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Abstract—Software-Defined Networking (SDN) greatly meets
the need in industry for programmable, agile, and dynamic
networks by deploying diversified SDN applications on a central-
ized controller. However, SDN application ecosystem inevitably
introduces new security threats since compromised or malicious
applications can significantly disrupt network operations. Thus,
a number of effective security enhancement systems have been
developed to defend against potential attacks from SDN appli-
cations. In this paper, we identify a new vulnerability on flow
rule installation in SDN, namely, buffered packet hijacking, which
can be exploited by malicious applications to launch effective
attacks bypassing all existing defense systems. The root cause
of this vulnerability lies in that SDN systems do not check
the inconsistency between buffer IDs and match fields when
an application attempts to install flow rules. Thus, a malicious
application can manipulate buffer IDs to hijack buffered packets
even though they do not match any installed flow rules. We
design effective attacks exploiting this vulnerability to disrupt
all three SDN layers, i.e., application layer, data plane layer, and
control layer. First, by modifying buffered packets and resending
them to controllers, a malicious application can poison other
applications. Second, by manipulating forwarding behaviors of
buffered packets, a malicious application can not only disrupt
TCP connections of flows but also make flows bypass network
security policies. Third, by copying massive buffered packets to
controllers, a malicious application can saturate the bandwidth
of SDN control channels and their computing resources. We
demonstrate the feasibility and effectiveness of these attacks with
both theoretical analysis and experiments in a real SDN testbed.
Finally, we develop a lightweight defense system that can be
readily deployed in existing SDN controllers as a patch.

I. INTRODUCTION

Software-Defined Networking (SDN) has emerged as a
flexible network paradigm. It is being increasingly deployed
in enterprise data centers, cloud networks, and virtualized
environments [1], [2]. The popularity of SDN lies on its
programmability, agility, and dynamic network control, which
benefits from the separation of control and data planes. SDN
allows a logically centralized controller in the control plane
to control all SDN switches in the data plane. By deploying

diversified applications on the controller, various network
functionalities can be easily implemented in SDN, such as
load balancing [3], traffic engineering [4], and network se-
curity forensics [5]. Network functionalities that are formerly
implemented by proprietary software or complex middleboxes
now can be enabled through the use and update of SDN
applications from open source developer communities or third-
party application stores [1], [6], [7].

Though SDN applications extend the capacities of con-
trollers and bring huge benefits, the burgeoning application
ecosystem introduces new security threats. SDN applications
may have buggy or malicious code that can be exploited by
attackers to disrupt network operations. A recent study [8]
shows that malicious applications are probably the most severe
threats to SDN. A number of attacks [1], [9], [10], [11],
[7] launched by malicious applications have been identified,
such as exploiting shared data objects in controllers to poison
applications [1], manipulating flow rules to bypass network
security policies [9], [10], and abusing permissions to crash
SDN controllers [11].

To prevent malicious applications from disrupting SDN
systems, a number of effective defense systems have been
proposed. Permission control systems can effectively limit
excessive privileges of applications [12], [7], [13], [14]. Data
provenance systems can prevent cross-app poisoning by track-
ing shared data objects in controllers and checking informa-
tion flow control (IFC) [1]. Rule conflict detection systems
can deter attackers from bypassing network security policies,
which is introduced by rule manipulation from malicious
applications [10], [9], [15]. Sandbox systems can protect SDN
controllers against malicious operations performed by isolated
applications [16]. All these defense mechanisms significantly
improve the security of SDN and raise the bar for a malicious
application to launch attacks.

In this paper, we uncover a new vulnerability on flow
rule installation in SDN, namely, buffered packet hijacking.
It allows a malicious application to hijack buffered packets
to launch a number of attacks bypassing existing defense
systems. The vulnerability is due to the lack of consistency
check between buffer IDs and match fields when installing
flow rules. Typically, an SDN application sends a FLOW_MOD
message to switches when a new flow matches no flow rules.
The message not only contains match fields and actions to
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create flow rules in switches for the new flow, but also contains
a buffer ID to release a previously buffered packet of the
new flow. However, we find that the buffered packet specified
by the buffer ID can be directly forwarded according to the
actions, no matter if it matches installed flow rules. Thus, a
malicious application can pretend to update flow rules under its
responsibility while it manipulates buffer IDs in FLOW_MOD
messages to stealthily control the forwarding behaviors of
buffered packets for any new flows. Though buffered packets
do not match the flow rules installed by the malicious applica-
tion, they will be processed according to the actions of the flow
rules. As the malicious flow rules do not conflict with other
flow rules installed by benign applications, existing defense
systems cannot detect or prevent these hijacking operations of
a malicious application [10], [9], [15].

We note that successfully hijacking buffered packets re-
quires the malicious application to send a FLOW_MOD message
before a benign application sends its message to release
buffered packets. This depends on processing chains that define
the orders for different SDN applications to process network
events. To analyze the probability of successfully hijacking a
buffered packet, we build a model of processing chains that is
independent of controllers. We derive the formal representation
of the hijacking probability in two typical scenarios, i.e., intra-
chain hijacking and inter-chain hijacking.

Based on the vulnerability, we discover four attacks that
can disrupt all three layers of SDN, i.e., application layer,
data plane layer, and control layer. All these new attacks
can successfully evade all existing defense systems. First, we
discover a cross-app poisoning attack that targets at the appli-
cation layer. By modifying a buffered packet and resending
it to controllers, a malicious application can poison other
applications that learn information from the headers of buffered
packets. Second, we uncover two attacks targeting at the data
plane layer, namely, network security policy bypass attack
and TCP three-way handshake disruption attack. A malicious
application can easily launch these two attacks by modifying
forwarding behaviors of the buffered packets. Finally, we
discover a control traffic amplification attack that targets at
attacking the control layer by copying massive buffered packets
to controllers. It quickly increases control traffic of SDN
and thus consumes both bandwidth of control channels and
computing resources of controllers.

We conduct experiments in a real SDN testbed consisting
of commercial hardware SDN switches and open source SDN
controllers to demonstrate the feasibility and effectiveness of
the identified attacks. The experimental results show that the
hijacking probability can exceed 70% in most cases of real
processing chains, and the largest hijacking probability can
reach 100%. Our experimental results are consistent with the
theoretical results. Moreover, we demonstrate that a malicious
application can successfully launch a number of effective
attacks by hijacking buffered packets. In the application layer,
a malicious application can poison the learning switch appli-
cation to falsely learn the mappings between MAC addresses
of hosts and switch ports. In the data plane layer, malicious
data flows can successfully bypass network security policies
due to the modification of forwarding behaviors of buffered
packets. Furthermore, by disrupting TCP three-way handshake,
a malicious application can significantly delay the connection

completion time (CCT) for TCP flows, which is 100 times
higher than that in normal cases. In the control layer, the con-
trol channel is quickly saturated under control traffic flooding
attacks, leaving most flows not served in SDN.

To prevent attacks from hijacking buffered packets, we
develop a lightweight countermeasure named ConCheck. It is
transparent to SDN applications and can be easily deployed
on SDN controllers as a patch. ConCheck intercepts API calls
of reading PACKET_IN messages in order to build mappings
between buffered packets and buffer IDs. With the knowledge
of the mappings, it can check if there is any inconsistency
between buffered packets and the match fields in API calls of
generating FLOW_MOD messages. ConCheck blocks the API
call that has any inconsistency to prevent hijacking buffered
packets. We implement ConCheck on the Floodlight controller,
and the experiments show it only introduces a small overhead.

In summary, our paper makes the following contributions:

• We identify a vulnerability on flow rule installation in
SDN, which allows a malicious application to hijack
buffered packets and evade existing defense systems.

• We develop four effective attacks that exploit the identi-
fied vulnerability to attack all three SDN layers.

• We conduct experiments in a real SDN testbed to demon-
strate the hijacking probability and effectiveness of the
identified attacks.

• We design and implement a lightweight countermeasure
named ConCheck to prevent hijacking buffered packets.

II. BACKGROUND

Multiple SDN applications concurrently run on controllers
to enable diversified network functionalities. They interact with
core services in controllers to obtain abstracted network state
and enforce commands to control SDN switches. An SDN
switch can leverage the PACKET_IN mechanism to actively
report to SDN controllers that a new flow comes. We briefly
introduce the mechanism here. When the first packet of a new
flow matches no flow rules in a switch, it is automatically
assigned with a buffer ID by the switch and then temporarily
buffered in the switch, as shown in Figure 1. Meanwhile,
a PACKET_IN message is sent to the controller and then
is dispatched to SDN applications. Any application with the
PACKET_IN permission can obtain the packet headers and the
buffer ID contained in the PACKET_IN message.

As the PACKET_IN message contains useful information
of a flow, e.g., source and destination IP addresses, most
applications analyze the message to make network decisions.
They have a certain order on processing the PACKET_IN
message from a switch due to their interdependence. Therefore,
different applications make up multiple processing chains
to process PACKET_IN messages, as shown in Figure 1.
The first application in each processing chain simultaneously
receives a copy of a PACKET_IN message dispatched by
the PACKET_IN notifier. However, applications in the same
processing chain process the PACKET_IN message and make
network decisions in turn. If an application is not interested in
a particular type of a PACKET_IN message, it simply passes
the message to the next application in the processing chain.
Otherwise, it makes network decisions by interacting with
core services on controllers. After processing the PACKET_IN
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Fig. 1: Processing Chains in SDN.

message, it usually passes the message with possible metadata
to the following application.

We use a real processing chain in the Floodlight [17]
controller to show how applications process network events
and enforce network policies. Considering the processing chain
in Figure 1, we assume that APP 1, APP 2, APP 3, and APP
4 are Topology Manager, Device Manager, Load Balancer,
and Forwarding, respectively. When the first application, i.e.,
Topology Manager, receives a PACKET_IN message (Step 0),
it checks the type of the message. If the message contains
an LLDP packet that is used for discovering links, it updates
network topology and calls Packet Service to send new LLDP
packets to switches for future topology discovery. Otherwise,
it passes the message to the second application (Step 1), i.e.,
Device Manager. Device Manager learns attachment points of
hosts by analyzing the PACKET_IN message and the network
topology provided by the first application. After that, the
message is passed to the third application (Step 2), i.e., Load
Balancer, which checks the packet headers in the PACKET_IN
message. If the new flow belongs to predefined important
flows, Load Balancer chooses an optimal backend server from
a server pool to serve the new flow. It calls Flow Rule Service
to install crafted flow rules with FLOW_MOD messages. The
new flow is then forwarded to the chosen server according to
a particular routing path. Otherwise, it passes the PACKET_IN
message to the following application (Step 3), i.e., Forwarding.
Forwarding analyzes the message and calls Flow Rule Service
to install flow rules with FLOW_MOD messages. The new flow
is then forwarded to its destination with the shortest path.

III. BUFFERED PACKET HIJACKING

In this section, we first clarify our threat model and then
present the buffered packet hijacking vulnerability in SDN.

A. Threat Model

We assume that the SDN controller, SDN switches, and
control channels are trusted and well protected from attackers.
However, since SDN applications installed on the controller
may come from untrusted third-party SDN APP Store [6], they
are untrusted and may be malicious. Previous studies have
shown that malicious applications may be installed on con-
trollers in many ways [1], [11], [18], [19], [7], e.g., exploiting
particular vulnerabilities of controllers [19], repackaging and
redistributing applications by phishing [18], and submitting

TABLE I: The ratio of applications with the permission on
listening PACKET_IN messages and installing flow rules.

Controller Total APPs APPs with the Permission Ratio

OpenDaylight Neon† 13 6 46.2%

ONOS v2.1.0-rc1 97 23 23.7%

Floodlight v1.2 29 12 41.4%

RYU v4.31 28 19 67.9%

POX eel version 18 11 61.1%
† Only counting the applications implemented with openflowplugin.

malicious or buggy applications to a controller’s repository that
will be incorporated into commercial controllers [1]. Though
network and security practitioners have made great efforts to
verify the security of applications before deploying them by
checking their source code, it is difficult to fully understand
the behavior of compiled applications without getting access to
the source code. For example, the ONOS controller [20] can
load compiled applications. Therefore, SDN controllers may
have potential malicious applications running on them.

We assume that a malicious application is running on the
controller. The application has the permission on listening
PACKET_IN messages and installing flow rules, which is
one basic requirement for many applications to run on the
controller. We perform a study, and Table I shows the number
and ratio of bundled applications with that permission on dif-
ferent controllers. The attacker aims to leverage the malicious
application to disrupt all three SDN layers, i.e., application
layer, control layer, and data plane layer.

We argue that a malicious application with that permission
cannot directly install malicious flow rules to manipulate or
drop packets in the SDN data plane. Otherwise, malicious
rules will introduce conflicts with benign rules enforced by
other SDN applications. Consequently, a number of effective
defense systems, such as FortNOX[9], SE-FloodLight[10],
VefiFlow[15], and SDNShield[7], can detect and prevent such
permission abuse by checking rule conflicts between different
applications. For example, a malicious application may install
a flow rule with a high priority to drop all packets matching
the 10.0.0.1 IP address, but the defense systems can detect a
conflict when a benign routing application generates another
flow rule that matches and forwards the packets with the same
IP. Instead, our attacks install mismatched flow rules with
crafted buffer IDs to hijack packets, which introduces no rule
conflicts with other applications and thus bypasses existing
defense systems.

Moreover, compared to the threat model in CAP attacks [1]
where a malicious application manipulates shared data objects
in controllers to poison other applications, our threat model re-
quires a malicious application to have the flow rule installation
permission. However, our attacks allow a malicious application
to poison other applications even under the presence of the
defense named ProvSDN [1] that can prevent CAP attacks.
Furthermore, our attacks can disrupt not only the application
layer but also the control layer and the data plane layer.
Particularly, our attacks can bypass all the previous defense
systems [12], [1], [10], [9], [15], [7], [16], [21] that prevent
various attacks from disrupting different SDN layers. We detail
our attacks and the mechanisms of bypassing existing defense
systems in Section IV.
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Fig. 2: Buffered Packet Hijacking in Processing Chains.

B. Buffered Packet Hijacking Vulnerability

A malicious application can hijack buffered packets to
launch effective attacks that significantly disrupt all layers of
SDN and bypass existing defense systems. Figure 2 shows the
main idea of buffered packet hijacking in processing chains.
For simplicity, we do not show the core SDN services of
controllers in the figure. There are two types of buffered packet
hijacking: intra-chain and inter-chain.

Intra-chain Hijacking. Figure 2a shows the intra-chain hi-
jacking. A PACKET_IN message is dispatched to a processing
chain since a new flow arrives at an SDN switch. As we
mentioned before, the PACKET_IN message contains the
headers and buffer ID of the first packet in the new flow. In
the figure, the IP destination address of the packet headers is
10.0.0.2 and the buffer ID is 2. Normally, APP 4 is responsible
for routing this flow. When the PACKET_IN message is
transferred to the application, it installs a flow rule in the
switch with a FLOW_MOD message. The message contains a
match field specified as 10.0.0.2, a buffer ID specified as 2,
and an action specified as Y. Thus, the new flow matches the
installed flow rule and is processed according to the action Y.
At the same time, the buffered packet with the buffer ID of 2
is released and processed according to the action.

Now suppose APP 3 is a malicious application that aims
to disrupt SDN by hijacking buffered packets. Before the
PACKET_IN message is transferred to APP 4, the malicious
application can pretend to add or update flow rules for which
it is responsible. It specifies the match field as 1.1.1.1, the
buffer ID as 2, and the action as X in the FLOW_MOD message.
Though the match field (1.1.1.1) and the header (10.0.0.2) of
the packet with the buffer ID of 2 do not match, the buffered
packet is still be released and processed according to the

action X once the switch receives the FLOW_MOD message.
Therefore, the buffered packet is processed by the malicious
application before APP 4 installs flow rules to process it. The
malicious application can hijack buffered packets of any new
flow, as long as it is in the front of the application that is
responsible for the new flow in the processing chain.

Inter-chain Hijacking. Figure 2b shows the inter-chain hi-
jacking. Each processing chain simultaneously receives a copy
of PACKET_IN message once a new flow arrives. Thus, a
malicious application can hijack a buffered packet for which
an application in another processing chain is responsible, using
a similar method in Figure 2a, i.e., installing flow rules with a
FLOW_MOD message that specifies the buffer ID of the packet.
Different from the intra-chain hijacking, successfully hijacking
buffered packets does not require that the malicious application
is in the front of the benign application. In Figure 2b, it is
possible that APP 3 in Processing Chain I hijacks buffered
packets that should be processed by APP 2 in Processing
Chain II since different applications consume different time
to process and transfer a PACKET_IN message to another
application. APP 3 in Processing Chain I may receive the
PACKET_IN message before APP 2 in Processing Chain II.
In some cases, APP 3 in Processing Chain I may fail to hijack
buffered packets since another benign application has already
processed the packets. Successfully hijacking buffered packets
depends on the positions of the malicious application and the
time for applications to process PACKET_IN messages. We
will give a comprehensive theoretical analysis in Section V
and experimental analysis in Section VI-B.

TABLE II: SDN controllers with buffered packet hijacking
vulnerability.

Controller OpenDaylight ONOS Floodlight RYU POX

Latest Version Neon v2.1.0-rc1 v1.2 v4.31 eel

Vulnerable
√ √ √ √ √

We have tested the vulnerability of buffered packet hijack-
ing on five mainstream SDN controllers including OpenDay-
light, ONOS, Floodlight, RYU, and POX. Table II shows that
all their newest versions have the vulnerability. Through our
investigation on the reason for all mainstream SDN controllers
to be vulnerable, we find the following sentence on page
111 of OpenFlow Switch Specification Version 1.5.1 (Protocol
version 0x06) [22]: “A flow mod that includes a valid buffer id
removes the corresponding packet from the buffer and pro-
cesses it through the entire OpenFlow pipeline after the flow
is inserted, starting at the first flow table.” Obviously, it only
requires matching the buffer ID, but not the match fields.

IV. ATTACKS BY HIJACKING BUFFERED PACKETS

In this section, we design four attacks that can disrupt all
layers of SDN by hijacking buffered packets. Particularly, we
show how these attacks can bypass existing defense systems.

A. Cross-App Poisoning

Attack Mechanism. Figure 3 shows the cross-app poisoning
attack that targets at the application layer of SDN. There
are two applications concurrently running on the controller,
i.e., a malicious application named as APP X and a benign
application named as APP Y. When the host h1 sends a new
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Fig. 3: Cross-APP Poisoning. A malicious application modifies
and resends a buffered packet to poison other applications.

flow to the host h2, the first packet of the flow (red packet in
the figure) is temporarily buffered in the switch S1. Meanwhile,
a PACKET_IN message is sent to the controller. APP Y
is responsible for analyzing the reported packet and making
decisions for the new flow. For example, it may compute
routing paths and install flow rules for the new flow.

However, when APP X receives the PACKET_IN message
before APP Y, APP X can leverage the FLOW_MOD message
to hijack the buffered packet of the new flow. Specifically,
APP X pretends to update or install flow rules for which it
is responsible with the FLOW_MOD message. In the message,
the match field is specified as the blue flow, the buffer ID is
specified as the ID of the buffered red packet, and the action
is specified as set-field and output:controller. In
this way, APP X can manipulate the header of the buffered
packet and resend it to the controller with a PACKET_IN
message. Once the message arrives at APP Y, APP Y can be
poisoned due to the extraction of the falsified packet header.

Let’s see a real attack case. The codes in Figure 3 are from
the learning switch application in the RYU controller. APP
X changes the source MAC address of the buffered packet
to the MAC address of the host h3 with the set-field
action. Consequently, the last line of the codes in Figure 3
falsely associates the MAC address of h3 with the switch
port connecting to h1. According to the implementation of the
learning switch, the application installs flow rules to forward
flows based on the mappings of MAC addresses and switch
ports. Thus, any flows with a destination address to h3 are
mistakenly directed to h1, causing a Denial-of-Service (DoS)
attack. Though this example only shows the poisoning for the
learning switch application, any SDN application requiring
analyzing PACKET_IN messages is potentially poisoned by
the malicious application.

Defense Evasion. Previous work has systematically studied
cross-app poisoning (CAP) and provided a defense system
called ProvSDN [1]. In the previous work, a malicious ap-
plication manipulates shared data objects in the control plane
to trick another privileged application into taking actions on
its behalf. The attack violates information flow control (IFC)
policies due to the modification on shared data objects in
the controller. Thus, by tracking the history of how shared
data objects are generated and modified, ProvSDN can detect
IFC policy violations and prevent CAP attacks. However, our
attacking method is different. Our attack modifies buffered
packets in the data plane and makes them resend to controllers.
Since our attack does not leverage shared data objects in the
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Fig. 4: Network Security Policy Bypass. A malicious applica-
tion redirects buffered packets to another switch port.

control plane to poison other applications, ProvSDN fails to
defeat our attack.

B. Network Security Policy Bypass

Attack Mechanism. This attack targets at the data plane layer
of SDN. It redirects buffered packets to a switch port to
bypass security checkpoints. As shown in Figure 4, a firewall
is located between the switches S1 and S3. It checks each
flow that crosses through the two switches according to its
policies. The host h1 is an untrusted host. When h1 sends a
flow to h2, S1 buffers the first packet of the flow and reports
a PACKET_IN message to the controller. Typically, APP Y
installs a flow rule with a FLOW_MOD message to forward the
flow to the switch port that connects to the firewall. According
to the firewall policies indicating that h1 cannot communicate
with h2, the flow is blocked.

Nevertheless, a malicious application can hijack buffered
packets to bypass the firewall for the first packet of the flow.
When the malicious application, i.e., APP X in Figure 4,
receives the PACKET_IN message before the APP Y, it sends
a FLOW_MOD message to add or update a flow rule in switches.
The match field of the message is the packet header of another
flow that should be forwarded from S1 to S2, e.g., a flow from
a trusted host connecting to S1. The action of the message is
to forward the matching flow to S2. However, the buffer ID
of the message is specified as the buffer ID of the buffered
packet of the flow from h1. As a result, the first packet of the
flow from h1 is released and forwarded to S2, which bypasses
the inspection of the firewall. Here, the malicious application
cannot install a flow rule matching the flow from h1 to directly
forward all packets to S2 due to the security protection of
existing defense systems [15], [9], [10]. In the attack, the
following packets of the flow are still forwarded to the firewall
and blocked due to the following flow rules installed by APP
Y. It seems that the host h1 can only leverage the first packet to
transmit information to some host and bypass the firewall for
one time. However, a flow rule in SDN switches will disappear
after some time according to timeout settings [22]. After the
flow rule disappears, h1 can send a flow again and leverage
the first packet to continue transmitting remaining information.
The previous work [23] has shown how to infer the expiration
time of flow rules, which can be leveraged by h1.

Defense Evasion. To prevent network security policy bypass
and potential rule conflicts between applications, several de-
fense systems [10], [9], [15] have been provided. However,
they cannot prevent network security policy bypass that is
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launched by hijacking buffered packets. Existing defense sys-
tems maintain global information of all installed flow rules
and network security policies. Once an application installs or
updates a flow rule in switches, the defense systems check
the match fields and actions of the flow rule with advanced
algorithms to see if there are conflicts with other rules and
security policies. However, in our attack, the flow rule installed
by the malicious application does not conflict with any rules
or security policies. It is because the match field of the flow
rule is not specified as the flow from the untrusted host h1.
The malicious application only uses the buffer ID of the
FLOW_MOD message to hijack the buffered packet of the flow
from h1. We note that none of the existing defense systems
check the buffer IDs. A defense named SDNShield [7] adopts
a different method to prevent rule conflicts. It assigns fine-
grained permission of rule installation for applications. For
example, it limits an application to install flow rules for flows
whose IP addresses are within 10.13.0.0/16. However, our
attack still succeeds under the presence of SDNShield. Though
the malicious application must install or update flow rules
under the constraints of SDNShield, it can still set buffer IDs
at will and thus hijacks targeted packets to bypass firewalls.

C. TCP Three-Way Handshake Disruption

Attack Mechanism. This attack targets at the data plane layer
of SDN by disrupting TCP three-way handshake. As shown in
Figure 5, the host h1 aims to build a TCP connection with the
host h2 for reliable communications. According to the TCP
protocol, three packets must be exchanged before a reliable
TCP connection is established. The first packet is the TCP
SYN packet. As there are no flow rules matching the TCP
SYN packet that belongs to a new flow, the switch S1 buffers
the packet and reports a PACKET_IN to the controller. An
application named APP Y installs flow rules with a FLOW_MOD
message for the new flow and forwards the buffered TCP SYN
packet to h2. After that, h2 returns a TCP packet with the
SYN and ACK signal bits set to h1. Finally, h1 sends a TCP
packet with the ACK signal bits set to finish building the TCP
connection.

Similar to the attack in Figure 4, a malicious application
named APP X can hijack the buffered TCP SYN packet if
it receives the PACKET_IN message before APP Y. APP X
issues a FLOW_MOD message to the switch S1. The match
field of the message is specified as another flow to avoid rule
conflicts. The buffer ID is specified as the ID of the buffered
TCP SYN packet, and the action is specified as drop. As
a result, the buffered TCP SYN packet is dropped, which
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action: no_buffer, group_all,
            output:controller

FLOW_MOD

Fig. 6: Control Traffic Amplification. A malicious application
copies massive buffered packets to the controller.

disrupts the TCP three-way handshake. After some time, h1
will send a TCP SYN packet to h2 again to make another try.
At this time, TCP SYN packet can be successfully forwarded
to h2 since APP Y has installed related flow rules matching
the packet.

Though the attack cannot completely block the TCP con-
nections, it significantly delays the finish time of building TCP
connections. According to the implementation of the network
protocol stack, a second TCP SYN packet is sent after 1000 ms
in the Linux operating system if a host does not get a response
of the first TCP SYN packet. In windows, the time is much
longer, i.e., 3000 ms. It significantly increases flow completion
time (FCT) for small flows whose FCT is usually smaller
than 50 ms [24]. Consequently, user experience and operator
revenue are highly impacted. According to a report [25], every
100 ms latency will cost 1% in business revenue for Amazon.

Defense Evasion. As far as we know, there are no related
defense considering this kind of attacks that disrupt TCP three-
way handshakes by hijacking buffered packets in SDN.

D. Control Traffic Amplification

Attack Mechanism. This attack targets at the SDN control
layer. It consumes bandwidth and computing resources by
copying massive buffered packets to controllers. As shown
in Figure 6, there are many buffered packets of new flows
in switches. Switches generate PACKET_IN messages to the
controller for rule installation. The malicious APP X receives
PACKET_IN messages before a benign application that is
responsible for installing flow rules for new flows. It allows
the malicious application to hijack buffered packets. Besides
hijacking buffered packets to modify packet headers or for-
warding behaviors, the malicious application can copy lots of
buffered packets to generate a huge amount of PACKET_IN
messages with the group_all action in FLOW_MOD mes-
sages. The group_all action contains a list of action buck-
ets. A packet is cloned for each bucket and its forwarding
behavior follows the actions in a bucket. Thus, if the malicious
application installs a FLOW_MOD message where the buffer ID
is set as the ID of a buffered packet and the group_all
action contains many buckets of the output:controller
action, massive copies of the buffered packet will be sent
to controllers with PACKET_IN messages. Moreover, the
application can force a PACKET_IN message to contain the
entire data packet instead of a packet header by adding
the no_buffer action. Therefore, the attack generates an
amplification effect on the control traffic since a new flow
triggers more than one PACKET_IN message.
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We define the amplification factor η as the ratio of the size
of PACKET_IN messages with the attack over that without the
attack. If we use n to denote the number of action buckets in
a group_all action, d to denote the size of a data packet,
h to denote the size of the header of the data packet, and
p to denote the size of a PACKET_IN message excluding
the part that stores data packets. According to the OpenFlow
specification [22], a PACKET_IN message contains the first
128 bytes of a buffered data packet by default. For packets
less than 128 bytes, paddings are automatically added to the
message. Thus, the amplification factor η is represented as
follows:

η = 1 +
p+max(d, 128)

p+ 128
· n (1)

We consider a real example with a new TCP flow. The first
packet of a TCP flow is always a TCP SYN packet containing
no payloads, which is 74 bytes. As the packet is less than 128
bytes, the amplification factor entirely depends on the number
of action buckets in a group_all action. According to our
investigation, Brocade FastIron SDN switch [26] supports at
most 64 action buckets in a group_all action. Thus, the
amplification factor is 65. Previous studies [21], [27] have
shown that the bandwidth of the control channel between a
switch and a controller is tens of Mbps. Such an amplification
effect on control traffic can easily make the control channel
congested. Moreover, the amplification factor can further en-
large for a UDP flow since the first packet of a UDP flow
is possible to reach 1518 bytes, i.e., the maximal size of
a packet for Ethernet. According to our measurements, p is
108 bytes. Thus, the amplification factor can be calculated as:
1 + 108+1518

108+128 · 64 ≈ 442, which is extremely large.

Defense Evasion. Previous studies [21], [27], [28], [29] have
provided various defense mechanisms to mitigate potential
PACKET_IN flooding attacks. They are effective to defend
the flooding attack where a malicious host randomly generates
anomalous packets with a high probability of matching no flow
rules to trigger massive PACKET_IN messages. However, they
cannot defeat the flooding attack exploiting buffered packet
hijacking. Different from previous flooding attack, our attack
exploits the first packet of benign data flows to trigger massive
PACKET_IN messages. Thus, FloodDefender [21] fails to fil-
ter out malicious data flows and block them. FloodGuard [27]
defends PACKET_IN flooding attacks by installing a wildcard
flow rule of the lowest priority to forward packets matching
no flow rules to data plane cache. The data plane cache
schedules packets and forwards them to the controller in a
rate-limited manner. However, as the flow rules installed by
the malicious application has specified the actions of buffered
packets, buffered packets will not match the wildcard flow
rules that send packets to the data plane cache. Instead, they
are copied and directly reported to controllers. Thus, our
attack can flood the controller to consume bandwidth and
computing resources even if FloodGuard is deployed. AVANT-
GUARD [29] and LineSwitch [28] adopt the TCP SYN proxy
technique to defeat the PACKET_IN flooding attack based on
TCP flows. However, as mentioned by previous studies [21],
[27], they are invalid for flows of other protocols. Therefore,
our attack can evade them by hijacking buffered packets of
other protocols, e.g., UDP packets, to flood controllers.
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Fig. 7: The model of m processing chains. ai,j denotes the j-th
application in the i-th processing chain with ni applications.

V. THEORETICAL ANALYSIS

In this section, we build a model of processing chains and
analyze the probability of successfully launching an attack by
hijacking buffered packets.

A. Processing Chain Model

The model of PACKET_IN processing chains can be
illustrated in Figure 7, regardless of the implementations of
different controllers. We assume there are m processing chains
in a controller and ni applications in the i-th processing chain,
i.e., the length of the chain is ni. Moreover, ai,j denotes the
j-th SDN application in the i-th processing chain. Once a
PACKET_IN message arrives at the controller, m copies of
it are sent to m processing chains simultaneously. Applica-
tions get a PACKET_IN message in sequence according to
their orders in a processing chain. There are many different
PACKET_IN messages encapsulating different data packets.
Each PACKET_IN message is processed by one or more
applications that are interested in the message. An application
typically continues transferring the message into the following
application after finishing processing it. The last application
in each processing chain stops transferring the PACKET_IN
message and eliminates it.

To conduct theoretical analysis, we need to know the
delay for an application to process a PACKET_IN message
before it is transferred into the next application. Obviously, the
processing delay is not fixed. We model the processing delay
as a random variable. According to previous studies [30], the
log-logistic (fisk) distribution has been widely used to model
the processing delay when data is processed by an application
and then travels to another application. Moreover, we collect
a large number of real processing delays from different SDN
applications. We find the log-logistic (fisk) distribution suits
well for modeling the processing delays of PACKET_IN mes-
sages. For detailed distributions of processing delays, please
see Appendix A.

Thus, we define the processing delay of the application ai,j
as a random variable denoted by Di,j . It meets the log-logistic
distribution with two parameters, i.e., the scale parameter αi,j
and the shape parameter βi,j . Formally, we represent it as
follows:

Di,j ∼ LL(αi,j , βi,j) (2)

Here, 1 ≤ i ≤ m and 1 ≤ j ≤ ni. If we define fi,j(d) as the
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probability density function (PDF) of Di,j , we have:

fi,j(d) =
(βi,j/αi,j)(x/αi,j)

βi,j−1

(1 + (x/αi,j)βi,j )2
; d > 0 (3)

When d ≤ 0, we have: fi,j(d) = 0. We ignore the propagation
delay between two successive applications for a PACKET_IN
message since the delay is far below the processing delay
in an application. For example, the propagation delay is
only several microseconds according to our measurement on
Floodlight, while the processing delay of an application
is in the order of milliseconds.

B. Hijacking Probability Analysis

Based on the above model, we conduct a comprehensive
analysis on the probability of successfully hijacking a buffered
packet for a malicious application in processing chains. We
consider that an attacker has compromised the application ar,c
in Figure 7. The attacker aims to hijack a buffered packet
that should be processed by a benign application, i.e., a
target application. There are two scenarios for the malicious
application to conduct the attack, i.e., attacking with an intra
processing chain and attacking with inter processing chains.

Attacking with an Intra Processing Chain. To successfully
launch the attack with an intra processing chain, the malicious
application ar,c must modify buffered packets in switches be-
fore a target application modifies the buffered packets. In other
words, the malicious application ar,c must finish processing
a PACKET_IN message ahead of the target application. As
shown in Figure 7, we can see that the attack can succeed only
if the target application in the r-th processing chain is behind
the malicious application ar,c. If we use ar,j to denote the
target application, the hijacking probability with the malicious
application ar,c and the target application ar,j is:

pintra(ar,c, ar,j) =

{
100%, if j ∈ {1, 2, ..., c− 1}
0, if j ∈ {c+ 1, c+ 2, ..., nr}

(4)

As shown in Equation 4, the hijacking probability depends on
the relative positions of the malicious application and the target
application, regardless of processing delays.

Attacking with Inter Processing Chains. In the scenario of
inter processing chains, multiple copies of a PACKET_IN mes-
sage are fed into different processing chains. We consider that
the attacker aims to hijack the buffered packet that should be
processed by the target application ai,j in the i-th processing
chain. If the malicious application ar,c can successfully modify
the buffered packet in switches, the total processing delay for
a PACKET_IN copy delivered from the first application to the
malicious application in the r-th processing chain must be
smaller than the total processing delay for a copy delivered
from the first application to the j-th application in the i-
th processing chain. Formally, the successful condition of
hijacking the buffered packet with the malicious application
ar,c and the target application ai,j can be represented as
follows:

c∑
k=1

Dr,k <

j∑
k=1

Di,k (5)

Here, 1 ≤ i ≤ m and 1 ≤ j < ni. Dr,k and Di,k are
random variables meeting the log-logistic distribution. Thus,

the hijacking probability with the malicious application ar,c
and the target application ai,j is:

pinter(ar,c, ai,j) = P (
c∑

k=1

Dr,k −
j∑

k=1

Di,k < 0) (6)

We now define a new random variable Zi,j as follows:

Zi,j =

j∑
k=1

Di,k +
c∑

k=1

(−Dr,k) (7)

We define the PDF of Zi,j as f̂i,j(z). We can calculate f̂i,j(z)
based on the PDF of each Di,j (i ∈ [1,m] and j ∈ [1, ni]).
Since the probability distribution of the sum of independent
random variables is the convolution of their individual distri-
butions [31], f̂i,j can be derived as the following expression:

f̂i,j(z) = (

∫ +∞

−∞
· · ·
∫ +∞

−∞
)︸ ︷︷ ︸

j+c−1

j∏
k=1

fi,k(tk − tk−1)·

c−1∏
k=1

fr,k(tj+k−1 − tj+k) · fr,c(tj+c−1 − z) ·
j+c−1∏
k=1

dtk

(8)

Here, t0 = 0. Then, Equation 6 can be represented as follows:

pinter(ar,c, ai,j) = P (Zi,j < 0)

=

∫ 0

−∞
f̂i,j(z)dz·

(9)

Obviously, the above equation, i.e., pinter, depends on the
following variables:

r, c, r ∈ {1, 2, ...,m} and c ∈ {1, 2, .., nr}
i, j, i ∈ {1, 2, ...,m} and c ∈ {1, 2, .., ni}
αr,k, βr,k, k ∈ {1, c}
αi,k, βi,k, k ∈ {1, j}

(10)

We can see that the hijacking probability in this scenario not
only depends on the positions of the malicious and target
applications, but also depends on the processing delays of
other applications that are prior to the malicious application or
the target application. Moreover, Equation 8 and Equation 9
show that we can calculate the numerical results of the hijack-
ing probability for any malicious application and any target
application in different positions, as long as the distribution
of processing delays are measured. In the next section, we’ll
verify the correctness of our theoretical analysis by conducting
experiments with real SDN processing chains.

VI. ATTACK EVALUATION

In this section, we conduct experiments in a real SDN
testbed to demonstrate the feasibility and effectiveness of the
attacks that exploit the buffered packet hijacking vulnerability.

A. Experiment Setup

We build a real SDN testbed consisting of commercial
hardware switches, EdgeCore AS4610-54T [32], and an open
source SDN controller, Floodlight [17]. As we mentioned in
Table II, all mainstream SDN controllers we investigated are
vulnerable to buffered packet hijacking. For simplicity but
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Fig. 8: The two longest processing chains in our experiments.
The number is the position where a malicious application can
attach to hijack buffered packets.

without loss of generality, we choose the Floodlight SDN
controller to conduct our experiments since it is popular and
a Java-based controller similar to most controllers. We deploy
the controller on a server with a quad-core Intel Xeon CPU
E5504 and 32GB RAM. We attach physical hosts to switches
so as to send and receive network flows. Each host runs Ubuntu
16.04 LTS and has a quad-core Intel i3 CPU and 4GB RAM.

To build processing chains, we run all SDN applications
specified in a default Floodlight configuration file, i.e., flood-
lightdefault.properties [33]. According to our analysis on the
configuration file, most processing chains contain one or two
applications. The longest processing chain consists of four ap-
plications, i.e., Topology Manager [34], Device Manager [35],
Load Balancer [36], and Forwarding [37]. However, as we
mentioned in Section V, the hijacking probability heavily
depends on the positions of the malicious application and
the target application. Thus, we build another long processing
chain to better explore the hijacking probability for different
positions of the malicious application and the target appli-
cation. Specifically, we apply four applications, i.e., DoS
Detection [38], ARP Proxy [39], Hub [40], and Learning
Switch [41], to form the processing chain.

Figure 8 shows the two longest processing chains that
contain eight SDN applications in total. The functionalities
of these applications range from basic network service, such
as providing network topology with Topology Manager, and
network optimizations, such as balancing flows across multiple
servers with Load Balancer, to advanced network security
enhancement, such as detecting malicious flows with DoS
Detection. For their detailed functionality description, we refer
the readers to the links [34], [35], [36], [37], [38], [39], [40],
[41]. In our experiments, we focus on the hijacking probability
and attack effectiveness with the two longest processing chains.
We implement and run a malicious application to hijack
buffered packets with the two processing chains.

B. Hijacking Probability

To comprehensively explore the hijacking probability, we
attach the malicious application in different positions of the
two processing chains shown in Figure 8. Among all the
eight applications in the two processing chains, only five
applications, i.e., DoS Detection, Hub, Learning Switch, Load
Balancer, and Forwarding, send FLOW_MOD messages to
install flow rules and release buffered packets. Thus, we choose
the five applications as target applications to explore the
hijacking probability. To calculate the hijacking probability
with a target application, we use physical hosts to generate
10,000 new flows. Each flow triggers a PACKET_IN message

TABLE III: Intra-Chain and Inter-Chain Hijacking Probability
with Different Malicious Application’s Positions

(a) When the malicious application is in Processing Chain I.

Malicious
App’s

Position

Hijacking Probability with a Target App

DoS
Detection Hub

Learning
Switch

Load
Balancer Forwarding

Chain I: 0 100.0% 100.0% 100.0% 100.0% 100.0%

Chain I: 1 0 100.0% 100.0% 90.0% 91.7%

Chain I: 2 0 100.0% 100.0% 70.5% 82.0%

Chain I: 3 0 0 100.0% 68.5% 80.9%

Chain I: 4 0 0 0 36.3% 57.1%

Note Intra-Chain Hijacking Inter-Chain Hijacking

(b) When the malicious application is in Processing Chain II.

Malicious
App’s

Position

Hijacking Probability with a Target App

Load
Balancer Forwarding DoS

Detection Hub
Learning

Switch

Chain II: 0 100.0% 100.0% 89.3% 100.0% 100.0%

Chain II: 1 100.0% 100.0% 48.8% 92.2% 95.7%

Chain II: 2 100.0% 100.0% 33.3% 85.7% 93.9%

Chain II: 3 0 100.0% 9.7% 30.6% 62.3%

Chain II: 4 0 0 8.3% 18.3% 41.9%

Note Intra-Chain Hijacking Inter-Chain Hijacking

and makes the target application send FLOW_MOD messages to
release buffered packets. Meanwhile, the malicious application
also receives the PACKET IN message and attempts to install
FLOW_MOD messages to hijack buffered packets that should be
processed by the target application. We count the number of
the flows whose buffered packets are hijacked. The hijacking
probability is calculated through dividing that number by the
total number of flows, i.e., 10,000. Table III shows the intra-
chain and inter-chain hijacking probabilities with different tar-
get applications when changing the positions of the malicious
application.

Intra-chain Hijacking Probability. We first see the intra-
chain hijacking probability in Table III. When the malicious
application is in Processing Chain I, three target applications,
i.e., DoS Detection, Hub, and Learning Switch, can be hijacked
within the intra processing chain, which is shown in Table IIIa.
When it is in Processing Chain II, another two applications,
i.e., Load Balancer and Forwarding, can be hijacked within
the intra processing chain, which is shown in Table IIIb. From
the two tables, we can see that there are only two values of
the intra-chain hijacking probability, i.e., either 100.0% or 0.
As we mentioned in Section V, a malicious application can
successfully hijack buffered packets with the intra processing
chain if and only if it is in the front of the target application.
Thus, since DoS Detection is the first application in Processing
Chain I, the hijacking probability with it achieves 100% only
when the malicious application is in the head of Processing
Chain I. However, it is much easier to hijack buffered packets
when the malicious application chooses Learning Switch or
Forwarding as the target application. It is because both the two
applications are in the tail of a processing chain. As shown in
Table III, the hijacking probability with any of them is always
100.0%, except in the case where the malicious application is
in the tail.

Inter-chain Hijacking Probability. It is obtained when the
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Fig. 9: CCDF of Inter-Chain Hijacking Probability with Ran-
dom Positions of Target and Malicious Applications.

malicious application in a processing chain attempts to hi-
jack buffered packets that should be processed by a target
application in another processing chain. Different from the
intra-chain hijacking probability, it can possibly be any real
numbers ranging from 0 to 100%. The inter-chain hijacking
probability not only depends on relative positions of the
malicious application and the target application, but also is
significantly affected by processing delays of other applications
in the front of the malicious or the target application. As we
can see in Table IIIa and Table IIIb, the hijacking probability
decreases when the malicious application moves toward the
tail of a processing chain. The largest hijacking probability is
100.0% for four of the five target applications. However, the
largest hijacking probability is 89.3% for DoS Detection. It is
because DoS Detection is in the head of Processing Chain I.
Compared to other target applications, there are more chances
for the malicious application to hijack buffered packets that
should be processed by DoS Detection. For the same reason,
when the malicious application is in the tail of a processing
chain, the inter-chain hijacking probability with DoS Detection
is the smallest, i.e., 8.3%. However, the inter-chain hijacking
probability with Load Balancer, Forwarding, Hub, and Learn-
ing Switch is 36.3%, 57.1%, 18.3%, and 41.9%, respectively.
The above results show that the malicious application at the
back has many chances to successfully hijack buffered packets
that are processed by a target application at the front.

Inter-Chain Hijacking Probability with Random Positions
of Target Apps. As we shown in Table III, the hijacking
probability is affected by the positions of the malicious appli-
cation and the target application. Particularly, the processing
delays of applications in the front of the malicious or the
target application have a remarkable impacts on the inter-
chain hijacking probability. We implement a Java script to
randomize the positions of the applications in the two pro-
cessing chains 1, i.e., each application is randomly assigned
to one of the eight positions in the two processing chains.
Moreover, we randomly insert the malicious applications into
the positions between two target applications. Figure 9 shows
the Complementary Cumulative Distribution Function (CCDF)
of inter-chain hijacking with random positions of target and
malicious applications. Here, we do not show the CCDF of
intra-chain hijacking probability since the intra-chain hijacking

1We find that Load Balancer must be put behind Device Manager or be put
behind Topology Manager. Otherwise, Load Balancer cannot work properly.
Thus, we keep their relative orders when randomizing their positions.
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Fig. 10: Errors of Inter-Chain Hijacking Probability between
Theoretical and Experimental Results.

probability is either 0 or 100%, which is straightforward.
As shown in Figure 9, the hijacking probability with any of
the five applications exceeds 80% in more than 30% cases
where the positions of applications are randomized. Moreover,
95% cases have a hijacking probability of more than 10%
regardless of which is the target application. Above results
demonstrate that a malicious application has many chances
to hijack buffered packets no matter what the positions of
applications are.

Errors of Inter-Chain Hijacking Probability between The-
oretical and Experimental Results. By applying Equations 8
and 9 in Section V, we also calculate the theoretical inter-
chain hijacking probability with different positions of target
and malicious applications. We use pt and pe to denote the
theoretical and experimental inter-chain hijacking probability,
respectively. We define two types of errors, i.e., the absolute
error |pt − pe| and the relative error |pt−pe|pe

. As shown in
Figure 10, the absolute error is smaller than 0.1 in about
80% cases. The largest absolute error is 0.12. Moreover, the
relative error is below 0.15 in about 70% cases. These results
demonstrate that theoretical results are close to experimental
results in most cases. However, in a few cases, the relative
errors are large, although all absolute errors are small. For
example, the relative errors can exceed 0.3 in about 10%
cases. By analyzing the results, we find that the inter-chain
hijacking probabilities in these cases are very small. Thus,
even a small difference between theoretical and experimental
results can lead to a large relative error. For example, we find
there is an inter-chain hijacking probability of 0.011 in our
experimental results, and the related theoretical probability is
0.016. We can calculate the absolute error is 0.005, which is
small. However, the calculated relative error is 0.45, which is
large. It is reasonable for these errors between theoretical and
experimental results. As we shown in Appendix A, although
the processing delays can be approximately modeled as the
log-logistic distribution, there are still some differences that
lead to errors.

C. Attack Effectiveness

We also conduct experiments to show the attack effective-
ness of the four attacks exploiting the buffered packet hijacking
vulnerability.

Cross-App Poisoning. We build the network topology in
Figure 3 of Section IV. We launch an attack with the mali-
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cious application to poison the learning switch application by
hijacking and modifying the source MAC address of a buffered
packet. The learning switch application maintains mappings
between MAC addresses of hosts and switch ports that connect
to the hosts. It learns a mapping by analyzing the header of
a data packet and the field of in_port in a PACKET_IN
message. Figure 11 shows the log of the learning switch
application that learns the mappings. At first, a host h1 sends
a new flow to another host h2. The switch S1 buffers the first
packet of the flow and sends a copy of it to the controller with a
PACKET_IN message. The learning switch application learns
the host h1 with the MAC address 58:ef:68:13:4e:87, which is
attached to port 1 of the switch. The malicious application also
receives the PACKET_IN message. It manipulates the source
MAC address of the buffered packet to the MAC address of h3
and makes the buffered packet resent to the controller. Thus,
the learning switch application learns a false mapping between
the MAC address 10:7b:44:46:e7:c1 of the host h3 and the
switch port 1, which is shown in Figure 11. Experiments show
that any flow to the host h3 is falsely directed to the host h1
after the learning switch application is poisoned. It causes a
DoS attack.

Fig. 11: The learning switch application is poisoned by the
malicious application. It learns two hosts in a switch port.

Network Security Policy Bypass. We build the network
topology in Figure 4 of Section IV. We use a host to implement
the firewall in Figure 4. The host has two network cards
that connect the switches S1 and S3, respectively. We enable
IP forwarding and configure iptables in the host to
forward packets between the two network cards. We configure
iptables to block any packets from the host h1 to the host
h2. We leverage the host h1 to send a UDP packet to h2 and
launch tcpdump in the host h2 to see if there is any packet
from h1. As shown in Figure 12a, the host h2 does not receive
any packet from h1. However, when h1 sends a UDP packet
again after some time, the malicious application hijacks the
buffered UDP packet and forwards it to another switch port
that does not connect to the firewall. As a result, the host h3
receives the UDP packet, which is shown in Figure 12b.

(a) When the malicious application hijacks no buffered packet

(b) When the malicious application hijacks a buffered packet

Fig. 12: A host received a UDP packet that should have been
blocked by the firewall.

TCP Three-Way Handshake Disruption. We build the net-
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Fig. 13: Connection Completion Time (CCT) for TCP flows.

work topology in Figure 5 of Section IV and launch an attack
to disrupt TCP three-way handshake in the network. We use
iperf to randomly generate many TCP flows among hosts.
Our attack significantly delays establishing a TCP connection
between two hosts by dropping the first TCP SYN packet.
Figure 13 shows the cumulative distribution function (CDF)
of connection completion time (CCT) for TCP flows. From
the results, we can see that CCT for more than 90% flows is
below than 10 ms without the attack. The longest CCT is about
50 ms. However, CCT of all flows is more than 1000 ms with
the attack, which is twenty times longer than the longest CCT
in normal cases. It is because the Linux operating system waits
for one second before sending a second TCP SYN packet if the
first TCP SYN packet is dropped. Such delays of TCP three-
way handshake can significantly increase the flow completion
time (FCT) for small flows whose FCT is typically smaller
than 50 ms [24]. It inevitably degrades the user experience on
using the network and the revenue for operators to provide
their network services [25].

Control Traffic Amplification. We build the network topology
in Figure 6. We use TCPReplay [42] to replay the real
network traffic trace from CAIDA [43] as background flows 2.
We launch an attack that copies massive buffered packets to
consume bandwidth of the SDN control channel and CPU
resources of switches and controllers. Figure 14 shows the
results. The number of action buckets decides the amplification
factor. Figure 14a shows that the available bandwidth of the
control channel is significantly decreased with the increase
in the number of actions buckets. Particularly, the available
bandwidth is close to 0% when there are 24 buckets, which
makes new flows cannot be served. Figure 14b shows that the
CPU utilization reaches 100% for an SDN switch when the
number of action buckets increases to 24. However, the CPU
utilization for the controller only reaches 12% when there are
24 action buckets. It is because the CPU of the host running
the controller has more processing powers than switches.
Moreover, since the control channel is saturated when the
number of action buckets reaches 24, no more control traffic is
delivered to the controller to consume its CPU resources. The
CPU utilization of the controller tends to be stabilized when
there are more than 24 action buckets.

2As the traffic trace contains a huge number of flows that can overload
processing capacities of both switches and controllers, we limit the total rate
of flows to less than 100 Mbps.
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Fig. 14: The effects of control traffic amplification on the
bandwidth of control channel and CPU utilization.

D. Vulnerability Disclosure and Response

We reported the identified vulnerability to major SDN
vendors and communities. Four SDN vendors/communities
replied to us:

• Pica8 is a mainstream SDN vendor on providing industry-
leading SDN switches. They acknowledged our report
and said “we have filed tracking tickets and are waiting
for product management decision on releasing the fix in
major/minor or patch builds”.

• ONOS is a mainstream carrier-grade SDN controller that
has been used by many service providers and enterprises.
They helped us file a defect in the ONOS project and the
ONOS community with the comment that “the defect will
be visible to the community and this info can be available
for someone to pick it up to fix it”.

• Ryu is an open and popular SDN controller, which is
maintained by the RYU community. Several developers
and users in the community confirmed our report.

• Open vSwitch is the most popular open-source software
SDN switches that enable OpenFlow. We discussed with
them and they said that “OpenFlow and Open vSwitch
provide no mechanisms for isolation between apps”.

VII. COUNTERMEASURE

The root cause of our attacks is the missing check on
the consistency between buffer IDs and match fields due
to a vulnerability in the OpenFlow protocol. One intuitive
countermeasure is to add the consistency checking on the SDN

PACKET_IN
Notifier

Flow Rule
Service

Other Core
Services

SDN Controller
PACKET_IN FLOW_MOD

API Calls
Extractor

Consistency
Checker

SDN Applications

ConCheck

Buffered 
Packets DB

Fig. 15: The architecture of ConCheck.

switches. However, it may require modifying the firmware
in all SDN switches, and it is a challenge to update the
firmware on various types of legacy SDN switches. Thus, we
present a centralized defense solution named ConCheck on
SDN controllers. It is lightweight and requires no modification
on SDN applications and hardware. ConCheck can be easily
deployed in SDN controllers to prevent a malicious application
from hijacking buffered packets.

A. Design

Figure 15 shows the architecture of ConCheck, which
works between the applications and the core services of the
SDN controller. The main idea is to check the consistency be-
tween the headers of buffered packets and the match fields in a
FLOW_MOD message. When there is inconsistency, ConCheck
blocks API calls that an application uses to generate flow
rules. Thus, hijacking buffered packets can be prevented.
ConCheck consists of two main modules: API Calls Extractor
and Consistency Checker.

API Calls Extractor. To extract necessary messages for
further analysis, this module intercepts API calls between SDN
applications and core services. Specifically, it focuses on two
types of API calls that enforce two functionalities, i.e., reading
a PACKET_IN message and generating a FLOW_MOD message
to install flow rules. By intercepting the first API call, the
module extracts a buffer ID and the header of the buffered
packet with the ID from a PACKET_IN message. API Calls
Extractor makes a pair of them and stores the information in
Buffered Packets DB for further analysis. By intercepting the
second API call, it extracts a buffer ID and match fields from a
FLOW_MOD message. The extracted information is then passed
to Consistency Checker to detect potential attacks exploiting
buffered packet hijacking. Meanwhile, the second API call will
not be passed to flow rule service in the SDN controller until
Consistency Checker checks there is no inconsistency.

Consistency Checker. This module checks if there is inconsis-
tency for the API call that generates a FLOW_MOD message. As
we mentioned before, applications hijacking buffered packets
to disrupt SDN must install a flow rule with a FLOW_MOD
message. However, the message contains a buffer ID of a
buffered packet that matches no flow rules installed by the
message. In other words, the header of the buffered packet is
inconsistent with the match fields specified in the FLOW_MOD
message. As Buffered Packets DB has stored the mapping
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API: 
PACKET_IN
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FLOW_MOD

buf_id: 2

attack

Fig. 16: An example showing ConCheck checks the inconsis-
tency to detect attacks that hijack buffered packets.

between the buffer ID and the header of the buffered packet
with that buffer ID, Consistency Checker can use the mapping
to check the potential inconsistency in the API call that
generates a FLOW_MOD message. Figure 16 shows an example.
The API call of generating flow rules contains a buffer ID
of 2 and a match field of matching packets with the IP
source address of 1.1.1.1. However, from Buffered Packets DB,
Consistency Checker knows that the buffered packet with the
buffer ID of 2 has the IP source address of 10.0.0.2. Thus,
Consistency Checker detects there is inconsistency between
the header of the buffered packet and the match fields in the
API call of generating flow rules. To prevent hijacking buffered
packets, the API call will be blocked.

B. Evaluation

As ConCheck intercepts API calls of reading PACKET_IN
and generating FLOW_MOD messages, it adds some extra
delays for applications to install flow rules. Therefore, we
implement a prototype of ConCheck in the Floodlight con-
troller and measure the performance for applications to install
flow rules with and without ConCheck, respectively. Figure 17
shows the CDF of the time for applications to install flow rules
(flow setup time). We can see that CDF of flow setup time with
ConCheck is close to that without ConCheck. More than 95%
flow setup time is less than 10 ms no matter if ConCheck
is deployed. Thus, ConCheck is a lightweight countermeasure
and only introduces a negligible overhead when applications
installing flow rules.

VIII. RELATED WORK

There have been a number of studies [1], [11], [9], [7],
[10], [18] that focus on the security threats of malicious or
buggy SDN applications. Ujcich et al. [1] show cross-app
poisoning attacks, in which a low privileged application tricks
a high privileged application to take actions on its behalf by
modifying shared data objects in controllers. They provide
ProvSDN to defeat such attacks by applying data provenance
and checking violations of information flow control (IFC)
policies. Porras et al. [9] discover that a compromised app
can manipulate flow rules to create dynamic flow tunneling,
which can bypass network security polices. FortNOX [9], SE-
Floodlight [10], and VeriFlow [15] detect such kinds of attacks
by checking whether there are conflicts between flow rules
and network security policies. Our paper provides a differ-
ent attacking method for a malicious application to conduct
cross-app poisoning and network security bypass attacks, i.e.,
exploiting the buffered packet hijacking vulnerability. Since
launching attacks with the method modifies no shared data
objects in controllers and generates no rule conflicts, existing
countermeasures fail to defeat the attacks.
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Fig. 17: CDF of flow setup time.

By abusing APIs and permissions provided by controllers,
malicious applications can significantly disrupt SDN systems,
such as controller rootkits [44] and SDN environment killing
[11]. Therefore, researchers have provided many security en-
hancement systems [16], [10], [12], [7], [13], [14]. Rose-
mary [16] isolates applications in sandboxes to safeguard con-
trollers from errant operations performed by applications. SE-
Floodlight [10], Secure-Mode ONOS [12] and SDNShield [7]
provide permission-based access control to enforce minimum
required privileges to individual applications. AEGIS [13]
and Controller DAC [14] enable dynamic access control for
applications to protect controllers against API abuse. Previous
defense systems effectively limit the SDN attack surface due
to APIs and permissions abuse. However, they are not enough
to prevent attacks that exploits the buffered packet hijacking
vulnerability since an attacker may leverage an application that
naturally has the permission of flow rule installation.

Researchers have provided a few automated analysis
and test frameworks [45], [46], [47], [48] to find potential
vulnerabilities in SDN applications and other components.
SHIELD [45] provides an automated framework to efficiently
conduct static analysis of SDN applications, which requires
source codes of applications and well-defined malicious behav-
ior to find malicious applications. Applications with unknown
malicious behaviors or unavailable source codes may not
be easily detected by it. DELTA [46], ATTAIN [47], and
BEADS [48] aim to automatically discover new vulnerabil-
ities resulting from applications, controllers, switches, and
malicious hosts. They have effectively identified tens of new
vulnerabilities. However, they do not find the buffered packet
hijacking vulnerability and are necessarily incomplete due to
their reliance on fuzzing.

There are some attacks generated by malicious hosts in
SDN, such as topology poisoning [2], identifier binding [49],
flow table saturation [23], control channel disruption [50],
and PACKET_IN flooding [27]. Researchers have provided
countermeasures [2], [49], [23], [50] against these attacks.
Here, we focus on defense systems against the PACKET_IN
flooding attack, i.e., FloodGuard [27], FloodDefender [21],
AVANT-GUARD [29], and LineSwitch [28], since our paper
provides a similar attack. As we detailed in Section IV, the
defense systems can be evaded by our attack that triggers
PACKET_IN flooding with benign flows by hijacking buffered
packets rather than with a number of malicious flows.
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IX. CONCLUSION

In this paper, we identify a new vulnerability named
buffered packet hijacking that is inherent in SDN rule in-
stallation for a new flow. By exploiting the vulnerability, we
discover a number of attacks that can significantly disrupt
different layers of SDN and evade existing defense systems.
We build a model and conduct a theoretical analysis to derive
the probability of successfully hijacking a buffered packet.
We evaluate the feasibility and effectiveness of the attacks
in a real SDN testbed. Finally, we develop a lightweight
and application-transparent countermeasure that can be readily
deployed in SDN controllers as a patch.
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APPENDIX A
DISTRIBUTION OF PROCESSING TIME

To model the processing delays of SDN applications, we
collect a large number of processing delays of various SDN ap-
plications. We build a real SDN testbed consisting of commer-
cial hardware SDN switches [32] and the Floodlight con-
troller. We generate flows in the testbed to trigger PACKET_IN
messages. We measure the processing delays of eight popular
SDN applications running on the controller. They range from
basic network service and network optimizations to advanced

network security enhancement. For each application, we collect
1,000,000 processing delays to draw its probability density. As
shown in Figure 18, the distribution of processing delays can
be well modeled with the log-logistic distribution with different
parameters.
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Fig. 18: PDF of processing delays of PACKET_IN messages
for different SDN applications. Here, LL(α, β) denotes the
log-logistic distribution with parameters α and β.
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