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ABSTRACT
A geometric measure for the entanglement of a unit length tensor
T ∈ (Cn)⊗k is given by −2 log2 ‖T‖σ , where ‖ · ‖σ denotes the spec-
tral norm.A simple inductiongives anupperboundof (k − 1) log2(n)
for the entanglement. We show the existence of tensors with entan-
glement larger than k log2(n) − log2(k) − o(log2(k)). Friedland and
Kemp (Proc. AMS, 2018) have similar results in the case of symmetric
tensors. Our techniques give improvements in this case.
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1. Introduction

We consider the tensor product V = V1 ⊗ V2 ⊗ · · · ⊗ Vk of finite dimensional Hilbert
spaces V1,V2, . . . ,Vk. A tensor of the form T = v1 ⊗ v2 ⊗ · · · ⊗ vk ∈ V is called a simple
tensor. A general tensor T ∈ V is far from simple. Each vector space Vi is equipped with
positive definite hermitian form 〈·, ·〉. The space V is again a Hilbert space, and its positive
definite hermitian form 〈·, ·〉has the property 〈v1 ⊗ v2 ⊗ · · · ⊗ vk,w1 ⊗ w2 ⊗ · · · ⊗ wk〉 =∏k

i=1〈vi,wi〉. The euclidean norm on a Hilbert space is defined by ‖v‖ = √〈v, v〉. We call
a tensor T ∈ V a unit length tensor if ‖T‖ = 1.

In quantum physics, a unit length tensorT ∈ V corresponds to a puremultipartite state.
Such a puremultipartite stateT ∈ V is called separable ifT is a simple tensor, and entangled
if T is not a simple tensor. In the theory of computation, there seems to be a significant
upgrade in speed offered by quantum algorithms in comparisonwith classical ones. A large
part of this can be attributed to entanglement.

Various measures for entanglement have been studied owing to different motivations
and perspectives. We refer the interested reader to the excellent surveys [1–3]. Using the
geometric measure of entanglement (considered previously [4–6]), Gross, Flammia and
Eisert [7] argue thatmost quantum states are too entangled to be useful. On the other hand,
observable states for any quantum computer based on photon interactions are symmetric
quantum states. For symmetric tensors, the entanglement is much smaller [8]. Friedland
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2 H. DERKSEN AND V. MAKAM

and Kemp [8] show that most symmetric quantum states are close to being maximally
entangled. In this paper, we generalize and improve some of the results in Refs. [7,8].1

We consider here two entanglementmeasures that are related to (non-euclidean) norms
on V. Specifically we consider nuclear and spectral norms. These norms have applications
to tensor completion and low rank tensor approximation, see, e.g. [9–11]. In general, the
computation of these norms is NP-hard [12,13]. InNie [14], computation of nuclear norms
for symmetric tensors is addressed.

Definition 1.1: The spectral norm ‖T‖σ of a tensor T ∈ V is defined as the maximal value
of |〈T, u〉|, where u ranges over all simple tensors with ‖u‖ = 1.

Definition 1.2: The nuclear norm ‖T‖� of a tensor T ∈ V is the minimal value of
‖u1‖ + ‖u2‖ + · · · + ‖ur‖ over all decompositions T = u1 + u2 + · · · + ur where r is a
nonnegative integer and u1, u2, . . . , ur are simple tensors.

The maximum in Definition 1.1 exists because the unit sphere is compact, and one can
show that the minimum in Definition 1.2 exists as well. The spectral and nuclear norms
are dual to each other [15]. In particular, we have

|〈T, S〉| ≤ ‖T‖σ‖S‖�. (1)

The following measures of entanglement were considered in Ref. [15].

Definition 1.3: For a unit length tensor T we define two entanglement measures by

E(T) = −2 log2(‖T‖σ ) and F(T) = 2 log2(‖T‖�).

From (1), it follows that ‖T‖σ ‖T‖� ≥ 〈T,T〉 = 1 and F(T) ≥ E(T). From the
Cauchy–Schwarz inequality follows ‖T‖σ ≤ ‖T‖ = 1 and E(T) ≥ 0. It is also known that
the maximum possible entanglement in bothmeasures is the same [15, Corollary 6.1]. The
measure E(T) is the geometric measure of entanglement that we mentioned before.

1.1. General tensors

We consider the setting when V1 = V2 = · · · = Vk = Cn, and V = Cn ⊗ Cn ⊗ · · · ⊗
Cn = (Cn)⊗k. Upper bounds on entanglement can be obtained quite easily.

Proposition 1.4 (Qi et al. [16]): For all unit length tensors T ∈ (Cn)⊗k, we have

E(T) ≤ F(T) ≤ (k − 1) log2(n).

Qi et al. [16] obtained the upper bound forE(T). The sameupper bound forF(T) follows
easily because the maximum possible entanglement in both the measures is the same [15,
Corollary 6.1].

We adapt a technique often found in coding theory to show the existence of tensors
whose entanglement is very close to the upper bounds given above.
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Theorem 1.5: Let n, k ≥ 2, and let

C = min{‖T‖σ | T ∈ (Cn)⊗kwith‖T‖ = 1}.
Then for any 0 < ε < 1, we have

C2 ≤ k(n − 1) ln
( 4

ε

)
(nk − 1)(1 − ε)k

.

Corollary 1.6: Let Emax := max{E(T) | T ∈ (Cn)⊗kwith‖T‖ = 1} denote the maximum
entanglement of a unit length tensor in (Cn)⊗k. We show the following lower bounds for
Emax.

(1) Let n ≥ 2 be fixed. Then,

Emax ≥ (k − 1) log2(n) − log2(k) − 1 − log2(ln(k) + 3).

Further, if we take k ≥ 21, then,

Emax ≥ (k − 1) log2(n) − log2(k) − log2(ln(k)) − 2.

(2) On the other hand, suppose k ≥ 2 is fixed. Then,

Emax ≥ (k − 1) log2(n) + O(1).

The result in Ref. [7] is a concentration of measure result in the case of n = 2. With a
slight modification of the argument we can also recover such a result. Note that the set
of all unit length tensors in (C2)⊗k is just the (real) sphere S2(2k)−1 ⊆ (C2)⊗k. In par-
ticular, the set of unit length tensors is a sphere which is compact, and has a standard
measure on it.

Corollary 1.7: Let n = 2, and k ≥ 4. The fraction of unit length tensors T in (Cn)⊗k such
that

E(T) < k − log2(k) − log2(ln(k)) − 3

is at most e−k.

This improves significantly the bound of k − 2 log2(k) − 3 of Gross, Flammia and Eisert
[7, Theorem 2]. Similar results can be shown for higher n but we omit the details. We
remark here that while we improve the bound, the fraction of tensors for which our bound
holds is larger. In this sense, both results are incomparable.

So, most tensors have a high entanglement. Yet, finding an explicit2 tensor with a high
entanglement seems quite difficult – this phenomenon is very familiar to researchers
in computational complexity. For many complexity measures, one can show that most
instances (or a random instance) has high complexity. However, constructing ‘explicit’
instanceswith high complexity is extremely challenging, and inmany cases still unresolved.
Example where explicit instances with high complexity are still far beyond current tech-
niques include the celebrated P vsNPproblem (and its algebraic analogVP vsVNP), tensor
rank and Waring rank.



4 H. DERKSEN AND V. MAKAM

Loosely speaking, the geometric measure of entanglement is a measure of complexity.
It is an interesting problem to construct explicit examples with a large entanglement.

Problem 1.8: Construct explicit tensors with large entanglement.

We give a construction based on the determinants that constructs explicit tensors whose
entanglement is quite large, but still falls short of the bounds in Corollaries 1.6 and 1.7. We
define the determinant tensor

detn =
∑
π∈Sn

eπ(1) ⊗ eπ(2) ⊗ · · · ⊗ eπ(n) ∈ (Cn)⊗n.

Consider the tensor detnp ∈ (Cnp)⊗np . Identifying Cnp with (Cn)⊗p, we can think of detnp
as a tensor in (Cn)⊗pnp . We define

Tn,p = 1√
np!

detnp ∈ (Cn)⊗pnp .

Since ‖ detnp ‖ = √
np!, we have ‖Tn,p‖ = 1.

Proposition 1.9: Let n be fixed. For the unit length tensor Tp,n ∈ (Cn)⊗k, with k = pnp, we
have

E(Tn,p) ≥ k log2(n) − o(k).

1.2. Symmetric tensors

There is a natural action of�m, the symmetric group onm letters on (Cn)⊗m by permuting
the tensor factors. A tensorT ∈ (Cn)⊗m is called a symmetric tensor if it is invariant under
the action of�m. We consider the space of symmetric tensors Sm(Cn) ⊆ (Cn)⊗m. One can
identify in a standard way Sm(Cn) with polynomials of degreem in n variables.

Symmetric tensors cannot have very large entanglement [8]. We restrict our attention
to symmetric tensors of length 1, which we denote by Sm1 (Cn).

Theorem 1.10 (Friedland and Kemp [8]): For all T ∈ Sm1 (Cn), we have

E(T) ≤ log2(dn,m),

where dn,m = (m+n−1
m

)
.

For fixed n, the existence of tensors T ∈ Sm1 (Cn) with E(T) ≥ log2(dn,m) − log2
(log2 dn,m) − O(1) for m sufficiently large is also shown in [8]. Our techniques can be
extended to this case and yield improvements. Let dn,m = (m+n−1

m
)
.

Theorem 1.11: Let Cs = min{‖T‖σ | T ∈ Sm1 (Cn)}. Then for any 0 < ε < 1, we have

C2
s ≤ m2ε2 + (n − 1) ln(4/ε)

dn,m − 1
.
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Let us define

Esmax = max{E(T) | T ∈ Sm1 (Cn)}.

Corollary 1.12: Let n ≥ 2 be fixed. Then for m sufficiently large, we have

Esmax ≥ log2(dn,m) − log2(ln(dn,m)) − log2(n).

For n = 2, we obtain a slightly stronger result.

Corollary 1.13: Let n = 2. Then for all m, we have

Esmax ≥ log2(m) − log2(1 + ln(4m
√
m)).

The strategy in Ref. [8] closely resembles that of Ref. [7]. One significant difficulty
they must overcome is to construct ‘ε-nets’. We note that our methods bypass the need
for this construction. Just like the results in Ref. [7], the results in Ref. [8] are stronger
than just showing the existence of tensors with large entanglement. They show a (quantita-
tive) concentration of measure result that says that most symmetric tensors are maximally
entangled, see [8, Theorem 1.2]. With our techniques, we can improve upon these results
as well by pursuing a strategy similar to Corollary 1.7, but we omit the details.

2. Preliminaries

Let Sn ⊂ Rn+1 denote the n-sphere. Observe that the set of unit vectors in Cn = R2n is
simply S2n−1. So, the set of unit length tensors in (Cn)⊗k = Cnk is just the sphere S2nk−1.

Definition 2.1: For v ∈ S2n−1, i.e. v of unit length in Cn, we define

B(v, ε) = {w ∈ S2n−1 | |〈v,w〉|2 ≥ 1 − ε} ⊆ S2n−1.

We call B(v, ε) the ε-ball around v.

Remark 2.2: Note that the ε-ball as defined above is not a ball in the usual metric. How-
ever, it is better suited for our purposes since the spectral norm is defined in terms of inner
products.

Proposition 2.3:

vol(B(v, ε)) = 2πnεn−1

(n − 1)!
.

Before proving the proposition, let us observe that B(v, 1) is the entire sphere S2n−1. The
volume of the sphere is usually calculated by a recursion. As a sanity check, when we plug
in ε = 1 in the above formula, we do recover the (well known) volume of the sphere, i.e.

vol(S2n−1) = vol(B(v, 1)) = 2πn

(n − 1)!
(2)
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Corollary 2.4: We have
vol(B(v, ε))
vol(S2n−1)

= εn−1.

Proof of Proposition 2.3: Without loss of generality, let us assume v = (0, 0, . . . , 0, 1)
∈ Cn. Then B(v, ε) = {w | |wn|2 ≥ 1 − ε} ⊆ S2n−1. In real coordinates, this is the surface
described by

(A) x21 + y21 + x22 + · · · x2n + y2n = 1 and
(B) x2n + y2n ≥ 1 − ε (or equivalently, x21 + y21 + · · · x2n−1 + y2n−1 ≤ ε).

If we restrict to yn ≥ 0, we get precisely half the surface, and we compute the volume of
this half of the surface by writing it as a parametrized surface. We write

yn = f (x1, y1, . . . , xn−1, yn−1, xn) =
√
1 − x2n − R2 =

√
1 − x21 − y21 − · · · − x2n,

where R =
√
x21 + y21 + · · · + x2n−1 + y2n−1. Now, the domain for the parametrized surface

is {(x1, y1, . . . , xn, yn) |R2 ≤ ε,−√
1 − R2 ≤ xn ≤ √

1 − R2}. The volume of this surface is
given by the following formula:

∫
D(0,

√
ε)

∫ √
1−R2

xn=−√
1−R2

⎛⎝√1 +
(

∂f
∂x1

)2
+
(

∂f
∂y1

)2
+ · · · +

(
∂f

∂yn−1

)2
+
(

∂f
∂xn

)2
⎞⎠

× dxn dx1 dy1 . . . dyn−1,

where D(0,
√

ε) = {(x1, x2, . . . , xn−1, yn−1) | x21 + y21 + · · · + y2n−1 ≤ ε}. We compute
(∂f /∂yi) = −yi/f , and (∂f /∂xi) = −xi/f , and so we get that the integrand is simply
1/f = 1/

√
1 − x2n − R2. In other words, we have∫

D(0,
√

ε)

∫ √
1−R2

xn=−√
1−R2

1√
1 − R2 − x2n

dxn dx1 dy1 . . . dyn−1,

But now applying the formula
∫ a
−a(1/

√
a2 − x2) dx = [sin−1(x/a)]x=a

x=−a = π , for
a = √

1 − R2, the integral simplifies to∫
D(0,

√
ε)

π dx1 dy1 . . . dyn−1 = π · vol(D(0,
√

ε)) = π

(
πn−1εn−1

(n − 1)!

)
= πnεn−1

(n − 1)!
.

This concludes the computation for precisely half the surface, and so we multiply by two
to get the required result. �

Proposition 2.5: Let v, z,w ∈ S2n−1 ⊂ Cn such that |〈v, z〉|2 ≥ 1 − ε and |〈z,w〉|2 ≥
1 − ε. Then |〈v,w〉|2 ≥ 1 − 4ε.

Proof: By symmetry, wemay assume |〈z,w〉|2 ≥ |〈v, z〉|2 = 1 − δ for some δ ≤ ε.Without
loss of generality, let us assume v = (0, . . . , 0, 1) ∈ Cn. Then we have

√
1 − δ = |〈v, z〉|
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= |zn|. For x = (x1, . . . , xn−1, xn) ∈ Cn, define x̃ = (x1, . . . , xn−1) ∈ Cn−1. Hencewe have
z = (̃z, zn) and w = (w̃,wn).

Now, we have
√
1 − δ ≤ |〈z,w〉|

= |〈̃z, w̃〉 + znwn|
≤ |〈̃z, w̃〉| + |znwn|
≤ ‖̃z‖ · ‖w̃‖ + (

√
1 − δ)|wn|

=
√

δ
√
1 − |wn|2 + (

√
1 − δ)|wn|

The last equality follows from the fact that for x ∈ Cn, we have ‖x‖2 = ‖̃x‖2 + |xn|2. In
particular, we can rewrite the inequality as

√
1 − δ(1 − |wn|) ≤

√
δ
√
1 − |wn|2

On squaring the terms, we get

(1 − δ)(1 − |wn|)2 ≤ δ(1 − |wn|2).
Now, dividing both sides by 1 − |wn|, we get

(1 − δ)(1 − |wn|) ≤ δ(1 + |wn|).
Rearranging the terms, we get |wn| ≥ 1 − 2δ.We get the required conclusion since we have
|〈v,w〉|2 = |wn|2 ≥ (1 − 2δ)2 ≥ 1 − 4δ ≥ 1 − 4ε. �

In the next proposition, we give an upper bound on the number of ε-balls needed to
cover all of S2n−1. In order to do this, we borrow a standard technique from coding theory
and modify it appropriately.

Proposition 2.6: There exists v1, v2, . . . , vN ∈ S2n−1 such that
⋃N

i=1 B(vi, ε) is all of S2n−1

for some N ≤ (4/ε)n−1

Proof: Let B(v1, ε/4),B(v2, ε/4), . . . ,B(vN , ε/4) be a maximal collection of non-
interesecting ε/4-balls on S2n−1. Observe that N ≤ vol(S2n−1)/vol(B(v, ε4)) = (4/ε)n−1.

Now for any w ∈ S2n−1, we have that B(w, ε/4) ∩ B(vi, ε/4) is non-empty for some i.
Hence ∃z ∈ S2n−1 such that |〈z,w〉|2 ≥ 1 − ε/4 and |〈vi, z〉|2 ≥ 1 − ε/4, and hence by
Proposition 2.5, we have that w ∈ B(vi, ε). Hence

⋃
i B(vi, ε) is all of S2n−1. �

3. Main results

3.1. Lower bounds on entanglement

In this section, we will give proofs of our main lower bound results on entanglement
for general tensors. For this section, we will fix v1, v2, . . . , vN ∈ S2n−1 ⊂ Cn such that⋃N

i=1 B(vi, ε) is all of S2n−1. The following proposition is the key technical result to derive
Theorem 1.5.
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Proposition 3.1: Let C = min{‖T‖σ |T ∈ S2nk−1 ⊂ (Cn)⊗k}. Then, for all T ∈ S2nk−1, we
have |〈T, vi1 ⊗ vi2 ⊗ · · · ⊗ vik〉|2 ≥ C2(1 − ε)k for some 1 ≤ i1, i2, . . . , ik ≤ N.

Proof: By definition, for any T ∈ (Cn)⊗k, we have |〈T, a1 ⊗ a2 ⊗ · · · ⊗ ak〉| ≥ C for some
simple tensor a1 ⊗ a2 ⊗ · · · ⊗ ak.

The map v �→ 〈T, v ⊗ a2 ⊗ · · · ⊗ ak〉 defines a element of (Cn)∗, which we denote by f.
Using the linear isomorphism Cn with (Cn)∗ given by the inner product, we get a vector
vf such that f (w) = 〈vf ,w〉. Since⋃N

i=1 B(vi, ε) is all of S2n−1, there exists vi1 such that

|〈vf , vi1〉| ≥ (
√
1 − ε)‖vf ‖ ≥ (

√
1 − ε)|〈vf , a1〉| ≥ C

√
1 − ε.

Hence

|〈T, vi1 ⊗ a2 ⊗ · · · ⊗ ak〉| = |〈vf , vi1〉| ≥ C
√
1 − ε.

Repeating the argument for all the tensor factors, we get a tensor vi1 ⊗ vi2 ⊗ · · · ⊗ vik such
that

|〈T, vi1 ⊗ vi2 ⊗ · · · ⊗ vik〉| ≥ C(
√
1 − ε)k.

�

We write [N] := {1, 2, . . . ,N} in the following corollary.

Corollary 3.2: We have
⋃

i1,i2,...,ik∈[N]k B(vi1 ⊗ vi2 ⊗ · · · ⊗ vik , 1 − C2(1 − ε)k) is all of
S2nk−1.

Using Corollary 2.4, we get

Corollary 3.3: We have

Nk
(
(1 − C2(1 − ε)k)n

k−1
)

≥ 1.

We have all the tools required to prove Theorem 1.5.

Proof of Theorem 1.5: We can use the above inequality to get an upper bound for C. We
have

1 ≤ Nk(1 − C2(1 − ε)k)n
k−1

≤
(
4
ε

)k(n−1)
(1 − C2(1 − ε)k)n

k−1.

Taking logarithms we get

0 ≤ k(n − 1) ln
(
4
ε

)
+ (nk − 1) ln(1 − C2(1 − ε)k)

≤ k(n − 1) ln
(
4
ε

)
+ (nk − 1)(−C2(1 − ε)k).
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This gives us

C2 ≤ k(n − 1) ln
( 4

ε

)
(nk − 1)(1 − ε)k

,

as required. �

With the proof of Theorem 1.5, we nowproceed to deduce Corollaries 1.6 and 1.7. These
are a bit computational, and we will try to keep the computations transparent and succinct.

Proof of Corollary 1.6: We first prove part (1). From Theorem 1.5, we get

Emax ≥ log2

(
nk − 1
n − 1

)
− log2(k) + log2(1 − ε)k − log2

(
ln
(
4
ε

))
.

by taking a logarithm on both sides.
First, observe that log2((n

k − 1)/(n − 1)) ≥ log2(n
k−1) = (k − 1) log2(n).

Next, set ε = δ/k. So, (1 − ε)k ≥ 1 − kε = 1 − δ. Also, note that log2(ln(4/ε))
= log2(ln(k) + ln(4/δ)). Now, set δ = 4/e3. Then

log2(1 − ε)k ≥ log2(1 − δ) = log2(1 − 4/e3) ≥ −1,

and

log2 (ln(k) + ln(4/δ)) = log2(ln(k) + 3) ≤ log2(2 ln(k)) = log2(ln(k)) + 1.

The inequality above follows because we assume k ≥ 21 and consequently ln(k) ≥ 3. Thus,
we get

Emax ≥ (k − 1) log2(n) − log2(k) − log2(ln(k)) − 2

To prove part (2), we just observe that if k is fixed, then k ln(4ε)/(1 − ε)k is just a constant
for fixed ε.We get the required result by taking logarithms in the conclusion of Theorem1.5

�

We can now prove Corollary 1.7

Proof of Corollary 1.7: LetD be the infimumof all numbers d such that the fraction of unit
length tensors T having ‖T‖σ > d is at most e−k. We want a lower bound on −2 log2(D).
Similar to Corollary 3.3, we can deduce

Nk
(
(1 − D2(1 − ε)k)n

k−1
)

≥ e−k.

Again, using that N ≤ (4/ε), and following the steps in the proof of Theorem 1.5, we get

D2 ≤ k ln
( 4

ε

)+ k
(2k − 1)(1 − ε)k

Taking natural logarithms on both sides, we get

−2 log2(D) ≥ log2(2
k − 1) + log2(1 − ε)k − log(k) − log2(ln(4/ε) + 1).

First, note that for k ≥ 4, we have log2(2
k − 1) ≥ k − 1

4 . Now, set ε = 1/4k. Then
we get log2(1 − ε)k ≥ log2(1 − kε) = log2(3/4) > −3/4. We also get log2(ln(4/ε) + 1)
= log2(ln(16k) + 1).
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Now, for k ≥ 4, one can check that ln(16k) + 1 = ln(k) + ln(16) + 1 ≤ 4 ln(k). Thus
log2(ln(16k) + 1) ≤ log2(ln(k)) + 2. Thus, we have:

−2 log2(D) ≥ (k − 1/4) − log(k) − (3/4) − log2(ln(k)) − 2.

Thus, we get

−2 log2(D) ≥ k − log(k) − log2(ln(k)) − 3

as required. �

3.2. An explicit tensor with high entanglement

In this section, we prove Proposition 1.9, i.e. we give a lower bound on the entanglement
of an explicit tensor (Tn,p as defined in Proposition 1.9). Recall that

detn =
∑
π∈Sn

eπ(1) ⊗ eπ(2) ⊗ · · · ⊗ eπ(n) ∈ (Cn)⊗n.

We know that ‖ detn ‖σ = 1, by [17]. Consider the tensor detnp ∈ (Cnp)⊗np . By identifying
Cnp with (Cn)⊗p, we identify (Cnp)⊗np with (Cn)⊗pnp . Thus we can consider detnp as a
tensor in (Cn)⊗pnp . Note that considering detnp as a tensor in (Cn)⊗pnp cannot increase
the spectral norm since the set of simple tensors of unit length in (Cn)⊗pnp is a subset of
simple tensors of unit length in (Cnp)⊗np .

On the other hand, if e1, e2, . . . , en is a standard basis forCn, we define eI = ei1 ⊗ · · · ⊗
eip for I = (i1, . . . , ip) ∈ [n]p where [n] = {1, 2, . . . , n}. Fix any bijection h : [np] → [n]p.
We define

u =
np⊗
i=1

eh(i).

Clearly, u is a simple tensor of unit length in (Cn)⊗pnp , and |〈detnp , u〉| = 1. Hence,
‖ detnp ‖σ = 1, when considered as a tensor in (Cn)⊗pnp . Now, consider the unit length
tensor Tn,p.

Proof of Proposition 1.9: By the above discussion, we have ‖T‖σ = 1/
√
np!. Hence, we

get E(T) = 2 log2
√
np! = log2(n

p!). Using Stirling’s formula, we compute

log2(n
p!) = np log2(n

p) − log2(e)(n
p) + O(log2(n))

= pnp log2(n) − o(pnp).

The proposition follows by replacing pnp with k. �

4. Symmetric tensors

This section is devoted to the study of entanglement for symmetric tensors. The overall
strategy parallels the case of general tensors. However, there is one additional ingredient
that we will need, and that is Banach’s theorem below.
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Analogous to the case of general tensors, we define

Cs := min{‖T‖2σ |T ∈ Sm1 (Cn)}.

Our goal is lower bounds on Cs. The following is the aforementioned result of Banach [18]
(see also [8, Theorem 2.7]).

Theorem 4.1 (Banach): For T ∈ Sm(Cn), we have ‖T‖σ = max{|〈T, v⊗m〉| : ‖v‖ = 1}.

Observe that by Proposition 2.6, we can take v1, . . . , vN , with N ≤ (4/ε)n−1 such that
∪N

α=1B(vα , ε) is all of Sn−1. For this entire section v1, . . . , vN will denote such a choice.
Using Banach’s theorem above, we deduce the main technical lemma for the purposes of
this section.

Lemma 4.2: For all T ∈ Sm1 (Cn), we have |〈T, v⊗m
I 〉|2 ≥ C2 − m2ε2 for some

I ∈ {1, 2, . . . ,N}.

Proof: It follows from Theorem 4.1 that for any T ∈ Sm1 (Cn), ∃v ∈ Cn with ‖v‖ = 1 such
that |〈T, v⊗m〉| ≥ Cs. By the choice of v1, . . . , vN , we have |〈v, vI〉|2 ≥ 1 − ε for some
I ∈ {1, 2, . . . ,N}.

Let e1, . . . , en denote an orthonormal basis for Cn. Without loss of generality, we can
assume vI = en. The vector space (Cn)⊗m has an orthonormal basis {ei1i2...im := ei1 ⊗
· · · ⊗ eim | 1 ≤ i1, i2, . . . , im ≤ n}. We can write

(Cn)⊗m = Cenn...n ⊕ V ,

where V = ⊕
i1...im �=nn...n Cei1...im

Given T ∈ (Cn)⊗m, we can write T = Tnn...n + T̃ uniquely where Tnn...n ∈ Cenn...n and
T̃ ∈ V .

Now, let v = (v1, . . . , vn) be the coordinates of v in the basis e1, . . . , en. Then, we have

1 − ε ≤ |〈v, vI〉|2 = |〈v, en〉|2 = |vn|2.

Thus, we have |(v⊗m)nn...n|2 = |vmn |2 = (|vn|2)m ≥ (1 − ε)m ≥ 1 − mε. In particular, this
implies that ‖ṽ⊗m‖ ≤ mε.

Now, we have

C2
s ≤ |〈T, v⊗m〉|2 ≤ |〈T̃, ṽ⊗m〉 + Tnn...n(v⊗m)nn...n|2

≤ |〈T, ṽ⊗m〉|2 + |Tnn...n|2|(v⊗m)nn...n|2

≤ m2ε2 + |〈T, v⊗m
I 〉|2|(v⊗m)nn...n|2

≤ m2ε2 + |〈T, v⊗m
I 〉|2.

The first and second inequalities are clear. The third inequality follows from ‖T‖ = 1,
‖ṽ⊗m‖ ≤ mε. and the fact that Tnn...n = 〈T, e⊗m

n 〉 = 〈T, v⊗m
I 〉 (since vI = en). The last

inequality follows from |v⊗m
nn...n|2 = |vn|2m ≤ 1.
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Hence, we get

|〈T, v⊗m
I 〉|2 ≥ C2

s − m2ε2.

�

Friedland and Kemp [8] show that we have an isometry between Sm1 (Cn) and S2dn,m−1.
Along with the above lemma, we obtain:

Corollary 4.3: ∪N
α=1B(v⊗m

α , 1 − (C2
s − m2ε2)) = Sm1 (Cn) = S2dn,m−1.

Using Corollary 2.4, one obtains the following inequality.

Corollary 4.4: We have (4/ε)n−1(1 − (C2
s − m2ε2))dn,m−1 ≥ 1.

Proof of Theorem 1.11: Applying the natural logarithm to Corollary 4.4, we get

0 ≤ (n − 1) ln(4/ε) + (dn,m − 1) ln(1 − (C2
s − m2ε2))

≤ (n − 1) ln(4/ε) + (dn,m − 1)(−(C2
s − m2ε2))

Hence, we get

(dn,m − 1)(C2
s − m2ε2) ≤ (n − 1) ln(4/ε).

Equivalently, we get

C2
s ≤ m2ε2 + (n − 1) ln(4/ε)

dn,m − 1

as required. �

Once again, by taking a natural logarithm on both sides in Theorem 1.11, we obtain:

−2 log2 Cs ≥ − log2

(
m2ε2 + (n − 1) ln(4/ε)

dn,m − 1

)

Replacing ε by δ/m, we get

Esmax = −2 log2 Cs ≥ − log2

(
δ2 + (n − 1) ln(4m/δ)

dn,m − 1

)
(3)
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Proof of Corollary 1.12: Substituting δ = (dn,m − 1)−1/2 in the above expression, we get

Esmax ≥ log2
dn,m − 1

1 + (n − 1) ln(4m(dn,m − 1)1/2)

Form sufficiently large, we claim that

dn,m − 1
1 + (n − 1) ln(4m(dn,m − 1)1/2)

≥ dn,m
n ln(dn,m)

(4)

from which we can conclude that

Esmax ≥ log2(dn,m) − log2(ln(dn,m)) − log2(n).

So, it remains to prove (4) above. For m � 0, the following is easy to verify because
dn,m = O(mn−1).

1 + (n − 1) ln(4m(dn,m − 1)1/2) ≤ 1 + (n − 1) ln(4m(dn,m)1/2) ≤ 0.99n ln(dn,m).

This means that

1 + (n − 1) ln(4m(dn,m − 1)1/2)
n ln(dn,m)

≤ 0.99 ≤ 1 − 1
dn,m

= dn,m − 1
dn,m

,

which rearranged gives us (4) as required. �

Proof of Corollary 1.13: Setting n = 2, (3) simplifies to

Esmax ≥ − log2

(
δ2 + ln(4m/δ)

m

)
= log2(m) − log2(mδ2 + ln(4m/δ)).

If we take δ = 1/
√
m, we get

Esmax ≥ log2(m) − log2(1 + ln(4m
√
m)),

�

Notes

1. These results use a concentration of measure inequality ([7, Equation (2)] and [8, Lemma 3.7])
which needs a correction. While this does not disrupt their results significantly, their results
must be corrected.

2. This can be given a formal definition, i.e. the usual one in complexity.
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