in Section III. There are a few
differences. The first is that we need to consider the more
refined notion of set multi-degree as opposed to the usual
notion of (total) degree. The second is that we add a
homogenization step, which exists in the original proof in
[EGOW17] (but was not strictly necessary). In this case,

however, the homogenization step significantly simplifies the
proof, so we include it. Finally, we replace the second and
third steps of the proof sketch of Theorem 1.11 in one go,
by using Corollary 1.23.

We point out explicitly the analogous steps: Equation (1)
is the power series decomposition, and Equation (2) is
the finite monomial decomposition. From this monomial
decomposition, we extract subspaces spanned by coefficient
vectors (Lemma 5.8). Finally, we compute the upper bound
on potency we get from applying Lemma 5.4.

Let 1 : (F*)*4 — Ten(n, d) be the parametrization of S
(the set of rank 1 tensors) given by (v1,...,V4) — V1 @Va®

-+ ® vq, where v, € F™. Let z = (z1,...,24) be a set of
variables, where each set z; = (2;1, ..., 2i,) corresponds to
the i*" set of variables in z. Let ¢ : Ten(n, d) — Ten(m, k)
be a linear map, i.e., a Ti-rank method. Let L = ¢ o ¢ :
(F)*d — Ten(m, k).

Observe that 1(z) is a tensor whose entries are set
multi-homogeneous polynomials (in z) of set multi-degree
(1,1,...,1) € N9 Since ¢ is linear, L(z) is also a tensor
whose entries are set multi-homogeneous polynomials (in z)
of set multi-degree (1,1,...,1).

Let a = pg(S) = max{rk(¢(s)) | s € S}. Observe that
Im(L) = ¢(9), so trk(L(B)) < a for all B € (F)*4,
So, we can apply Corollary 1.23 to get a power series
decomposition:

Zp(” yop@e - op@, o)

for some ¢ € (F")*?, where p(])( ) are power series
(around 0). Write each
= > b

{subsets of [d]}. pm
ec(Nn)d

Observe that we have:

L(Z) (Z+C)(1 1,

.....

) ® Pz ( )®- - ® ng)(z))(1,1,..,1)-

So, we can consider the relevant terms to get a monomial
decomposition.

)

> L(z)e,... et

=1 e . e
> sm-deg(el?)) = (1,1,...,1)

@)

where
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2 k W) . gek)
L(Z)eu) e(k) = PE 2(1) ®P,( e)(z) - ®PZ( e)(k)( ¢ Ate )

.....

We will show that Im(L) = ¢(S) is contained in a union
of certain basic subspaces. To describe these basic subspaces
we need to introduce a bit of notation.

Recall that SP(d, k) denotes the set of all partitions of [d]
into k sets. Also recall that for any subset I C [d], we define
87 € N4 to be its indicator vector. For Z = (Iy,...,I}) €
SP(d, k) and 1 < i < a, we define

C;=Cj ®CL,® - ®Cj,
where for all j, we have
Ci, = span(pﬁje) | sm-deg(e) = 6;,) C F™.

The following lemma is the crucial observation that ¢(S)
is contained in the sum of all the basic subspaces C% for all
ZeSPd,k).

Lemma 5.8: We have ¢(9) = Im(L) C
2io1 ZIGS’P(d k) Cz.

Proof: For any o« € F™d we need to show that
L) € Y0, 2 TeSP(dk) Ci. Fix a € F" Plug in
z = « into equation (2). This gives L(«) as a sum of many
terms. It suffices to show that each term is in C% for some
7 € SP(d,k) and 1 < i < qa. To this end, take some term
in the sum

1 2 k W g el
t= pl(-,e)<1> ® Pg,e)m) ® @ Pf e)u«)( e,

with 3, sm-deg(e¥)) = (1,1,...,1). Thus, all we need to
do is to produce Z such that ¢ € C%. First, observe that
3. sm-deg(el?)) = (1,1,...,1) means that sm-deg(e’)) €
N is a zero-one vector for all j. Recall that zero-one
vectors correspond to subsets, and that the subset corre-
sponding to a zero-one vector is called the support subset
(see Definition 5.6). Let I; = supp(sm-deg(el)) C [d]
be the support subset of sm-deg(el’)). It follows from
> sm-deg(eV)) = (1,1,...,1) that [y U Lo - - - LU T}, = [d].
Thus, Z = (I1,...,I;) € SP(d, k).

For all j, we have that é;, = sm-deg(e?)) by definition of
I;. Hence, p( G € Cl Thus, the term ¢ € C- as required.

Note that a® Dped is just a constant. [ |
Combining Lemma 5.2 with the above lemma, we get the
following corollary.
Corollary 5.9: We have

Q

>, ()
Pot() — po(V) < i=1 IeSPC(ld,k)

Now, we have just one computation left.
Lemma 5.10: We have

S () < KT

ZeSP(d,k)

Proof: We have |SP(d, k)| = k<. So, it suffices to show
that for each r(C%) < nl“%>*) for all Z € SP(d, k). We do
this as follows. First, note that dim(Cj ) < n!’sl = number
of monomials whose sm-deg is d;;.

Let r be such that |I,.| > |} for all j. Then Y
L(k 1)d

|. Thus, we have

CI <Hd1m(cl)<Hn|I‘7nzj#T|]‘<nL(k 1)(1J

J#T J#T
as required. ]
Proof of Theorem 1.14: This follows from combining
Lemma 5.10 with Corollary 5.9. |

C. Barriers for Waring rank lower bounds

This subsection follows a completely identical strategy to
the previous one. The only difference is that we do not use
the notion of set multi-grading, but the usual grading on
polynomials given by total degree.

For this section, let ¢ : F* = P(n,1) — P(n,d) denote
the map ¢ +— (< for £ € P(n,1). Then v parametrizes the
simples in this case, i.e, Im(y)) = S = {¢? | £ € P(n,1)}.
Let ¢ : P(n,d) — Ten(m, k) be a linear map, i.e., a Tj-
rank method. Let a = max{trk(¢(s)) | s € S} = py(S).
Let L=¢ov :F* — P(n,d).

Note that ¢ is a homogeneous polynomial map of degree
d, and ¢ is linear. So, L is a homogeneous polynomial map
of degree d. By Corollary 1.23, we have the power series
decomposition

z+cyf§:p Dep’ ()@ ap ()

for some ¢ € F”, and p( 7 are power series around 0. Write
each pY/)(z) = > eenn pgje)z . We have

L(z) = L(z+¢)q = Z<p§”<z> op ) (2)®- - pi (2))4.

i=1

Hence, we get the finite monomial decomposition:

L(z) = Z L(z)ew,... o9 3)
=1 e . el
S dege® =d
where
k (D g el®)
L(2)er) . etk :Pge)<1>®P§2e)<z> ®Pfe)<k>( e

Let OP(d, k) = {p = (1, ..., &) | >_; s = d} denote
the set of ordered k-partitions of d. For u € OP(d, k), let
us define . ‘ .

C,=¢C, ®C,0 --xC

HE?
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where _
C., = span(p; . | dege = y;}.
Lemma 5.11: We have

o)=Yy Y
i=1 peOP(d,k)
Proof: This is similar to Lemma 5.8, so we omit the
details. |
Combining with Lemma 5.2, we have

Corollary 5.12: We have
re(V) Yie1 2pcop(an (CL)
a - a :

Pot(¢) <
Lemma 5.13: For all u € OP(d, k), we have

<c;>sH(”+“il>.

by Hj

where [ is such that y; > p; for all j.

Proof: This just follows from Lemma 5.4 and the fact
that dim Cftj < (7L+:j;_1), which is the size of its defining
spanning set. ' ]

Let us define
—1
=TI (" ),

i#l Hi
7L+;Lj—1) —

Hj

where [ is such that y; > p; for all j. Since (
O(n#), and Y, i < | 5522

T, < O(nl

|, we have that

J).

(k—1)d
k

Corollary 5.14: We have

Pot(¢) < > i Zue(’)’P(d,k) T(CL) <
a

> T

HEOP(d k)

Proof of Theorem 1.16: This follows from the previous
k—1)d

corollary since T, < O(nl( 7 1) as we saw above, and

|OP(d, k)| is just some constant that depends only on d and

VI. WARING RANK LOWER BOUND METHODS

We will derive the upper bounds on the potency for W-
rank methods from the upper bounds on the potency for
T},-rank methods. The upper bounds will be weaker, but the
loss is a constant that depends only on k.

Let S C V be a spanning subset (simples). Let ¢ :
V' — P(m,k) be a linear map, i.e., a Wy-rank method.
Let ¢ : V — Ten(m,k) be the composite map ¢ o ¢,
where ¢ : P(m,k) < Ten(m,k) is the natural inclusion
of polynomials of degree k as symmetric k-tensors. Let S
denote the symmetric group on k letters. The group Sy acts
on Ten(m, k) by permuting the tensor factors. A tensor is
called symmetric if it is invariant under this action.

Let us describe the map ¢. First note that P(m,1) is a
vector space of dimension n, so we have an isomorphism
P(m,1) = K™ given by £ = {121 + loxo + -+ - + Ty —
L= (l1,...,4n). In the following, we will use the identi-
fication ¢ <> £ freely to represent the isomorphism. Using
this identification, we can describe ¢ by describing it on
monomials.

L(ED) )y — ZK(O(U)@)E(U(?))@ L 00 ()

k! og€Sy

Note in particular that this means

(M) =L@ L@ @ L.
Lemma 6.1: For any f € P(m, k), we have
trk(c(f)) < wrk(f) < 28 Ltrk(u(f)).

Proof: Under the map ¢, a power of a linear form, i.e.,
/¥ is sent to a rank 1 tensor. This means that a decomposition
of f as a sum of powers of linear forms is sent to a
decomposition of ¢(f) as a sum of rank 1 tensors. This gives
trk(u(f)) < wrk(f).

On the other hand, suppose ¢(f) = > £ @ .. @
£0%) Then since ¢(f) is symmetric, we can write +(f) =
5,007 @ ... @ £Ee(R) for any permutation o € Sy. In
particular, we have

1 L )
—— (ic(1) & . .. (io(k))
() =1 2 D W@ eeir®),
o€eSy i=1
But this means that
Z L g(zl)g 7,2) Z(Zk))

=1

Since ¢ is an injective (and linear) map, we deduce that
f — Z g(il)g(ﬁ) N .e(ik)
i=1

Now, each term ¢(1) . ¢(k) can be written as a sum of
2k=1 linear forms by Glynn’s formula ( [Gly10]) that we
recalled in Example 1.5. This gives f as a sum of 2F~ 1y
powers of linear forms. In other words, we have wrk(f) <

2Tk (u(f)).

Corollary 6.2: We have 115(5) < py(5).

Proof: From the above lemma, we know trk(c(f)) <
wrk(f) for all f € P(m,k). In particular, using this for
every f = ¢(s) for s € S, we see that trk(¢(s)) =
trk(1(6(s)) < wrk(9(s)). .

A similar argument shows the following.
Corollary 6.3: We have ps(V) < 2z (V).
Combining the previous two corollaries, we get:
Corollary 6.4: We have Pot(¢) < 2~ 1Pot(¢).
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Proofs of Theorems 1.18 and 1.19: These follows from
applying the above corollary to Theorems 1.14 and 1.16.
|

Remark 6.5: A famous conjecture of Comon was that
wrk(f) = trk(c(f)) for any f € P(m, k), see [CGLMOS].
This was proved to be true in many special cases. Re-
cently, a rather complicated counterexample has appeared in
[Shil8]. While this means that Comon’s conjecture is false,
the evidence would suggest that the inequality wrk(f) <
2F=Ltrk(c(f)) is far from being sharp. It is an interesting

question to find more optimal replacements for the factor of
2k=1,

VII. BARRIERS FOR BORDER RANK METHODS

In this section we prove analogous theorems to Theo-
rem 1.14 and Theorem 1.16, but now instead of proving
upper bounds on the potency of tensor rank methods, we
prove upper bounds on the potency of border rank methods
for tensors. Roughly speaking, a border rank method will
use a linear map to lift border rank lower bounds for low
degree tensors to border rank lower bounds for higher degree
tensors. While this is a natural generalization, we require
additional tools from algebraic geometry to establish barriers
for these border rank methods.

We will briefly recall some notions regarding border
rank, and then prove the analogous barriers. The high level
strategy remains the same, with more details to be worked
out. The key new ideas are the notion of degenerations and
the ability to switch between topological border rank and
algebraic border rank. In this entire section, we will assume
F is an algebraically closed field of characteristic zero.

We will need to work over the polynomial ring Fle] of
polynomials over the variable ¢. We define Teng(.)(m, k) :=
(Fle]™)®%. We will say T' € Tengy.j(m, k) is simple if T’ =
p1(e) @ Po(e) @ - - © py(e) for some p(c) € Fle]™. For
any tensor 7' € Teng(m, k), we will write

trkepe (T) = min{r | T =Ty +---+ Ty, T; simple}.

We will write Teng)(m, k)<, := {T | trkg)(T') < r}.

Definition 7.1 (Topological Border Rank): A tensor 1" €
Teng(m, k) has border rank < r, denoted by brk(7") < r if
T € Teng(m, k)<,, where the closure is the Zariski closure
of the set of rank r tensors.

The above definition defines border rank implicitly as
brk(T") = min{r | T € Teng(m, k)<, }. But we prefer the
above definition for later use.

Definition 7.2 (Degeneration [BCS13]): Given a tensor
T € Tenp(m, k) we say that T' is a degeneration of order q
of a rank r tensor, denoted by 7', (r), if there exist tensors
Ty € Teng,(m, k)<, and Ty € Teng,(m, k) such that

e LT =T + e Ty,

Definition 7.3 (Algebraic Border Rank [BCS13]): We
say that a tensor T' € Teng(m, k) has algebraic border rank
< r if there exists a number ¢ € Z>; such that T' <, (r).
Again, this defines algebraic border rank implicitly.
Theorem 7.4 (Theorem 20.24 in [BCS13] due to Strassen):
Definitions 7.1 and 7.3 are equivalent. That is, given a
tensor T' € Teng(m, k)

dgeNst. T, (r) <= T € Tenp(m, k)<,.

Note that F being algebraically closed is crucial for the
above theorem to hold. By default, border rank will mean
topological border rank.

A subset U C F[e]? is called a F[e]-submodule if it is
closed under addition and multiplication by elements of F[e].
A subset {p,(¢),py(€),...pr(e)} C F[e]* is a generating
set for the submodule U if VI' € U, one can write T =
> Pi(e)ci(e) for some ¢;(e) € Fel.

Definition 7.5: For an F[e]-submodule U C F[e]™, we
define its rank rkgyj(U) to be the size of its smallest
generating set.

Note that Tengy(m, k) = F[e]™", so it makes sense to
talk about submodules of Tengp)(mm, k) We will consider
degenerations to modules, as the following definition alludes
to.

Definition 7.6 (Degeneration to a Submodule): We say
that a tensor 7' € Tengy(m, k) degenerates to a module
U C Teng)(m, k) with order g, written 7' <, U if there
exist tensors 77 € U and T3 € Teng(m, k) such that

e LT =T 47Ty,

More generally, we say that a subset W C Teng(m, k)
degenerates to a module U C Teng(m, k) with order g,
written W <, U if every tensor in W degenerates to U with
order q.

Definition 7.7: For any submodule U C Teng(m, k),
we define

r(U) = min{r [U C Teng,(m, k)<, }.

The following corollary is straightforward.
Corollary 7.8: Suppose U C Tengp(m, k) is an Fle]-
submodule. Suppose T' <, U for some g € Z>1. Then

brk(T) < r(U).

We can now extend Lemma 5.4 to the border rank setting:

Lemma 7.9: Let S C V be a spanning subset (of sim-
ples). Suppose ¢ : V — Ten(m,k) is a linear map
and suppose ¢(S) <, >, Uz for some F[e]-submodules
Uz C Tengy(m, k). Then ¢(V) <, >, Uz. In particular,
for any 7' € V, we have

brk(6(T)) < 3 r(Us).
s

We define basic submodules U for which we can upper
bound (U).
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Definition 7.10: A submodule of the form U = U1 QUs®
-+ ®@ Uy, C Tengg(m, k) is called a basic F[]-submodule.

Lemma 7.11: Suppose U = U3 @ Uy ® --- @ U C
Tengp.)(m, k) is basic F'[e]-submodule. Then for any 1 <
p<k,

T(U) < HrkF[e](Uz)
i#p

Definition 7.12 (Border potency): Suppose
¢ : Ten(n,d) — Ten(m,k) is a linear map, i.e., a
Ty-rank method. Suppose brk(¢(s)) < a for all s € S.
Then, for any T' € Ten(n, d), we have

brk(o(T
bek(T) > 2RO
a
Thus, this is a method to prove lower bounds on border rank
of tensors in Ten(n,d). Analogous to potency, we define
border potency as

Bpot(p) = max{brk(¢(T)) | T € Ten(n, d)}

a

Theorem 7.13: For any Tj-rank method ¢ : Ten(n, d) —
Ten(m, k), its border potency is

Bpot(¢) < k4. nlk—Dd/k]

One can also prove the analogous result.
Theorem 7.14: For any Tj-rank method ¢ : P(n,d) —
Ten(m, k), its border potency is

Bpot(¢) < Bay - nl*F=DY/k,

For simplicity, we shall only prove Theorem 7.13 in the
special case where k = 3. The proof parallels the proof of
Theorem 1.14, with the additional complication of having
to work with degenerations.

Proof of Theorem 7.13, k = 3 case: Let S C
Tenp(n, d) be the set of tensors with rank 1, parametrized
by ¢ : (F")¢ — Teng(n,d) given by (vi,...,v4) = Vi ®
-+ ®vgq. Let ¢ : Teng(n,d) — Tenp(m, 3) be a linear map,
i.e., a T-rank method and let ¢ = max{brk(¢(s)) | s € S}.

Let z = (z1,...,24) be a set of variables such that
z; = (2i1,...,2in) for each i € [d]. Let L = ¢ o). Since
brk(¢(s)) < a for all s € S, we have that brk(L(5)) < a
for all 3 € (F*)?. Equations for border rank are defined
over I, so we have that the border rank of the symbolic
tensor L(z) is also < a. More precisely, this means that
brkg(L(z)) < a, where border rank is over the field
K := F(z). We must go to the algebraic closure so that
we can switch from the notion of (topological) border rank
to algebraic border rank.

Thus, by Theorem 7.4 over the field K, we have that there
exist tensors T1 € Teng(m, 3)<q and Ty € Teng.)(m, 3)
and ¢ € N such that

eV L(z) =Ty + ¢ To.

Write T4 = > y_; Py ® q, ® T, Where p,, q,, 10 € Kle|™
and denote the entries of T by T5(4,j, k) € Kle], where
i,j,k € [m].

Since each entry of p,, qy, r¢, 75 is a polynomial in K[e],
there exists D € N such that we can write

D
py(z.¢) = Zpe,d(z) e,
d=0

similarly for q, and r; and we can write

D
TQ(iajv k)(z,g) = ZTQ(i7j7 k’ d)(Z) : gd’
d=0

where p, 4(2),q;4(2),rr,4(z) are vectors in K™ and
T5(i, 4, k,d)(z) € K.

Let C C K be the set of all entries of p, 4,qy 4,T¢,q and
of all T»(i, 4, k, d), for all ranges of i, j, k,d, £. C is a finite
set. Therefore, Proposition 3.4 applies, and there exists a
choice of ¢ := (cy,...,¢4) € (F™)? such that all elements
of C have a power series decomposition around the point c.
Thus, this yields:

e L L(z+e) = e Th(z+¢,6) + Y Py(2,€) D0, (2, €)@k (z,€),

(=1
) )
where py, q,, Iv, T are given by the power series decompo-
sition around 0. More precisely, they are given by:

D
Pe(z,¢) = Z Z Prae 2 el = Z Prele) - 2% (5)

d=0 ecNdn ecNdn
similarly for q, and r, and
D
TQ(i7j7 k)(l, 8) = Z Z TQ(iaja kvd)e -zt 5d
d=0 eGNd"
- Z TZ(iaj’ k)e(E) : Ze7

ecNdn

where Prdesdo,de To.de € F™ and T3(i,j,k.d)e € F
are the coefficients of the power series expansions, and
f’g7e(€),(~]g7e(€)7f'é,e(€) € F[g]m and T5(7, 7, k)e(c) € ]F[g]
are simply the coefficients we obtain by grouping the ele-
ments of the power series with same monomial z°.

Recall that SP(d, 3) denotes the set of all partitions of
[d] into 3 sets. For Z = (I,,, I, I,) € SP(d,3) and ¢ € [a],
define

Cr:=C; ®Cf, ®Cj,

where
€4 = spang;.)(By.() | sm-deg(e) = 87,) € Fle]™

Again, note here that & I, denotes the indicator vector for
the subset I, C [d]. qu,Cfr are analogously defined.
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Since the entries of L(z) are all set multi-homogenous of
sm-deg(1,1,...,1), equations (4) and (5) give us

gd—1. L(z) = gd= L. L(z+ C)(1,...,1)
= To(z+e¢,8)q, )

+ Z (f’l(zvg) Y (A]E(Za 5) & 1A‘f(zﬂf))(l,...,l)
(=1

=e?. TQ(Z +c, 5)(1,...,1)

+ D Pre,(6) ®Qpe, () @ Fpe, ()2t
1</i<a
(ep,€q,8.) €T

where J = {(e,,eq,€,) | sm-deg(e,) + sm-deg(e,) +
sm-deg(e,) = (1,...,1)}, that is, the set of monomials in z
such that their set mutli-degree adds to the (1,..., 1) vector.
We will now prove that

$(S) <y, Y. Cr.

(=1 TeSP(d,3)

Note that for any s € S, we have s = ¢(a) for some
o € (]P‘”)d So, from the above equation, we get

5q_1¢(5) =¢9. Tg(a + C,g)(l,...,l) +

Z lN)E,ep (5) ® (Nle,eq (5) ® Ipe, (g)aezﬁ’quFer
1</l<a
(ep’eq»er) € j

Thus, it suffices to show that

Yo D B, (&) e, () @ Fpe, ()T (6)

0=1 (ep,eq,e,)ET
ed >

(=1Te8P(d,3)

Pick any term ¢ = P, (€) @y, (€) @Tpe, (e)axrHeater,
Let I, be the support subset of sm-deg(e,), i.e., the subset
of positions with non-zero entries. Define I, I, similarly,
and let Z = (I, 1,,1,) € SP(d,3). Then t € C%.

Hence, we have shown that that ¢(S) <,
Dy ZI@SP(d,:s) C%. Applying Lemma 7.9, we deduce
that forall T € V,

brk(T) <Y > r(Ch).

(=1TeSP(d,3)

So, all that is left is to upper bound the right hand side.
But this is precisely the same calculation from Lemma 5.10,
giving us the required upper bound on border potency. M

VIII. GENERALIZATIONS, CACTUS RANK AND
IMPROVEMENTS TO RANK METHODS

The aim of this section is two fold. First, there is an al-
ternative approach to establishing barriers for rank methods
using the notion of cactus rank. By infusing our techniques
with a little trick, we will show that both approaches
establish barriers by counting the same things. Despite this,
there seems to be no straightforward connection between the
two approaches. We want to point out in particular that the
barriers to the generalized rank methods that we prove in this
paper have no analogue in the cactus rank approach. Second,
we want to extend the barriers for matrix-rank methods
to the setting of set multi-homogenous rank, which is a
generalization of both Waring and tensor rank.

We first make a simple observation:

Lemma 8.1: Suppose T' C S are two spanning subsets
of V. Then for any matrix rank method ¢ : V' — Maty;
its potency for computing lower bounds on S-rank is less
than or equal to its potency for computing lower bounds for
T-rank.

So, proving upper bounds for potency of matrix-rank
methods for T-rank will automatically prove upper bounds
for potency of matrix-rank methods for S-rank. The proof
of upper bounds for potency really only depends on the
parametrization of S. Roughly speaking, since 7" is smaller,
we might be able to get a smaller parametrization which
could help prove sharper bounds. Let us exhibit this explic-
itly in the case of Waring rank.

Lemma 8.2: For any matrix-rank method ¢ : P(n +
1,d) — Maty, ;, we have

Pot(¢) < Yna+ Zna.

First, note that this is indeed stronger than the statement of
Theorem 1.11 in the introduction because we are considering
degree d polynomials in n + 1 variables (as opposed to n
variables).

Proof: Consider the subset T’ = {(a121 + - - + apzy +
Tpi1)? la; € F} € S = {41 ¢ € P(n+ 1,d)}. We
leave it to the reader to check that T is also a spanning
subset!'3. Now, observe that 7 : F* — P(n + 1,d) given by
(ai,...,an) = (@121+ -+ ap2n+2,41)% parametrizes T
This parametrization requires n variables. One should note
that while ¢ was homogenous map of degree d, 7 is not.
However, the homogenous components of the map 7 are all
of degree < d. This is sufficient. By replacing v by 7 in the
proof of Theorem 1.11, we get the required upper bounds
on potency of T-rank, and hence upper bounds on potency
of S-rank. ]

Let us now define the set multi-homogeneous rank.

Definition 8.3: Let n = (ny,ng,...,n;) and d =
(di,...,dy), and let d =dy + - - - + dg. Let

V(n,d) = P(n1+1,d1)@P(n2+1,d2)®... P(ng+1,dy).

31t suffices to check that span(T’) contains S.
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Let S(n,d) = {{{' @ (5* @ --- @ " | & € P(ni + 1)} C
V(n,d) be a set of simples. Then for v € V, we define

tkn,a(v) := rkgm,a)(v).

Note that each ¢; is a linear form in n; + 1 variables
rather than n; variables. In particular, tensor rank for tensors
in Ten(n,d) is tK(,—1,n—1,....n—1),(1,1,...,1) and Waring rank
for degree d homogeneous polynomials in n variables is
rk,,—1 4. S(n,d) is a subvariety of V'(n,d) and is sometimes
called the Segre-Veronese variety.'*

Using the same proof as Theorem 1.11 and Theorem 1.10,
along with the additional improvement given by the lemma
above, we get:

Theorem 84: Let z = (z1,...,Z;) where each z; =
(zi1,-..,2in,) denote a set of variables, and define set multi-
grading as before. For any rank method ¢ : V(n,d) —
Mat,, 4, its potency is upper bounded by

POt(d)) S Y;l,d + Zn,d7
where

Yn,a = number of monomials in z of sm-deg < d
and total degree < |d/2], and

Zn,a = number of monomials in z of sm-deg < d
and total degree < d — (|d/2] +1).

We omit the details. The number Y,q + Z,q is the
upper bound on the cactus rank obtained in [Gatl6]. An
explicit upper bound for Yy ¢+ Zy g can be found on [Gal16,
Page 18]. Let us state the bounds one obtains for the potency
of matrix-rank methods for tensor rank and Waring rank with
these improvements.

Corollary 8.5: Specializing the above result, we get the
following:

o An upper bound of N(n+1,d) on the potency of rank

methods for Waring rank of degree d homogeneous
polynomials in n 4 1 variables, where

("Zk when d = 2k + 1,

("FF) + ("fFTY) when d = 2k + 2.

N(n+1,d) = {

This is equal to the cactus rank bound obtained in
[BR13, Theorem 3].

e An upper bound of M(n + 1,d) for the po-
tency of rank methods for tensor rank for ten-
sors in Ten(n + 1,d), where M(n + 1,d)

2 (1 dn+ (D)2 4o (o)) if d s odd,
and
2(1+dn+(@n2+-~4-gwg,gnwwr4) +

(L d72 {))nw/ 2l if d is even. This is equal to the cactus

rank bound obtained in [Gat16, Example 6.3].

14To be precise it is the affine cone over the Segre-Veronese variety.
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e An upper bound of 2n; + 2ny, + 2n3 — 4 for the
potency of rank methods for tensor rank of tensors in
F™ @F™2 @F"3. This is equal to the cactus rank bound
obtained by [Bucl8]. It also follows from the results in
[Gat16].

IX. ELUSIVE FUNCTIONS, AND THE POTENTIAL FOR
SYMBOLIC METHODS IN LOWER BOUNDS

Our aim in this section is to put forth a symbolic perspec-
tive on the notion of elusive functions, and expose some of
the advantages in doing so. Elusive functions were defined
by Raz in [Raz10], where his main result is that explicit"
elusive functions (for suitable parameters) will imply super-
polynomial lower bounds in arithmetic complexity, thus
separating VP from VNP. Let us begin by defining elusive
functions.

We say that a polynomial map M = (M, ..., M,,) is of
degree d, if each M; is a polynomial function of degree at
most d (not necessarily homogeneous).

Definition 9.1 ((r,d)-elusive): We say a polynomial map
L : F" — F™ is (r,d)-elusive if for every polynomial
mapping M : F" — F™ of degree d, Im(L) ¢ Im(M).

The striking feature of this definition in the context of
our paper is that it cares about inclusion of images of
polynomial maps. This is a “numeric” statement. But recall
that the hypothesis of our “numeric to symbolic” transfer
(Theorem 1.21) is also a similar “numeric” condition on
the inclusion of images of polynomial maps. Its conclusion
however is “symbolic”, and so we can potentially use this
conclusion to prove elusiveness!

In this section we will actually use only Proposition 3.3,
the ‘first half” of the Theorem 1.21 (see discussion in
Section III). Using it, we can give a symbolic point of view
of elusiveness (and with it, non-elusiveness). Before doing
so, we need a definition.

Definition 9.2 (degree d-span): Let z = (21, ..
note indeterminates. For
P1 (Z), “e

.y 2Zn) de-

,pr(z) € F(z), we define its degree d-span

,pr(2))

= spang (pl(Z)“m (2)...pr(2)

d-span(p; (z), . . .

: Z e < d) .
In other words, the F-linear span of all the monomials in
the p;(z)’s of degree at most d.
Lemma 9.3: Let z = (z1,. .., 2,) denote indeterminates.
If the polynomial map L : F* — F™ is not (r, d)-elusive,

then there exist p1(z), p2(z), . ..,pr(z) € F(z) such that for
each i, L; € d-span(p1(z),...

,Pr(2)).
Proof: Suppose L is not (r,d) elusive, then 3 degree
d polynomial map M : F" — F™ such that Im(L) C

15This notion is formally defined in the paper, but is essentially the usual
notion: there is a polynomial-time algorithm computing the coefficient of
each monomial.
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Im(M). This means, by Proposition 3.3 that there exists
p1(2),p2(2),...,p-(2) € F(z) such that L(z1,...,2,) =
M(p1(z),p2(2),...,pr(2)). Since, each M; is a degree d
polynomial (sum of monomials), we get that

Li(z) = Mi(pl(z),pg(l), s :pr(z))
€ d-span(p1 (Z): s vp'r(z))'

|

Remark 9.4: One can go further and directly apply The-
orem 1.21 to get a similar looking statement where you
replace the algebraic functions p;(z), which live in the
algebraic closure F(z), with power series (after a suitable
shift), defined over the base field . This may be even more
powerful.

The first example of an elusive function is the well known
moment curve, provided by Raz [Raz10] as a motivating
example:

Proposition 9.5: The map L : F — F™ given by x +—>
(x,22,...,2™) is (m — 1, 1)-elusive.

Using the definition of an elusive function, one can see
that the above proposition simply asserts that the moment
curve is not contained in any affine hyperplane. The most
straightforward proof of this assertion is based on the
invertibility of the Vandermonde matrix, namely the linear
independence of any m distinct vectors in the image of the
moment curve. However, from the symbolic interpretation,
the above lemma essentially becomes a consequence of a
linear independence of the m monomials in the description
of the moment curve, as we describe below.

Proof of Proposition 9.5: Suppose L is not (m—1,1
elusive. Then by Lemma 9.3, we have p1(2),...,pm—1(2)
F(2) such that

)_
S

Li(2) = 2* € 1-span(p1(2), - - -, pm—1(2))
= spang(L, p1(2), - .., Pm-1(2))

for 1 <1 < m, where z is an indeterminate. But this means
that spang(z,22,...,2™) C spang(1,p1(2), ..., pm_1(2)).
The former is an m-dimensional linear space, by linear
independence of the 2% and the latter is at most m-
dimensional (as it is a span of m elements). Hence,
spang(z,22%,...,2™) = spang(1,p1(2),. .., Pm—1(z)). But
1 ¢ spang(z, 22,...,2™), which is a contradiction. Thus, L
must be (m — 1, 1)-elusive. |

It is of course not surprising that the linear independence
of monomials is very much related to the Vandermonde
matrix. The numeric to symbolic transfer simply recasts the
numeric "invertibility of Vandermonde matrix" as a symbolic
"linear independence of monomials". While the invertibility
of Vandermonde matrix is well known, it is not completely
obvious. On the other hand, the linear independence of
monomials is completely straightforward from a symbolic
perspective. In some sense, we let the (non-trivial!) numeric
to symbolic transfer statement do the ‘heavy-lifting’. Indeed,
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notice that the exact same proof above actually yields the
following much more general proposition (which again, can
be obtained “numerically”, but not with such simplicity).

Proposition 9.6: Any polynomial map L : F — F™
given by =z — (p1(z),p2(x),...,pm(x)), for which the
polynomials {p; }U{1} are linearly independent is (m—1, 1)-
elusive.

Elusive functions for degree d = 1 cannot yield arithmetic
lower bounds. Surprisingly, Raz ( [Razl10]) proves that
already for degree d = 2, explicit elusive functions of
appropriate parameters can separate VP from VNP! More
specifically, he proves

Theorem 9.7: [Raz10] Any explicit polynomial map L :
F* — F™ (of degree at most poly(n)) which is (r,2)-
elusive, with m > n*™) and r > m°?, implies that VP
# VNP.

This beautiful avenue to proving superpolynomial lower
bounds is a great challenge to our techniques, and no
progress we know of was made since that paper came out.
Here we will attempt to handle a very toy version of it
using our numeric to symbolic transfer. While a toy, unlike
the moment curve above, we don’t know of a way to probe
that toy result “numerically”.

Indeed, one virtue of the symbolic perspective is that it
provides several relaxations of the notion of elusiveness.
Establishing elusiveness of a function is really hard (not
surprisingly), and these relaxations provide intermediate
problems that could aid our understanding.

The map we consider is again a curve, L : F — F7+!
given by z — (z,23 2 ...,2%"), of monomials with
exponentially growing degrees. It is a toy, namely very
restricted example in two essential ways. First, as it happens,
to match it with Ran’s parameters, to prove a lower bound
using a curve one would need the monomials degrees to
grow much slower.!¢ Second, we will not be able to rule out
any map M as in the definition of elusiveness, but only ones
defined by monomials. In this simple case we can actually
get r = m — 1, as for the moment curve. We do not know
how to extend it to arbitrary polynomials, let alone algebraic
functions. Indeed, extending this result even to “monomials”
with negative exponents, seems like a challenging problem.

Proposition 9.8: L : F — TF™t! that maps =z

(z,23 2% ...,2°"). Let z be an indeterminate. Then
for any choice of monomials 2,2, ... 2°-1 with
ei € Qso, there is some ¢ such that L;(z) ¢

zfm=1),

Proof: Let z be an indeterminate. Suppose 3 monomials
21, 2%, ..., 291 (with e; € Qx0) such that for each
i, Li(z) = 2* € 2-span(z°',2°*,...,2°"1). The only
monomials in the 2-span(z®,z¢2,...,z°"-1) are of the

€ €
2-span(z©!,2°2, ...,

161n that case one could use extra variables, and encode the curve L as
a polynomial map L’ : F™ — F™ satisfying the condition m > n® (1),
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form 1 or z% or 2% 2% = z% 1€ Thus, we must have
{1,3,3%,...,3™y C W :={0,e;,e; +¢; | 1 <i,j <m}.

The proof will be by induction on m. Without loss of
generality, we can assume that the e;’s are in increasing
order. Suppose e; > 1, then every e; and e; + ¢; are all
greater than 1. But then 1 ¢ TV, which is a contradiction.
Thus, we must have e; < 1.

Next, suppose ez > 3, then the only elements in W that
are < 3 are 0,e7,2e;. But since e; < 1, we have that
0,e1,2e; < 3. This is a contradiction, so we must have
es < 3. Continuing by induction, we must have e; < 3*~1
for all 1 < ¢ < m. But now, the largest number in W is
2¢, < 2-3™"1 which is smaller than 3™. This means
3™ ¢ W, which is a contradiction. [ |

One sees immediately the (symbolic) notion of degree
that is crucially used in proving this result. Although,
we only illustrated its use in a toy case, the notion of
degree could still be important (along with other ideas) in
studying elusiveness. There needs to be more work done
to understand what features (such as degree) the symbolic
view point offers, and what these features are worth in our
understanding of elusive functions.

To summarize, proving lower bounds via elusive functions
is an intriguing strategy, and the difficulties and possibilities
of this approach need to be explored. The symbolic view
point (that results from applying numeric to symbolic trans-
fer) gives a fresh perspective. We find that this approach
needs further analysis, and could lead to new and exciting
results.
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