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Using the Grosshans Principle, we develop a method for 
proving lower bounds for the maximal degree of a system of 
generators of an invariant ring. This method also gives lower 
bounds for the maximal degree of a set of invariants that 
define Hilbert’s null cone. We consider two actions: The first is 
the action of SL(V ) on S3(V )⊕4, the space of 4-tuples of cubic 
forms, and the second is the action of SL(V ) ×SL(W ) ×SL(Z)
on the tensor space (V ⊗ W ⊗ Z)⊕9. In both these cases, 
we prove an exponential lower degree bound for a system of 
invariants that generate the invariant ring or that define the 
null cone.
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1. Introduction

For simplicity, we choose the set C of complex numbers as our ground field, although 
most results are valid for arbitrary fields of characteristic 0. Let V be a rational repre-
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sentation of a reductive group G and denote the ring of polynomial functions on V by 
C[V ]. The group G also acts on C[V ] and the ring of invariants is

C[V ]G = {f ∈ C[V ] | g · f = f for all g ∈ G}.

It is well known that the ring of invariants C[V ]G =
⊕∞

d=0 C[V ]Gd is a finitely generated 
graded subring of the polynomial ring C[V ] (see [18–20,32]). All representations in this 
paper will be rational representations by default. A fundamental question in invariant 
theory is to describe the generators of an invariant ring and their relations.

Invariant rings play a central role in the Geometric Complexity Theory (GCT) ap-
proach to the P vs NP problem. This connection to computational complexity results 
in new problems in invariant theory, albeit with a different flavor. As one might expect, 
these problems are more quantitative in nature, asking for how easy or hard the invariant 
ring is from a computational perspective. There are well understood notions of hardness 
of computation in computational complexity. We refer to [30] for precise details, as well 
as numerous conjectures and open problems in invariant theory that are inspired by 
computational complexity. From the perspective of GCT, a central problem of interest 
is the problem of degree bounds for generators.

The problem of finding strong upper bounds for the degrees of generators has been 
studied. An approach via understanding the null cone was proposed by Popov (see [33,
34]), and improved by the first author, see [7]. The zero set of a set of polynomials 
S ⊆ C[V ] is

V (S) = {v ∈ V | f(v) = 0 for all f ∈ S}.

Hilbert’s null cone N ⊆ V is defined by N = V (
⊕∞

d=1 C[V ]Gd ).

Definition 1.1. We define σG(V ) to be the smallest integer D such that the non-constant 
homogeneous invariants of degree ≤ D define the null cone, so

σG(V ) = min
{
D

∣∣∣N = V
(⊕D

d=1 C[V ]Gd
)}

.

General upper bounds for σG(V ) were first given by Popov (see [33,34]), and improved 
by the first author in [7].

Remark 1.2. The number σG(V ) can also be defined as the smallest integer D such that 
C[V ]G is a module-finite extension over the subalgebra generated by ⊕D

d=0C[V ]Gd .

We define βG(V ) to be the smallest integer D such that invariants of degree ≤ D

generate C[V ]G, i.e.,

βG(V ) = min
{
D

∣∣∣ ⊕D
d=0 C[V ]Gd is a generating set for C[V ]G

}
.
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The number βG(V ) can also be seen as the largest degree of a minimal set of (homo-
geneous) generators for C[V ]G. It is easy to see that βG(V ) ≥ σG(V ). The first author 
showed in [7] that βG(V ) ≤ max{2, 38rσG(V )2}, where r is the Krull dimension of C[V ]G, 
which is bounded above by dimV .

In this paper, we focus instead on lower bounds. The key idea is to compare two 
invariant rings via a surjective map between them.

Lemma 1.3. Suppose U1, U2 are representations of G and H respectively, such that we 
have a degree non-increasing surjective homomorphism φ : C[U1]G � C[U2]H . Then we 
have

βG(U1) ≥ βH(U2) and σG(U1) ≥ σH(U2).

Proof. It is clear that βG(U1) ≥ βH(U2) since surjections preserve generating sets. For 
the null cone, the argument is slightly more involved, but follows from Remark 1.2 since 
surjections preserve finite extensions. �

The source of such surjective maps for us will be Grosshans principle (see [17]).1

Theorem 1.4 (Grosshans principle). Let W be a representation of G, and let H be a 
closed subgroup of G. Then we have an isomorphism

ψ : (C[G]H ⊗C[W ])G −→ C[W ]H .

We will derive the following result from Grosshans principle.

Theorem 1.5. Let V, W be representations of G. Suppose v ∈ V is such that its orbit G ·v
is closed. Let H = StabG(v) = {g ∈ G | g · v = v} be a closed reductive subgroup of G. 
Then we have a degree non-increasing surjection

φ : C[V ⊕W ]G � C[W ]H .

In particular, we have

βG(V ⊕W ) ≥ βH(W ) and σG(V ⊕W ) ≥ σH(W ).

In order to use this method for finding invariant rings for G with large degree lower 
bounds, there are mainly three steps, each of which is relatively challenging. First, we 
have to show that the orbit of a certain point v is closed. Next, we must compute its 
stabilizer H. Finally, we need to find a G-representation W for which βH(W ) is large.

1 Grosshans principle has been used in the context of degree bounds before, see for example [4].
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We develop the techniques in this paper in a general setup as we believe they are 
likely useful in many situations. To show that orbits are closed, we will use a criterion 
involving the moment map (see Theorem 6.5). We will pick our point carefully, so as to 
ensure that its stabilizer is a torus. For torus actions, it is relatively easier to construct 
examples with exponential lower bounds.

At this juncture, we make a remark to clarify the significance of exponential lower 
bounds. An important algorithmic problem in GCT is the null cone membership prob-
lem – decide if a given point is in the null cone. For torus actions, there are polynomial 
time algorithms for the null cone membership problem and this is connected to linear 
programming. However, for the actions of non-commutative groups (such as SLn), the 
null cone membership is significantly harder. Mulmuley suggests a very general approach 
using the notion of a succinct encoding. A key conjecture in this approach predicts that 
generators for invariant rings can be packed into a polynomial sized succinct encoding.2
While not strictly necessary, polynomial degree bounds can be very helpful in construct-
ing such encodings (for example in the case of matrix semi-invariants [9,30]). Further, 
in specific cases, polynomial degree bounds have played a crucial role in obtaining poly-
nomial time algorithms for null cone membership (and the more general orbit closure 
intersection), see [1,11,12,14,22,23]. For the above reasons, it is important to try and 
understand which representations have polynomial bounds and which do not.

In this paper, we prove exponential bounds in two cases, i.e., cubic forms and tensor 
actions. We will now proceed to state our results and explain the relevance and signifi-
cance of these two particular cases in the context of complexity theory and in particular 
GCT.

1.1. Cubic forms

For a vector space V , we denote by S3(V ) the third symmetric power (which has a 
natural action of SL(V )) and loosely refer to it as cubic forms. We prove the following 
exponential lower bound for cubic forms.

Theorem 1.6. Let V be a vector space of dimension 3n. Then

βSL(V )(S3(V )⊕4) ≥ σSL(V )(S3(V )⊕4) ≥ 2
3 (4n − 1).

We note that dim(S3(V )⊕4) = O(n3), and dim(SL(V )) = O(n2). So, the group and 
the representation are polynomially sized in n, while the lower bound for the degree of 
generators is exponential in n.

The lower bound for cubic forms in Theorem 1.6 is meant to convince the GCT 
community that one should not expect polynomial bounds in any reasonable generality. 

2 While this strong version of Mulmuley’s conjecture has been disproved recently (see [16]), a weaker 
formulation for separating invariants is potentially true, and degree bounds for generating invariants and 
degree bounds for separating invariants are polynomially related as was proved by the first author in [7].
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First, let us note that it is not so difficult to produce representations with exponential 
degree bounds for SLn actions. Indeed, take any representation W of SLn for which 
one can prove exponential degree lower bounds for invariants with respect to a maxi-
mal torus (for e.g., W = S3(Cn)). Then using Theorem 1.5, one can show exponential 
lower degree bounds for the ring of SLn-invariants for Ad ⊕ W , where Ad denotes the 
adjoint representation.3 However, while the adjoint representation is a very simple one 
from an algebraic perspective, it is not the case from a complexity-theoretic perspective. 
The adjoint representation is a degree n representation and the next question would 
inevitably be to understand whether we have polynomial bounds for constant degree 
representations. Our lower bound for cubic forms shows that we do not since cubic forms 
are representations of degree 3, i.e., constant degree representations.

It is easy to see that degree 1 representations of SLn have polynomial degree bounds 
and it is an interesting question to understand whether polynomial bounds hold for de-
gree 2 representations or not. Using a theorem of Weyl [38], we can restrict our attention 
to precisely one representation.

Conjecture 1.7. Consider the action of G = SLn on V = (Cn ⊗ Cn)⊕n2 . Then βG(V ) is 
bounded above by a polynomial in n.

1.2. Tensor actions

We now turn our attention to tensor actions. By a tensor action, we mean the action 
of SL(V1) × SL(V2) × · · · × SL(Vd) on (V1 ⊗ V2 ⊗ · · · ⊗ Vd)⊕m defined on each copy of 
V1 ⊗ V2 ⊗ · · · ⊗ Vd by

(g1, g2, . . . , gd) · v1 ⊗ · · · ⊗ vd = g1v1 ⊗ · · · ⊗ gdvd.

The invariant ring in the case of d = 2 is often referred to as matrix semi-invariants. 
The polynomial degree bounds proved in [9,10] for matrix semi-invariants were instru-
mental in giving an algebraic polynomial time algorithm for the null cone membership 
and orbit closure algorithms in this case, see [9,12,22,23]. As a consequence, a polynomial 
time algorithm for non-commutative rational identity testing was obtained. These ad-
vances have resulted in numerous applications, e.g., to Brascamp-Lieb inequalities [15], 
Paulsen problem [26], entanglement [27], approximate polynomial identity testing [3] and 
nilpotency index of nil-algebras [13] to name a few.

The case when d ≥ 3 are of interest because of connections with the algorithmic 
problem of tensor scaling and the quantum marginal problem (see, e.g., [5]). Polynomial 
degree bounds for tensor actions would have potentially helped in getting a polynomial 
time algorithm for tensor scaling and this could have generalized many of the aforemen-
tioned applications of the d = 2 case. Hence, our lower bound for tensor actions can be 

3 This follows because the orbit of a generic point in the adjoint representation is closed and its stabilizer 
is a maximal torus. We thank David Wehlau for pointing this out to us.
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informally thought of as a barrier for current algorithmic (and optimization) techniques. 
Further, tensor actions (already in the case of d = 3) play an important role in problems 
of a computational nature in subjects ranging from tensor rank lower bounds to ma-
trix multiplication to understanding equivalence classes for entangled states in quantum 
information theory. Let us state our result.

Theorem 1.8. Suppose V, W, Z are vector spaces of dimension 3n. Then, for the tensor 
action of G = SL(V ) × SL(W ) × SL(Z) on (V ⊗W ⊗ Z)⊕9, we have

βG(V ) ≥ σG(V ) ≥ 4n − 1

Again, let us point out that the dimension of the group and representation are poly-
nomial in n, but the lower bounds on the degree of generation is exponential in n.

1.3. Organization

In Section 2, we collect some preliminary linear algebraic calculations that will be 
used in later sections. In Section 3, we recall the invariant theory for torus actions and 
prove degree lower bounds for certain specific torus actions that we will need in the 
proofs of Theorem 1.6 and Theorem 1.8. The proof of the main technical result, i.e., 
Theorem 1.5 is given in Section 4. We quickly recall some notions from root systems and 
Lie algebras which are needed for computations in Section 5 and we discuss a criterion 
for closed orbits using the moment map (a generalized form of Dadok–Kac) in Section 6. 
The proofs of Theorem 1.6 and Theorem 1.8 are in Section 7 and Section 8 respectively. 
Finally, in Section 9, we discuss the challenges that need to be addressed to extend the 
technique to positive characteristic.

2. Preliminaries from linear algebra

We will first setup some preliminaries and computations from linear algebra. These 
computations will be used in proving degree lower bounds for torus actions in cases 
that we are interested in. An n × m matrix A should be interpreted as a linear map 
A : Qm → Qn. The null space of A is defined as

Z(A) = {v ∈ Qm | Av = 0}.

We will be interested in non-negative integral points in the null space. So, we define

I(A) = Z(A) ∩ Zm
≥0.

Observe that I(A) is a monoid under addition. Further, we will be interested in the 
minimal generators of the monoid I(A). So, we define
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GI(A) = {v ∈ I(A) | v 
= w1 + w2 ∀ w1, w2 ∈ I(A) \ {0}}.

It is easy to see that GI(A) is a minimal generating set for the monoid I(A).
We will be interested in computing this in two specific cases. The first is the n ×(n +1)

matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0 −4 3

−4 1
. . . 0 0 0

0 −4
. . . . . .

...
...

...
... 0

. . . . . .
...

...
...

...
...

. . . . . . 1 0 0
0 . . . 0 0 −4 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

Lemma 2.1. We have Z(M) = Q ·
(
1, 4, 16, . . . , 4n−1, 4n−1

3
)t.

Proof. It is clear that the matrix M has full rank, i.e., rk(M) = n. By the rank-nullity 
theorem, we know that Z(M) is 1-dimensional. The lemma follows by checking that M
kills 

(
1, 4, 16, . . . , 4n−1, 4n−1

3
)t. �

Corollary 2.2. The set GI(M) consists of only one vector. Further, we have

GI(M) =
{(

1, 4, 16, . . . , 4n−1,
4n − 1

3

)t }
Proof. Since Z(M) is 1-dimensional, the set GI(M) consists of at most one element. 
This will be smallest non-negative integral element in Z(M), and this is the one given 
in the statement of the corollary. �

The second case we will be interested in is the 3n × (3n − 1) matrix

N =

⎛⎜⎜⎜⎜⎜⎝
B I3

P I3

P
. . .
. . . I3

P A

⎞⎟⎟⎟⎟⎟⎠ ,

where

A =
(1

1
1

)
, P =

(−2 −1 −1
−1 −2 −1
−1 −1 −2

)
, I3 =

(1
1

1

)
, and B =

(−2
−2
−2

)
.

Lemma 2.3. We have Z(N) = Q ·
(
1, 2, 2, 2, 8, 8, 8, . . . , 22n−3, 22n−3, 22n−3, 22n−1)t.
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Proof. Suppose v = (v1, . . . , v3n−1) is such that Nv = 0. Let us look at this as a system 
of 3n equations in 3n − 1 variables. As is well understood, each row gives one equation. 
Let us assume v1 = α. Now, we will go through the equations corresponding to the rows 
from top to bottom to deduce what vi have to be for i ≥ 1.

The first three rows imply that v2 = v3 = v4 = 2α. The fourth row im-
plies that v5 = 2v2 + v3 + v4 = 4(2α). Similarly the fifth and sixth rows imply 
v6 = v7 = 8α. The process repeats until we get v3n−4 = v3n−3 = v3n−2 = 22n−3α. 
The last three equations all imply that v3n−1 = 22n−1α. In other words, we have 
v = α ·

(
1, 2, 2, 2, 8, 8, 8, . . . , 22n−3, 22n−3, 22n−3, 22n−1)t. �

Using a similar argument to the case of M , we get:

Corollary 2.4. The set GI(N) consists of only one vector. Further, we have

GI(N) =
{(

1, 2, 2, 2, 8, 8, 8, . . . , 22n−3, 22n−3, 22n−3, 22n−1)t }

3. Invariants for torus actions

We will briefly recall invariant theory for torus actions. Let T = (C∗)n be an n-
dimensional (complex) torus. A group homomorphism T → C∗ is called a character of 
T . Given two characters λ, μ : T → C∗, we define a character λ + μ : T → C∗ defined 
by (λ + μ)(t) = λ(t)μ(t). With this operation, the set of characters of T form a group 
called the character group, which we denote by X (T ).

To each λ = (λ1, . . . , λn) ∈ Zn, we can associate a character also denoted λ by abuse 
of notation. The character λ : T → C∗ is defined by λ(t) =

∏n
i=1 t

λi
i . This gives an 

isomorphism of groups Zn ∼−→ X (T ). Characters of the torus are often called weights, 
and we will use this terminology as well.

Let V be a rational representation of T . We make the identification X (T ) = Zn. For 
a weight λ ∈ Zn, the weight space Vλ = {v ∈ V | t · v = λ(t)v ∀t ∈ T}. A vector v ∈ Vλ

is called a weight vector of weight λ. Any representation V is a direct sum of its weight 
spaces, i.e., V = ⊕λ∈ZnVλ. In other words, we have a basis consisting of weight vectors.

Let E = (e1, . . . , em) be an ordered basis of V consisting of weight vectors. Further, 
suppose each ei is a weight vector of weight λi. Let x1, . . . , xm denote the coordinate 
functions with respect to the basis e1, . . . , em. The following are well known:

(1) A monomial xv = xv1
1 xv2

2 . . . xvm
m is an invariant monomial if and only if 

∑
i viλi = 0.

(2) The ring of invariants C[V ]T is linearly spanned by such invariant monomials.

We will rewrite the above results in a slightly different language. We will first need a 
definition.
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Definition 3.1. Let V be a representation of T with an (ordered) weight basis E =
(e1, . . . , em). Further, suppose each ei is a weight vector of weight λi. Define ME(V )
to be the n ×m matrix whose ith column is λi, i.e.,

ME(V ) :=
( | | . . . |
λ1 λ2 . . . λm

| | . . . |

)

Remark 3.2. For a different choice of ordered weight basis E ′, the matrix ME′(V ) is 
obtained by a permutation of the columns of ME(V ). This is because the formal sum of 
the columns (i.e., 

∑
i e

λi) is called the character of the representation V and independent 
of the choice of weight basis.

Proposition 3.3. Let V be a representation of T . Let E = (e1, . . . , em) be a weight basis, 
and let x1, . . . , xm be the corresponding coordinate functions. Then

(1) For v = (v1, . . . , vm) ∈ I(ME(V )), xv = xv1
1 . . . xvm

m is an invariant monomial;
(2) The set {xv | v ∈ I(ME(V ))} is a C-linear spanning set of invariants;
(3) The set {xv | v ∈ GI(ME(V ))} is a minimal set of generators for C[V ]T .

Proof. The first two statements is simply a rephrasing of the discussion before Defini-
tion 3.1. The last follows from the fact that for any matrix A, the set GI(A) is a minimal 
generating set for the monoid I(A). �

The above results are quite standard. For the interested reader, we refer to [8,37] for 
more details on invariant theory for torus actions.

Now, we consider two specific torus actions and show exponential degree bounds for 
them. These bounds will be needed in the proofs of Theorem 1.6 and Theorem 1.8.

Proposition 3.4. Let T act on V = Cn+1 such that for some weight basis E, we have 
ME(V ) = M , the matrix in Section 2. Then, we have

βT (V ) = σT (V ) = 2
3 (4n − 1).

Proof. Let E = e1, . . . , en+1. Let x1, . . . , xn+1 be the coordinates with respect to this 
basis. From the above proposition, we know that {xv | v ∈ GI(M)} is a minimal set 
of generators for the invariant ring. Corollary 2.2 tells us that GI(M) consists of pre-
cisely one element. The corresponding monomial is f := x1x

4
2x

16
3 . . . x4n−1

n x
(4n−1)/3
n+1 . To 

summarize, we have C[V ]T = C[f ].
It is clear that f has degree (1 + 4 + . . . 4n−1 + 4n−1

3 ) = 2
3 (4n − 1). It is easy to see 

that βT (V ) = σT (V ) = deg(f) = 2
3(4n − 1). �

A similar argument gives the following:
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Proposition 3.5. Let T = (C∗)3n act on an V = C3n−1 such that for some weight basis 
E, we have ME(V ) = N , the matrix in Section 2. Then, we have

βT (V ) = σT (V ) = 4n − 1

Finally, we end with a simple statement on degree bounds for subrepresentations for 
torus actions.

Proposition 3.6. Suppose V ⊆ W are two representations of T , then

βT (V ) ≤ βT (W ) and σT (V ) ≤ σT (W ).

Proof. Representations of tori are completely reducible, so we have W = V ⊕ V ′, where 
V ′ is also a subrepresentation of T . The inclusion V ↪→ W gives a surjection π : C[W ] →
C[V ] that is clearly degree non-increasing. It is easy to check that π descends to a 
map of invariant rings C[W ]T → C[V ]T . We claim that this is a surjection. Indeed, for 
f ∈ C[V ]T , define f̃ by f̃(v, v′) = f(v) for all (v, v′) ∈ V ⊕ V ′ = W . Clearly f̃ ∈ C[W ]T

and π(f̃) = f . The fact that the surjection π : C[W ]T � C[V ]T is degree non-increasing 
implies both statements by Lemma 1.3. �
4. Main technical result

In this section, we will give a proof of Theorem 1.5. Before doing so, we will first 
discuss some gradings. For any vector space U , the coordinate ring C[U ] = S(U∗) is a 
polynomial ring, and hence we have a grading C[U ] = ⊕∞

d=0C[U ]d. We will call this the 
polynomial grading. For any vector space W , and any ring R, we can define a grading 
on R⊗C[W ] by setting (R⊗C[W ])d = R⊗C[W ]d. We will call this the W -grading.

We will also need Matsushima’s criterion, see [28,2].

Theorem 4.1 (Matsushima’s criterion). Let G be a reductive group and H a closed sub-
group. Then G/H is affine if and only if H is reductive.

We now prove Theorem 1.5.

Proof of Theorem 1.5. We deduce that G/H is an affine variety from the aforementioned 
Matsushima’s criterion. It follows immediately that C[G/H] = C[G]H since G/H is 
clearly a categorical quotient in this case. Thus, Grosshans principle in this case reads 
as:

C[G/H ×W ]G ∼−→ (C[G]H ⊗C[W ])G ∼−→ C[W ]H .
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Observe that G/H ∼= G · v as affine varieties,4 and thus we have

G/H ×W
∼−→ G · v ×W ↪→ V ⊕W.

This gives a surjection of invariant rings C[V ⊕ W ]G � C[G/H × W ]G (see [8, 
Corollary 2.3.4]). Combining with the above discussion, we have:

φ : C[V ⊕W ]G � C[G/H ×W ]G ∼−→ C[W ]H

Recall the W -grading on C[G/H × W ] = C[G/H] ⊗ C[W ] and on C[V ⊕ W ] =
C[V ] ⊗C[W ]. The surjection C[V ⊕W ] � C[G/H ×W ] is degree non-increasing in the 
W -grading. The isomorphism C[G/H ×W ]G ∼−→ C[W ]H given by Grosshans principle 
is also degree non-increasing in the W -grading. Hence, φ is also degree non-increasing in 
the W -grading.

The polynomial grading and W -grading are different on C[V ⊕W ]. If f ∈ C[V ⊕W ]
is homogeneous in degree d in the polynomial grading, then f need not be homogeneous 
in the W -grading. However, the homogeneous components of f in the W -grading will 
all be in degrees ≤ d. On the other hand, the W -grading and the polynomial grading 
on C[W ]H agree. In particular this means that the surjection φ : C[V ⊕W ]G � C[W ]H
is degree non-increasing even when we consider the polynomial grading on C[V ⊕W ]G. 
Applying Lemma 1.3 concludes the proof. �
5. Root systems

In this section, we will briefly recall some standard notions surrounding root systems 
as well as formulate some convenient definitions and notation. This language will be 
used heavily in the later sections. For more details on this subject, we refer the reader 
to standard texts, e.g., [35,21].

Let G be a complex reductive group, and K a maximal compact subgroup (also called 
a compact real form). Let TR be a (real) maximal torus of K. The complexification of 
TR, denoted T , is a complex maximal torus for G. Let g and t denote the Lie algebras 
of G and T respectively.

For any representation V of G, we can view it as a representation of T , and hence we 
get a weight space decomposition

V =
⊕

λ∈X (T )

Vλ.

We make a convenient definition.

4 This follows essentially from Zariski’s main theorem, see for e.g. [36, Theorem 25.1.2(iv)].
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Definition 5.1. For any v ∈ V , the decomposition v =
∑

λ vλ with vλ ∈ Vλ is called 
the weight decomposition of v. The weight decomposition is unique. Further the set 
{λ | vλ 
= 0} is called the support of v, and we denote it by Supp(v).

For the adjoint action of G on g, the weight space decomposition is called the root 
space decomposition

g = t⊕
⊕
α∈Φ

gα.

The set of non-zero weights β for which the weight space gβ is non-zero form a finite 
collection of vectors in X (T ) called the root system, which we denote by Φ.

We use the following example and the subsequent remark to develop notation that 
will be helpful at various stages of paper.

Example 5.2. Suppose G = SLn(C). Then K = SUn(C) is a compact real form. Let 
diag(a1, . . . , an) denote a diagonal n × n matrix whose diagonal entries are a1, . . . , an. 
Then TR = {diag(a1, . . . , an) | ai ∈ C, |ai| = 1, 

∏
i ai = 1} is a (real) maximal torus, its 

complexification T = {diag(t1, . . . , tn) | ti ∈ C, 
∏

i ti = 1} is a (complex) maximal torus. 
Let ẽi ∈ X (T ) be defined by ẽi · diag(t1, . . . , tn) = ti. Then, for the action of SLn on Cn

by left multiplication, the standard basis vector ei is a weight vector with weight ẽi. The 
weights ẽi do not form a basis for X (T ). They satisfy one relation, i.e.,

∑
i ẽi = 0. The 

root system Φ = {ẽi − ẽj | 1 ≤ i, j ≤ n}.

Let us reformulate the above example with respect to a basis.

Remark 5.3. Suppose G = SL(V ) with B a basis for V . Then, using the basis, we can 
identify SL(V ) with SLn. With this identification, we can define KB, TR,B, TB, tB as in 
the above example. Under these choices, B consists of weight vectors. Let us denote the 
weight of b ∈ B by b̃. These weights satisfy precisely one relation. i.e., 

∑
b∈B b̃ = 0. The 

root system Φ = {b̃− b̃′ | b, b′ ∈ B, b 
= b′}.

We make some useful definitions to aid in formulating later statements.

Definition 5.4 (Root adjacent). We say two weights λ, μ ∈ X (T ) are root adjacent if 
λ − μ ∈ Φ.

Definition 5.5 (Uncramped sets of weights). A subset of weights I ⊆ X (T ) is called 
uncramped if no pair of weights in I is root adjacent.

We also make a simple observation regarding root adjacent weights for tensor actions. 
Let V1, V2, V3 be vector spaces with basis B1, B2, B3. Then B = {b1 ⊗ b2 ⊗ b3 | bi ∈ Bi}
forms a basis for V1 ⊗ V2 ⊗ V3. Let us write K = KB, Ki = KBi

(and similarly for 
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T, g, etc.). Observe that K = K1 × K2 × K3, X (T ) = X (T1) × X (T2) × X (T3), etc. 
Further, let Φi ⊆ X (Ti) denote the root system for SL(Vi), then we can view Φi as a 
subset of X (T ). With this identification, it is easy to see that the root system Φ for 
SL(V1) ×SL(V2) ×SL(V3) is given by Φ = Φ1 ∪Φ2 ∪Φ3, from which the following lemma 
is an easy consequence.

Lemma 5.6. Consider the tensor action of SL(V1) × SL(V2) × SL(V3) on V1 ⊗ V2 ⊗ V3. 
Suppose Bi is a basis for Vi and we make all the standard choices for compact real 
form, tori etc. with respect to the basis Bi as in Remark 5.3. Let v = b1 ⊗ b2 ⊗ b3 and 
w = b′1 ⊗ b′2 ⊗ b′3 with bi, b′i ∈ Bi for all i. Suppose for at least two choices of i ∈ {1, 2, 3}, 
we have bi 
= b′i. Then v and w are weight vectors whose weights are not root adjacent.

6. Moment map and a criterion for closed orbits

For this section, let G be a connected complex reductive group and let K be a compact 
real form. Let TR a maximal (real) torus of K and let T denote its complexification.

In order to be able to use Theorem 1.5 effectively, we would need to prove that an orbit 
is closed. A criterion for detecting whether an orbit is closed is interesting by itself, and a 
good criterion could have a range of applications in both pure and applied mathematics. 
We approach the problem via the moment map, which suffices for our purposes. It is an 
interesting problem to understand whether the criterion we propose (see Theorem 6.5) 
has a suitable analogue in positive characteristic. We first define the moment map.

Definition 6.1. Let V be a representation of G, and let 〈−,−〉 be a K-invariant positive 
definite Hermitian form on V . The moment map μG : V → g∗ is defined by μG(v)(X) =
〈Xv, v〉 for v ∈ V and X ∈ g.

Proposition 6.2 (Kempf-Ness). Suppose μG(v) = 0, then the orbit G · v is closed.

An even stronger statement holds, namely that every closed orbit contains a unique 
K-orbit at which the moment map vanishes. This is precisely why the GIT quotient 
X//G agrees with the symplectic reduction μ−1(0)/K, which is known as the Kempf-
Ness theorem. We refrain from getting into this beautiful subject, and refer to [24,31]
for details.

Now, we turn towards discussing a criterion for the vanishing of the moment map in 
the language of root systems that is due to Dadok and Kac.

Proposition 6.3 (Dadok and Kac [6]). Let V be a representation of G. Let 〈−,−〉 be a 
K-invariant positive definite Hermitian form on V . Let v ∈ V . Let v =

∑
λ∈Supp(v) vλ

be its weight decomposition. Suppose

(1) Supp(v) is uncramped (see Definition 5.5).
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(2)
∑

λ∈Supp(v) ||vλ||2λ = 0.

Then, μG(v) = 0 and hence the orbit of v is closed.

The proof is essentially to compute μG(v)(X) separately for X ∈ gα and X ∈ t. The 
only thing one needs to observe is that weight spaces are orthogonal, which follows from 
K-invariance of the form. We will need a slight generalization of the above result. We 
first make a definition.

Definition 6.4 (Direct sum form). Suppose Wi is a vector space with a bilinear form 
〈−.−〉j for j ∈ J for some set J . Then we define the direct sum form 〈−,−〉 on ⊕j∈JWj

by

〈(aj)j∈J , (bj)j∈J 〉 =
∏
j∈J

〈aj , bj〉j

Theorem 6.5. Let W be a representation of G and w ∈ W . Let W =
⊕
j∈J

Wj be a 

decomposition into subrepresentations. Take a K-invariant positive definite Hermitian 
form on each Wj, and let 〈−,−〉 denote their direct sum form on W . Let w =

∑
j∈J wj

with wj ∈ Wj. Further, write wj =
∑

λ∈Supp(wj) wj,λ be the weight decomposition for 
each wj. Suppose

(1) Supp(wj) is uncramped for all j;
(2)

∑
j

∑
λ∈Supp(wj) ||wj,λ||2λ = 0.

Then, μG(w) = 0 and hence the orbit of w is closed.

Proof. We want to show that μG(w)(X) = 0 for all X ∈ g. Again, it suffices to show it 
separately for X ∈ t and X ∈ gα for each α ∈ Φ. A straightforward computation shows 
that for X ∈ t, we have μG(v)(X) = (

∑
j

∑
λ∈Supp(wj) ||wj,λ||2λ)(X) which is 0 by the 

second condition.
Now suppose X ∈ gα. For all j, we have 〈Xwj , wj〉 = 0 since Supp(wj) is uncramped 

and weight spaces are orthogonal (by K-invariance). Since the irreducibles Wj are or-
thogonal by the construction of the form, this shows that μG(w)(X) = 〈Xw,w〉 = 0 as 
required. �
7. Cubic forms

Let us set up the situation for this section. Let V be a vector space of dimension 3n, 
and let a basis for V be B = {xi, yi, zi}1≤i≤n. Consider W = S3(V )⊕4, and let

w =
(∑

x2
i zi,

∑
y2
i zi,

∑
αixiyizi

)
,

i i i
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where αi are distinct complex numbers with |αi| = 1 and for all i 
= j, αi 
= ±αj . There 
is a natural action of SL(V ) on S3(V ), and hence on W . We will write w = (w1, w2, w3)
where w1 =

∑
i x

2
i zi, w2 =

∑
i y

2
i zi and w3 =

∑
i αixiyizi.

Proposition 7.1. The orbit SL(V ) · w is closed.

Let us define a map φ : (C∗)n → SL(V ). To define the map, it suffices to understand 
how φ(t = (t1, . . . , tn)) acts on the basis {xi, yi, zi}1≤i≤n. Define φ by φ(t) · xi = tixi, 
φ(t) · yi = tiyi and φ(t) · zi = t−2

i zi. Let H := φ((C∗)n).

Proposition 7.2. We have StabSL(V )(w) = H.

It is also easy to see that H is a closed subgroup of G. It is also reductive because it 
is a torus. It is indeed necessary that the stabilizer is closed and reductive to be able to 
apply Theorem 1.5, as we will do in the proof of Theorem 1.6.

We postpone the proofs Proposition 7.1 and Proposition 7.2 and complete the proof 
of Theorem 1.6.

Consider the n + 1-dimensional subspace U ⊂ S3(V ) spanned by {x1z
2
2 , x2z

2
3 , . . . ,

xnz
2
1 , x

3
1}. This is an invariant subspace under the action of H ⊂ SL(V ) described in the 

previous section.

Lemma 7.3. We have βH(U) ≥ σH(U) ≥ 2
3 (4n − 1).

Proof. The basis E = (x1z
2
2 , x2z

2
3 , . . . , xnz

2
1 , x

3
1) is a weight basis, and ME(W ) = M , the 

matrix in Section 2. The lemma now follows from Proposition 3.4. �
Corollary 7.4. We have βH(S3(V )) ≥ σH(S3(V )) ≥ 2

3 (4n − 1).

Proof. This follows from Proposition 3.6 since U is a subrepresentation of S3(V ) for the 
action of H. �
Proof of Theorem 1.6. Let G = SL(V ). Recall w ∈ S3(V )⊕3 from the previous section 
such that StabG(w) = H. Thus, by Theorem 1.5 and the above corollary, we have

βG(S3(V )⊕3 ⊕ S3(V )) ≥ σG(S3(V )⊕3 ⊕ S3(V )) ≥ σH(S3(V )) ≥ 2
3(4n − 1). �

Remark 7.5. If instead of w, one takes (
∑

i x
2
i zi, 

∑
i y

2
i zi) ∈ S3(V )⊕2, then this also has 

a closed orbit. However, its stabilizer is not the torus H (defined above), but rather a 
finite extension of it. With some additional work, this can be used to show exponential 
lower bounds for S3(V )⊕3 (instead of S3(V )⊕4 as stated in Theorem 1.6). However, we 
feel that this modest improvement does not warrant the additional discussion on how to 
deal with finite extensions of tori, so we omit it.
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7.1. Closedness of orbit

The strategy is to apply Theorem 6.5. But before proceeding to check the hypothesis, 
we need a little groundwork.

Definition 7.6 (Type of a monomial). Every monomial in the basis B can be written as 
ba1
1 ba2

2 . . . bak

k , where the bi represent distinct elements in the basis B, and a1 ≥ a2 ≥
· · · ≥ ak > 0. We define its type to be (a1, . . . , ak).

Example 7.7. The types of x2
i zi and y2

j zj are (2, 1), whereas the type of xiyizi is (1, 1, 1).

There is a positive definite Hermitian form 〈−,−〉 on Sd(V ) called the Bombieri 
form. Under this form, monomials are orthogonal. Further, for a monomial m of type 
(a1, . . . , ak), we have 〈m,m〉 =

∏
i ai!

(
∑

i ai)! . These two properties define the Bombieri form. 
Another way to think of the Bombieri form is to take the standard Hermitian form (with 
respect to B) on V , which gives a natural Hermitian form on V ⊗d. This Hermitian form 
on V ⊗d when restricted to the subspace of symmetric tensors (which can be identified 
with Sd(V )) is the Bombieri form. The Bombieri form is a KB-invariant positive definite 
Hermitian form.

We can now prove Proposition 7.1.

Proof of Proposition 7.1. We want to show that w satisfies the hypothesis of Theo-
rem 6.5. Recall that w = (w1, w2, w3) where w1 =

∑
i x

2
i zi, w2 =

∑
i y

2
i zi and w3 =∑

i αixiyizi. Note that these are the weight space decompositions wj =
∑

λ∈Supp(wj) wj,λ.
We want to check that the hypothesis of Theorem 6.5 is satisfied. To check condition 

(1) of Theorem 6.5, we need to check that each Supp(wj) is uncramped. But observe from 
the weight decompositions that Supp(w1) = {2x̃i+z̃i}1≤i≤n, Supp(w2) = {2ỹi+z̃i}1≤i≤n

and Supp(w3) = {x̃i + ỹi + z̃i}1≤i≤n. It is clear that these are uncramped from the 
description of the root system Φ in Remark 5.3.

Consider the Bombieri form on each copy of S3(V ) and consider their direct sum form 
on S3(V )⊕3. All monomials of a certain type have the same norm as discussed above. 
Let M denote the norm of the monomials of type (2, 1) (e.g., x2

i zi and y2
j zj) and let N

denote the norm of the monomials of type (1, 1, 1) (e.g., xiyizi).
We compute 

∑
λ∈Supp(w1) ||w1,λ||2λ.

∑
λ∈Supp(w1)

||w1,λ||2λ =
n∑

i=1
||x2

i zi||2(2x̃i + z̃i)

=
∑
i

M2(2x̃i + z̃i)
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Similarly, we have ∑
λ∈Supp(w2)

||w2,λ||2λ =
∑
i

M2(2ỹi + z̃i),

and ∑
λ∈Supp(w3)

||w3,λ||2λ =
∑
i

||xiyizi||2(x̃i + ỹi + z̃i)

= N2(
∑
i

x̃i + ỹi + z̃i).

Hence, we have

3∑
j=1

∑
λ∈Supp(wj)

||wj,λ||2λ = (2M2 + N2)(
∑
i

x̃i + ỹi + z̃i) = (2M2 + N2)
∑
b∈B

b̃ = 0.

The last equality follows from Remark 5.3, as we are working with SL(V ). Hence, w
satisfies the hypothesis of Theorem 6.5, so the orbit of w is closed. �
7.2. Computation of stabilizer

Now, we turn towards computing the stabilizer. We will proceed in steps.

Lemma 7.8. Suppose g ∈ SL(V ) such that g · w1 = w1. Then g · xi = cixσ(i) for some 
permutation σ of {1, 2, . . . , n} and non-zero scalars ci.

Proof. The space of partial derivatives of w1 is 
〈
x2

1, . . . , x
2
n, x1z1, . . . , xnzn

〉
. This must 

be preserved by g. The squares in the space of partial derivatives are of the form dix2
i

for some nonzero scalars di. Thus the image of xi under the action of g must be a scalar 
multiple of xj for some j. Since g is invertible, the lemma follows. �
Corollary 7.9. Suppose g ∈ StabSL(V )(w1). Then for some permutation σ, we must have 
g · xi = cixσ(i) and g · zi = c−2

i zσ(i) for some scalars ci.

Proof. From the above lemma, we already know that g·xi = cixσ(i) for some permutation 
σ and scalars ci. Hence, we have∑

i

(cixσ(i))2(g · zi) = g · w1 = w1 =
∑
i

x2
i zi =

∑
i

x2
σ(i)zσ(i).

Thus, we have ∑
x2
σ(i)(c2i g · zi − zσ(i)) = 0.
i
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Observe that monomials of degree 3 in {xi, yi, zi}1≤i≤n are a basis for S3(V ). Now, 
for any p, q ∈ V , x2

i p and x2
jq do not have any monomials in common. Hence, we must 

have x2
σ(i)(c2i g · zi − zσ(i)) = 0 for all i. Hence, for all i, we must have c2i g · zi − zσ(i) = 0

or equivalently g · zi = c−2
i zσ(i) as required. �

We can do a similar analysis for w2, and we get:

Lemma 7.10. Suppose g ∈ StabSL(V )(w2). Then for some permutation π and scalars di, 
we have g · yi = diyπ(i) and g · zi = d−2

i zπ(i).

Corollary 7.11. Suppose g ∈ StabSL(V )(w1, w2). Then for some permutation σ and scalars 
ci, we have g(xi) = cixσ(i), g(yi) = ±ciyσ(i) and g(zi) = c−2

i zσ(i).

Proof. Suppose g ∈ StabSL(V )(w1, w2). Then from Corollary 7.9, we know that there 
is a permutation σ and scalars ci such that g(xi) = cixσ(i) and g(zi) = c−2

i zσ(i). By 
Lemma 7.10, there is a permutation π and scalars di such that g(yi) = diyπ(i) and 
g(zi) = d−2

i zπ(i).
Thus, we have g · zi = c−2

i zσ(i) = d−2
i zπ(i) for all i. Hence, we must have σ = π and 

di = ±ci. �
Proof of Proposition 7.2. Suppose g ∈ Stab(w1, w2, w3). Then since g ∈ Stab(w1, w2), 
we know that there is a permutation σ and scalars ci such that g(xi) = cixσ(i), g(yi) =
±ciyσ(i) and g(zi) = c−2

i zσ(i)
In particular, this means that g · xiyizi = ±xσ(i)yσ(i)zσ(i). But now g also fixes w3 =∑
i αixiyizi. However, we have∑

i

±αixσ(i)yσ(i)zσ(i) = g · w3 = w3 =
∑
i

αixiyizi

This means that ±αi = ασ(i). But recall that the choice of αi’s was such that αi 
= ±αj

for all i 
= j. This means that σ is the identity permutation, and further that we must 
have g · xiyizi = xiyizi. Hence, this implies g · yi = ciyi.

Thus we must have g ·xi = cixi, g ·yi = ciyi and g ·zi = c−2
i zi. In other words, g ∈ H. 

Conversely, it is easy to observe that H ⊆ Stab(w). �
8. Tensor actions

Let U, V, W be 3n-dimensional vector spaces with basis Bu = {uk
1 , u

k
2 , u

k
3}1≤k≤n, Bv =

{vk1 , vk2 , vk3}1≤k≤n and Bw = {wk
1 , w

k
2 , w

k
3}1≤k≤n respectively.

Let

F1 =
n∑

uk
1v

k
2w

k
3 + uk

2v
k
3w

k
1 + uk

3v
k
1w

k
2

k=1
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G1 =
n∑

k=1

αku
k
1v

k
2w

k
3 + βku

k
2v

k
3w

k
1 + γku

k
3v

k
1w

k
2

F2 =
n∑

k=1

uk
2v

k
1w

k
3 + uk

1v
k
3w

k
2 + uk

3v
k
2w

k
1

G2 =
n∑

k=1

αku
k
2v

k
1w

k
3 + βku

k
1v

k
3w

k
2 + γku

k
3v

k
2w

k
1

F3 =
n∑

k=1

uk
1v

k
1w

k
3 + uk

2v
k
3w

k
2 + uk

3v
k
1w

k
1

G3 =
n∑

k=1

αku
k
1v

k
1w

k
3 + βku

k
2v

k
3w

k
2 + γku

k
3v

k
1w

k
1

F4 =
n∑

k=1

uk
2v

k
2w

k
3 + uk

1v
k
3w

k
1 + uk

3v
k
2w

k
2

G4 =
n∑

k=1

αku
k
2v

k
2w

k
3 + βku

k
1v

k
3w

k
1 + γku

k
3v

k
2w

k
2 ,

where αk, βk, γk are a collection of distinct scalars in C with unit norm. Consider

F = (F1, G1, F2, G2, F3, G3, F4, G4) ∈ (U ⊗ V ⊗W )8.

The approach will be the same as cubic forms. First, we show:

Proposition 8.1. The orbit of F for the action of SL(U) × SL(V ) × SL(W ) is closed.

Next, we compute the stabilizer. Let us define a map φU : ((C∗)3)n → GL(U). To 
define such a map it suffices to understand the action of t = (p1, q1, r1, p2, q2, r2, . . . ,
pn, qn, rn) on each basis vector b ∈ Bu. The map φU is defined by

φU (t)uk
1 = pku

k
1 , φU (t)uk

2 = pku
k
2 and φU (t)uk

3 = (qkrk)−1uk
3 .

Similarly define φV : ((C∗)3)n → GL(V ) by

φV (t)vk1 = qkv
k
1 , φV (t)vk2 = qkv

k
2 and φV (t)vk3 = (pkrk)−1vk3 .

Finally, define φW : ((C∗)3)n → GL(W ) by

φW (t)wk
1 = rkw

k
1 , φW (t)wk

2 = rkw
k
2 and φW (t)wk

3 = (pkqk)−1wk
3 .

Let φ = (φU , φV , φW ) : ((C∗)3)n → GL(U) × GL(V ) × GL(W ). Let H denote the 
image of φ. Then, we have:
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Proposition 8.2. We have StabGL(U)×GL(V )×GL(W )(F ) = H.

Again, it is easy to check that H is a closed subgroup of GL(U) × GL(V ) × GL(W ). 
It is also reductive because it is a torus. The reader perhaps has noticed that we have 
computed the stabilizer in GL(U) ×GL(V ) ×GL(W ) rather than the stabilizer in SL(U) ×
SL(V ) × SL(W ). There are several ways to fix this, and we indicate one of them.

Consider the group

J := {(g1, g2, g3) ∈ GL(U) × GL(V ) × GL(W ) | det(g1) det(g2) det(g3) = 1}.

Indeed, the first thing to observe is that H ⊂ J . Now, we claim that the orbits of 
J and the orbits of SL(U) × SL(V ) × SL(W ) in U ⊗ V ⊗ W are the same. Let h =
(g1, g2, g3) ∈ J . Since det(g1) det(g2) det(g3) = 1, we can choose c1, c2, c3 ∈ C with 
c1c2c3 = 1 such that det(cigi) = 1. Thus, we have h · v = (c1g1, c2g2, c3g3) · v for any 
v ∈ U ⊗V ⊗W . But (c1g1, c2g2, c3g3) ∈ SL(U) ×SL(V ) ×SL(W ), so this means that the 
J-orbit of v is contained in the SL(U) × SL(V ) × SL(W )-orbit of v. On the other hand, 
J ⊇ SL(U) ×SL(V ) ×SL(W ), so the orbits must be the same. The same argument works 
for (U⊗V ⊗W )⊕m. Further observe that the quotient GL(U) ×GL(V ) ×GL(W )/J = C∗, 
which is affine. Since J is clearly a closed subgroup of GL(U) × GL(V ) × GL(W ), by 
Matsushima’s criterion (see Theorem 4.1) we conclude that J is reductive. We summarize 
the above discussion as follows:

Proposition 8.3. The J-orbit of F is closed. Further, the stabilizer of F in J is H. 
Moreover J is a reductive group.

Further, since orbits of J are the same as the orbits of SL(U) × SL(V ) × SL(W ), we 
also have that the invariant rings are equal, i.e.,

Corollary 8.4. We have C[U ⊗ V ⊗W ]SL(U)×SL(V )×SL(W ) = C[U ⊗ V ⊗W ]J .

Consider the action of H on U ⊗ V ⊗ W . Let L denote the subspace spanned by 
E = {u1

1v
1
1w

1
1} ∪{uk+1

1 vk3w
k
3 , u

k
3v

k+1
1 wk

3 , u
k
1v

k
1w

k+1
3 }1≤k≤n−1 ∪{un

3v
n
3w

n
3 }. Now, it is clear 

that for the action of H on L, the set E is a weight basis, and further one can check that 
ME(L) = N , the matrix in Section 2. Hence, from Proposition 3.5, we obtain:

Corollary 8.5. We have

βH(U ⊗ V ⊗W ) ≥ σH(U ⊗ V ⊗W ) ≥ σH(L) ≥ 4n − 1.

Proof of Theorem 1.8. Proceed in exactly the same fashion as the proof of Theorem 1.6
to obtain the required lower bounds on σJ((U ⊗ V ⊗W )⊕9) and βJ((U ⊗ V ⊗W )⊕9). 
Then using Corollary 8.4, we conclude that the same lower bounds hold for SL(U) ×
SL(V ) × SL(W ). �
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8.1. Closedness of orbit

This section is devoted to the proof of Proposition 8.1. The strategy will again be 
to use Theorem 6.5. We have the basis Bu, Bv and Bw for U, V, W respectively. For 
SL(U) × SL(V ) × SL(W ), we choose K := KBu

×KBv
×KBw

for a compact real form 
and T = TBu

× TBv
× TBw

for a maximal torus.
Observe that B = {bu⊗ bv ⊗ bw | bu ∈ Bu, bv ∈ Bv, bw ∈ Bw} is a basis for U ⊗V ⊗W . 

Consider the hermitian form on U ⊗ V ⊗W given by asking for B to be an orthonormal 
basis. It is easy to check that this form is K-invariant.

Proof of Proposition 8.1. We use the form described above for each copy of U ⊗ V ⊗W

and take the direct sum form. In order to use Theorem 6.5, the first step is to check that 
the supports Supp(Fd) and Supp(Gd) are uncramped. Let us only indicate the proof 
for F1, as the other cases are similar. The defining decomposition of F1 is its weight 
decomposition. It has three types of terms uk

1v
k
2w

k
3 , uk

2v
k
3w

k
1 , and uk

3v
k
1w

k
2 . We want to 

show that the support is uncramped. So, for any two such terms, we need to show that 
their weights are not root adjacent. But this follows easily from Lemma 5.6.

Let us now check the second condition in Theorem 6.5 i.e., we want:

4∑
d=1

⎛⎝ ∑
λ∈Supp(Fd)

||(Fd)λ||2λ +
∑

μ∈Supp(Gd)

||(Gd)λ||2μ

⎞⎠ = 0.

The defining decompositions of Fd and Gd are weight decompositions. All the coeffi-
cients appearing in Fd and Gd have absolute value 1. Further, observe that Supp(Fd) =
Supp(Gd). Thus we have

∑
d

⎛⎝ ∑
λ∈Supp(Fd)

||(Fd)λ||2λ+
∑

μ∈Supp(Gd)

||(Gd)λ||2μ

⎞⎠=
∑
d

⎛⎝ ∑
λ∈Supp(Fd)

λ+
∑

μ∈Supp(Gd)

μ

⎞⎠
= 2

∑
d

⎛⎝ ∑
λ∈Supp(Fd)

λ

⎞⎠ .

Recall that ũk
i denotes the weight for uk

i for SL(U). Recall that 
∑

i,k ũ
k
i = 0 from Re-

mark 5.3. Observe that each uk
i appears a total of 4 times in all the terms of T1, T2, T3, T4. 

Similarly for vki and wk
i . This means that

∑
d

⎛⎝ ∑
λ∈Supp(Fd)

λ

⎞⎠ = 4(
∑
i,k

ũk
i ,
∑
i,k

ṽki ,
∑
i,k

w̃k
i )

= 0.



22 H. Derksen, V. Makam / Advances in Mathematics 368 (2020) 107136
Hence, the second condition of Theorem 6.5 is satisfied for F . This concludes the 
proof. �
8.2. Computation of stabilizer

In spirit, the computation is very similar to the computation for cubic forms in the 
previous section. However, we will need slightly different arguments for this.

Tensors of the form a ⊗ b ⊗ c ∈ U ⊗ V ⊗W are called rank 1 tensors.

Lemma 8.6. Suppose T =
∑r

i=1 ai ⊗ bi ⊗ ci ∈ U ⊗ V ⊗ W , where {ai}, {bi}, {ci} are 
linearly independent collections of vectors in U, V and W respectively. Then this is the 
unique decomposition of T into a sum of r rank 1 tensors.

Proof. For r = 1, this is clear. For r ≥ 2, this follows from Kruskal’s theorem, see 
[25]. �

The above lemma can also be proved by using just elementary linear algebra arguments 
without resorting to Kruskal’s theorem.

Lemma 8.7. Suppose g ∈ GL(U) × GL(V ) × GL(W ) fixes T as in the previous lemma. 
Then g must permute the terms ai ⊗ bi ⊗ ci.

Proof. Applying g to the decomposition into a sum of r rank 1 tensors also yields a 
decomposition into a sum of r rank 1 tensors. Hence, by the above lemma, g must 
permute the terms. �
Corollary 8.8. Suppose g ∈ GL(U) ×GL(V ) ×GL(W ) fixes F1, then g must permute the 
terms in F1.

Corollary 8.9. Suppose g ∈ GL(U) × GL(V ) × GL(W ) fixes F1 and G1, then g must fix 
all the terms in F1.

Proof. Any non-trivial permutation of the terms in F1 does not fix G1. Hence g must 
fix all the terms. �

Similar arguments hold for F2, F3 and F4 as well. In summary, we obtain:

Corollary 8.10. Suppose g ∈ GL(U) × GL(V ) × GL(W ) fixes F , then g must fix all the 
terms in F1, F2, F3 and F4.

Let Ik = {uk
i v

k
jw

k
3 , u

k
i v

k
3w

k
j , u

k
3v

k
i w

k
j }1≤i,j≤2. Then ∪kIk are precisely the terms occur-

ring in F1, F2, F3 and F4.
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Lemma 8.11. Suppose g = (gu, gv, gw) ∈ GL(U) × GL(V ) × GL(W ) fixes Ik. Then for 
some pk, qk, rk ∈ C∗, we have

gu(uk
i ) = pku

k
i for i = 1, 2 and gu(uk

3) = (qkrk)−1uk
3 ,

gv(vki ) = qkv
k
i for i = 1, 2 and gv(vk3 ) = (pkrk)−1vk3 ,

gw(wk
i ) = rkw

k
i for i = 1, 2 and gw(wk

3 ) = (pkqk)−1wk
3 .

Proof. It is clear that if g fixes bu ⊗ bv ⊗ bw, then each gx must scale bx for each x ∈
{u, v, w}. So, we must have gu(uk

1) = pku
k
1 , gv(vk1 ) = qkv

k
1 and gw(wk

1 ) = rkw
k
1 for 

some pk, qk, rk ∈ C∗. Then, since uk
1v

k
1w

k
3 ∈ Ik is fixed by g, we must have gw(wk

3 ) =
(pkqk)−1wk

3 . Since uk
1v

k
2w

k
3 ∈ Ik is fixed by g, we must have gv(vk2 ) = qkvk. Symmetric 

arguments complete the proof. �
Proof of Proposition 8.2. From Corollary 8.10, we conclude that if g fixes F , then it 
must fix all the terms in ∪kIk. From the previous lemma, one concludes that g ∈ H. 
Conversely, it is easy to check that H fixes F . �
9. Concluding remarks: positive characteristic

It is difficult to imagine that degree bounds in positive characteristic are better than 
those in characteristic zero. Nevertheless, we do not know yet how to prove exponential 
lower bounds for cubic forms or tensor actions in positive characteristic. We require 
characteristic zero at two instances in our proof techniques. First and foremost is that 
our criterion for closed orbits has no analog in positive characteristic. Second, in the proof 
of Theorem 1.5, we use characteristic zero in two places. The first is when we use Zariski’s 
main theorem to deduce that G/H

∼−→ G · v. This statement remains true in positive 
characteristic (see [29, Corollary 7.13]), but one has to take the stabilizer in the scheme 
theoretic sense, i.e., H will now be a group scheme that in general may not be reduced 
or smooth (see [29, Remark 7.14]). The second instance is that the closed embedding 
G · v×W ↪→ V ×W gives a surjection C[V ×W ]G � C[G · v×W ]G. Unfortunately, this 
is not necessarily true in positive characteristic. Nevertheless, it is clear that if we take a 
collection of invariants that separate orbit closures in V ×W , then they also separate orbit 
closures in the closed subset G · v×W . This means that we get an inequality for bounds 
on degrees of separating invariants as opposed to generating invariants. This is however 
not a serious problem, because bounds for separating invariants are sandwiched between 
bounds for invariants defining the null cone and bounds for generating invariants. In our 
applications of Theorem 1.5, we mainly used exponential lower bounds for the null cone, 
i.e., σH(W ). This can be sufficient because the above discussion will give us βG(V ⊕W ) ≥
σH(W ).

In the two examples of cubic forms and tensor actions discussed in this paper, we 
will not be able to apply a modified version of Theorem 1.5 in positive characteristic 
simply because we do not know how to prove orbits are closed. However, we can still 
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prove exponential lower bounds on certain actions – take SL(V ) acting on Ad ⊕ S3(V ). 
Then, we take v to be a regular semisimple element in Ad, whose orbit is well known 
to be closed. Further, its stabilizer is precisely a maximal torus. For the action of a 
maximal torus on S3(V ), we can show exponential lower bounds (for invariants defining 
the null cone) by following the ideas in this paper. In fact for torus actions, degree bounds 
(whether for generators or null cone) are independent of characteristic.
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