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A geometric measure for the entanglement of a unit length tensor Received 14 June 2019

T € (C")®k is given by —2log, ||T|ls, where || - || denotes the spec- Accepted 31 January 2020
tral norm. A simpleinduction gives an upper bound of (k — 1) log, (n) COMMUNICATED BY
for the entanglement. We show the existence of tensors with entan- L-H. Lim

glement larger than klog,(n) — log, (k) — o(log, (k)). Friedland and
Kemp (Proc. AMS, 2018) have similar results in the case of symmetric
tensors. Our techniques give improvements in this case.

KEYWORDS
Geometric measure of
entanglement; spectral
norm; nuclear norm

2010 MATHEMATICS
SUBJECT
CLASSIFICATIONS

15A69; 26B15; 47A30; 81P40

1. Introduction

We consider the tensor product V=V; ® V, ® - - - ® Vi of finite dimensional Hilbert
spaces Vi, Vs, ..., Vk. Atensor of theform T = v ® v, ® - - - @ vk € V is called a simple
tensor. A general tensor T € V is far from simple. Each vector space V; is equipped with
positive definite hermitian form (-, -). The space V is again a Hilbert space, and its positive
definite hermitian form (-, -) has the property (v @ v, ® - - Q Vj, W] @ W2 Q@ + - - ® W) =
]—[5-‘:1 (vi, wi). The euclidean norm on a Hilbert space is defined by ||v|| = +/(v, v). We call
atensor T € V a unit length tensor if | T|| = 1.

In quantum physics, a unit length tensor T € V corresponds to a pure multipartite state.
Such a pure multipartite state T € V is called separable if T is a simple tensor, and entangled
if T is not a simple tensor. In the theory of computation, there seems to be a significant
upgrade in speed offered by quantum algorithms in comparison with classical ones. A large
part of this can be attributed to entanglement.

Various measures for entanglement have been studied owing to different motivations
and perspectives. We refer the interested reader to the excellent surveys [1-3]. Using the
geometric measure of entanglement (considered previously [4-6]), Gross, Flammia and
Eisert [7] argue that most quantum states are too entangled to be useful. On the other hand,
observable states for any quantum computer based on photon interactions are symmetric
quantum states. For symmetric tensors, the entanglement is much smaller [8]. Friedland
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and Kemp [8] show that most symmetric quantum states are close to being maximally
entangled. In this paper, we generalize and improve some of the results in Refs. [7,8].!

We consider here two entanglement measures that are related to (non-euclidean) norms
on V. Specifically we consider nuclear and spectral norms. These norms have applications
to tensor completion and low rank tensor approximation, see, e.g. [9-11]. In general, the
computation of these norms is NP-hard [12,13]. In Nie [14], computation of nuclear norms
for symmetric tensors is addressed.

Definition 1.1: The spectral norm ||T||, of atensor T € V is defined as the maximal value
of [(T, u)|, where u ranges over all simple tensors with ||u|| = 1.

Definition 1.2: The nuclear norm ||T|, of a tensor T € V is the minimal value of
luill + luzll + - - - + ||ur|| over all decompositions T' = u; + up + - - - + u, where r is a
nonnegative integer and uy, uy, . . ., 4, are simple tensors.

The maximum in Definition 1.1 exists because the unit sphere is compact, and one can
show that the minimum in Definition 1.2 exists as well. The spectral and nuclear norms
are dual to each other [15]. In particular, we have

KT, 91 < 1Tl ISl (1)

The following measures of entanglement were considered in Ref. [15].

Definition 1.3: For a unit length tensor T we define two entanglement measures by
E(T) = —2log,(ITlls) and F(T) = 2log, (I Tll+)-

From (1), it follows that ||T|s||T|l« = (T,T) =1 and F(T) > E(T). From the
Cauchy-Schwarz inequality follows || T|| < ||T|| = 1 and E(T) > 0. It is also known that

the maximum possible entanglement in both measures is the same [15, Corollary 6.1]. The
measure E(T) is the geometric measure of entanglement that we mentioned before.

1.1. General tensors

We consider the setting when Vi =V, =-.- =V, =C" and V=C"QC"®---®
C" = (C")®k, Upper bounds on entanglement can be obtained quite easily.

Proposition 1.4 (Qi et al. [16]): For all unit length tensors T € (CM®*, we have
E(T) < F(T) < (k—1)log,(n).

Qietal. [16] obtained the upper bound for E(T). The same upper bound for F(T') follows
easily because the maximum possible entanglement in both the measures is the same [15,
Corollary 6.1].

We adapt a technique often found in coding theory to show the existence of tensors
whose entanglement is very close to the upper bounds given above.
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Theorem 1.5: Let n, k > 2, and let
C=min{|| T, | T € (C"®*with| T|| = 1}.
Then for any 0 < ¢ < 1, we have

k(n—1)In (‘gl)
(k-1 - o)k

2

Corollary 1.6: Let Enyy ;= max{E(T) | T € (C™)®kwith || T|| = 1} denote the maximum
entanglement of a unit length tensor in (C")®K. We show the following lower bounds for

Emax-

(1) Letn > 2 be fixed. Then,
Emax > (k — 1)log,(n) —log, (k) — 1 — log,(In(k) + 3).
Further, if we take k > 21, then,
Emax > (k — 1) log,(n) — log, (k) — log, (In(k)) — 2.
(2) On the other hand, suppose k > 2 is fixed. Then,

Emax > (k - 1) logz(n) + O(1).

The result in Ref. [7] is a concentration of measure result in the case of n = 2. With a
slight modification of the argument we can also recover such a result. Note that the set
of all unit length tensors in (CH)®k g just the (real) sphere §22H-1 C (CH®k, In par-
ticular, the set of unit length tensors is a sphere which is compact, and has a standard
measure on it.

Corollary 1.7: Let n = 2, and k > 4. The fraction of unit length tensors T in (C")®K such
that

E(T) < k —log, (k) — log,(In(k)) — 3

is at most e~ k.

This improves significantly the bound of k — 2log, (k) — 3 of Gross, Flammia and Eisert
[7, Theorem 2]. Similar results can be shown for higher n but we omit the details. We
remark here that while we improve the bound, the fraction of tensors for which our bound
holds is larger. In this sense, both results are incomparable.

So, most tensors have a high entanglement. Yet, finding an explicit? tensor with a high
entanglement seems quite difficult - this phenomenon is very familiar to researchers
in computational complexity. For many complexity measures, one can show that most
instances (or a random instance) has high complexity. However, constructing ‘explicit’
instances with high complexity is extremely challenging, and in many cases still unresolved.
Example where explicit instances with high complexity are still far beyond current tech-
niques include the celebrated P vs NP problem (and its algebraic analog VP vs VNP), tensor
rank and Waring rank.
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Loosely speaking, the geometric measure of entanglement is a measure of complexity.
It is an interesting problem to construct explicit examples with a large entanglement.

Problem 1.8: Construct explicit tensors with large entanglement.

We give a construction based on the determinants that constructs explicit tensors whose
entanglement is quite large, but still falls short of the bounds in Corollaries 1.6 and 1.7. We
define the determinant tensor

dety = Y ex(1) ®ex) ® +* ® ex(m) € (CH".

TeS,

Consider the tensor det,» € (C7)®" . Identifying C" with (C")®P, we can think of det,»
as a tensor in ((C")®P”p. We define

1
Tup = ——det,p € (C")®P"

VP!

Since || det,r || = +/nP!, we have || Ty || = 1.

Proposition 1.9: Let n be fixed. For the unit length tensor Ty, € (CM®k, with k = pnf, we
have

E(Typ) > klog,(n) — o(k).

1.2. Symmetric tensors

There is a natural action of X,,,, the symmetric group on m letters on (C")®™ by permuting
the tensor factors. A tensor T € (C")®™ is called a symmetric tensor if it is invariant under
the action of ,,,. We consider the space of symmetric tensors S (C") C (C")®™. One can
identify in a standard way S (C") with polynomials of degree m in n variables.

Symmetric tensors cannot have very large entanglement [8]. We restrict our attention
to symmetric tensors of length 1, which we denote by S|"(C").

Theorem 1.10 (Friedland and Kemp [8]): Forall T € S*(C"), we have

E(T) < 10g2 (dn,m),

m+n—1).

where dy, ,, = ( "

For fixed n, the existence of tensors T € S"(C") with E(T) > log,(dym) — log,
(log, dpm) — O(1) for m sufficiently large is also shown in [8]. Our techniques can be

extended to this case and yield improvements. Let d,, ,,, = (th _1).

Theorem 1.11: Let C; = min{||T||, | T € ST"(C")}. Then for any 0 < & < 1, we have

C? < mPe? + (n—Dln4/e) ; mf(?/g).
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Let us define
B =max{E(T)| T € S/(C")}.

max

Corollary 1.12: Let n > 2 be fixed. Then for m sufficiently large, we have
E; x> log, (dum) — log,(In(dy,m)) — log, (n).
For n = 2, we obtain a slightly stronger result.
Corollary 1.13: Let n = 2. Then for all m, we have
E} . > log,(m) —log,(1 + In(4m+/m)).

The strategy in Ref. [8] closely resembles that of Ref. [7]. One significant difficulty
they must overcome is to construct ‘e-nets’. We note that our methods bypass the need
for this construction. Just like the results in Ref. [7], the results in Ref. [8] are stronger
than just showing the existence of tensors with large entanglement. They show a (quantita-
tive) concentration of measure result that says that most symmetric tensors are maximally
entangled, see [8, Theorem 1.2]. With our techniques, we can improve upon these results
as well by pursuing a strategy similar to Corollary 1.7, but we omit the details.

2. Preliminaries

Let " C R™*! denote the n-sphere. Observe that the set of unit vectors in C" = R?" is
k k
simply $*"~1. So, the set of unit length tensors in (C")®k = C™ is just the sphere $>" 1.

Definition 2.1: For v € $>"~1, i.e. v of unit length in C", we define
B(v,e) = {we S |(nw)? = 1 -} € &,
We call B(v, ¢) the ¢-ball around v.

Remark 2.2: Note that the ¢-ball as defined above is not a ball in the usual metric. How-
ever, it is better suited for our purposes since the spectral norm is defined in terms of inner
products.

Proposition 2.3:

nan—1

e

VOI(B(V, 8)) = m

Before proving the proposition, let us observe that B(v, 1) is the entire sphere $>"~1. The
volume of the sphere is usually calculated by a recursion. As a sanity check, when we plug
in ¢ = 1 in the above formula, we do recover the (well known) volume of the sphere, i.e.

2"

(n—1)!

vol(§2"~1) = vol(B(v, 1)) = )
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Corollary 2.4: We have
vol(B(v, €)) B
vol(§2n=1)

n—1

Proof of Proposition 2.3: Without loss of generality, let us assume v = (0,0,...,0,1)
€ C". Then B(v,¢) = {w| |wu|?> > 1 — &} C $?"!. In real coordinates, this is the surface
described by

(B) xi _|_y§l > 1 — ¢ (or equivalently, x% +y% + - ~xﬁ_1 +)’ﬁ—1 <e).

If we restrict to y, > 0, we get precisely half the surface, and we compute the volume of
this half of the surface by writing it as a parametrized surface. We write

Vi = FX1 V1o -+ o> Xne1s Y15 Xn) z\/l—xﬁ—R2 :\/1 —x =y = X2,

where R = x% + y% + -4 xﬁ71 + )’3:71- Now, the domain for the parametrized surface

is {(X1, Y1, - > Xns yn) | RZ < &, —/1 — RZ < x,, < +/1 — R2}. The volume of this surface is

given by the following formula:
V1-R? 2 2 2 2
d ) ) d
Fo e (P G G )+ ()
D(0./7) Jxy=—I_RE 9x1 ay1 Yn—1 0xy
where D(0, \/¢) = {(x1,%2, - .-, Xn—1,Vn—1) | xf +y% 4+ —I—yi_1 < e¢e}. We compute

x dx, dxpdys .. dyn—1,
(0f/9yi) = —yi/f, and (9f/0xi) = —xi/f, and so we get that the integrand is simply

1/f = 1/4/1 — x2 — R%. In other words, we have

dxn dx; dy; ... dy,—1,

/D(of) /xn_—\/l R2 /1 —R2

But now applying the formula f (1/4/a? — x2) dx = [sin"}(x/a)]=% , = 7, for
a = +/1 — R?, the integral simplifies to

n—1,n—1 non—1
/ mdx;dy; ... dy,—1 =n-vol(D(O,J§))=n<n £ > _ e .
D(0,/%) (n—1)! (n—1)!
This concludes the computation for precisely half the surface, and so we multiply by two
to get the required result. |

Proposition 2.5: Let v,z,w € $2"~1 € C" such that |(v,2)|> > 1 —¢ and |(z, w)|* >
1 —&. Then |(v,w)|> > 1 — 4e.

Proof: By symmetry, we may assume |(z, w)|> > |(v,2)|*> = 1 — § forsome § < &. Without
loss of generality, let us assume v = (0,...,0,1) € C". Then we have /1 — 8§ = [(v,2)]
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= |zu|.Forx = (x1,...,%u—1, %) € C" defineX = (x1,...,x,—1) € C" 1. Hence we have
z=(2Z,z,) and w = (W, wy,).
Now, we have

V1=16 < [(z,w)]
= |(Z, W) + zaWy|
< |G W)+ lzu W]
< 20 - 1] + (V1 = 8) wyl
= V81— |wal> + (VT = 8)|wy|

The last equality follows from the fact that for x € C", we have lxl1? = I%]1? + |xa]%. In
particular, we can rewrite the inequality as

VI=38(1 —wal) < V81— w2
On squaring the terms, we get
(1 =8)(1 = Jwa)? < 8(1 — [wyl®).
Now, dividing both sides by 1 — |wy,|, we get
(1 =8 = [wal) =51 + [wnl).

Rearranging the terms, we get |[w,| > 1 — 25. We get the required conclusion since we have
[(v, W2 = [wul]?> > (1 —28)> >1—48 > 1 — 4e. [

In the next proposition, we give an upper bound on the number of e-balls needed to
cover all of $>"~!. In order to do this, we borrow a standard technique from coding theory
and modify it appropriately.

Proposition 2.6: There exists v1, Vs, . .., vN € S?" ! such that Ufi | Bvi, &) is all of g1
for some N < (4/&)"!

Proof: Let B(vi,e/4),B(vs,€/4),...,B(vN,e/4) be a maximal collection of non-
interesecting € /4-balls on $2n=1 Observe that N < vol(S*"~1) /vol(B(v, e4)) = (4/)" L.

Now for any w € $2"=1 we have that B(w, &/4) N B(v;,&/4) is non-empty for some i.
Hence 3z € $?"~! such that |(z,w)|*> > 1 — /4 and [(v;,2)|*> > 1 — &/4, and hence by
Proposition 2.5, we have that w € B(v;, €). Hence | J; B(v;, ¢) is all of s2n=1, |

3. Main results
3.1. Lower bounds on entanglement

In this section, we will give proofs of our main lower bound results on entanglement
for general tensors. For this section, we will fix v, va,...,vN € §2n=1 = C" such that
Ufil B(v;, &) is all of $"~1, The following proposition is the key technical result to derive
Theorem L.5.
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Proposition3.1: Let C = min{||T|s | T € st (C™®KY, Then, forall T € Sz”‘k_l, we
have [(T,vi, ® viy ® - -- ® v;,)|? > C3(1 — &)* for some 1 < iy, iy, ..., ik < N.

Proof: By definition, forany T € (C™®k wehave (T, a1 @ a2 @ - - - ® ag)| > C for some
simple tensor a; @ a; ® - -+ @ a.

Themapv i (T,v® a; ® - - - ® ag) defines a element of (C")*, which we denote by f.
Using the linear isomorphism C” with (C")* given by the inner product, we get a vector
vr such that f (w) = (vg, w). Since Ufil B(v;, ¢) is all of $?"~1, there exists v;, such that

[{ve,vip)l = (W1 =a)llvell = (W1 = e)[{vr,a1)] = CV/1 —e.
Hence

(T, viy @ a2 @ - - - ® ag)| = (v, vi;)| = CV/1 —e.

Repeating the argument for all the tensor factors, we get a tensor vi; @ vi, ® - - - ® vj, such
that

|<T’Vi1 ®Vi2®"'®vik)| Z C(Vl_g)k

We write [N] := {1,2,..., N} in the following corollary.

Corollary 3.2: We have Uibi2 ..... e [Nk Bvi @vi, ® --- Q@ v, 1 — C2(1 — &)%) is all of
San—l‘

Using Corollary 2.4, we get
Corollary 3.3: We have
N (a-ca-oh" )z 1
We have all the tools required to prove Theorem 1.5.

Proof of Theorem 1.5: We can use the above inequality to get an upper bound for C. We
have

1< N1 - C21 — o)y
k(n—1)
4
< (—) 1-Ca—eh*
€
Taking logarithms we get

0<k(n— 1)1n< ) + = DIn(1 — C¥(1 — &)k

M ™

<k(n—1)ln < ) + (HF = D(=C*(1 - &)").
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This gives us
4
2 < k(n —1)In (g)
~ (k- D1 - o)k
as required. |

With the proof of Theorem 1.5, we now proceed to deduce Corollaries 1.6 and 1.7. These
are a bit computational, and we will try to keep the computations transparent and succinct.

Proof of Corollary 1.6: We first prove part (1). From Theorem 1.5, we get

nk—1 k 4
Emax > log, 1) log, (k) 4+ log,(1 — )" —log, | In Ik

by taking a logarithm on both sides.

First, observe that logz((nk —1)/(n—1)) > logz(nk’l) = (k—1)log,(n).

Next, set ¢ =§/k. So, (1 — )k >1—ke =1—5. Also, note that log,(In(4/¢))
= log,(In(k) +In(4/5)). Now, set § = 4/e3. Then

log,(1 — &)* > log, (1 — 8) = log, (1 — 4/¢%) > —1,
and
log, (In(k) + In(4/8)) = log,(In(k) +3) < log,(2In(k)) = log,(In(k)) + 1.

The inequality above follows because we assume k > 21 and consequently In(k) > 3. Thus,
we get
Emax = (k — 1) log,(n) —log, (k) — log,(In(k)) — 2

To prove part (2), we just observe that if k is fixed, then kIn(4¢) /(1 — e)kis just a constant
for fixed e. We get the required result by taking logarithms in the conclusion of Theorem 1.5
[

We can now prove Corollary 1.7

Proof of Corollary 1.7: Let D be the infimum of all numbers d such that the fraction of unit
length tensors T having || T||s > d is at most ¢~k We want a lower bound on —2 log, (D).
Similar to Corollary 3.3, we can deduce

N (=D —eb" ) z e
Again, using that N < (4/¢), and following the steps in the proof of Theorem 1.5, we get
, __kin (4)+k
T @ -Da-eF
Taking natural logarithms on both sides, we get
—2log, (D) > logz(zk —1) +log,(1 — e)f — log(k) — log,(In(4/¢) + 1).

First, note that for k > 4, we have 10g2(2k —1)>k-— i. Now, set € = 1/4k. Then
we get log, (1 — o)k > log, (1 — ke) = log,(3/4) > —3/4. We also get log,(In(4/¢) + 1)
= log,(In(16k) + 1).
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Now, for k > 4, one can check that In(16k) + 1 = In(k) + In(16) + 1 < 4In(k). Thus
log, (In(16k) + 1) < log,(In(k)) 4 2. Thus, we have:

—2log,(D) > (k — 1/4) —log(k) — (3/4) — log,(In(k)) — 2.

Thus, we get
—2log, (D) > k — log(k) — log,(In(k)) — 3

as required. |

3.2. An explicit tensor with high entanglement

In this section, we prove Proposition 1.9, i.e. we give a lower bound on the entanglement
of an explicit tensor (T}, as defined in Proposition 1.9). Recall that

det, = Z er(1) ®er2) Q- Qexm) € (C")®”.

TeS,

We know that || det, |, = 1, by [17]. Consider the tensor det,,» € ((C”P)@’”p. By identifying
C" with (C")®?, we identify (C")®" with (C")®". Thus we can consider det,» as a
tensor in (C")®P" Note that considering det,» as a tensor in (C™®P" cannot increase
the spectral norm since the set of simple tensors of unit length in (C")®"" s a subset of
simple tensors of unit length in ((C”P)@mp.

On the other hand, if e, €2, . . ., e, is a standard basis for C", we definee; = ¢;, ® - -+ ®
€i, for I = (ir,...,ip) € [n]P where [n] = {1,2,...,n}. Fix any bijection h : [#P] — [n]P.
We define

np
u= ® €h(i)-
i=1

Clearly, u is a simple tensor of unit length in (C"®"" " and |(det,p, u)| = 1. Hence,
|| det, |l¢ = 1, when considered as a tensor in (C")®”" . Now, consider the unit length
tensor Typ.

Proof of Proposition 1.9: By the above discussion, we have || T||, = 1/+/#nP!. Hence, we
get E(T) = 2log, v/nP! = log, (nP!). Using Stirling’s formula, we compute

log, (n"1) = nP log, (n”) — log, (e) (n’) + O(log, (n))
= pnf log,(n) — o(pn?).

The proposition follows by replacing pn? with k. |

4. Symmetric tensors

This section is devoted to the study of entanglement for symmetric tensors. The overall
strategy parallels the case of general tensors. However, there is one additional ingredient
that we will need, and that is Banach’s theorem below.
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Analogous to the case of general tensors, we define
Cs »= min{||T|| | T € S"(C™)}.

Our goal is lower bounds on C;. The following is the aforementioned result of Banach [18]
(see also [8, Theorem 2.7]).

Theorem 4.1 (Banach): For T € S"(C"), we have || T||, = max{[(T,v®™)| : ||v|] = 1}.

Observe that by Proposition 2.6, we can take vy, ..., vy, with N < (4/&)"~! such that
UszlB(va, e) is all of $"~1. For this entire section v1,. .., vy will denote such a choice.
Using Banach’s theorem above, we deduce the main technical lemma for the purposes of
this section.

Lemma 4.2: For all T e S"(C"), we have |(T,v}®m)|22C2—m282 for some
Ie{1,2,...,N}.

Proof: 1t follows from Theorem 4.1 that for any T € S{"(C"), 3v € C" with ||v|]| = 1 such
that |(T,v®™)| > C,. By the choice of vy,..., vy, we have [(v, vi)|? > 1 — ¢ for some
Ie{1,2,...,N}.

Let ey, ..., e, denote an orthonormal basis for C". Without loss of generality, we can
assume vy = e,. The vector space (C")®" has an orthonormal basis {e;;, ;, = e, ®
Qe |1 <y, ..., 0, < n}. We can write

((Cn)®m =Cem.n®V,

where V=B, ; . nCéi i,

Given T € (C"®™ we canwrite T = Ty n + T uniquely where Ty, € Ceyy,.. n and
TeV.
Now, let v = (11,. .., v,) be the coordinates of v in the basis ey, . . ., e,,. Then, we have

2 2 2
1—¢& < [(v,vpl” = [(vsen)|” = |vul”.

Thus, we havelg/@m),m,_ﬂz = |vnm|2 = ([va]>)™ > (1 — &)™ > 1 — me. In particular, this
implies that ||[v®™|| < me.
Now, we have

Cs2 < KT, V®m>|2 = |<71’ Vié_;n) + Tnn...n(V®m)nn...n|2
< UTvE™) 2 4+ T, 102" ..
< m*e? + (T, vP"™) 2| (2™ n...n?
< m’e? + (T,vf"™) 1.
The first and second inequalities are clear. The third inequality follows from ||T|| = 1,

||v§;”|| < me. and the fact that T,, , = (T, e;@m) = (T, v}@m) (since v; = e;). The last

inequality follows from [v&™" |2 = |v,|*™ < 1.
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Hence, we get
(TP = CF = mPe?.

Friedland and Kemp [8] show that we have an isometry between S}"(C") and §2dnm—1,
Along with the above lemma, we obtain:

Corollary 4.3: UN_ BW®", 1 — (C? — m?e?)) = S™(C") = §¥Hnm~1,
Using Corollary 2.4, one obtains the following inequality.
Corollary 4.4: We have (4/&)" "' (1 — (C? — m?g?))dnm=1 > 1,

Proof of Theorem 1.11: Applying the natural logarithm to Corollary 4.4, we get

0 < (n—1)In4/e) + (dym — 1) In(1 — (C? — m*e?))
< (n—1)1In(4/e) + (dym — 1)(—(C* — m*e?))

Hence, we get

(dum — D(C? — m*e?) < (n— 1) In(4/e).
Equivalently, we get
2, (1= DInc/e)

C2§m8
s dpm — 1

as required. |
Once again, by taking a natural logarithm on both sides in Theorem 1.11, we obtain:

— 1) In(4
_2 10g2 CS Z _logz (mzsz _|_ w)

dpm — 1

Replacing ¢ by 6/m, we get

3)

(n—1)In(4m/s)
E; . = —2log, C; > —log, (52 + / )

dpm — 1
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Proof of Corollary 1.12: Substituting § = (d,,,, — 1)~1/2 in the above expression, we get

) dym — 1
0o
21 rm—1 In(4m(dym — 1)1/2)

S
Emax 2

For m sufficiently large, we claim that

dpm — 1 dn,m

1+(n—1) ln(4m(dn,m - 1)1/2) = nln(dn,m) @

from which we can conclude that

Eppax = log, (dum) — log,(In(dy,m)) — log, (n).

So, it remains to prove (4) above. For m > 0, the following is easy to verify because
dpm = O(m"™1).

14 (n— DIn(dm(dym — DY) < 14 (n — 1) In(dm(d,,m)"?) < 0.99n1n(d,,m).

This means that

— —1l/2 —
14+ (n—1)In(dm(dpm — 1)'/7) <099 <1— 1 dnm 1,
n ln(dn,m) n,m dﬂ,m
which rearranged gives us (4) as required. |

Proof of Corollary 1.13: Setting n = 2, (3) simplifies to

In(4m/3)
=)

Ejax = —log, (52 + = log, (m) — log,(md” + In(4m/8)).

If we take § = 1//m, we get

ES .y = log,(m) — log, (1 + In(4my/m)),

Notes

1. These results use a concentration of measure inequality ([7, Equation (2)] and [8, Lemma 3.7])
which needs a correction. While this does not disrupt their results significantly, their results
must be corrected.

2. This can be given a formal definition, i.e. the usual one in complexity.
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