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Abstract—We prove new barrier results in arithmetic com-
plexity theory, showing severe limitations of natural lifting (aka
escalation) techniques. For example, we prove that even optimal
rank lower bounds on k-tensors cannot yield non-trivial lower
bounds on the rank of d-tensors, for any constant d larger
than k. This significantly extends recent barrier results on the
limits of (matrix) rank methods by [EGOW17], which handles
the (very important) case k=2.

Our generalization requires the development of new tech-
nical tools and results in algebraic geometry, which are inter-
esting in their own right and possibly applicable elsewhere.
The basic issue they probe is the relation between numeric and
symbolic rank of tensors, essential in the proofs of previous
and current barriers. Our main technical result implies that
for every symbolic k-tensor (namely one whose entries are
polynomials in some set of variables), if the tensor rank is
small for every evaluation of the variables, then it is small
symbolically. This statement is obvious for k=2.

To prove an analogous statement for k larger than 2 we
develop a “numeric to symbolic” transfer of algebraic relations
to algebraic functions, somewhat in the spirit of the implicit
function theorem. It applies in the general setting of inclusion
of images of polynomial maps, in the form appearing in Raz’s
elusive functions approach to proving VP �= VNP. We give a toy
application showing how our transfer theorem may be useful
in pursuing this approach to prove arithmetic complexity lower
bounds.

Keywords-tensor rank; waring rank; rank methods; lifting;
barriers;

I. INTRODUCTION

One of the major goals of complexity theory is to prove

lower bounds for various models of computation. The theory

often proceeds in buckets of three steps. The first is to come

up with a collection of techniques. The second is to be frus-

trated at the fact that the collection is not powerful enough to

prove the lower bounds we want. The final step is to prove

a ‘barrier’ result on the collection of techniques, giving a

formal rigorous explanation as to why these techniques do

not suffice. Then, of course, one searches for new techniques

avoiding known barriers, and the process is repeated until

(hopefully!) the desired lower bounds are attained.

One common set of techniques, which is ancient but

whose prominence and use increases with recent successes

(and realization that past methods fit this mold) are lift-
ing (or escalation) techniques. Here one aims to derive

a lower bound for some strong model, via a reduction

to proving a related lower bound on a weaker model

(another variant is deriving a strong lower bound from

a weak one for the same model). This occurs across

computational complexity, in Boolean circuit complex-

ity (e.g. [Raz90], [AK10]), arithmetic circuit complexity

(e.g. [NW96a], [HWY10], [GKKS13]), proof complex-

ity (e.g. [BPR97], [GKRS18]), communication complexity

(e.g. [RM99], [GPW15], [GPW17]) and other computational

frameworks (where we only referenced few of many exam-

ples).

Here we work in the framework of arithmetic complexity.

By far the main technique used in proving lower bounds are

the so-called rank methods (which we will presently call

matrix-rank methods), which reduce proving lower bounds

on numerous arithmetic models and complexity measures to

the computations of matrix rank.

The two main complexity measures that we will be

studying in this paper are tensor rank and Waring rank
(defined in the subsequent section). For a long time, matrix-

rank methods were unable to prove any lower bounds

that were significantly better than the trivial ones (despite

independent work in complexity theory and in algebraic

geometry). A sweeping barrier result for this collection was

proved in [EGOW17], explaining why matrix-rank methods

will never deliver better results on these measures!

In this paper, we focus on extending these barrier results

to greater generality against stronger techniques. The usual

matrix rank is a special case of tensor rank, when we view

a matrix rank as a degree-2 tensor (tensors of degree k
will be termed k-tensors).1 Generalized rank methods can

be thought of as lifting tensor rank lower bounds via linear

maps to k-tensors (polynomials) of degree k > 2.
Our main result is a barrier to these potentially stronger

methods. More precisely, for d > k > 2, we prove barriers

to lifting lower bounds on tensor (Waring) rank for (small)

degree k-tensors (polynomials) to respective lower bounds

for (larger) degree d-tensors (polynomials). Indeed, as with

1Matrices are naturally equivalent to bi-linear forms, which are degree-2
polynomials. Similarly, tensors naturally equivalent d-linear forms, which
are degree-d polynomials. This notation is consistent with Waring rank of
homogeneous degree-d polynomials.
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matrix-rank methods, even optimal lower bounds on the rank

of degree k tensors (polynomials) cannot yield any nontrivial

lower bounds for any d > k for any fixed d, (up to constant

factors).

Our generalization of [EGOW17] to lifting from k > 2
is far from obvious. To overcome the difficulties, we will

need an influx of new ideas and some algebro-geometric

tools. We point out that the technical results we prove for

this generalization are very natural and general statements,

in the spirit of the implicit function theorem, and potentially

applicable in other contexts in mathematics and complexity

theory. We also note that while the barriers of [EGOW17] are

valid in fields of arbitrary characteristic, our more general

results in this paper only hold for characteristic zero.

We make two comments of an informal nature, which

we believe require further exploration. The first is about the

power of the “weak” model we are trying to lift. Recall that

for k > 2, k-tensor rank is NP-hard to compute [Hås90]. So,

unlike the barrier result of [EGOW17], where the “simpler

model” is a matrix (namely 2-tensor), and its rank (which

is the lower bound to be lifted) is computationally easy,

here the lower bound that we are assuming, and trying to

lift, is itself computationally difficult. Despite that, our new

barrier result says even such (possibly hard to prove) lower

bounds cannot be lifted to any non-trivial lower bounds in

higher degree tensors (or polynomials). A related second

point is that optimal lower bounds on k-tensors (for k
superconstant and ≤ log(n)/ log(log(n)) where n is the

local dimension) can be lifted to lower bounds on some

stronger arithmetic models; Raz [Raz10] shows how they can

imply super-polynomial formula lower bounds! We find that

better understanding and reconciling these results is needed.

We stress that the techniques in this paper are very

general, and can be applied to get a barrier to lifting

result between any two sub-additive complexity measures.

However, it is not always so easy to predict when the

obtained barrier would be non-trivial.

We now proceed to make precise definitions and state the

main results. Throughout this paper, our ground field (de-

noted F) will be an algebraically closed field of characteristic

zero. We will restate this assumption again whenever it plays

an important role.

A. Various notions of rank

Let Matp,q denote the linear space of p× q matrices with

entries in F. The rank of a matrix M ∈ Matp,q (over F),

has many equivalent definitions. For example, it equals the

dimension of the row span of M , as well as the dimension

of the column span of M , as well as the size of the largest

non-vanishing minor of M .

The definition of matrix rank we prefer will clarify why

it is a “sub-additive complexity measure”. First, note that

any rank 1 matrix of size p × q is of the form abt for

some a ∈ Fp and b ∈ Fq . Let S ⊆ Matp,q denote the

subset of rank 1 matrices; we will call these simple matrices,

and this notion will be used throughout. Also note that the

set S of “simples” is a spanning set of the linear space

Matp,q . The rank of any matrix M ∈ Matp,q is defined as

the smallest integer r such that M = A1 + A2 + · · · + Ar

for some A1, A2, . . . , Ar ∈ S. This definition of matrix rank

is equivalent to any of the definitions above. What is nice

about it is that it motivates the following vast generalization.

Definition 1.1 (S-rank): Let V be a vector space, and

S ⊆ V be a spanning subset. For v ∈ V , we define

its S-rank rkS(v) to be the smallest integer r such that

v = s1 + s2 + · · ·+ sr for some s1, s2, . . . , sr ∈ S.
We want to think of S as a set of simple elements, and

rkS(v) as the sub-additive complexity of v with respect to

this set of simples S. Both tensor rank and Waring rank

will be special cases of S-rank for particular choices of S
in vector spaces V .

We define

Ten(n, d) := Fn ⊗ Fn ⊗ · · · ⊗ Fn︸ ︷︷ ︸
d

,

the space of degree-d tensors with (local) dimension2 n. A
tensor which is a product of linear forms, namely of the

form v1 ⊗ v2 ⊗ · · · ⊗ vd ∈ Ten(n, d), is called a simple
tensor or a rank 1 tensor.

Definition 1.2 (Tensor rank): Let S := {v1 ⊗ v2 ⊗ · · · ⊗
vd | vi ∈ Fn ∀i} ⊆ Ten(n, d). For a tensor T ∈ Ten(n, d),
we define its tensor rank trk(T ) � rkS(T ).

Example 1.3: There is a natural identification Fp⊗Fq =
Matp,q as follows. Let {ei}1≤i≤p and {fj}1≤j≤q denote the

standard basis for Fp and Fq respectively. Then {ei⊗ fj} is

a basis for Fp⊗Fq . We identify ei⊗ fj with the elementary

matrix Ei,j that has an 1 in the (i, j)th spot and 0’s
everywhere else.

A concise description of the isomorphism is given by∑
i ai ⊗ bi �→

∑
i aibt

i, where ai ∈ Fp and bi ∈ Fq . This

elucidates the fact that under this identification, tensor rank

goes to matrix rank.

Let P (n) := F[x1, . . . , xn] denote the polynomial ring

in n variables. This has a natural grading given by (total)

degree. In other words, we have P (n) = ⊕∞d=0P (n, d),
where P (n, d) denotes the homogeneous polynomials of

degree d. Waring rank is S-rank, where the set of simples S
will be the subset consisting of dth powers of linear forms.

Definition 1.4 (Waring rank): Let S := {�d | � ∈
P (n, 1)} ⊆ P (n, d). For a degree d homogeneous poly-

nomial f ∈ P (n, d), we define its Waring rank wrk(f) �
rkS(f).

Example 1.5: Suppose d < n, and consider the monomial

x1 ·x2 · · ·xd ∈ P (n, d). We can write this as a sum of 2d−1

2One can easily extend the definition to tensors with different local
dimensions in each coordinate, as when moving from square to rectangular
matrices.
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powers of linear forms (see [Gly10]):

x1 · x2 · · ·xd
=

1

2d−1d!

∑
δ=(δ2,...,δd)∈{1,−1}d−1

s(δ)(x1 + δ2x2 + · · ·+ δdxd)
d,

where s(δ) = (−1)δ2+···+δd . This means in particular that

wrk(x1 · x2 · · ·xd) ≤ 2d−1. But in fact (see [CCG11],

[BBT12]), it is an equality!

B. Sub-additive measures

A natural approach to prove lower bounds on rank is

to use sub-additive measures. For this section, let S be a

spanning subset of a vector space V .

Definition 1.6 (Sub-additive measure): A sub-additive

measure for S-rank is a function μ : V → R≥0 such that

μ(v + w) ≤ μ(v) + μ(w) for all v, w ∈ V . For any subset

T ⊆ V , we define μ(T ) = max{μ(v) | v ∈ T}.
The simple way in which this is used to prove lower bounds

is the inequality rkS(v) ≥ μ(v)/μ(S).
Observe that rkS is itself a sub-additive measure, but it

is difficult to compute. So, one would like to use a different

sub-additive measure which is simpler to compute. Indeed,

the last two sentences of course apply to many other sub-

additive complexity measures, e.g. various forms of circuit

and proof complexity. Many important lower bounds in

arithmetic complexity are obtained in this fashion, such

as the partial derivatives method introduced in Computer

Science by [Nis91], [NW96b], its generalization, the shifted

partial derivatives method - introduced by [Kay12] and

developed further in [GKKS14], [KS17].

Every sub-additive measure will give some lower bounds,

but the important question is whether these will be strong

enough. From our observations above, the best possible

lower bound that a sub-additive measure μ can give on any

element v ∈ V (explicit or non-explicit) is μ(V )/μ(S). We

will define this barrier as the potency of the sub-additive

measure μ.
Definition 1.7 (Potency): For V, S as above, and any sub-

additive measure μ : V → R>0, define its potency as

Pot(μ) � μ(V )/μ(S).

In short: strong lower bounds require a potent sub-
additive measure. Typically in existing lower bounds, such

measures are (intuitively or computationally) easy to com-

pute (like matrix rank).

C. Matrix-rank methods

Due to the focus of this paper, we deviate in notation

from our precursor barrier paper [EGOW17] and from many

arithmetic lower bound papers, calling matrix-rank methods
what they all call rank methods. This highlights the fact that

in all these previous papers, the only rank methods used

were based on matrix rank, whereas here we extend this to

study the power of using rank of higher degree tensors and

polynomials to prove new lower bounds.

Matrix-rank methods are a large collection of sub-additive

measures that are simple to compute. For tensor rank and

Waring rank, numerous known lower bounds fall under the

purview of matrix-rank methods, see for example [LO13],

[Lan15], [DM18b], [DM18a], [IK99], [Kan99], [GL17],

[LM08], [LT10], [Far16].

Definition 1.8 (Matrix-rank method): Let V be a vector

space and let S ⊆ V be a spanning subset. Any linear
map φ : V → Matp,q is called a matrix-rank method.

The complexity measure associated with φ is given by

μφ : V → R≥0 where μφ(v) := rk(φ(v)).

From the definition above and the properties of matrix

rank, one sees immediately that μφ is a sub-additive mea-

sure. If we let μφ(S) = max{rk(φ(s)) | s ∈ S} as above,

then for all v ∈ V we can get a lower bound:

rkS(v) ≥ rk(φ(v))

μφ(S)
.

We will often obfuscate the matrix-rank method φ with

the corresponding sub-additive measure μφ. In particular, we

will call Pot(φ) := Pot(μφ) the potency of the matrix-rank

method φ.

Example 1.9 (Trivial matrix-rank method): We discuss

the most basic, naive example of a matrix-rank method

that can be used to prove lower bounds for tensor rank.

By grouping the different tensor factors into two groups

(sometimes called flattening, and can be pictured as such),

one can view a tensor in

Ten(n, d) = (Fn ⊗ Fn ⊗ · · · ⊗ Fn︸ ︷︷ ︸
p

)⊗(Fn ⊗ Fn ⊗ · · · ⊗ Fn︸ ︷︷ ︸
q

)

as a tensor in Fnp ⊗ Fnq

. The latter can be interpreted as

an np × nq matrix as in Example 1.3. This gives a linear

map φ : Ten(n, d) → Matnp,nq i.e., a matrix-rank method.

Let S be the set of simple (or rank 1) tensors. We observe

that μφ(S) = 1, and μφ(Ten(n, d)) = min{np, nq}, the

largest possible rank of an np × nq matrix. Thus Pot(φ) =
min{np, nq}. So, the potency of these ‘obvious’ matrix-rank

methods is at most n�d/2�, which is attained when we take

p = �d/2�.
By a simple dimension count, one can show that most

tensors in Ten(n, d) have tensor rank at least nd−1

d . This is

much larger than the potency of the obvious rank methods

in the previous example (for fixed d and large n). A

line of research that was pursued for over a decade with

little success was to find more potent matrix-rank methods.

While such methods with larger potency have been found

(often quite sophisticated with algebraic-geometric ideas),

the improvement they yield was very modest – only by small

constant factors. For example, for 3-tensors, the best known
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improvement is only by a constant factor of 2, see [Lan15],

[DM18b], [DM18a]3.

Eventually this state of affairs was explained by the barrier

result of [EGOW17]; no matrix-rank method can do much

better than the naive flattening.

Theorem 1.10 ( [EGOW17]): For any matrix-rank

method φ : Ten(n, d)→ Matk,l, its potency

Pot(φ) ≤ 2dn�d/2�.

In particular, for d constant, odd integer, matrix-rank

methods can only prove a lower bound of the form

Ω(n(d−1)/2), while most tensors have a quadratically larger

tensor rank Ω(nd−1).
A similar barrier result for proving lower bounds on

Waring rank by matrix-rank methods was also proved in

[EGOW17].

Theorem 1.11 ( [EGOW17]): For any matrix-rank

method φ : P (n, d)→ Matk,l, its potency

Pot(φ) ≤ Yn,d + Zn,d

where Yn,d =
(
n+�d/2�

n

)
is the number of monomials of

degree ≤ �d/2� in n variables, and Zn,d is the number of

monomials of degree ≤ d− (�d2�+ 1) in n variables.

Again, this result matches the “trivial” lower bounds on

Waring rank, and is quadratically away from the Waring rank

of most polynomials in P (n, d).

D. Generalized rank methods and statements of main results

The purpose of this paper is to investigate the potency

of a larger class of sub-additive measures, and prove bar-

riers for these. We consider two types of generalized rank

methods. Let d > k ≥ 2. Matrix-rank methods lift degree-

2 lower bounds to degree d lower bounds (for tensors and

polynomials). Now we lift degree-k tensor and Waring rank

lower bounds to degree d ones for d > k. Again, it is best

to think of d, k as constants (although our results are for

all values), and n going to infinity as the main complexity

parameter. Repeating a comment made earlier, note that now

the assumed lower bounds (for k > 2) that we are trying

to lift are not easy to compute (in contrast to matrix-rank

methods where k = 2).
Summarizing this section, our main results naturally ex-

tend the ones in [EGOW17]. First, for these more general

methods, there is a trivial way to use them, analogous to

flattening in matrix-rank methods, which for every k < d
give much weaker bounds than the tensor/Waring rank for

most degree d tensors/polynomials. Second, our barriers

show that any use of these general methods (despite lifting

hard-to-prove lower bounds) cannot improve their trivial use

by more than a constant factor (for constant d). Third, the
proofs of our barrier results also follow the general strategy

3One can obtain a larger constant factor of 3 using techniques that do
not fall under rank methods, see [AFT11].

of [EGOW17]. However, the case k > 2 seems to raise

major, interesting difficulties in implementing that strategy,

which require new ideas, as well as more sophisticated

tools from algebraic geometry. These in turn lead us to

prove purely algebraic results regarding polynomial maps

which we believe can be useful way beyond the context of

this paper, both in algebraic complexity and in algebraic

geometry. We will encapsulate this main result in the next

subsection as well, and discuss at length the difficulties,

ideas and tools in Section III.

We now turn to formally define the generalized rank

methods we consider, and state our main results.

Definition 1.12 (Tk-rank method): Let V be a vector

space and let S ⊆ V be a spanning subset. A linear

map φ : V → Ten(m, k) is called a Tk-rank method.

Thus, matrix-rank methods are simply T2-rank methods. The

function μφ defined by μφ(v) = trk(φ(v)) for v ∈ V is a

sub-additive measure, and Pot(φ) = μφ(V )/μφ(S).
Example 1.13 (Trivial Tk-rank method): Consider

Ten(n, d), where d = rk for simplicity. In the spirit of

simple flattenings of Example 1.9, by clubbing together the

tensor factors into k groups of size r, we get a linear map

Ten(n, d)→ Ten(nr, k). This "trivial" Tk-rank method has

potency Ω((nr)k−1). To give a frame of reference for the

theorem below, we note that nr(k−1) = n�
(k−1)d

k �.
Recall that we assume throughout the paper that the

ground field F is algebraically closed and characteristic

zero. This is important in our main results (i.e., Theo-

rems 1.14, 1.16, 1.18 and 1.19), so we will restate this

assumption.

Theorem 1.14: Suppose that the ground field is alge-

braically closed and characteristic zero. Let S denote the

subset of rank 1 tensors in V = Ten(n, d). Then for any

Tk-rank method φ : Ten(n, d)→ Ten(m, k), its potency

Pot(φ) ≤ Ad,k · (n�
(k−1)d

k �),

where Ad,k = kd.
The theorem holds for all values of k, d, n,m! Let us say

a few words on these parameters. First note that it recovers

(with k = 2) Theorem 1.10 of [EGOW17]. Next note that, as

in [EGOW17], for constant d the upper bound is a constant

factor away from the trivial use of the method. Finally, note

that, again as in [EGOW17], our theorem holds for any value

(m here) of the dimension of the image space, and it does not

assume anything (in particular explicitness) of linear map φ
used by the method!

Remark 1.15: The above theorem is especially interesting

in the case for Ten(n, 4). The trivial lower bound, the barrier

for matrix-rank methods and the barrier for T3-rank methods

are all quadratic in n, differing only in a constant factor.

Hence, even if one had access to an oracle for tensor rank

of 3-tensors, one could still not prove super-quadratic lower

bounds for the tensor rank of tensors in Ten(n, 4).

827

Authorized licensed use limited to: Princeton University. Downloaded on July 16,2020 at 21:06:24 UTC from IEEE Xplore.  Restrictions apply. 



The following table puts the degree of tensors against

lower bounds obtainable by different classes of rank meth-

ods. We suppress constant terms.

Rank methods Trivial T3 Best T3 Desired

3− tensors n n2 n2 n2

4− tensors n2 n2 n2 n3

5− tensors n2 n3 n3 n4

The following three results are in the same spirit.

Theorem 1.16: Suppose that the ground field is alge-

braically closed and characteristic zero. Let S denote the

subset of all powers of linear forms in V = P (n, d). For

any Tk-rank method φ : P (n, d)→ Ten(m, k), its potency

Pot(φ) ≤ Bd,k · (n�
(k−1)d

k �)

for some constant Bd,k depending only on d and k.
One can compute an explicit upper bound for the constant

Bd,k, but it is quite messy. If the reader is so inclined, they

may extract an explicit upper bound from Corollary 5.14.

Definition 1.17 (Wk-rank method): Let V be a vector

space and let S ⊆ V be a spanning subset. A linear map

φ : V → P (m, k) is called a Wk-rank method. The function

μφ defined by μφ(v) = wrk(φ(v)) for v ∈ V is a sub-

additive measure, and Pot(φ) = μφ(V )/μφ(S).
Theorem 1.18: Suppose that the ground field is alge-

braically closed and characteristic zero. Let S denote the

subset of rank 1 tensors in V = Ten(n, d). For any Wk-

rank method φ : Ten(n, d)→ P (m, k), its potency

Pot(φ) ≤ Cd,k · (n�
(k−1)d

k �),

where Cd,k = 2k−1kd.
Theorem 1.19: Suppose that the ground field is alge-

braically closed and characteristic zero. Let S denote the

subset of all powers of linear forms in V = P (n, d). For

any Wk-rank method φ : P (n, d)→ P (m, k), its potency

Pot(φ) ≤ 2k−1Bd,k · (n�
(k−1)d

k �),

where Bd,k is the same constant as in Theorem 1.16.

Remark 1.20: For matrix-rank methods, there is an al-

ternate approach to proving barriers for the potency using

the notion of cactus rank (see Section VIII). This approach

doesn’t seem to have an obvious generalization to Tk and

Wk-rank methods. It would be interesting to understand if

there is an appropriate generalization that would also lead

to the same barriers for Tk−rank methods and Wk−rank

methods that we obtain in this paper.

E. Numeric to symbolic transfer

The key new ingredient in this paper is a very general

“numeric to symbolic transfer” statement. We will first state

the theorem and then explain its meaning.

Theorem 1.21: Let F be an algebraically closed field of

characteristic zero. Suppose L : Fn → Fm is a polynomial

map, and M : Fr → Fm is another polynomial map such

that Im(L) ⊆ Im(M). Let z = (z1, . . . , zn) be a vector

of indeterminates. Then there exists c = (c1, . . . , cn) ∈ Fn

such that

L(z + c) =M(p1(z), . . . , pr(z)),

where p1(z), . . . , pr(z) are (n-variate) power series around

0.
That the map L = (L1, . . . , Lm) is a polynomial map

simply means that each component Li : Fn → F is a

polynomial function (similarly for M ). For an exponent

vector e = (e1, . . . , en) ∈ Nn, we use the shorthand

ze = ze11 z
e2
2 . . . zenn to denote monomials. By an n-variate

power series around 0, we mean an expression of the

form q(z) =
∑

e∈Nn qeze, where qe ∈ F. Addition and

multiplication on power series is defined in the standard way,

and so it makes sense to plug in a vector of power series

into M . Equality of power series is purely symbolic4 – two

power series q(z) and p(z) are said to be equal if qe = pe
for all e ∈ Nn.

The hypothesis Im(L) ⊆ Im(M) is a condition on the

numeric evaluations of L andM . To interpret the conclusion,

first observe that the right hand side is (apriori) a vector of

power series. The left hand side is a vector of polynomials,

and polynomials are power series. Thus the conclusion is

an equality as vectors of power series, which is a symbolic

statement – hence the interpretation of the above theorem as

a “numeric to symbolic transfer” statement.

Remark 1.22: The above result is very much in the spirit

of the implicit function theorem and the constant rank

theorem. However, it does not seem to be a straightforward

consequence. If this were the case, we should expect a

similar statement for smooth functions – if we take F = R,

L,M to be C∞ functions, the pi(z) to be C∞ functions on

some small neighbourhood of 0, and ask for the conclusion

to be an equality (as functions) on a small neighbourhood.

No such statement seems to be known to the best of our

knowledge.5

Our use of Theorem 1.21 will be in the context:

Corollary 1.23: Let F be an algebraically closed field

of characteristic zero. Let L : Fn → Ten(m, k) be a

polynomial map. Let z = (z1, . . . , zn) be a vector of

indeterminates. If trk(L(β)) ≤ a for all β ∈ Fn, then

there exists c ∈ Fn such that we have a power series

4When F = C, one can interpret these power series as analytic functions
(provided they converge in some neighbourhood), and then equality of
power series is the same as equality of functions. For other fields, there is
not always a reasonable interpretation of power series as functions.

5Experts have suggested that it is likely false in this setting. However,
constructing an explicit counterexample seems to be difficult.
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decomposition

L(z + c) =
a∑

i=1

p(1)
i (z)⊗ p(2)

i (z)⊗ · · · ⊗ p(k)
i (z),

where p(j)
i (z) is an m-dimensional vector of power series

in the variables z around 0.
The above corollary is an instantiation of the above

theorem, and we defer the details to Section IV. The barriers

for matrix-rank methods in [EGOW17] also required the

case k = 2 in the above corollary. However, that special

case is straightforward to prove, which we will see in

Section III. With the exception of the above result, the rest

of the arguments for proving our main results are natural

generalizations of the arguments for the k = 2 case in

[EGOW17].

Theorem 1.21 requires non-trivial notions and results

from algebraic geometry to prove. On the other hand, the

statement itself is accessible and neat, and we speculate that

it will find more uses in complexity theory. One possible use

is to prove lower bounds via elusive functions (see [Raz10]).

The elusiveness of a function is a numerical condition and

fits precisely into the setup of the above theorem. Thus,

Theorem 1.21 allows us for a symbolic interpretation of this

condition. The advantage is that this brings new tools to the

table, which we demonstrate in toy cases (see Section IX).

F. Results on border rank, set-multihomogeneous rank and
cactus rank

We give a brief overview of some additional results that

we include in this paper, and we defer the details to the

appropriate sections.

1) Border rank: For simplicity, we have ignored the

notion of border rank in the introduction so far. In

Section VII, we prove barriers to lifting border rank

of tensors/polynomials. Incorporating the notion of

border rank is not straightforward, and again requires

results from algebraic geometry.

2) Matching barriers obtained from cactus rank:
For matrix-rank methods, the current barriers

in [EGOW17] do not match precisely the barriers

obtained by cactus rank arguments (the gap is

quite small). By introducing an additional idea, we

match the barriers obtained in both approaches in

Section VIII.

3) Set-multihomogeneous rank: We discuss barriers

for matrix-rank methods for set-multihomogeneous

rank (a generalization of tensor and Waring ranks) in

Section VIII.

G. Organization

In Section II, we collect some notation. In Section III,

we give a proof sketch of the barriers for matrix rank

methods (in [EGOW17]). We also discuss the issues with

generalizing the arguments and the new ideas to overcome

these; in particular we discuss the ingredients of the numeric

to symbolic transfer statement (Theorem 1.21). Section IV

contains a brief introduction of notions in algebraic geom-

etry we require, and a detailed proof of Theorem 1.21. The

barriers to tensor (resp. Waring) rank lower bound methods

are established in Section V (resp. Section VI), thereby

proving our main results.

We study border rank methods and establish barriers for

these in Section VII. This requires a careful interplay be-

tween algebraic and topological border rank. In Section VIII,

we discuss barriers for set multi-homogenous rank, as well

as match the barriers obtained from our techniques with the

barriers coming from cactus rank. Finally, in Section IX,

we discuss elusive functions and their importance in lower

bounds, and suggest a symbolic approach using our numeric

to symbolic transfer statement.

II. NOTATION

In this section we establish additional notation to the ones

given in the previous section, and state basic facts which will

be used throughout the paper.

For a ring R, we define TenR(n, d) := (Rn)⊗d as the

module defined by the set of degree d tensors with local

dimension n and entries given by elements of the ring R.

When the ring is clear from the context, we omit it from the

definition, as we did in the previous section.

We will denote elements of a field or of a ring with

lowercase normal or greek letters, such as a, b, c, α, β, γ.
Given a vector space (or an R-module) V , such as Fn,

we will denote elements of this vector space with boldface

letter, for instance v ∈ V . Similarly, we will also denote

a set (or vector) of indeterminates with boldface letters

z := (z1, . . . , zm). We will sometimes think of z as a set

and sometimes as a vector and this will be obvious from the

context. For example, we think of it as a set when we write

the function field F(z) = F(z1, . . . , zm), and we think of it

as a vector when we write L(z) for some function L that

takes n inputs (as we do in Theorem 1.21).

We will use the following shorthand notation to refer

to a monomial: ze =
∏m

i=1 z
ei
i , where e ∈ Nm. Given a

polynomial f(z) ∈ P (m), we will denote its degree by

deg(f). Thus, the degree of the monomial ze is given by

deg(ze) = e1 + · · · + em. We will also write deg(e) for

deg(ze) as it simplifies notation.

A power series in z around c = (c1, . . . , cm) ∈ Fm is an

expression of the form p(z) =
∑

e∈Nm pe(z− c)e. Note that

(z − c)e =
∏
(zi − ci)

ei . Given two power series p(z) and

q(z), we can add or multiply them in the obvious fashion.

This gives the collection of all power series in z around c the

structure of a ring, which we call the ring of power series.

Definition 2.1 (Ring of Power Series): We denote by

F[|z − c|] = F[|z1 − c1, . . . , zm − cm|] the ring of power
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series in z around c.

III. PROOF STRATEGIES FOR PREVIOUS RESULTS AND

NEW IDEAS

The high-level strategy for proving our main results

is similar to the barriers for matrix-rank methods in

[EGOW17]. Hence, we will give a sketch of the arguments

in [EGOW17], which will help us identify the difficulties in

generalization, and the new ideas (primarily the numeric to

symbolic transfer) that are required to overcome this.

A. Barriers for matrix-rank methods: Proof sketch

The following observation is key on how potential upper

bounds, and thus barriers are obtained – any matrix of the

form

* *
* 0

n1

n2

has rank at most n1 + n2. Let us also note that such

matrices form a closed set under addition, and in fact a linear

subspace. So, the sum of any number of such matrices will

also be of this form, and hence have rank at most n1+n2. In

particular, suppose φ : V → Matk,l is a matrix-rank method

(for some spanning set of simples S ⊆ V ). Further, (under

a suitable basis change) suppose that for every s ∈ S, φ(s)
is of the form above. Now, for any v ∈ V , we can write

v = s1 + s2 + · · · + sr for some si ∈ S. Thus one sees

immediately that φ(v) = φ(s1) + φ(s2) + · · · + φ(sr) is

also of the same form (because matrices of such form are

closed under addition), and hence has rank ≤ n1 + n2. So,

μφ(V ) = max{rk(φ(v)) | v ∈ V } ≤ n1 + n2. Thus, this
gives an upper bound on potency

Pot(φ) =
μφ(V )

μφ(S)
≤ n1 + n2

μφ(S)
.

Let us identify Matk,l with Fk⊗Fl in the natural fashion.

The condition discussed above can be rephrased as having

subspaces U1 ⊆ Fk and U2 ⊆ Fl (with dimU1 = n1 and

dimU2 = n2) such that for all s ∈ S, φ(s) ∈ U1 ⊗ Fl +
Fk ⊗ U2. We record this as a lemma for further use.

Lemma 3.1: Let φ : V → Matk,l be a matrix-rank

method such that a = max{rk(s) | s ∈ S} = μφ(S).
Suppose we have subspaces U1 ⊆ Fk and U2 ⊆ Fl such

that for all s ∈ S, φ(s) ⊆ U1 ⊗ Fl + Fk ⊗ U2. Then, we

have φ(V ) ⊆ U1 ⊗ Fl + Fk ⊗ U2, and consequently,

Pot(φ) =
μφ(V )

μφ(S)
≤ dim(U1) + dim(U2)

a
.

Definition 3.2 (Parametrization): An (algebraic)

parametrization of a spanning subset S ⊆ V is simply a

polynomial map ψ : Fn → V such that ψ(Fn) = S.

The ability to parametrize simples is crucial in the proofs

of barriers. In the setting of Waring rank, i.e, V = P (n, d)
and S = {�d | � ∈ P (n, 1)}, we have a parametrization

ψ : Fn → P (n, d) given by (α1, . . . , αn) �→ (
∑

j αjxj)
d,

which is a homogenous polynomial map of degree d (by

which we mean that when written in coordinates, it is

given by homogenous polynomials of degree d). The proof

of the barrier seems to depend only on the nature of the

parametrization (that it requires n variables and is homoge-

nous of degree d). We now proceed to give a proof sketch

of Theorem 1.11.

Proof sketch of Theorem 1.11: Let V = P (n, d)
and S = {�d | � ∈ P (n, 1)}, and ψ : Fn → V be

the parametrization of S described above. Composing the

matrix-rank method φ : V → Matk,l with the parametriza-

tion ψ gives a map L := φ ◦ ψ : Fn → Matk,l.

1) The starting point: It is easy to see that

Im(L) = φ(S). Thus, the map L has the property

that rk(L(β1, . . . , βn)) ≤ a = μφ(S) for all

β = (β1, . . . , βn) ∈ Fn.

2) A symbolic decomposition in the function field: Let
z = (z1, . . . , zn) be a vector of indeterminates. The

above statement implies the symbolic statement that

rk(L(z1, . . . , zn)) ≤ a. Note here that L(z1, . . . , zn)
is a k × l matrix with entries in the polynomial ring

F[z1, . . . , zn] (and hence in the function field K =
F(z1, . . . , zn)). So, we take the rank of the matrix over

this function field K. So, for some pi(z) ∈ Kk and

qi(z) ∈ Kl, we can write

L(z1, . . . , zn) =
a∑

i=1

pi(z)⊗ qi(z).

3) A power series decomposition: Each pi(z) =
(pi1(z), . . . , pik(z)) and qi(z) = (qi1(z), . . . , qil(z)),
where pij(z), qij(z) ∈ K are rational functions. Ratio-

nal functions have power series expansions wherever

they are defined (i.e., where the denominator doesn’t

vanish). Since, we have finitely many rational func-

tions, we can choose a c ∈ Fn such that after the shift

z �→ z + c, they are all defined at 0 ∈ Fn. For such a

c, we have power series expansions around 0:

pi(z + c) =
∑

e∈Nn

pi,eze and qi(z + c) =
∑
f∈Nn

qi,fz
f,

where pi,e ∈ Fk and qi,f ∈ Fl, and ze =
∏n

i=1 z
ei
i .

We refer to the pi,e’s and qi,f’s as coefficient vectors.

This gives the power series decomposition:
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L(z + c) =
a∑

i=1

(∑
e

pi,eze

)
⊗
(∑

f

qi,fz
f

)
.

4) A finite monomial decomposition using degree of
parametrization:
Since φ is a linear map, and ψ is homogenous of

degree d, the composition L is also homogenous of

degree d, i.e., L(z) is a matrix consisting of homoge-

nous polynomials of degree d. So, L(z+c) is a matrix

consisting of polynomials of degree ≤ d. Hence, if we

set I = {(i, e, f) | deg(e) + deg(f) ≤ d, 1 ≤ i ≤ a}6,
we get the monomial decomposition:

L(z + c) =
∑

(i,e,f)∈I
pi,eze ⊗ qi,fz

f.

Now, observe that the right hand side is a finite sum

since I is finite.

5) Extracting subspaces spanned by coefficient
vectors: We claim that we can take

U1 = span(pi,e | deg(e) ≤ �d2�) and

U2 = span(qi,f | deg(f) ≤ d − (�d2� + 1)) to

satisfy the hypothesis of Lemma 3.1. Indeed,

take s ∈ S. For some α ∈ Fn, we have

φ(s) = L(α + c) =
∑

(i,e,f)∈I pi,eα
e ⊗ qi,fα

f.

Take one of the terms pi,eα
e ⊗ qi,fα

f. Since

deg(e) + deg(f) ≤ d, we must have either

deg(e) ≤ �d2� or deg(f) ≤ d − (�d2� + 1). If

deg(e) ≤ �d2�, then

pi,eα
e⊗qi,fα

f = pi,e⊗(qi,fα
e+f) ∈ pi,e⊗Fl ⊆ U1⊗Fl.

Otherwise, deg(f) ≤ d − (�d2� + 1), and pi,eα
e ⊗

qi,fα
f ∈ Fk⊗U2 . This means that φ(s) = L(α+c) ∈

U1 ⊗ Fl + Fk ⊗ U2 as desired. Let J denote the

set of monomials of degree ≤ �d2� in n variables.

Then the defining spanning set of U1 is indexed by

{1, 2, . . . , a} × J . Hence dim(U1) ≤ aYn,d, since

|J | = Yn,d by definition of Yn,d. Similarly dim(U2) ≤
aZn,d. Applying Lemma 3.1 gives Theorem 1.11.

The proof of Theorem 1.10 is similar. The parametrization

of rank 1-tensors is of degree d, but one can additionally ob-

serve that the parametrization is ‘set-multilinear’. This forces

additional constraints in the finite monomial decomposition,

giving a sharper bound on potency. The full details can of

course be found in [EGOW17]. We also need to discuss the

notion of set-multilinearity for our purposes, but we defer

that discussion until necessary.

6Recall that we use deg(e) as shorthand for the degree of the monomial
ze.

B. New ideas from algebraic geometry

In adapting this proof strategy to prove barriers for

generalized rank methods, the first issue occurs in Step

(2). The crucial point in Step (2) is that rank of ma-

trices can be described by polynomial equations, namely

the vanishing of minors. This allows one to easily prove

rkF(z)L(z) = max{rkFL(α) | α ∈ Fn}7, which is what

allows for the symbolic decomposition over the function

field. This argument fails if we consider a Tk-rank method

or a Wk-rank method because tensor rank and Waring rank

are not captured by polynomial conditions.

Further, step (3) runs into trouble as without some sort of

symbolic decomposition, one cannot hope for a power series

decomposition. Both these issues need to be addressed, and

to do so, we will turn towards algebraic geometry.

We fix these issues in two steps (which when put together

give Theorem 1.21). Roughly speaking, the first fixes step

(2) and the second fixes step (3). We will describe these

steps, and defer the proofs to Section IV. The key idea in

the first step is that one must pass from the function field to

its algebraic closure.

Proposition 3.3: Let F be an algebraically closed field.

Suppose L : Fn → Fm is a polynomial map, and

M : Fr → Fm is another polynomial map such that

Im(L) ⊆ Im(M). Let z = (z1, . . . , zn) be indeterminates

and K = F(z1, . . . , zn). Then there are algebraic functions

b1(z), . . . , br(z) ∈ K = F(z1, . . . , zn) such that

L(z) =M(b1(z), . . . , br(z)).

The need to pass to the algebraic closure is already evident

in the example at the end of this section. One ought to see the

above as an algebraic result in a similar vein to the implicit

function theorem. However, unlike the local nature of the

implicit function theorem, this statement is more global8.

Further, the implicit function theorem usually requires some

non-degeneracy condition to be satisfied, and this is not the

case for the above result (but we do have extra structure).

Our eventual goal is really to get power series rather

than algebraic functions. When F = C, we can get power

series by interpreting (an appropriate branch of) an algebraic

function as an analytic function. The analogous statement

holds for any algebraically closed field F of characteristic

zero, but formulating and proving this requires some care. In

particular, the notion of analytic does not exist, so we use the

notion of étale morphisms as a suitable replacement. Before

stating the second step, we will first recall the ring of power

series.

Let z = (z1, . . . , zn) be a vector of indeterminates. Recall

from Section II that F[|z−c|] denotes the ring of power series

in the variables z = (z1, . . . , zn) around c ∈ Fn

7All this requires is that F is infinite, or even sufficiently large.
8Branches of algebraic functions can be defined over a (large) Zariski

open subset of the domain, but not necessarily the whole domain.
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Proposition 3.4: Let F be an algebraically closed field of

characteristic zero. Suppose we have a finite collection of

elements b1(z), . . . , br(z) ∈ K = F(z1, . . . , zn). Then for

some choice of c ∈ Fn (a generic choice will do), we have

an F-algebra homomorphism

F[z1, . . . , zn, b1(z), . . . , br(z)] −→ F[|z− c|],
which extends the canonical inclusion F[z1, . . . , zn] ↪→
F[|z− c|].

Let us illustrate Theorem 1.21 in a very simple case. Let

L : F → F be given by L(x) = x. Let M : F → F be

given by M(y) = y2. Then, since L and M are surjective,

it is clear that Im(L) ⊆ Im(M), i.e., the hypothesis of

Theorem 1.21 is satisfied. If z is an indeterminate, then

L(z) = z = M(
√
z). Note that

√
z ∈ F(z). In particular,

this demonstrates the need to pass to the algebraic closure

of the function field in Proposition 3.3. Now, consider
√
z.

This does not have a power series around 0 ∈ F. However,

it will have a power series around some other point, say

1 ∈ F (as claimed by Proposition 3.4). To get this power

series expansion, we expand
√
z = (1 + (z − 1))1/2 using

the well known binomial theorem, to get

√
z = 1 +

1

2
(z − 1) +

−1
8

(z − 1)3 + . . . .

So, we have

L(z) = z =M

(
1 +

1

2
(z − 1) +

−1
8

(z − 1)3 + . . .

)
.

Or equivalently, we get

L(z + 1) = z + 1 =M

(
1 +

1

2
z +

−1
8
z3 + . . .

)
as claimed by Theorem 1.21.

IV. NUMERIC TO SYMBOLIC TRANSFER

This section will be devoted to developing the necessary

tools from algebraic geometry, and using them to prove the

numeric to symbolic transfer statement, i.e., Theorem 1.21.

We will begin with some basic definitions.

Let F be an algebraically closed field. For a finitely

generated F-algebra A, we denote by MSpec(A) the cor-

responding affine variety (over F). As a set, MSpec(A)
consists of all the maximal ideals of A. We further give

it a topology called the Zariski topology by defining which

subsets are closed. A subset of MSpec(A) is closed if it is

of the form V(I) = {m ∈ MSpec(A) | I ⊆ m} for some

ideal I of A.

Since F is algebraically closed, there is another de-

scription of MSpec(A) as F-algebra homomorphisms from

A to F. We denote by Hom(A,F) the set of F-algebra

homomorphisms from A to F. Indeed, consider the map ζ :
MSpec(A)→ Hom(A,F) defined by the canonical quotient

map m �→ {ζ(m) : A −→ A/m = F}. Note that since A is

a finitely generated F-algebra, and F is algebraically closed,

there is a canonical isomorphism A/m = F. In the other

direction, consider the map η : Hom(A,F) → MSpec(A)
defined by φ �→ Ker(φ). We leave it to the reader to check

that the two maps are inverses to each other.

Lemma 4.1: The maps ζ and η are inverses to each

other. In particular, we have a canonical bijection between

MSpec(A) and Hom(A,F).
Suppose A,B are finitely generated F-algebras with an

F-algebra homomorphism ι : A → B. Then this gives

a map ι∗ : Hom(B,F) → Hom(A,F) by φ �→ φ ◦ ι.
Using the above lemma, we will also think of ι∗ as a map

from MSpec(B) to MSpec(A), and this is continuous with

respect to the Zariski topology.

A. Symbolic decomposition in terms of algebraic functions

We will prove Proposition 3.3 in this subsection. The

proof will be based on Hilbert’s nullstellensatz.

Proof of Proposition 3.3: Let Li (resp. Mi) denote

the coordinate functions of L, i.e., L = (L1, . . . , Lm) (resp.

M = (M1, . . . ,Mm)). Let y = (y1, . . . , yr) be a vector of

indeterminates. The hypothesis can be interpreted as follows

– for all α = (α1, . . . , αn) ∈ Fn, the system of equations

{Li(α1, . . . , αn) =Mi(y1, . . . , yr)}1≤i≤m has a solution.

Assume for the sake of contradiction that there are no

bi(z) ∈ K such that L(z1, . . . , zn) = M(b1(z), . . . , br(z)).
This means that the system of equations

{Li(z1, . . . , zn) =Mi(y1, . . . , yr)}1≤i≤m

has no solution. Just to be clear, we interpret these as m
equations in the indeterminates y1, . . . , yr and coefficients

in K. In other words, the zero locus of the collection of

polynomials {Mi(y) − Li(z)}1≤i≤m ⊆ K[y1, . . . , yr] is

empty. By Hilbert’s nullstellensatz, we get that∑
i

fi(y) · (Mi(y)− Li(z)) = 1 (in K[y1, . . . , yr]),

for some fi ∈ K[y1, . . . , yr]. Write each fi =
∑

e∈Nr fi,eye.

Let T := F[z1, . . . , zn, fi,e∀i, e], which is a finitely gener-

ated ring.

Observe that the above equality can be intepreted in

T [y1, . . . , yr] ⊆ K[y1, . . . , yr]. Take any F-algebra ho-

momorphism φ : T → F. That such a homomorphism

exists is a consequence of Lemma 4.1 and the fact that

maximal ideals always exist. We can extend φ to a map

T [y1, . . . , yr]→ F[y1, . . . , yr] which we will also call φ by

abuse of notation.

Let φ(zi) = βi ∈ F, and let β = (β1, . . . , βn) ∈ Fn. By

applying φ to the above equality, we get∑
i

φ(fi)(Mi(y)− Li(β)) = 1 (in F[y1, . . . , yr]).

which again by Hilbert’s nullstellensatz means that the sys-

tem of equations {Li(β1, . . . , βn) =Mi(y1, . . . , yr)}1≤i≤m

has no solution, which contradicts the hypothesis.
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Remark 4.2: An alternate proof using more modern

algebro-geometric language is as follows. Consider L as

map of schemes rather than varieties, i.e., L : An → Am,

where Am defines the m-dimensional affine space (over

F). Similarly, consider M also as a map of schemes. The

hypothesis then tells us that L(p) ∈ Im(M) for every

closed point p ∈ An. From this, one deduces that for the

generic point η ∈ An, L(η) ∈ Im(M). This means that

the fiber M−1(L(η)) is non-empty. The symbolic vector

L(z1, . . . , zn) can be interpreted as a K-point lying over η.
Since M−1(L(η)) is non-empty, one can deduce that there

is a closed K-point of Ar which is sent to L(z1, . . . , zn) by

M (this uses that K is algebraically closed). This just means

that there is (b1(z), . . . , br(z)) ∈ (K)r such that

L(z1, . . . , zn) =M(b1(z), . . . , br(z)).

B. Power series representations of algebraic functions

This subsection will be devoted to proving Proposi-

tion 3.4. The intuition for the result is as follows. We want to

give power series for each of the bi(z)’s. Roughly speaking,

power series around some point are analytic functions in

some small (analytic) neighbourhood. So, we want to inter-

pret all the bi(z) as analytic functions locally. The bi(z)’s are
in K are not ‘functions’ in n variables – at best they can be

interpreted as ‘multi-valued’ functions. Take for example the

algebraic function
√
z discussed at the end of Section III.

At any non-zero point, there are two possible values for√
z, and there is no canonical choice9. On the other hand,

there is a natural algebraic variety on which the bi(z)’s
are naturally functions. This variety is MSpec(R) where

R = F[z1, . . . , zn, b1(z), . . . , br(z)].
Now, that the bi(z)’s have been interpreted as functions on

some algebraic variety, we observe that there is a morphism

of varieties f : MSpec(R) → Fn given by the inclusion

F[z1, . . . , zn] ↪→ R. Using the map f , we want to ‘push

down’ the functions bi(z) to functions on Fn locally. If we

can do this, then we can interpret the bi(z) as functions in

some small analytic neighbourhood of Fn, which gives them

power series.

The (toy) picture to have in the mind is the above one

where the map f is pictorially represented by projecting

down (along the dotted arrows). The top curved picture

represents MSpec(R) and the line at the bottom represents

9In this particular case, there is a canonical choice over R, but for us F
is an algebraically closed field.

Fn. Around most points in the domain, the map f is an (an-

alytic) isomorphism in some small local neighbourhood (in

the analytic topology). So, using such a local isomorphism,

we can interpret the bi(z)’s as analytic functions in a small

neighbourhood of Fn, thereby giving them a power series.

Of course, as we are working with algebraic varieties,

we do not have the analytic topology, but rather the very

coarse Zariski topology. The correct notion to fix this issue

is the notion of étale morphisms. We refer the reader to

[Sta], [Har13], [Vak13] for standard results.

We will now proceed to give a rigorous proof of Propo-

sition 3.4. As usual, let z = (z1, . . . , zn) denote indetermi-

nates. In this section, F will be an algebraically closed field

of characteristic zero. We note that the characteristic zero

assumption seems to be crucial.

Lemma 4.3: Define the ring R =
F[z1, . . . , zn, b1(z), . . . , br(z)] ⊆ K. Then

dim(MSpec(R)) = n.

Proof: We have an inclusion F[z1, . . . , zn] ⊆ R ⊆ K.

Thus R is an integral domain and a finitely generated F-

algebra. Thus, its Krull dimension is equal to its transcen-

dence degree. But we know F(z1, . . . , zn) ⊆ Frac(R) ⊆ K,

so the transcendence degree is n. Thus dim(MSpec(R)) =
n = dim(MSpec(F[z1, . . . , zn]).

Recall that an inclusion of rings F[z1, . . . , zn] ↪→ R
gives a dominant map10 f : MSpec(R) → Fn =
MSpec(F[z1, . . . , zn]). We say that the map f is étale at

a point p ∈ MSpec(R) if it is smooth at p and relative di-

mension zero at p, i.e., the fiber f−1(f(p)) is 0-dimensional.

We refer to the standard sources [Sta], [Har13], [Vak13] for

the definition of smoothness of a morphism.

Lemma 4.4: There is a point p ∈ MSpec(R) at which f
is étale.

Proof: Since we are in characteristic zero, we have

generic smoothness on the source11, see for example [Vak13,

Thm 25.3.1]. This means that there is a dense open subset

U ⊆ MSpec(R) such that f is smooth on U . Further, since

f is dominant, there is an open subset V ⊆ MSpec(R)
where f has relative dimension zero (see [Vak13, Proposi-

tion 11.4.1]). Let p ∈ U ∩ V . Then f is smooth at p with

relative dimension zero at p, i.e., f is étale at p.

For a point p ∈ MSpec(R), we denote by OR,p := Rp

the local ring at p. Roughly speaking the local ring at p is

the ring of functions which are polynomial in some small

neighbourhood of p. We denote by ÔR,p the completion of

OR,p with respect to the maximal ideal pOR,p
12. We have

a canonical homomorphism from R→ OR,p → ÔR,p.

Lemma 4.5: Let p ∈ MSpec(R) be a point at which

f is étale. Let f(p) = c ∈ Fn. Then the inclusion

10This just means that the image is dense.
11This is a highly non-trivial result, and the analog of Sard’s theorem.
12For a ring R, its completion with respect to an ideal I is the inverse

limit ̂T := lim← R/In.
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F[z1, . . . , zn] ↪→ R gives an isomorphism on the comple-

tions of local rings

F[|z− c|] ∼−→ ÔR,p.

Proof: It is a well known result that if f is étale at p,
then we have an isomorphism on the completions of the local

rings (at p and f(p)), see for example [Tsi, Theorem 1.6]

or [GD65, Proposition 17.6.3]. The completion of the local

ring at c ∈ Fn is F[|z− c|]. Thus we get an isomorphism

F[|z− c|] ∼−→ ÔR,p.

Proof of Proposition 3.4: The above discussion can be

summarized in the following commutative diagram.

F[z] R

F[|z− c|] ÔR,p
∼

By inverting the lower horizontal isomorphism, we get the

following commuting diagram, which is all we wanted.

F[z] R

F[|z− c|]

Proof of Theorem 1.21: From Proposition 3.3, we get

L(z1, . . . , zn) = M(b1(z), . . . , br(z)). Then, we can ap-

ply the homomorphism F[z1, . . . , zn, b1(z), . . . , br(z)] −→
F[|z − c|] given by Proposition 3.4. This replaces the bi(z)
by power series around c for each i. Then, applying the shift

z �→ z + c, we get the required conclusion.

Proof of Corollary 1.23: This is a special case of

Theorem 1.21. To see this, we only need to find the right

M . Take M : ((Fm)k)a → Ten(m, k) given by

M((v(1)
1 , . . . , v(k)

1 ), . . . , (v(1)a , . . . , v(k)
a ))

=
a∑

i=1

v(1)i ⊗ v(2)i ⊗ · · · ⊗ v(k)i ,

where all v(j)i ∈ Fm. Observe thatM parametrizes the set of

all tensors of rank ≤ a. Hence, we have Im(L) ⊆ Im(M).
Thus, we can apply Theorem 1.21 and deduce the required

result.

V. TENSOR RANK LOWER BOUND METHODS

In this section, we will prove upper bounds on the potency

of Tk-rank methods. In the previous sections, we have

discussed the necessary algebraic geometry that allows us

to parallel the arguments in [EGOW17].

Let us first collect some general statements. Let S ⊆ V
be a spanning set (of simples). Suppose we have a linear

map φ : V → Ten(m, k), i.e., a Tk-rank method.

Definition 5.1: Suppose U ⊆ Ten(m, k) is a linear sub-

space. Then we define

r(U) := max{trk(T ) |T ∈ U}.
The following lemma is straightforward, and is in the

same spirit as Lemma 3.1.

Lemma 5.2: Suppose φ(S) ⊆∑
I UI for a finite collec-

tion of linear subspaces UI , then φ(V ) ⊆∑
I UI . Thus, we

have

μφ(V ) ≤
∑
I
r(UI).

Now, let us consider some special subspaces.

Definition 5.3: A subspace U ⊆ Ten(m, k) is called

basic if there exist subspaces Ui ⊆ Fm for 1 ≤ i ≤ k
such that

U = U1 ⊗ U2 ⊗ · · · ⊗ Uk ⊆ Ten(m, k).

Lemma 5.4: Suppose U = U1 ⊗ U2 ⊗ · · · ⊗ Uk ⊆
Ten(m, k) is a basic subspace. Then for any p such that

1 ≤ p ≤ k, we have

r(U) ≤
∏
i�=p

dim(Ui).

The idea for barriers is as follows. We will be given a

rank method φ with μφ(S) = a. We will find a collection of

basic subspaces UI that satisfy the hypothesis of Lemma 5.2.

This will give an upper bound on μφ(V ) in terms of

r(UI)’s, which in turn can be computed by Lemma 5.4.

Since Pot(φ) =
μφ(V )

a , the upper bound on μφ(V ) gives an

upper bound on potency as well. So, all that is left to do is

to exhibit the required collections of basic subspaces in the

cases that we need to prove.

A. Set multi-grading

We will collect some notation and basic facts regarding set

multi-degree that we will use subsequently to prove our main

barrier results. Let z = (z1, . . . , zd) be a set of variables,

where each set zi = (zi1, . . . , zin) corresponds to the ith

set of variables in z. We can identify the set of monomials

in z with their exponent vectors e ∈ (Nn)d, that is ze ↔ e,
and we will do so whenever convenient.

We will define a set multi-grading on the polynomial ring

F[z], which is an Nd-valued grading. This grading will be a

refinement of the grading by (total) degree. The indetermi-

nate zij will be set multi-homogeneous, and its set multi-

degree will be sm-deg(zij) = δi = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0)

(i.e., a 1 in the ith position). Hence, any monomial ze =∏
i,j z

eij
ij will have

sm-deg(ze) = sm-deg(e) =
∑
i,j

eijδi

= (
∑
j

e1j ,
∑
j

e2j , . . . ,
∑
j

edj).
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We now give the formal definition.

Definition 5.5 (Set multi-grading): We define an Nd-

grading on F[z] called the set multi-grading by writing

F[z] = ⊕f∈NdF[z]f, where F[z]f is spanned by monomials

ze such that (
∑

j e1j ,
∑

j e2j , . . . ,
∑

j edj) = f. For a set

multi-homogeneous polynomial q(z) ∈ F[z]f, we write

sm-deg(q(z)) = f, and call this the set multi-degree of q(z).
Define a partial order on Nd given by (a1, . . . , ad) �

(b1, . . . , bd) if ai ≤ bi for 1 ≤ i ≤ d (in which case we say

(a1, . . . , ad) is smaller than (b1, . . . , bd)).
Zero-one vectors and subsets. A zero-one vector in Nd

is a vector whose coordinates are either zero or one. There

is a natural correspondence between zero-one vectors in Nd

with subsets of [d]. We will now make this precise. First,

given a zero-one vector in Nd, we define its support subset.

Definition 5.6 (Support subset): Given a zero-one vector

f = (f1, . . . , fd) ∈ Nd, we define its support subset

supp(f) := {i ∈ [d] | fi �= 0} = {i ∈ [d] | fi = 1} ⊆ [d]
In the other direction, we define indicator vector to a

subset.

Definition 5.7 (Indicator vector): Given a subset J ⊆ [d],
we define its indicator vector δJ to be the zero-one vector

which has a 1 in the ith position if and only if i ∈ J .

{
Zero-one vectors ∈ Nd

}←→ {subsets of [d]}
f −→ supp(f)

δJ ←− J

The above correspondence takes a zero-one vector to its

support subset, and in the other direction takes a subset to its

indicator vector. Moreover, using the partial order � defined

above, we also get:{
f ∈ Nd | f � (1, 1, . . . , 1)

}
=
{
Zero-one vectors ∈ Nd

}←→ {subsets of [d]} .
Set Partitions. A set partition of [d] := {1, 2, . . . , d} into

k sets is a tuple of subsets I = (I1, . . . , Ik), where I1�I2�
· · · � Ik = [d]. Let SP(d, k) denote all set partitions of [d]
into k sets. Note that |SP(d, k)| = kd.

Using the dictionary between subsets and zero-one vec-

tors, we get the following correspondence.

⎧⎨⎩f(1), . . . , f(k) ∈ Nd |
∑
j

f(j) = (1, 1, . . . , 1)

⎫⎬⎭←→ SP(d, k)

B. Barriers for tensor rank lower bounds

This whole section parallels the proof sketch of The-

orem 1.11 given earlier in Section III. There are a few

differences. The first is that we need to consider the more

refined notion of set multi-degree as opposed to the usual

notion of (total) degree. The second is that we add a

homogenization step, which exists in the original proof in

[EGOW17] (but was not strictly necessary). In this case,

however, the homogenization step significantly simplifies the

proof, so we include it. Finally, we replace the second and

third steps of the proof sketch of Theorem 1.11 in one go,

by using Corollary 1.23.

We point out explicitly the analogous steps: Equation (1)

is the power series decomposition, and Equation (2) is

the finite monomial decomposition. From this monomial

decomposition, we extract subspaces spanned by coefficient

vectors (Lemma 5.8). Finally, we compute the upper bound

on potency we get from applying Lemma 5.4.

Let ψ : (Fn)×d → Ten(n, d) be the parametrization of S
(the set of rank 1 tensors) given by (v1, . . . , vd) �→ v1⊗v2⊗
· · · ⊗ vd, where vi ∈ Fn. Let z = (z1, . . . , zd) be a set of

variables, where each set zi = (zi1, . . . , zin) corresponds to

the ith set of variables in z. Let φ : Ten(n, d)→ Ten(m, k)
be a linear map, i.e., a Tk-rank method. Let L = φ ◦ ψ :
(Fn)×d → Ten(m, k).

Observe that ψ(z) is a tensor whose entries are set

multi-homogeneous polynomials (in z) of set multi-degree

(1, 1, . . . , 1) ∈ Nd. Since φ is linear, L(z) is also a tensor

whose entries are set multi-homogeneous polynomials (in z)
of set multi-degree (1, 1, . . . , 1).

Let a = μφ(S) = max{rk(φ(s)) | s ∈ S}. Observe that

Im(L) = φ(S), so trk(L(β)) ≤ a for all β ∈ (Fn)×d.

So, we can apply Corollary 1.23 to get a power series

decomposition:

L(z + c) =
a∑

i=1

p(1)
i (z)⊗ p(2)

i (z)⊗ · · · ⊗ p(k)
i (z), (1)

for some c ∈ (Fn)×d, where p(j)
i (z) are power series

(around 0). Write each

p(j)
i (z) =

∑
e∈(Nn)d

p(j)
i,e ze.

Observe that we have:

L(z) = L(z + c)(1,1,...,1)

=
a∑

i=1

(p(1)
i (z)⊗ p(2)

i (z)⊗ · · · ⊗ p(k)
i (z))(1,1,...,1).

So, we can consider the relevant terms to get a monomial

decomposition.

L(z) =
a∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
∑

e(1), . . . , e(k)∑
sm-deg(e(j)) = (1, 1, . . . , 1)

L(z)e(1),...,e(k)

⎞⎟⎟⎟⎟⎟⎟⎠
(2)

where
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L(z)e(1),...,e(k) = p(1)

i,e(1) ⊗p(2)

i,e(2) ⊗ · · ·⊗p(k)

i,e(k)(ze(1)+···+e(k)

)

We will show that Im(L) = φ(S) is contained in a union

of certain basic subspaces. To describe these basic subspaces

we need to introduce a bit of notation.

Recall that SP(d, k) denotes the set of all partitions of [d]
into k sets. Also recall that for any subset I ⊆ [d], we define

δI ∈ Nd to be its indicator vector. For I = (I1, . . . , Ik) ∈
SP(d, k) and 1 ≤ i ≤ a, we define

CiI := CiI1 ⊗ CiI2 ⊗ · · · ⊗ CiIk ,
where for all j, we have

CiIj := span(p(j)
i,e | sm-deg(e) = δIj ) ⊆ Fm.

The following lemma is the crucial observation that φ(S)
is contained in the sum of all the basic subspaces CiI for all

I ∈ SP(d, k).
Lemma 5.8: We have φ(S) = Im(L) ⊆∑a
i=1

∑
I∈SP(d,k) CiI .

Proof: For any α ∈ Fnd, we need to show that

L(α) ∈ ∑a
i=1

∑
I∈SP(d,k) CiI . Fix α ∈ Fnd. Plug in

z = α into equation (2). This gives L(α) as a sum of many

terms. It suffices to show that each term is in CiI for some

I ∈ SP(d, k) and 1 ≤ i ≤ a. To this end, take some term

in the sum

t = p(1)

i,e(1) ⊗ p(2)

i,e(2) ⊗ · · · ⊗ p(k)

i,e(k)(α
e(1)+···+e(k)

),

with
∑

j sm-deg(e(j)) = (1, 1, . . . , 1). Thus, all we need to

do is to produce I such that t ∈ CiI . First, observe that∑
j sm-deg(e(j)) = (1, 1, . . . , 1) means that sm-deg(e(j)) ∈

Nd is a zero-one vector for all j. Recall that zero-one

vectors correspond to subsets, and that the subset corre-

sponding to a zero-one vector is called the support subset

(see Definition 5.6). Let Ij = supp(sm-deg(e(j)) ⊆ [d]
be the support subset of sm-deg(e(j)). It follows from∑

j sm-deg(e(j)) = (1, 1, . . . , 1) that I1�I2�· · ·�Ik = [d].
Thus, I = (I1, . . . , Ik) ∈ SP(d, k).

For all j, we have that δIj = sm-deg(e(j)) by definition of

Ij . Hence, p(j)

i,e(j) ∈ CiIj . Thus, the term t ∈ CiI as required.

Note that αe(1)+···+e(k)

is just a constant.

Combining Lemma 5.2 with the above lemma, we get the

following corollary.

Corollary 5.9: We have

Pot(φ) =
μφ(V )

a
≤

a∑
i=1

⎛⎝ ∑
I∈SP(d,k)

r(CiI)
⎞⎠

a
.

Now, we have just one computation left.

Lemma 5.10: We have∑
I∈SP(d,k)

r(CiI) ≤ kdn�
(k−1)d

k �.

Proof: We have |SP(d, k)| = kd. So, it suffices to show

that for each r(CiI) ≤ n�
(k−1)d

k � for all I ∈ SP(d, k). We do

this as follows. First, note that dim(CiIj ) ≤ n|Ij | = number

of monomials whose sm-deg is δIj .
Let r be such that |Ir| ≥ |Ij | for all j. Then

∑
j �=r |Ij | ≤

� (k−1)d
k �. Thus, we have

r(CiI) ≤
∏
j �=r

dim(CiIj ) ≤
∏
j �=r

n|Ij | = n
∑

j �=r |Ij | ≤ n�
(k−1)d

k �

as required.

Proof of Theorem 1.14: This follows from combining

Lemma 5.10 with Corollary 5.9.

C. Barriers for Waring rank lower bounds

This subsection follows a completely identical strategy to

the previous one. The only difference is that we do not use

the notion of set multi-grading, but the usual grading on

polynomials given by total degree.

For this section, let ψ : Fn = P (n, 1) → P (n, d) denote

the map � �→ �d for � ∈ P (n, 1). Then ψ parametrizes the

simples in this case, i.e, Im(ψ) = S = {�d | � ∈ P (n, 1)}.
Let φ : P (n, d) → Ten(m, k) be a linear map, i.e., a Tk-
rank method. Let a = max{trk(φ(s)) | s ∈ S} = μφ(S).
Let L = φ ◦ ψ : Fn → P (n, d).

Note that ψ is a homogeneous polynomial map of degree

d, and φ is linear. So, L is a homogeneous polynomial map

of degree d. By Corollary 1.23, we have the power series

decomposition

L(z + c) =
a∑

i=1

p(1)
i (z)⊗ p(2)

i (z)⊗ · · · ⊗ p(k)
i (z)

for some c ∈ Fn, and p(j)
i are power series around 0. Write

each p(j)
i (z) =

∑
e∈Nn p(j)

i,e ze. We have

L(z) = L(z+ c)d =
a∑

i=1

(p(1)
i (z)⊗p(2)

i (z)⊗· · ·⊗p(k)
i (z))d.

Hence, we get the finite monomial decomposition:

L(z) =
a∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
∑

e(1), . . . , e(k)∑
deg e(i) = d

L(z)e(1),...,e(k)

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

where

L(z)e(1),...,e(k) = p(1)

i,e(1) ⊗p(2)

i,e(2) ⊗ · · ·⊗p(k)

i,e(k)(ze(1)+···+e(k)

)

Let OP(d, k) = {μ = (μ1, . . . , μk) |
∑

i μi = d} denote

the set of ordered k-partitions of d. For μ ∈ OP(d, k), let
us define

Ciμ = Ciμ1
⊗ Ciμ2

⊗ · · · ⊗ Ciμk
,
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where

Ciμj
= span(pi,e | deg e = μj}.

Lemma 5.11: We have

φ(S) = Im(L) ⊆
a∑

i=1

∑
μ∈OP(d,k)

Ciμ.

Proof: This is similar to Lemma 5.8, so we omit the

details.

Combining with Lemma 5.2, we have

Corollary 5.12: We have

Pot(φ) ≤ μφ(V )

a
≤
∑a

i=1

∑
μ∈OP(d,k) r(Ciμ)
a

.

Lemma 5.13: For all μ ∈ OP(d, k), we have

r(Ciμ) ≤
∏
j �=l

(
n+ μj − 1

μj

)
.

where l is such that μl ≥ μj for all j.
Proof: This just follows from Lemma 5.4 and the fact

that dim Ciμj
≤ (

n+μj−1
μj

)
, which is the size of its defining

spanning set.

Let us define

Υμ :=
∏
j �=l

(
n+ μj − 1

μj

)
,

where l is such that μl ≥ μj for all j. Since
(
n+μj−1

μj

)
=

O(nμj ), and
∑

j �=l μj ≤ � (k−1)d
k �, we have that

Υμ ≤ O(n�
(k−1)d

k �).

Corollary 5.14: We have

Pot(φ) ≤
∑a

i=1

∑
μ∈OP(d,k) r(Ciμ)
a

≤
∑

μ∈OP(d,k)

Υμ.

Proof of Theorem 1.16: This follows from the previous

corollary since Υμ ≤ O(n�
(k−1)d

k �) as we saw above, and

|OP(d, k)| is just some constant that depends only on d and

k.

VI. WARING RANK LOWER BOUND METHODS

We will derive the upper bounds on the potency for Wk-

rank methods from the upper bounds on the potency for

Tk-rank methods. The upper bounds will be weaker, but the

loss is a constant that depends only on k.
Let S ⊆ V be a spanning subset (simples). Let φ :

V → P (m, k) be a linear map, i.e., a Wk-rank method.

Let φ̃ : V → Ten(m, k) be the composite map ι ◦ φ,
where ι : P (m, k) ↪→ Ten(m, k) is the natural inclusion

of polynomials of degree k as symmetric k-tensors. Let Sk

denote the symmetric group on k letters. The group Sk acts

on Ten(m, k) by permuting the tensor factors. A tensor is

called symmetric if it is invariant under this action.

Let us describe the map ι. First note that P (m, 1) is a

vector space of dimension n, so we have an isomorphism

P (m, 1)→ Km given by � = �1x1 + �2x2 + · · ·+ �mxm �→
� = (�1, . . . , �m). In the following, we will use the identi-

fication � ↔ � freely to represent the isomorphism. Using

this identification, we can describe ι by describing it on

monomials.

ι(�(1)�(2) · · · �(k)) = 1

k!

∑
σ∈Sk

�(σ(1))⊗�(σ(2))⊗· · ·⊗�(σ(k)).

Note in particular that this means

ι(�k) = �⊗ �⊗ · · · ⊗ �.

Lemma 6.1: For any f ∈ P (m, k), we have

trk(ι(f)) ≤ wrk(f) ≤ 2k−1trk(ι(f)).

Proof: Under the map ι, a power of a linear form, i.e.,

�k is sent to a rank 1 tensor. This means that a decomposition

of f as a sum of powers of linear forms is sent to a

decomposition of ι(f) as a sum of rank 1 tensors. This gives

trk(ι(f)) ≤ wrk(f).
On the other hand, suppose ι(f) =

∑r
i=1 �

(i1) ⊗ · · · ⊗
�(ik). Then since ι(f) is symmetric, we can write ι(f) =∑

i �
(iσ(1)) ⊗ · · · ⊗ �(iσ(k)) for any permutation σ ∈ Sk. In

particular, we have

ι(f) =
1

k!

∑
σ∈Sk

r∑
i=1

�(iσ(1)) ⊗ · · · ⊗ �(iσ(k)).

But this means that

ι(f) =
r∑

i=1

ι(�(i1)�(i2) . . . �(ik))

Since ι is an injective (and linear) map, we deduce that

f =

r∑
i=1

�(i1)�(i2) . . . �(ik)

Now, each term �(i1) . . . �(ik) can be written as a sum of

2k−1 linear forms by Glynn’s formula ( [Gly10]) that we

recalled in Example 1.5. This gives f as a sum of 2k−1r
powers of linear forms. In other words, we have wrk(f) ≤
2k−1trk(ι(f)).

Corollary 6.2: We have μφ̃(S) ≤ μφ(S).
Proof: From the above lemma, we know trk(ι(f)) ≤

wrk(f) for all f ∈ P (m, k). In particular, using this for

every f = φ(s) for s ∈ S, we see that trk(φ̃(s)) =
trk(ι(φ(s)) ≤ wrk(φ(s)).

A similar argument shows the following.

Corollary 6.3: We have μφ(V ) ≤ 2k−1μφ̃(V ).
Combining the previous two corollaries, we get:

Corollary 6.4: We have Pot(φ) ≤ 2k−1Pot(φ̃).
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Proofs of Theorems 1.18 and 1.19: These follows from

applying the above corollary to Theorems 1.14 and 1.16.

Remark 6.5: A famous conjecture of Comon was that

wrk(f) = trk(ι(f)) for any f ∈ P (m, k), see [CGLM08].

This was proved to be true in many special cases. Re-

cently, a rather complicated counterexample has appeared in

[Shi18]. While this means that Comon’s conjecture is false,

the evidence would suggest that the inequality wrk(f) ≤
2k−1trk(ι(f)) is far from being sharp. It is an interesting

question to find more optimal replacements for the factor of

2k−1.

VII. BARRIERS FOR BORDER RANK METHODS

In this section we prove analogous theorems to Theo-

rem 1.14 and Theorem 1.16, but now instead of proving

upper bounds on the potency of tensor rank methods, we

prove upper bounds on the potency of border rank methods

for tensors. Roughly speaking, a border rank method will

use a linear map to lift border rank lower bounds for low

degree tensors to border rank lower bounds for higher degree

tensors. While this is a natural generalization, we require

additional tools from algebraic geometry to establish barriers

for these border rank methods.

We will briefly recall some notions regarding border

rank, and then prove the analogous barriers. The high level

strategy remains the same, with more details to be worked

out. The key new ideas are the notion of degenerations and

the ability to switch between topological border rank and

algebraic border rank. In this entire section, we will assume

F is an algebraically closed field of characteristic zero.

We will need to work over the polynomial ring F[ε] of

polynomials over the variable ε. We define TenF[ε](m, k) :=
(F[ε]m)⊗k. We will say T ∈ TenF[ε](m, k) is simple if T =
p1(ε) ⊗ p2(ε) ⊗ · · · ⊗ pk(ε) for some pi(ε) ∈ F[ε]m. For

any tensor T ∈ TenF[ε](m, k), we will write

trkF[ε](T ) = min{r | T = T1 + · · ·+ Tr, Ti simple}.
We will write TenF[ε](m, k)≤r := {T | trkF[ε](T ) ≤ r}.

Definition 7.1 (Topological Border Rank): A tensor T ∈
TenF(m, k) has border rank ≤ r, denoted by brk(T ) ≤ r if

T ∈ TenF(m, k)≤r, where the closure is the Zariski closure

of the set of rank r tensors.

The above definition defines border rank implicitly as

brk(T ) = min{r | T ∈ TenF(m, k)≤r}. But we prefer the

above definition for later use.

Definition 7.2 (Degeneration [BCS13]): Given a tensor

T ∈ TenF(m, k) we say that T is a degeneration of order q
of a rank r tensor, denoted by T�q 〈r〉, if there exist tensors

T1 ∈ TenF[ε](m, k)≤r and T2 ∈ TenF[ε](m, k) such that

εq−1 · T = T1 + εq · T2.

Definition 7.3 (Algebraic Border Rank [BCS13]): We

say that a tensor T ∈ TenF(m, k) has algebraic border rank

≤ r if there exists a number q ∈ Z≥1 such that T �q 〈r〉.
Again, this defines algebraic border rank implicitly.

Theorem 7.4 (Theorem 20.24 in [BCS13] due to Strassen):
Definitions 7.1 and 7.3 are equivalent. That is, given a

tensor T ∈ TenF(m, k)

∃q ∈ N s.t. T �q 〈r〉 ⇐⇒ T ∈ TenF(m, k)≤r.

Note that F being algebraically closed is crucial for the

above theorem to hold. By default, border rank will mean

topological border rank.

A subset U ⊆ F[ε]� is called a F[ε]-submodule if it is

closed under addition and multiplication by elements of F[ε].
A subset {p1(ε), p2(ε), . . . pk(ε)} ⊆ F[ε]� is a generating

set for the submodule U if ∀T ∈ U , one can write T =∑
i pi(ε)ci(ε) for some ci(ε) ∈ F[ε].
Definition 7.5: For an F[ε]-submodule U ⊆ F[ε]m, we

define its rank rkF[ε](U) to be the size of its smallest

generating set.

Note that TenF[ε](m, k) ∼= F[ε]m
k

, so it makes sense to

talk about submodules of TenF[ε](m, k) We will consider

degenerations to modules, as the following definition alludes

to.

Definition 7.6 (Degeneration to a Submodule): We say

that a tensor T ∈ TenF[ε](m, k) degenerates to a module

U ⊆ TenF[ε](m, k) with order q, written T �q U if there

exist tensors T1 ∈ U and T2 ∈ TenF[ε](m, k) such that

εq−1 · T = T1 + εq · T2.
More generally, we say that a subset W ⊆ TenF(m, k)
degenerates to a module U ⊆ TenF[ε](m, k) with order q,
written W �q U if every tensor in W degenerates to U with

order q.
Definition 7.7: For any submodule U ⊆ TenF[ε](m, k),

we define

r(U) = min{r |U ⊆ TenF[ε](m, k)≤r}.
The following corollary is straightforward.

Corollary 7.8: Suppose U ⊆ TenF[ε](m, k) is an F [ε]-
submodule. Suppose T �q U for some q ∈ Z≥1. Then

brk(T ) ≤ r(U).

We can now extend Lemma 5.4 to the border rank setting:

Lemma 7.9: Let S ⊆ V be a spanning subset (of sim-

ples). Suppose φ : V → Ten(m, k) is a linear map

and suppose φ(S) �q

∑
I UI for some F[ε]-submodules

UI ⊆ TenF[ε](m, k). Then φ(V ) �q

∑
I UI . In particular,

for any T ∈ V , we have

brk(φ(T )) ≤
∑
I
r(UI).

We define basic submodules U for which we can upper

bound r(U).
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Definition 7.10: A submodule of the form U = U1⊗U2⊗
· · · ⊗Uk ⊆ TenF[ε](m, k) is called a basic F [ε]-submodule.

Lemma 7.11: Suppose U = U1 ⊗ U2 ⊗ · · · ⊗ Uk ⊆
TenF[ε](m, k) is basic F [ε]-submodule. Then for any 1 ≤
p ≤ k,

r(U) ≤
∏
i�=p

rkF[ε](Ui).

Definition 7.12 (Border potency): Suppose

φ : Ten(n, d) → Ten(m, k) is a linear map, i.e., a

Tk-rank method. Suppose brk(φ(s)) ≤ a for all s ∈ S.
Then, for any T ∈ Ten(n, d), we have

brk(T ) ≥ brk(φ(T ))

a
.

Thus, this is a method to prove lower bounds on border rank

of tensors in Ten(n, d). Analogous to potency, we define

border potency as

Bpot(φ) =
max{brk(φ(T )) | T ∈ Ten(n, d)}

a
.

Theorem 7.13: For any Tk-rank method φ : Ten(n, d)→
Ten(m, k), its border potency is

Bpot(φ) ≤ kd · n�(k−1)d/k�.

One can also prove the analogous result.

Theorem 7.14: For any Tk-rank method φ : P (n, d) →
Ten(m, k), its border potency is

Bpot(φ) ≤ Bd,k · n�(k−1)d/k�.

For simplicity, we shall only prove Theorem 7.13 in the

special case where k = 3. The proof parallels the proof of

Theorem 1.14, with the additional complication of having

to work with degenerations.

Proof of Theorem 7.13, k = 3 case: Let S ⊂
TenF(n, d) be the set of tensors with rank 1, parametrized

by ψ : (Fn)d → TenF(n, d) given by (v1, . . . , vd) �→ v1 ⊗
· · ·⊗vd. Let φ : TenF(n, d)→ TenF(m, 3) be a linear map,

i.e., a Tk-rank method and let a = max{brk(φ(s)) | s ∈ S}.
Let z = (z1, . . . , zd) be a set of variables such that

zi = (zi1, . . . , zin) for each i ∈ [d]. Let L = φ ◦ ψ. Since
brk(φ(s)) ≤ a for all s ∈ S, we have that brk(L(β)) ≤ a
for all β ∈ (Fn)d. Equations for border rank are defined

over F , so we have that the border rank of the symbolic

tensor L(z) is also ≤ a. More precisely, this means that

brkK(L(z)) ≤ a, where border rank is over the field

K := F(z). We must go to the algebraic closure so that

we can switch from the notion of (topological) border rank

to algebraic border rank.

Thus, by Theorem 7.4 over the field K, we have that there

exist tensors T1 ∈ TenK[ε](m, 3)≤a and T2 ∈ TenK[ε](m, 3)
and q ∈ N such that

εq−1 · L(z) = T1 + εq · T2.

Write T1 =
∑a

�=1 p� ⊗ q� ⊗ r�, where p�, q�, r� ∈ K[ε]m

and denote the entries of T2 by T2(i, j, k) ∈ K[ε], where

i, j, k ∈ [m].
Since each entry of p�, q�, r�, T2 is a polynomial in K[ε],

there exists D ∈ N such that we can write

p�(z, ε) =
D∑

d=0

p�,d(z) · εd,

similarly for q� and r� and we can write

T2(i, j, k)(z, ε) =
D∑

d=0

T2(i, j, k, d)(z) · εd,

where p�,d(z), q�,d(z), r�,d(z) are vectors in Km and

T2(i, j, k, d)(z) ∈ K.
Let C ⊂ K be the set of all entries of p�,d, q�,d, r�,d and

of all T2(i, j, k, d), for all ranges of i, j, k, d, �. C is a finite

set. Therefore, Proposition 3.4 applies, and there exists a

choice of c := (c1, . . . , cd) ∈ (Fn)d such that all elements

of C have a power series decomposition around the point c.
Thus, this yields:

εq−1·L(z+c) = εq·T̂2(z+c, ε) +
a∑

�=1

p̂�(z, ε)⊗q̂�(z, ε)⊗r̂�(z, ε),

(4)

where p̂�, q̂�, r̂�, T̂2 are given by the power series decompo-

sition around 0. More precisely, they are given by:

p̂�(z, ε) =
D∑

d=0

∑
e∈Ndn

p�,d,e · ze · εd =
∑

e∈Ndn

p̃�,e(ε) · ze, (5)

similarly for q� and r� and

T2(i, j, k)(z, ε) =
D∑

d=0

∑
e∈Ndn

T2(i, j, k, d)e · ze · εd

=
∑

e∈Ndn

T̃2(i, j, k)e(ε) · ze,

where p�,d,e, q�,d,e, r�,d,e ∈ Fm and T2(i, j, k, d)e ∈ F

are the coefficients of the power series expansions, and

p̃�,e(ε), q̃�,e(ε), r̃�,e(ε) ∈ F[ε]m and T̃2(i, j, k)e(ε) ∈ F[ε]
are simply the coefficients we obtain by grouping the ele-

ments of the power series with same monomial ze.

Recall that SP(d, 3) denotes the set of all partitions of

[d] into 3 sets. For I = (Ip, Iq, Ir) ∈ SP(d, 3) and � ∈ [a],
define

C�I := C�Ip ⊗ C�Iq ⊗ C�Ir ,
where

C�Ip := spanF[ε](p̃�,e(ε) | sm-deg(e) = δIp) ⊆ F[ε]m.

Again, note here that δIp denotes the indicator vector for

the subset Ip ⊆ [d]. C�Iq , C�Ir are analogously defined.
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Since the entries of L(z) are all set multi-homogenous of

sm-deg(1, 1, . . . , 1), equations (4) and (5) give us

εq−1 · L(z) = εq−1 · L(z + c)(1,...,1)
= εq · T̂2(z + c, ε)(1,...,1)

+
a∑

�=1

(p̂�(z, ε)⊗ q̂�(z, ε)⊗ r̂�(z, ε))(1,...,1)

= εq · T̂2(z + c, ε)(1,...,1)
+

∑
1 ≤ � ≤ a

(ep, eq, er) ∈ J

p̃�,ep(ε)⊗ q̃�,eq (ε)⊗ r̃�,er (ε)z
ep+eq+er ,

where J = {(ep, eq, er) | sm-deg(ep) + sm-deg(eq) +
sm-deg(er) = (1, . . . , 1)}, that is, the set of monomials in z
such that their set mutli-degree adds to the (1, . . . , 1) vector.
We will now prove that

φ(S)�q

a∑
�=1

∑
I∈SP(d,3)

C�I .

Note that for any s ∈ S, we have s = ψ(α) for some

α ∈ (Fn)d. So, from the above equation, we get

εq−1φ(s) = εq · T̂2(α+ c, ε)(1,...,1) +∑
1 ≤ � ≤ a

(ep, eq, er) ∈ J

p̃�,ep(ε)⊗ q̃�,eq (ε)⊗ r̃�,er (ε)α
ep+eq+er

Thus, it suffices to show that

a∑
�=1

∑
(ep,eq,er)∈J

p̃�,ep(ε)⊗ q̃�,eq (ε)⊗ r̃�,er (ε)α
ep+eq+er (6)

∈
a∑

�=1

∑
I∈SP(d,3)

C�I . (7)

Pick any term t = p̃�,ep(ε)⊗ q̃�,eq (ε)⊗ r̃�,er (ε)αep+eq+er .

Let Ip be the support subset of sm-deg(ep), i.e., the subset

of positions with non-zero entries. Define Iq, Ir similarly,

and let I = (Ip, Iq, Ir) ∈ SP(d, 3). Then t ∈ C�I .
Hence, we have shown that that φ(S) �q∑a
�=1

∑
I∈SP(d,3) C�I . Applying Lemma 7.9, we deduce

that for all T ∈ V ,

brk(T ) ≤
a∑

�=1

∑
I∈SP(d,3)

r(C�I).

So, all that is left is to upper bound the right hand side.

But this is precisely the same calculation from Lemma 5.10,

giving us the required upper bound on border potency.

VIII. GENERALIZATIONS, CACTUS RANK AND

IMPROVEMENTS TO RANK METHODS

The aim of this section is two fold. First, there is an al-

ternative approach to establishing barriers for rank methods

using the notion of cactus rank. By infusing our techniques

with a little trick, we will show that both approaches

establish barriers by counting the same things. Despite this,

there seems to be no straightforward connection between the

two approaches. We want to point out in particular that the

barriers to the generalized rank methods that we prove in this

paper have no analogue in the cactus rank approach. Second,

we want to extend the barriers for matrix-rank methods

to the setting of set multi-homogenous rank, which is a

generalization of both Waring and tensor rank.
We first make a simple observation:
Lemma 8.1: Suppose T ⊆ S are two spanning subsets

of V . Then for any matrix rank method φ : V → Matk,l
its potency for computing lower bounds on S-rank is less

than or equal to its potency for computing lower bounds for

T -rank.
So, proving upper bounds for potency of matrix-rank

methods for T -rank will automatically prove upper bounds

for potency of matrix-rank methods for S-rank. The proof

of upper bounds for potency really only depends on the

parametrization of S. Roughly speaking, since T is smaller,

we might be able to get a smaller parametrization which

could help prove sharper bounds. Let us exhibit this explic-

itly in the case of Waring rank.
Lemma 8.2: For any matrix-rank method φ : P (n +

1, d)→ Matk,l, we have

Pot(φ) ≤ Yn,d + Zn,d.

First, note that this is indeed stronger than the statement of

Theorem 1.11 in the introduction because we are considering

degree d polynomials in n + 1 variables (as opposed to n
variables).

Proof: Consider the subset T = {(a1x1+ · · ·+anxn+
xn+1)

d |ai ∈ F} ⊆ S = {�d � ∈ P (n + 1, d)}. We

leave it to the reader to check that T is also a spanning

subset13. Now, observe that π : Fn → P (n+ 1, d) given by

(a1, . . . , an) �→ (a1x1+· · ·+anxn+xn+1)
d parametrizes T .

This parametrization requires n variables. One should note

that while ψ was homogenous map of degree d, π is not.

However, the homogenous components of the map π are all

of degree ≤ d. This is sufficient. By replacing ψ by π in the

proof of Theorem 1.11, we get the required upper bounds

on potency of T -rank, and hence upper bounds on potency

of S-rank.
Let us now define the set multi-homogeneous rank.
Definition 8.3: Let n = (n1, n2, . . . , nk) and d =

(d1, . . . , dk), and let d = d1 + · · ·+ dk. Let

V (n, d) = P (n1+1, d1)⊗P (n2+1, d2)⊗. . . P (nk+1, dk).

13It suffices to check that span(T ) contains S.
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Let S(n, d) = {�d1
1 ⊗ �d2

2 ⊗ · · · ⊗ �dk

k | �i ∈ P (ni + 1)} ⊆
V (n, d) be a set of simples. Then for v ∈ V , we define

rkn,d(v) := rkS(n,d)(v).

Note that each �i is a linear form in ni + 1 variables

rather than ni variables. In particular, tensor rank for tensors

in Ten(n, d) is rk(n−1,n−1,...,n−1),(1,1,...,1) and Waring rank

for degree d homogeneous polynomials in n variables is

rkn−1,d. S(n, d) is a subvariety of V (n, d) and is sometimes

called the Segre-Veronese variety.14

Using the same proof as Theorem 1.11 and Theorem 1.10,

along with the additional improvement given by the lemma

above, we get:

Theorem 8.4: Let z = (z1, . . . , zk) where each zi =
(zi1, . . . , zini) denote a set of variables, and define set multi-

grading as before. For any rank method φ : V (n, d) →
Matp,q , its potency is upper bounded by

Pot(φ) ≤ Yn,d + Zn,d,

where

Yn,d = number of monomials in z of sm-deg � d
and total degree ≤ �d/2�, and

Zn,d = number of monomials in z of sm-deg � d
and total degree ≤ d− (�d/2�+ 1).

We omit the details. The number Yn,d + Zn,d is the

upper bound on the cactus rank obtained in [Gał16]. An

explicit upper bound for Yn,d+Zn,d can be found on [Gał16,

Page 18]. Let us state the bounds one obtains for the potency

of matrix-rank methods for tensor rank and Waring rank with

these improvements.

Corollary 8.5: Specializing the above result, we get the

following:

• An upper bound of N(n+1, d) on the potency of rank

methods for Waring rank of degree d homogeneous

polynomials in n+ 1 variables, where

N(n+1, d) =

{
2
(
n+k
k

)
when d = 2k + 1,(

n+k
k

)
+
(
n+k+1
k+1

)
when d = 2k + 2.

This is equal to the cactus rank bound obtained in

[BR13, Theorem 3].

• An upper bound of M(n + 1, d) for the po-

tency of rank methods for tensor rank for ten-

sors in Ten(n + 1, d), where M(n + 1, d) =

2
(
1 + dn+

(
d
2

)
n2 + · · ·+ (

d
�d/2�

)
n�d/2�

)
if d is odd,

and

2
(
1 + dn+

(
d
2

)
n2 + · · ·+ (

d
�d/2�−1

)
n�d/2�−1

)
+(

d
�d/2�

)
n�d/2� if d is even. This is equal to the cactus

rank bound obtained in [Gał16, Example 6.3].

14To be precise it is the affine cone over the Segre-Veronese variety.

• An upper bound of 2n1 + 2n2 + 2n3 − 4 for the

potency of rank methods for tensor rank of tensors in

Fn1⊗Fn2⊗Fn3 . This is equal to the cactus rank bound

obtained by [Buc18]. It also follows from the results in

[Gał16].

IX. ELUSIVE FUNCTIONS, AND THE POTENTIAL FOR

SYMBOLIC METHODS IN LOWER BOUNDS

Our aim in this section is to put forth a symbolic perspec-

tive on the notion of elusive functions, and expose some of

the advantages in doing so. Elusive functions were defined

by Raz in [Raz10], where his main result is that explicit15

elusive functions (for suitable parameters) will imply super-

polynomial lower bounds in arithmetic complexity, thus

separating VP from VNP. Let us begin by defining elusive

functions.

We say that a polynomial map M = (M1, . . . ,Mm) is of

degree d, if each Mi is a polynomial function of degree at

most d (not necessarily homogeneous).

Definition 9.1 ((r, d)-elusive): We say a polynomial map

L : Fn → Fm is (r, d)-elusive if for every polynomial

mapping M : Fr → Fm of degree d, Im(L) �⊂ Im(M).
The striking feature of this definition in the context of

our paper is that it cares about inclusion of images of

polynomial maps. This is a “numeric” statement. But recall

that the hypothesis of our “numeric to symbolic” transfer

(Theorem 1.21) is also a similar “numeric” condition on

the inclusion of images of polynomial maps. Its conclusion

however is “symbolic”, and so we can potentially use this

conclusion to prove elusiveness!

In this section we will actually use only Proposition 3.3,

the ‘first half’ of the Theorem 1.21 (see discussion in

Section III). Using it, we can give a symbolic point of view

of elusiveness (and with it, non-elusiveness). Before doing

so, we need a definition.

Definition 9.2 (degree d-span): Let z = (z1, . . . , zn) de-

note indeterminates. For

p1(z), . . . , pr(z) ∈ F (z), we define its degree d-span

d-span(p1(z), . . . , pr(z))

= spanF

(
p1(z)e1p2(z)e2 . . . pr(z)er :

∑
i

ei ≤ d

)
.

In other words, the F-linear span of all the monomials in

the pi(z)’s of degree at most d.
Lemma 9.3: Let z = (z1, . . . , zn) denote indeterminates.

If the polynomial map L : Fn → Fm is not (r, d)-elusive,
then there exist p1(z), p2(z), . . . , pr(z) ∈ F(z) such that for

each i, Li ∈ d-span(p1(z), . . . , pr(z)).
Proof: Suppose L is not (r, d) elusive, then ∃ degree

d polynomial map M : Fr → Fm such that Im(L) ⊆
15This notion is formally defined in the paper, but is essentially the usual

notion: there is a polynomial-time algorithm computing the coefficient of
each monomial.
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Im(M). This means, by Proposition 3.3 that there exists

p1(z), p2(z), . . . , pr(z) ∈ F(z) such that L(z1, . . . , zn) =
M(p1(z), p2(z), . . . , pr(z)). Since, each Mi is a degree d
polynomial (sum of monomials), we get that

Li(z) =Mi(p1(z), p2(z), . . . , pr(z))
∈ d-span(p1(z), . . . , pr(z)).

Remark 9.4: One can go further and directly apply The-

orem 1.21 to get a similar looking statement where you

replace the algebraic functions pi(z), which live in the

algebraic closure F(z), with power series (after a suitable

shift), defined over the base field F. This may be even more

powerful.

The first example of an elusive function is the well known

moment curve, provided by Raz [Raz10] as a motivating

example:

Proposition 9.5: The map L : F → Fm given by x �→
(x, x2, . . . , xm) is (m− 1, 1)-elusive.

Using the definition of an elusive function, one can see

that the above proposition simply asserts that the moment

curve is not contained in any affine hyperplane. The most

straightforward proof of this assertion is based on the

invertibility of the Vandermonde matrix, namely the linear

independence of any m distinct vectors in the image of the

moment curve. However, from the symbolic interpretation,

the above lemma essentially becomes a consequence of a

linear independence of the m monomials in the description

of the moment curve, as we describe below.

Proof of Proposition 9.5: Suppose L is not (m−1, 1)-
elusive. Then by Lemma 9.3, we have p1(z), . . . , pm−1(z) ∈
F(z) such that

Li(z) = zi ∈ 1-span(p1(z), . . . , pm−1(z))

= spanF(1, p1(z), . . . , pm−1(z))

for 1 ≤ i ≤ m, where z is an indeterminate. But this means

that spanF(z, z
2, . . . , zm) ⊆ spanF(1, p1(z), . . . , pm−1(z)).

The former is an m-dimensional linear space, by linear

independence of the zi, and the latter is at most m-

dimensional (as it is a span of m elements). Hence,

spanF(z, z
2, . . . , zm) = spanF(1, p1(z), . . . , pm−1(z)). But

1 /∈ spanF(z, z
2, . . . , zm), which is a contradiction. Thus, L

must be (m− 1, 1)-elusive.
It is of course not surprising that the linear independence

of monomials is very much related to the Vandermonde

matrix. The numeric to symbolic transfer simply recasts the

numeric "invertibility of Vandermonde matrix" as a symbolic

"linear independence of monomials". While the invertibility

of Vandermonde matrix is well known, it is not completely

obvious. On the other hand, the linear independence of

monomials is completely straightforward from a symbolic

perspective. In some sense, we let the (non-trivial!) numeric

to symbolic transfer statement do the ‘heavy-lifting’. Indeed,

notice that the exact same proof above actually yields the

following much more general proposition (which again, can

be obtained “numerically”, but not with such simplicity).

Proposition 9.6: Any polynomial map L : F → Fm

given by x �→ (p1(x), p2(x), . . . , pm(x)), for which the

polynomials {pi}∪{1} are linearly independent is (m−1, 1)-
elusive.

Elusive functions for degree d = 1 cannot yield arithmetic

lower bounds. Surprisingly, Raz ( [Raz10]) proves that

already for degree d = 2, explicit elusive functions of

appropriate parameters can separate VP from VNP! More

specifically, he proves

Theorem 9.7: [Raz10] Any explicit polynomial map L :
Fn → Fm (of degree at most poly(n)) which is (r, 2)-
elusive, with m ≥ nω(1) and r ≥ m0.9, implies that VP

�= VNP.

This beautiful avenue to proving superpolynomial lower

bounds is a great challenge to our techniques, and no

progress we know of was made since that paper came out.

Here we will attempt to handle a very toy version of it

using our numeric to symbolic transfer. While a toy, unlike

the moment curve above, we don’t know of a way to probe

that toy result “numerically”.

Indeed, one virtue of the symbolic perspective is that it

provides several relaxations of the notion of elusiveness.

Establishing elusiveness of a function is really hard (not

surprisingly), and these relaxations provide intermediate

problems that could aid our understanding.

The map we consider is again a curve, L : F → Fm+1

given by x �→ (x, x3, x9, . . . , x3
m

), of monomials with

exponentially growing degrees. It is a toy, namely very

restricted example in two essential ways. First, as it happens,

to match it with Ran’s parameters, to prove a lower bound

using a curve one would need the monomials degrees to

grow much slower.16 Second, we will not be able to rule out

any map M as in the definition of elusiveness, but only ones

defined by monomials. In this simple case we can actually

get r = m − 1, as for the moment curve. We do not know

how to extend it to arbitrary polynomials, let alone algebraic

functions. Indeed, extending this result even to “monomials”

with negative exponents, seems like a challenging problem.

Proposition 9.8: L : F → Fm+1 that maps x �→
(x, x3, x9, . . . , x3

m

). Let z be an indeterminate. Then

for any choice of monomials ze1 , ze2 , . . . , zem−1 with

ei ∈ Q≥0, there is some i such that Li(z) /∈
2-span(ze1 , ze2 , . . . , zem−1).

Proof: Let z be an indeterminate. Suppose ∃ monomials

ze1 , ze2 , . . . , zem−1 (with ei ∈ Q≥0) such that for each

i, Li(z) = z3
i ∈ 2-span(ze1 , ze2 , . . . , zem−1). The only

monomials in the 2-span(ze1 , ze2 , . . . , zem−1) are of the

16In that case one could use extra variables, and encode the curve L as
a polynomial map L′ : Fn → Fm satisfying the condition m ≥ nω(1).
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form 1 or zei or zeizej = zei+ej . Thus, we must have

{1, 3, 32, . . . , 3m} ⊆W := {0, ei, ei + ej | 1 ≤ i, j ≤ m}.
The proof will be by induction on m. Without loss of

generality, we can assume that the ei’s are in increasing

order. Suppose e1 > 1, then every ei and ei + ej are all

greater than 1. But then 1 /∈ W , which is a contradiction.

Thus, we must have e1 ≤ 1.
Next, suppose e2 > 3, then the only elements in W that

are ≤ 3 are 0, e1, 2e1. But since e1 ≤ 1, we have that

0, e1, 2e1 < 3. This is a contradiction, so we must have

e2 ≤ 3. Continuing by induction, we must have ei ≤ 3i−1

for all 1 ≤ i ≤ m. But now, the largest number in W is

2em ≤ 2 · 3m−1, which is smaller than 3m. This means

3m /∈W , which is a contradiction.

One sees immediately the (symbolic) notion of degree

that is crucially used in proving this result. Although,

we only illustrated its use in a toy case, the notion of

degree could still be important (along with other ideas) in

studying elusiveness. There needs to be more work done

to understand what features (such as degree) the symbolic

view point offers, and what these features are worth in our

understanding of elusive functions.

To summarize, proving lower bounds via elusive functions

is an intriguing strategy, and the difficulties and possibilities

of this approach need to be explored. The symbolic view

point (that results from applying numeric to symbolic trans-

fer) gives a fresh perspective. We find that this approach

needs further analysis, and could lead to new and exciting

results.
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