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Abstract
Using the two-channel Kohn and inverse Kohn variational methods, we investigate ground-state
positronium (Ps) formation in positron-hydrogen collisions in the Ore gap. We find two zeros in
the Ps-formation scattering amplitude fPs and corresponding deep minima in the Ps-formation
differential cross section (DCS), and we determine their positions accurately. Due to azimuthal
symmetry, each zero in fPs is part of separate circular rings of zeros for an azimuthal angle range
of zero to 2π. We study the velocity field associated with fPs in which we treat the magnitude of
the momentum of the incident positron and the angle of the outgoing positronium as variables,
and we refer to this velocity field as the extended velocity field. We show that it has two vortices
that are connected with the zeros in fPs, and that it rotates in opposite directions around the two
zeros in fPs. Previously, vortices in the velocity field associated with the transition matrix element
have provided an explanation for deep minima in DCSs for direct ionization. With the
introduction of the extended velocity field, our work shows that vortices can occur also for
charge exchange.

Keywords: positron collisions, vortices, positronium, charge exchange

(Some figures may appear in colour only in the online journal)

1. Introduction

In atomic physics one is interested in structures in differential
cross sections (DCSs). Currently, there is an interest in deep
minima in the triply differential cross section (TDCS) for
ionization by electron or positron impact and in their inter-
pretation in terms of vortices. Recently, Macek etal [1]
provided an explanation for a deep minimum in the TDCS
measurements of electron-helium ionization [2] in terms of a
vortex. Their work led to interest in vortices for ionization by
electron and positron impact. For instance, Ward and Macek
[3] examined K-shell ionization of a model carbon atom by
fast electron impact using the Coulomb–Born approximation
and noted a vortex in the velocity field associated with the

transition matrix element. Also, Navarrete et al [4] and
Navarrete and Barrachina [5, 6] found deep minima in the
fully DCS for positron-impact ionization of atomic hydrogen.
They established that the deep minima are due to zeros in the
transition matrix element and that the zeros are related to
vortices in the generalized velocity field associated with this
element [5–7]. Navarrete and Barrachina [5–7] found a pair of
zeros, and they noticed that the velocity field rotates in
opposite directions around the two zeros.

Vortices have also been discussed for ionization by other
projectiles. Macek etal [8] performed a time-dependent
calculation of proton-hydrogen collisions and addressed
vortices associated with zeros in a single-particle wave
function and with zeros in the momentum distribution of the
ionized electron. They discussed the transfer of angular
momentum for the collision. Macek etal [8] and Macek [9]
discussed ring vortices [10] and Macek [9] noted that there
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may be ring vortices associated with the first-Born approx-
imation (FBA) treatment of high-velocity collisions.
Recently, Ovchinnikov et al [11] considered a time-depen-
dent wave function that was a superposition of two states, 1s
and 2p+, of atomic hydrogen, and showed rotation of the
probability density distribution around a zero. Citations of
papers on vortices for ionization by ions, antiprotons and
photons are given in [3]. Very recently, Ngoko Djiokap et al
[12, 13] have studied electron vortices in ionization by cir-
cularly polarized UV pulses and Larionov et al [14] have
considered vortices for ionization of a hydrogen-like atom by
an ultrashort electromagnetic pulse. We note that McCullough
et al [15] found a vortex for the collinear +H H2 chemical
exchange reaction [16], and Kuppermann et al [17] discussed
vortices in stream lines plots for this reaction.

Dirac [18] showed that quantized vortices can occur
around nodes of wave functions where the associated field
would be a quantum probability field. Hirschfelder etal
[16, 19], using Madelung’s [20] hydrodynamical interpreta-
tion of quantum mechanics, connected vortices associated
with single-particle wave functions to those in fluid dynamics
(see Ghosh and Deb [21]). The hydrodynamic formulation of
wave mechanics considers the flow of a quantum mechanical
probability, and the derivation depends on the wave function
being single-valued and continuous [10, 16, 19, 20]. (Wallace
[22] presented carefully the case that a quantization condition
should be included with Madelung’s hydrodynamic equation
to obtain the Schrödinger equation. Navarrete and Barrachina
[6] noted that there is a controversy regarding the equivalence
of these equations [6, 22, 23].) The dynamics of vortices in
velocity fields associated with wave functions have been
studied in detail by Bialynicki-Birula etal [10], who used the
quantum hydrodynamic approach of Madelung [20] and
considered both unbound vortex lines and vortex rings.
Importantly, they related the vortices present in the velocity
field to zeros in a single-particle complex wave function that
is a solution to the time-dependent Schrödinger equation.
Since the scattering wave function in coordinate space at
asymptotic times can be connected to the momentum-space
wave function through the imaging theorem [4–7, 24–28],
zeros in the coordinate-space wave function can be mapped as
zeros in the momentum-space wave function. Therefore,
vortices in the velocity field associated with zeros in the
coordinate-space scattering wave function at asymptotic times
are evidenced as zeros in the momentum distribution, which
is a quantity that may be experimentally assessable.

In this paper, we present two isolated first-order zeros in
Ps-formation scattering amplitude fPs, and two corresponding
deep minima in the Ps-formation DCS, for positron-hydrogen
collisions in the Ore gap. We connect the zeros to vortices in
an extended velocity field associated with fPs when both k and
θ in fPs are allowed to vary, where k is the magnitude of the
momentum of the incident positron and θ is the angle of the
outgoing Ps. We determine fPs using the two-channel K-
matrices that we calculate using the Kohn and inverse Kohn
variational methods, which are nonperturbative methods and
are known to be capable of providing very accurate results if
flexible trial functions are used [29, 30]. The Ore gap for

positron-atom collisions is the energy region between the
threshold for ground-state Ps formation and the first excitation
threshold of the target atom, where the only channels open are
elastic scattering and Ps(1s) formation (ignoring annihilation)
[29, 31]. For positron-hydrogen collisions, the energy range
of the incident positron for the Ore gap is 6.8–10.2 eV
(k=0.7071 to 0.8660 a.u.). While no experimental mea-
surements have been made of the absolute Ps-formation DCS
for positron collisions with atomic hydrogen, they have
recently been obtained for He, Ar, H2 and CO2 near the
forward direction [32]. The work that we present in this paper
may be of interest to the atomic physics community due to the
studies of structures in DCSs, the new experimental mea-
surements of the Ps-formation DCS [32] and the recent lit-
erature on vortices for atomic ionization [1, 3–9, 11–14].

The advantage of obtaining zeros in the scattering
amplitude for charge exchange rather than for atomic ioniz-
ation is that there are fewer degrees of freedom. Ground-state
Ps formation in positron collisions from ground-state atomic
hydrogen is an example of charge exchange. For this process,
when one takes the z-axis to be parallel to the direction of the
incident positron, the scattering amplitude for this process, fPs,
depends only on the physical quantities k and θ.

The theoretical existence of narrow minima in the DCS
for Ps formation in positron-hydrogen collisions has been
presented by Drachman etal [33]. They calculated the Ps-
formation DCS using the two-state coupled static approx-
imation with correlation [34, 35] for the first two partial
waves and the Born approximation for the higher partial
waves. Mandal etal [36] applied the distorted-wave
approximation (DWA), the distorted-wave polarization
approximation (DWPA), and the FBA to Ps formation in
positron-hydrogen collisions. They obtained a minimum in
the DCS that corresponds in energy, 10.2 eV, to the second
minimum that Drachman etal [33] obtained, but the angles
determined with the various approximations are different. The
DWA and FBA are not expected to be reliable at such a low
energy, and one should not expect the DWPA to provide
accurate results at low energies. Using the inverse Kohn and
Kohn variational methods, we provide an accurate determi-
nation of the positions of deep minima in the Ps-forma-
tion DCS.

The outline of our paper is as follows. In section 2, we
present the theory of the scattering calculations for Ps for-
mation in positron-hydrogen collisions in the Ore gap, where
we give an outline of the Kohn variational method and the s-
wave trial function. In section 3, we discuss the numerical
investigation of the K-matrices and we present our results in
section 4. Specifically, in section 4.1 we give our results of
the deep minima in the Ps-formation DCS and the positions of
the zeros in fPs, whereas in section 4.2 we define the velocity
field associated with fPs and discuss the extended velocity
field vext, including vortices associated with this field. We
summarize our findings in section 5. In appendix A, we
review the velocity field v associated with the transition
amplitude for ionization and we give a similar expression for
the velocity field v that is associated with the Ps-formation
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scattering amplitude fPs. Finally, in appendix B, we relate
first-order zeros in fPs to vortices in vext.

We use atomic units throughout unless explicitly stated
otherwise, and we quote the angle θ of the outgoing Ps in
degrees.

2. Theory of the scattering calculations

We use the Kohn and inverse Kohn variational methods to
evaluate K-matrices for ground-state Ps formation in positron-
hydrogen collisions in the Ore gap. The Kohn variational
method is described in detail in the papers [29, 30, 37, 38].
Here, we present an outline of the Kohn variational method
and the form of the wave function specifically for s-wave
scattering. The two-channel stationary Kohn functional from
which the variational values of the K-matrix elements, Kv

ij, can
be determined using the trial values of the K-matrix elements,
Kt
ij, and the two components of the trial function (Yt

1 and Yt
2)

has the form
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where ( )= -L H E2 in which H is the total Hamiltonian of
the positron-hydrogen system and E is the corresponding total
energy. The functional is for all partial waves but, for sim-
plicity of notation, we omit the partial wave ℓon the K-matrix
elements and on the components of the trial wave function.
For s-wave scattering, following [29, 30], we choose for the
two components of the trial product-form wave function to
have the form:
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where ( )f p= - -r e r
H 2

1 2 2 and ( ) ( )f p= - -r e8 r
Ps 12

1 2 212 are
the ground-state wave functions of hydrogen and posi-
tronium, respectively. The position vectors of the positron
and the electron with respect to the proton (which is treated
as infinitely massive) are r1 and r2, respectively, and

∣ ∣= -r rr12 1 2 . In equation (2), ( )r = +r r 21 2 is the center
of mass position vector for the positronium with respect to the
proton. The momenta of the incident positron and the out-
going Ps are given by k and k, respectively. The magnitude
of these momenta are related through energy conservation
according to

( )k
= - = -E

k

M2

1

2 2

1

4
, 3
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where MPs=2 a.u., the mass of the outgoing Ps atom. The
Hylleraas-type short-range terms fj in equation (2) are
given by

( )( )f = a b g- + +e r r r , 4i
r r r k l m

1 2 12
i i i1 2 12

where α, β and γ are nonlinear parameters, and ki, li and mi

are nonnegative integer powers. (We choose α>0, γ>0,
and β>−1.) The coefficients ci (i=1→N) in equation (2)
are linear variational parameters. We obtain the number of
terms N in each sum in equation (2) by selecting the value
of ω, where ω is a nonnegative integer given by
ki+li+mi�ω [29, 30]. For ω=6, 7, 8, 9 and 10, N=84,
120, 165, 220, and 286, respectively. The shielding functions
fsh(ρ) and fsh(r1) ensure that the singularities at the origin in
the spherical Neumann functions n0(κρ) and ( )n kr0 1 , respec-
tively, are removed. A functional similar to equation (1) gives
rise to the inverse Kohn variational method [29, 38], which
we primarily use as we find empirically that it is less affected
by the Schwartz singularities [39, 40]. We do compare the K-
matrices and the positions of the zeros in fPs that we obtain
using both variational methods to gauge the accuracy of these
results.

If one takes the z-axis to be parallel to the momentum of
the incident positron, then, due to azimuthal symmetry about
the z-axis, the scattering amplitude for Ps(1s) formation fPs
can be expanded in terms of Legendre polynomials according
to [41]

( ) ( ) ( ) ( )åq
k

q= +f k
M

k
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where θ is the angle of the outgoing Ps. T ℓ
12 is the ℓth partial-

wave T-matrix element for Ps formation which can be
determined from the ℓth partial-wave K-matrix Kℓ according
to [41]
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The azimuthal symmetry of the scattering means that fPs
depends only on two physical quantities, which may be
chosen to be (k, θ), or (κz, κx), where κz and κx are the z- and
x-components of k, respectively, and the x-axis is in the
scattering plane of k and k and to the left of the z-axis. The
Ps-formation DCS is related to fPs by

∣ ( )∣ ( )s k
q

W
=

d

d M k
f k, 7Ps

Ps
Ps

2

with the ratio of ortho-Ps to para-Ps being 3:1 [37].

3. Numerical investigation of the variational
K-matrices

The present calculations for the K-matrices extend the var-
iational calculations of Humberston etal [30] for the s-, p-
and d-waves to higher partial waves. An error in the d-wave
calculation of [30] had recently been corrected as reported in
Woods etal [38] and Van Reeth etal [42]. We calculate the
f-wave K-matrix elements using sets of short-range terms in
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the trial wave function with the three units of angular
momentum on either the positron or the electron and a set in
which one unit is associated with the electron and two with
the positron [29, 30, 37, 43]. Using only short-range terms
with all angular momentum on either the positron or the
electron we also calculate three higher partial waves (the g-,
h- and i-waves). We restrict the flexibility of the wave func-
tion for these partial waves since their contributions to fPs and
to the corresponding DCS are not expected to be very large in
the energy range of the Ore gap. We think that the inclusion
of all possible sets of short-range terms in which the angular
momentum is shared between the positron and the electron,
following the procedure of Schwartz [43], is not warranted
given the significant amount of extra work it would involve.
For each symmetry that we consider in the trial function for a
particular partial wave, we use the same number of short-
range terms.

Due to near-linear dependence between terms in the
wave function we encounter numerical issues with the eva-
luation of the higher partial-waves contributions which
restrict the number of short-range terms we can include
[39, 40]. With our selection of the ω values for the different
partial waves, we obtain in the vicinity of the zeros in fPs
inverse Kohn matrix elements that are smooth functions of k.
We compute the K-matrices on a very fine grid in k in the
vicinity of each of the two zeros in fPs. In the vicinity of the
first zero, we include the first four partial waves and consider
the ω values 10, 9, 8, and 8 for ℓ=0, 1, 2 and 3, respectively.
However, in the vicinity of the second zero, and for calcu-
lations over a wider range of k in the Ore gap, we include the
first seven partial waves and consider the ω values of 9, 9, 8,
8, 7, 7, and 7 for ℓ=0, 1, 2, 3, 4, 5 and 6, respectively.

Since the K-matrices from the inverse Kohn method are
generally more stable than those from the Kohn method, we
use the inverse Kohn K-matrices for the results that we give in
section 4, except for the comparison of the positions of the
zeros that we obtain using the two methods. We find that at
the positions of the two zeros in fPs, for the first four partial
waves the Kohn and inverse Kohn K-matrices agree very
well; their difference is less than 0.63%. At the position of the
second zero, the agreement between the K-matrices from the
two methods is not as good for the higher partial waves as for
the lower partial waves. For the g- and h-waves, we find that
the difference is about 6% or less, and for the i-wave that the
difference is within 14%. However, these higher partial waves
contribute less significantly to the values of the positions of
the zeros in fPs than do the lower partial waves together.

We estimate uncertainties in the inverse Kohn K-matrix
elements by computing the percentage ratio ( ( )w= -R Kij ij

( )) ( )w w- - ´K K1 1 100%ij ij , where Kij(ω) are the K-
matrix elements at a particular ω value that we use in the
calculation. We compute this percentage ratio at the positions
of the two zeros. For the ℓ=0, 1 and 2 partial waves, this
ratio is within 2% except at the position of the first zero where
for the d-wave the ratio for K12 is within 3% and for K22 is
within 18%. For the ℓ=3 partial wave, we find that for all
matrix elements the ratio is within 2% except at the position
of the second zero where the ratio for K22 is about 50%. In

general, we do not achieve the same accuracy and confidence
in the K-matrices for the ℓ>3 partial wave as for the lower
partial waves.

4. Results

4.1. Deep minima in the Ps-formation DCS and positions of the
zeros in the Ps-formation scattering amplitude fPs

In figure 1, we show the Ps-formation DCS and the nodal
lines of Re[fPs]=0 and Im[fPs]=0 as functions of k and θ.
The nodal line of Re[fPs] follows a region where the Ps-for-
mation DCS is very small, starting rapidly from threshold up
to a maximum and then decreasing slowly with increasing k.
The nodal line of Im[fPs] intercepts the nodal line of Re[fPs] at
two points at which fPs is zero. The first zero of fPs lies very
close to threshold, and the second one lies in the region where
the nodal line of Re[fPs] does not vary much with θ. A three-
dimensional plot of the common logarithm of the Ps-forma-
tion DCS, figure 2(a), reveals two deep and narrow minima,
one near threshold at k=0.7095 and the other at k=0.8124.
These minima can be seen more closely in the three-dimen-
sional plots of figures 2(b) and (c), respectively. We show a
two-dimensional plot of the logarithm of the Ps-formation
DCS as a function of θ for k=0.7095 and 0.8124 in
figures 3(a) and (b), respectively. In figure 3(a) the deep
minimum occurs at 70.8◦, while in figure 3(b) it occurs at a
smaller angle of 52.3°.

Drachman etal [33] performed a pioneering calculation
of the Ps-formation DCS for positron-hydrogen collisions.
For the first two partial waves they used the K-matrices from
the coupled static approximation with correlation [34, 35],
and for the higher partial waves they used the Born

Figure 1. The common logarithm of the Ps-formation differential
cross section, [ ]log DCS10 , as a function of k and θ, for positron-
hydrogen collisions over the most of the Ore gap. The nodal lines of
Re[fPs]=0 and Im[fPs]=0 are shown by the solid blue line and the
dashed black line, respectively.
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approximation. They obtained narrow minima in the Ps-for-
mation DCS, one at (k0=0.80, θ0=57°) and another at
(k0=0.866, θ0=51°), where k=0.866 is the first excita-
tion threshold of H(n=2). The position of the second deep
minimum that we obtain using the inverse Kohn variational
method is comparable to the position of the first minimum
that Drachman etal [33] obtained using a simpler approx-
imation, although the minimum we obtain is orders of mag-
nitude deeper. Drachman etal [33] did not report the first
deep minimum that we obtain using a fine mesh in k.

In table 1, we compare the positions (k0, θ0) of the two
zeros in fPs that we obtain using the inverse Kohn and Kohn
variational methods. For the position of the first zero, the k0

Figure 2. The common logarithm of the Ps-formation differential cross section for positron-hydrogen collisions as a function of k and θ.
(a) shows two deep minima in the k range of 0.708–0.83, (b) shows the first deep minimum and (c) shows the second deep minimum.

Figure 3. The common logarithm of the Ps-formation differential cross section, [ ]log DCS10 , as a function of θ for k=0.7095 (a) and for
k=0.8124 (b).

Table 1. Comparison of the positions (k0, θ0) of the zeros in fPs
from the inverse Kohn and Kohn K-matrices. (a) First zero,
(b) Second zero.

Method k0 θ0 (deg.)

(a)

Inverse Kohn 0.7095 70.8
Kohn 0.7095 70.7

(b)

Inverse Kohn 0.8124 52.3
Kohn 0.8110 52.6

5

J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 205201 A W Alrowaily et al



values agree to four significant figures between the two
methods and the θ0 values differ by less than 0.15%. The
difference between the two methods is slightly more for the
second zero: the k0 values differ by less than 0.2% and the θ0
values by less than 0.6%. Thus, we conclude that the values
of the positions of the zeros determined by the inverse Kohn
and Kohn variational methods are close. In tables 2 and 3, and
in the figures, we use the inverse Kohn results.

Each zero in fPs given in table 1 is one of a pair of zeros
that intersects the κy=0 plane. One zero of the pair occurs at
the azimuthal angle of j=0, or at k k k k= =,z z x x0 0 (which
is the zero given in the tables), while the other due to azimuthal
symmetry occurs at j=π, or at k k k k= = -,z z x x0 0. Due to
azimuthal symmetry each pair of zeros is associated with a
circular ring of zeros in fPs, and in the Ps-formation DCS, about
the z-axis. Since we find two zeros in fPs, we conclude that there
are two distinct circular rings of zeros in the Ore gap.

Table 2 shows the convergence of the positions of the
zeros in fPs with respect to the maximum partial wave, ℓmax,
that we include in the truncated sum of fPs, equation (5).

Interestingly, we obtain the first zero with only the first two
partial waves while the first three partial waves are needed to
obtain the second zero. For the first zero, the position of the
first zero stays stable to three significant figures in k0 and to
two significant figures in θ0 in increasing the number of
partial waves from three to four. For the second zero, we find
that the k0 and θ0 values of the position of the second zero are
stable to two significant figures between including the first six
partial waves and including the first seven.

Ps(1s)-formation in positron-hydrogen collisions is a par-
ticularly simple process for studying a zero in the scattering
amplitude and corresponding DCS since only two partial waves
are necessary to obtain the first zero. In contrast, for fast elec-
tron-impact ionization of inner-shell carbon, Ward and Macek
[3] found that ℓ=0, 1 and 2, m=0 and ℓ=0, m±1 com-
ponents of a multipole expansion of the transition matrix ele-
ment (about the momentum transfer axis) are all necessary to
obtain a deep minimum in the TDCS. Colgan etal [44] found
that in a time-dependent close-coupling calculation of electron-
impact ionization of helium for an incident electron energy of
64.6 eV at least the first three partial waves are needed to obtain
a minimum in the TDCS. For this process, Feagin [45]
expanded the scattering amplitude in cylindrical partial waves
of the electron pair about the vortex singularity. His findings are
similar to ours for the first zero in that, although the deep
minimum in the cross section is obtained only with the first two
terms in an expansion of the scattering amplitude, the inclusion
of the next term significantly improves the results.

In table 3, we show the variation of the position (k0, θ0)
of each zero in fPs with respect to w w¢ = - i, where i=0, 1
and 2, and ω is related to the number of short-range terms N in
each sum in the components of a trial partial-wave scattering

Table 2. Convergence of the k0 and θ0 positions of the first and
second zeros in fPs with respect to the maximum partial wave, ℓmax in
fPs. (a) First zero, (b) Second zero.

ℓmax k0 θ0 (deg.)

(a)

1 0.7102 77.5
2 0.7096 71.2
3 0.7095 70.8

(b)

2 0.779 65.7
3 0.797 56.6
4 0.8102 52.9
5 0.8138 52.0
6 0.8124 52.3

Table 3. Convergence of the (k0, θ0) positions of the first and second
zeros in fPs with respect to w w¢ = - i, where i=0, 1 and 2, and ω
is related to the number of terms in each sum in the components of a
trial partial-wave scattering wave function in the full calculation (see
section 3 and the last paragraph of section 4.1). (a) First zero, (b)
Second zero.

w¢ k0 θ0 (deg.)

(a)

ω 0.7095 70.8
ω − 1 0.7095 70.6
ω − 2 0.7095 71.1

(b)

ω 0.8124 52.3
ω − 1 0.8112 52.2
ω − 2 0.8144 51.9

Figure 4. Unit vector of the extended velocity field v̂ext (solid blue
arrows) associated with fPs, nodal lines of Re[fPs] (solid blue line)
and Im[fPs] (dashed black line) and a density plot of [ ]log DCS10 for
Ps formation in positron-hydrogen collisions for a (κz, κx) grid that
encloses both zeros in fPs. (There are some irregularities in the nodal
lines and some anomalies in v̂ext that may be due to singularities in
the K-matrices in this (κz, κx) grid.)
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wave function that we use in the full calculation (see section 3
and equation (2) for the s-wave). The value of ω that we use
for each partial wave in the full calculation is given in
section 3. Although the convergence of the position of the
zeros with respect to w¢ is not monotonically convergent,
these results indicate that the positions we obtain will not
change significantly if even a larger calculation is undertaken.
In comparison with the first zero, the second zero, for which
we also include the g-, h- and i-waves, the differences that we
obtain by reducing the w¢ value by two are more significant.

4.2. Extended velocity field ( )k qv ,ext associated with the
Ps-formation scattering amplitude fPs

In appendix A we give the equation, equation (A.3), for the
velocity field associated with the transition amplitude for
ionization that is from paper [26]. Using the terminology of
this equation we write the velocity field v associated with the
Ps-formation scattering amplitude fPs as

⎛
⎝⎜

⎞
⎠⎟[ ]

( )
∣ ∣

( )

=  = -
 - 

k
k k

v
M

f
i

M

f f f f

f

1
Im ln

2
.

8

Ps
Ps

Ps

Ps Ps Ps Ps

Ps
2

* *

In the vicinity of each zero, we determine the velocity field v that
is associated with fPs for a fixed value of k, so that
( ) ( )q̂k q k q= qv v, , , where vθ(κ, θ) is obtained from the q̂
component of k. For the first zero, we find that for k slightly
less than k0, vθ(κ, θ0) is negative, while for k slightly greater than
k0, it is positive. The opposite is the case for the second zero.

We extend the velocity field by treating both κ and θ

as variables in fPs (see appendix B), and we refer to
this quantity as the extended velocity field vext, where

( ) ( ) ˆ ( ) ˆq kk q k q k q= +q kv v v, , ,ext , and vκ(κ, θ) is obtained
from the k̂ component of k, respectively. In figure 4, we
show a density plot of the common logarithm of the Ps-for-
mation DCS, the nodal lines of Re[fPs] and Im[fPs] and the
unit vector ˆ ∣ ∣=v v vext ext ext for a (κz, κx) grid that includes

both zeros in fPs, where we treat κz and κx as independent
variables. The two zeros in fPs and in the Ps-formation DCS
occur at the two intersections of the nodal lines of Re[fPs]=0
and Im[fPs]=0. Vortices occur in vext, as can be seen from
the rotation of this quantity around the two isolated zeros.

For each zero in fPs, we compute fPs and the Ps-formation
DCS for a small grid in (κz, κx) that encloses the zero. In
figures 5(a) and (b), we show for the first and second zeros,
respectively, the nodal lines of fPs and the Ps-formation DCS.
We obtain the position of a zero, (k k,z x0 0), in fPs(κz, κx) from
an intersection of the nodal lines.

In the vicinity of a zero we can expand fPs about each
zero according to

( ) ( ) ( ) ( )åk k k k k k= - + -
=

f a b, . 9j z x
i

j

ij z z
i

ij x x
i

Ps,
1

0 0

We substitute equation (9) into equation (8) to determine vext
in the vicinity of a zero. The term, i=j=1 in equation (9),
corresponds to the linear form equation (B.1) with a11=a,
b11=ab. We find that, for the linear fit, Im[b]=Im[b11/a11]
is positive for the first zero in fPs and negative for the second
zero. We determine vf ,Ps ext, ˆ ∣ ∣=v v vext ext ext , and the circu-
lation Γ (see appendix B), by taking j=ℓmax in equation (9),
where ℓmax is the maximum ℓ value that we use in the
Legendre series of fPs in the vicinity of a zero (see section 3).
In figures 5(a) and (b) we also show v̂ext for the first and
second zeros, respectively. The extended velocity field rotates
about each zero in fPs and the rotation is in opposite directions
for the two zeros. Thus, vortices are present in vext that are
associated with zeros in fPs.

To evaluate the circulation Γ about each zero, we use
equations (8), (9) and (B.3). We find that, as expected from
appendix B, Γ=2π/MPs for the first zero, indicating coun-
terclockwise rotation, while Γ=−2π/MPs for the second
zero, indicating clockwise rotation. Thus, the sum of the two
circulations is zero for the two zeros in fPs that lie in the
upper-half κz−κx (κx>0) plane. The sum of á ñLy A for a

Figure 5. The common logarithm of the Ps-formation differential cross section [ ]log DCS10 , as a function of (κz, κx) for the region about a
zero. The intersection of the nodal lines of Re[fPs]=0 (solid blue line) and Im[fPs]=0 (dashed black line) is at the zero in fPs, (k k,z x0 0). The

solid blue arrows denote the unit vector of the extended velocity field v̂ext, for the grid (κz, κx). The arc of constant k k k= +z x0 0
2

0
2 is

shown by the red dotted–dashed line. (a): shows the region enclosing the first zero and (b): shows the region enclosing the second zero.
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pair of zeros in fPs in the same circular ring of zeros in fPs in
the κz−κx plane is zero, where Ly is the y-component of the
angular momentum operator and A is a small area (circle or
square) whose center is at the zero (see appendix B). Using
the linear expansion of fPs, equation (B.1), we find that
á ñ >L 0y A for the first zero and á ñ <L 0y A for the second zero,
and interestingly, their sum is close to zero, even though these
zeros are part of two different circular rings of zeros.

5. Summary

Using inverse Kohn K-matrices, we have accurately evaluated
the positions of two zeros in the Ps(1s)-formation scattering
amplitude fPs for positron-hydrogen collisions in the Ore gap,
and, thus, in the corresponding Ps-formation DCS [46]. We have
found that the first zero is very close to the Ps(1s)-formation
threshold while the second zero is at k=0.812 4 a.u., which
corresponds to an energy 2.18 eV above the threshold. The two
zeros in fPs are associated with two different circular rings of
zeros in fPs and in the Ps-formation DCS.

We have shown that there are vortices in the extended
velocity field vext associated with fPs, and that this velocity field
rotates around the zeros in opposite directions for the two zeros
[46]. Thus, for the same charge of the incident projectile and for
the same atomic process, the extended velocity field can rotate
in opposite directions around zeros that are part of different
circular rings. Previously, for positron-impact ionization, the
velocity field has been shown to rotate in opposite directions for
a pair of zeros that are part of the same vortex ring [5–7]. Our
work shows importantly that vortices occur for a charge-
exchange atomic process, and are therefore not restricted in
atomic collisions to direct ionization (see section 1).
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Appendix A. Velocity field for the transition
amplitude for ionization and the velocity field v
associated with the Ps-formation scattering
amplitude fPs

Vortices have been studied in the standard velocity field v that
is defined in terms of the coordinate-space wave function

( )Y r t, according to [3, 10, 16, 19]

( ) [ ( ) ( ) ( ) ( )]
∣ ( )∣

[ ( )]
( )

=
Y Y - Y Y

Y

=  Y

v r
r r r r

r

r

t
i

m

t t t t

t

m
t

,
2

, , , ,

,
1
Im ln , ,

A.1

2

* *

where m is the mass of the particle, r is the position vector, t
is time, and ∇ is the gradient operator. The coordinate-
space wave function at asymptotic times is related to the
momentum-space wave function through the imaging the-
orem [6, 26–28]. This theorem equates, within a phase
factor and a normalization factor, the coordinate-space
wave function, with r set equal to the classical value tvej in
the asymptotic limit  ¥t , to the momentum-space wave
function ( )F k t,ej , which is the Fourier transform of ( )Y r t,
[6, 26–28]. Here,vej and kej are the velocity and momentum
of an ejected particle for an infinite massive target nucleus,
respectively. For a single particle, the imaging theorem can
be written as

[∣ ( )∣ ]∣ ∣ ( )∣ ( )

( )

Y = F =
¥

=r r k k k kt d t d P dlim , , ,

A.2

r
t

t ej ej ej ejv
2 2

ej

where ( )kP ej is the momentum distribution which is time
independent [1, 6, 24–28]. The general derivation of the
relationship between the coordinate-space and momentum-
space wave functions, from which equation (A.2) can be
obtained, was derived by Kemble [24]. Recent derivations
of the imaging theorem have been given by Macek [26] and
by Briggs and Feagin [27, 28]. The imaging theorem shows
that vortices in the velocity field associated with zeros in
the coordinate-space wave function at asymptotic times are
also associated with zeros in the momentum-space wave
function.

Macek [26] gave an expression for the velocity field
( )v ke that is associated with the transition amplitude a ike ,
namely,

( ) [ ] ( )= v ak Im ln , A.3e ik ke e

where i specifies is the initial state of the electron, ke is the
momentum of the ejected electron whose mass is 1 a. u. and
ke is in the gradient operator in momentum space. If a ike has
isolated first-order zeros, then vortices are present in the
velocity field associated with this amplitude.

Using the terminology of equation (A.3) and of papers
[3–6, 10], we write the velocity field v associated with the Ps-
formation amplitude fPs as

⎛
⎝⎜

⎞
⎠⎟[ ]

( )
∣ ∣

( )

=  = -
 - 

k
k k

v
M

f
i

M

f f f f

f

1
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2
.

A.4

Ps
Ps

Ps

Ps Ps Ps Ps

Ps
2

* *

We also give this equation in section 4.2 where it is labeled as
equation (8).
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Appendix B. The extended velocity field vext, the
circulation Γ, and the expectation value of the
y-component of angular momentum á ñLy A associated
with a linear expansion of fPs about a first-order zero

We evaluate a velocity field ( ) ( )q̂k q k q= qv v, , using
equation (A.4) for fixed k (and thus fixed κ), where we take
the derivative with respect to θ only, and we briefly describe
this velocity field in the first paragraph of section 4.2.

Below, and in section 4.2 after the first paragraph, we
consider for Ps formation an extended velocity field vext in
which we allow both the energy of the incident positron beam
and the angle of the outgoing Ps to vary in fPs, whose func-
tional dependency on these two physical quantities is known.
The extended velocity field can be expressed as ( )k q =v ,ext

( ) ˆ ( ) ˆq kk q k q+q kv v, , , where vκ is from the κ derivative in
k of equation (A.4). Considering fPs to depend on two
independent variables, κ and θ, or alternatively κz and κx,
allows for the corresponding velocity field vext to rotate
around a zero similar to the velocity field associated with the
transition matrix element for ionization by electron or posi-
tron impact for fixed incident momentum [1, 3–6, 26]. For
both processes, however, it is the deep minima in the DCS for
a particular incident energy that, in principle, is the quantity
that is experimentally assessible.

One can expand fPs about an isolated first-order zero
(k k,z x0 0), and near the zero, it has the linear form

( ) [( ) ( )] [ ]
( )

k k k k k k k k» - + - = ¢ + ¢f a b a b, ,

B.1
z x z z x x z xPs 0 0

where b is a complex number in which [ ] ¹bIm 0 [1, 3,
9, 10, 16, 48–50]. In equation (B.1) (k k k¢ = - =z z z0

k a¢ cos , k k k k a¢ = - = ¢ sinx x x0 ) are the ¢z and ¢x com-
ponents of the momentum of the outgoing Ps,k¢, with respect
to a zero in fPs, so that k k k¢ = - 0, where k0 is the
momentum of Ps atom at the zero in fPs. The angle α is the
angle between the vector k¢ and the ¢z -axis.

We obtain equation (B.1) by using the multichannel
effective range theory of Ross and Shaw [51] for T ℓ

12 and then
shifting the origin from the Ps-formation threshold (κz=0,
κx=0) to the position of an isolated first-order zero
(k k,z x0 0) in fPs. Feagin [45] performed a similar expansion
for the scattering amplitude for e−-He ionization about the
position of an isolated first-order zero in the scattering
amplitude.

Substituting the linear expansion of fPs equation (B.1)
into equation (A.4), one obtains the dominant term vd of vext in
the vicinity of the zero [50]:

⎛
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⎞
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k k k k
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=
¢ - ¢
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=
´ ¢
¢ + +

B.2

v
x z

y

b

M b b

b

M b b

Im

2Re

Im 1

cos sin Re sin 2
,

d
z x

z x z xPs
2 2 2

Ps
2 2 2

where ∣ ∣kk¢ = ¢ , k̂ k k¢ = ¢ ¢ and ˆ ˆ ˆ= ´y z x. The direction of
vd is orthogonal to k̂¢ and its magnitude has a k¢1 singularity
[50]. The extended velocity field in the vicinity of the zero in

fPs circulates about the zero, with a counterclockwise rotation
if Im[b]>0 and a clockwise rotation if Im[b]<0. It is
irrotational except at a zero in fPs, i.e. at k¢ = 0 [10, 50].

Using vd given in equation (B.2) and taking a circular
contour c of small radius and counterclockwise orientation,
enclosing the isolated first-order zero in fPs, one can show that
the circulation Γ is given by [3, 6, 10, 18, 50]

∮ · ( )p
G = = v ℓd

M

2
. B.3

c
ext

Ps

This result is true for any counterclockwise contour of
enclosing the isolated first-order zero in fPs(κz, κx) provided
there are no other zeros enclosed in the contour. The plus sign
corresponds to a counterclockwise rotation of vext, whereas the
minus sign corresponds to a clockwise rotation.

The non-zero circulation and the rotation of vext about the
first-order zero in fPs show that there is a vortex in vext. Using
the form of fPs in the vicinity of the first-order zero,
equation (B.1), one obtains for the expectation value of the
angular momentum operator,

ˆ ˆ
( ) ( )

∣ ( )∣

ˆ [ ]
∣ ∣

( )

ò

ò

k k k k k k

k k k k
á ñ = á ñ =

¢ ¢

¢ ¢

»
+

L y y
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L
f L f d d

f d d

b

b

, ,

,

2 Im

1
,

B.4

A y A
A z x y z x z x

A z x z x

Ps Ps

Ps
2

2

*

where A is the area of a small square or of a small circle, both
with center at the zero in fPs [3, 9]. The expectation value
á ñLy A is nonzero since [ ] ¹bIm 0. It is positive for Im
[b]>0, which is for counterclockwise rotation of vext, and
negative for Im [b]<0.
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