
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lagb20

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: https://www.tandfonline.com/loi/lagb20

The regularity lemma is false over small fields

Harm Derksen & Visu Makam

To cite this article: Harm Derksen & Visu Makam (2020) The regularity lemma is false over small
fields, Communications in Algebra, 48:3, 1333-1339, DOI: 10.1080/00927872.2019.1684507

To link to this article:  https://doi.org/10.1080/00927872.2019.1684507

Published online: 06 Nov 2019.

Submit your article to this journal 

Article views: 20

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lagb20
https://www.tandfonline.com/loi/lagb20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00927872.2019.1684507
https://doi.org/10.1080/00927872.2019.1684507
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00927872.2019.1684507
https://www.tandfonline.com/doi/mlt/10.1080/00927872.2019.1684507
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2019.1684507&domain=pdf&date_stamp=2019-11-06
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2019.1684507&domain=pdf&date_stamp=2019-11-06


The regularity lemma is false over small fields
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aDepartment of Mathematics, University of Michigan, Ann Arbor, Michigan, USA; bSchool of Mathematics,
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ABSTRACT
The regularity lemma is a stringent condition of the possible ranks of
tensor blow-ups of linear subspaces of matrices. It was proved by Ivanyos,
Qiao and Subrahmanyam in [5] when the underlying field is sufficiently
large. We show that if the field size is too small, the regularity lemma
is false – this settles an open problem posed by Ivanyos, Qiao and
Subrahmanyam.
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1. Introduction

1.1. Motivation

A compelling reason to study linear subspaces of matrices is its connection to the problem of
Polynomial Identity Testing (PIT), see [3, 7]. A polynomial time algorithm for PIT would be a
major breakthrough in the field of computational complexity. While an efficient algorithm for
PIT remains elusive, efficient algorithms for the related problem of Rational Identity Testing
(RIT) have been found recently. An analytic algorithm was given in [3] when the underlying field
is Q: For sufficiently large fields, an algebraic algorithm was given in [5, 6] based on polynomial
degree bounds for matrix semi-invariants proved in [1]. An excellent introduction to these prob-
lems, their connection to various subjects, and their significance can be found in [3].

Crucial to the algebraic algorithm is the regularity lemma proved in [5]. Curiously enough, the proof
of the regularity lemma requires a sufficiently large field. The authors of [5] pose the open problem of
whether the regularity lemma holds over small fields as well, see [5, Remark 5.9]. The purpose of this note
is to give counterexamples to the regularity lemma when the field is too small. The counterexamples can
be generated naturally from understanding the alternate proof of the regularity lemma given in [2].

1.2. Definitions and main results

Let K be a field. Let Matp, q denote the space of p� q matrices with entries in K, and let X �
Matp, q be a linear subspace of p� q matrices.

Definition 1.1. We define the rank of X to be

rkðXÞ ¼ max rkðXÞ j X 2 X� �
:
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Given two matrices A 2 Matp, q and B 2 Matr, s, we recall that their Kronecker product is

A� B ¼

a11B a12B � � � a1nB

a21B . .
. ..

.

..

. . .
. ..

.

am1B � � � � � � amnB

2
666664

3
777775
2 Matpr, qs:

The notion of tensor blow-ups of linear subspaces was introduced by Ivanyos, Qiao and
Subrahmanyam in [5].

Definition 1.2. We define the ðr, sÞth blow-up of the linear subspace of matrices X to be

X r, sf g :¼ X �Matr, s ¼
X
i

Xi �Mi j Xi 2 X ,Mi 2 Matr, s
� �

� Matpr, qs:

Tensor blow-ups arise naturally in the study of the left-right action of SLn � SLn on Matmn, n:
Given a tuple X ¼ ðX1, :::,XmÞ 2 Matmn, n, let X ¼ spanðX1, :::,XmÞ � Matn, n: Then it turns out

that X is not in the null cone for the left-right action if and only if X d, df g has full rank for some
d. We refer the reader to [1, 5] for more details. This invariant theoretic view point emphasizes
the need to understand the properties of ranks of tensor blow-ups. Two such results are the regu-
larity lemma proved in [5], and the concavity property shown in [1]. In this paper, we are
focused on the regularity lemma.

Theorem 1.3 (Regularity lemma, [5]). Let X � Matn, n be a linear subspace of matrices. Let

d 2 Z>0, and let jKj � ðdnÞXð1Þ. Then rkðX d, df gÞ is a multiple of d.

The proof of the regularity lemma in [5] is algorithmic in nature. Given a matrix in the ðd, dÞth
blow-up whose rank is rd þ k with 1 � k < d, the proof consists of constructing efficiently a matrix

in the ðd, dÞth blow-up whose rank is at least ðr þ 1Þd: The procedure requires the lower bound on
field size, so it was unclear whether this lower bound on field size is really necessary for the statement
to hold. We show that the lower bound on the field size cannot be entirely removed.

Theorem 1.4. Let d, n 2 Z�2. Suppose jKj � log dðn	1Þ. Consider the n� n matrix

Dðt0, t1Þ ¼

Lðt0, t1Þ
t0

. .
.

t0

2
66664

3
77775, where Lðt0, t1Þ ¼

t1 t0
	t1 t0

	t1 t0

. .
. . .

.

	t1 t0
	t1 	t1

2
6666666664

3
7777777775

is square of size jKjd. Consider the 2-dimensional linear subspace X ¼ Dðx, yÞjx, y 2 K
� � �

Matn, n. Then rkðX d, df gÞ is not a multiple of d.

2. Linear matrices

Linear subspaces of matrices can be described using the language of linear matrices.
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Definition 2.1. A p� q linear matrix Lðt1, t2, :::, tmÞ is a p� q matrix whose entries are linear
expressions in a collection of indeterminates t1, t2, :::tm with coefficients from K. Equivalently, we
can write Lðt1, :::, tmÞ ¼ t1X1 þ t2X2 þ :::þ tmXm for some Xi 2 Matp, qðKÞ:
Example 2.2. An example of a 3� 3 linear matrix is given by

Lðt1, t2, t3Þ :¼
0 t1 t2
	t1 0 t3
	t2 	t3 0

2
64

3
75:

A linear matrix can be thought of as a parametrization of a linear subspace of matrices.
Indeed, by specializing the indeterminates in a linear matrix to all possible values of the field K,
we get a linear subspace of matrices. In the above example, the linear matrix Lðt1, t2, t3Þ parametr-
izes the subspace of 3� 3 matrices consisting of all skew-symmetric matrices.

We can even substitute matrices for the indeterminates. More precisely, if Lðt1, :::, tmÞ is a
p� q linear matrix, and A1, :::,Am are r� s matrices, then LðA1, :::,AmÞ denotes the pr � qs
matrix obtained by replacing each entry in Lðt1, :::, tmÞ with the corresponding linear combination
of Ai. For instance, in the above example,

LðA1,A2,A3Þ ¼
0 A1 A2

	A1 0 A3

	A3 	A2 0

2
64

3
75 2 Mat3r, 3s:

Observe that if Lðt1, :::, tmÞ ¼ t1X1 þ :::þ tmXm, then LðA1, :::,AmÞ ¼ X1� A1 þ :::þ Xm � Am:

Definition 2.3. The rank of a linear matrix Lðt1, :::, tmÞ is defined as

rkðLðt1, :::, tmÞÞ ¼ max rkðLða1, :::, amÞÞ j ai 2 K
� �

:

Definition 2.4. We define the ðr, sÞth blow-up rank of a linear matrix Lðt1, :::, tmÞ as
rkðL r, sf gÞ ¼ max rkðLðA1, :::,AmÞ j Ai 2 Matr, sðKÞ

� �
:

Remark 2.5. For a linear matrix Lðt1, :::, tmÞ, let XL denote the associated linear subspace of

matrices. Then it is easy to see that rkðLÞ ¼ rkðXLÞ and rkðL r, sf gÞ ¼ rkðX r, sf g
L Þ:

3. Ring of matrix functions

For this section, let us fix d 2 Z�2: Consider the skew polynomial ring Ad,m ¼ KhT1, :::,Tmi in
n indeterminates. Any f ðT1, :::,TmÞ 2 Ad,m can be interpreted as a function evdðf Þ : Matmd, d !
Matd, d given by evdðf ÞðA1, :::,AmÞ ¼ f ðA1, :::,AmÞ: This gives a homomorphism

evd : Ad,m ! HomSetsðMatmd, d, Matd, dÞ:
Suppose K is an infinite field. Then it is a result of Amitsur that the image evdðAd,mÞ is a domain.

Further its central quotient is a division algebra and is called a universal division algebra. This result
allows for a proof of the regularity lemma using Gaussian elimination, see [2] for details.

In particular, Amitsur’s results imply this astonishing fact that for every f such that evdðf Þ 6¼ 0,
we will be able to find A1, :::,Am 2 Matd, d such that f ðA1, :::,AmÞ is invertible. This is no longer true
if K is a finite field, and we will exploit this to get counterexamples to the regularity lemma.
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3.1. Higman’s trick

Higman’s trick is a technique that converts non-commutative polynomials to linear matrices.

Lemma 3.1 (Higman’s trick). Let f ðt1, :::, tmÞ be a non-commutative polynomial. There is a
(square) linear matrix Lf ðt0, :::, tmÞ with the property that using elementary (block) row and (block)
column operations, for any ðA1, :::,AmÞ 2 Matmd, d for any d, one can transform

Lf ðI,A1, :::,AmÞ !

I 0 ::: 0 0

0 I ..
. ..

.

..

. . .
.

0 ..
.

0 ::: 0 I 0

0 ::: 0 f ðA1, :::,AmÞ

2
66666664

3
77777775
:

Higman’s trick first appeared in [4]. We also refer to [3] for details. We point out that in the
above lemma, while f is a polynomial in m indeterminates, Lf is a linear matrix in mþ 1 indeter-
minates. This extra indeterminate (which is t0) is important. We will not delve into the proof of
Higman’s trick. We will be content to mention that Higman’s trick is constructive. In the cases
that we are interested, we will simply exhibit the required Lf, and explicitly check that it satisfies
the conclusion of Higman’s trick.

We will need a modification of the linear matrix obtained from Higman’s trick. For r 2 Z�1,
we consider the linear matrix

Df , r ¼

Lf
t0

. .
.

t0

2
66664

3
77775,

where the lower right block is of size r� r.

Proposition 3.2. Suppose f 2 Ad,m such that f ðA1, :::,AmÞ is singular for all ðA1, :::,AmÞ 2
Matmd, dðKÞ, and evdðf Þ 6¼ 0. Then rkðD d, df g

f , r Þ is not a multiple of d.

Proof. Suppose the size of the linear matrix Lf is m�m, then Df , r is a linear matrix of size
ðmþ rÞ � ðmþ rÞ: The first step is to prove that rkðDf , rðA0, :::,AmÞÞ < dðmþ rÞ for all
A0, :::,Am 2 Matd, dðKÞ: If A0 is not invertible, then since Df , rðA0, :::,AmÞ has diagonal blocks of
the form A0, it cannot have full rank. On the other hand, if A0 is invertible, then

rkðDf , rðA0,A1, :::,AmÞÞ ¼ rkðLf ðA0,A1, :::,AmÞÞ þ dr

¼ rkðLf ðI,A	1
0 A1, :::,A

	1
0 AmÞÞ þ dr

¼ ðdðm	1Þ þ rkðf ðA	1
0 A1, :::,A

	1
0 AmÞÞ þ dr

The first equality follows from the structure of Df , r, and the second follows from a simple
change of basis argument. The last equality follows from Lemma 3.1. But now, we know that
rkðf ðA	1

0 A1, :::,A	1
0 AmÞÞ < d by hypothesis, so rkðDf , rðA1, :::,AmÞÞ < dðmþ rÞ:

The second step is to show that rkðD d, df g
f , r Þ > dðmþ r	1Þ: Observe that since evdðf Þ 6¼ 0, there

exist ðB1, :::,BmÞ 2 Matmd, dðKÞ such that f ðB1, :::,BmÞ 6¼ 0: Thus, by the above computation, we
have
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rkðDf , rðI,B1, :::,BmÞÞ ¼ dðm	1Þ þ rkðf ðB1, :::,BmÞÞ þ dr > dðmþ r	1Þ:
Thus we have

dðmþ r	1Þ < rkðD d, df g
f , r Þ < dðmþ rÞ:

Thus rkðD d, df g
f , r Þ cannot be a multiple of d. w

Corollary 3.3. Suppose f and Df , r are as in the above proposition. Suppose X f , r denotes the linear

subspace parametrized by the linear matrix Df , r. Then rkðX d, df g
f , r Þ ¼ rkðD d, df g

f , r Þ is not a multiple of d.

4. Proof of main result

From the previous section, we know that one can generate counterexamples to the regularity
lemma by finding non-commutative polynomials f 2 Ad,m that satisfy the hypothesis of
Proposition 3.2. So, it remains to find such non-commutative polynomials.

Lemma 4.1. Let K¼ Fq be the field with q elements, and let f ¼ Ts
1	T1 2 Ad, 1 where

s ¼ qd ¼ jKjd. Then f satisfies the hypothesis of Proposition 3.2.

Proof. For any d� d matrix with entries in K, its characteristic polynomial is a polynomial of
degree d. In particular its roots lie in some extension of Fq of degree at most d. Let s ¼ qd,
and let f ¼ Ts

1	T1: Then observe that evdðf Þ 6¼ 0, since f ðE1, dÞ 6¼ 0, where E1, d is the

matrix with a 1 in ð1, dÞth spot, and 0 everywhere else. On the other hand, any A1 2 Matd, d
must have an eigenvalue that is a root of f. So f ðA1Þ cannot be invertible for any
A1 2 Matd, d: w

Lemma 4.2. Let f ¼ Ts
1	T1. Then the s� s matrix

t1 t0
	t1 t0

	t1 t0

. .
. . .

.

	t1 t0
	t1 	t1

2
6666666664

3
7777777775

can be used as the linear matrix Lf in the statement for Higman’s trick.

Proof. We have to be a little careful while applying block operations. One can add left multiplied
block rows to other block rows, and right multiplied block columns to other block columns. We
refer to [1] for an explanation.

Consider LðI,A1Þ, and let us do the following block row and column operations. Left
multiply the first block row by A1 and add it to the second block row. Then right multi-
ply the second block column by A1 and subtract from the first block column. The net
result is
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0 I

A2
1 0 I

	A1 I

. .
. . .

.

	A1 I

	A1 	A1

2
6666666664

3
7777777775
:

Now, left multiply the second block row by A1 and add it to the third block row. Then, right
multiply the third block column by A2 and subtract it from the first block column. Continuing
this process, we end up with

0 I

0 0 I

..

.
I

..

. . .
. . .

.

I

As
1	A1 0

2
66666666664

3
77777777775
:

Then by permuting (block) columns, we can get it to the required form. w

Proof of Theorem 1.4. Taking f ¼ Ts
1	T1 where s ¼ jKjd: If we take Lf as in the above lemma,

then for r ¼ n	jKjd � 1, we have Df , r ¼ Dðt0, t1Þ and X f , r ¼ X , the linear subspace in the state-
ment of the theorem. The theorem follows from Corollary 3.3. w

Remark 4.3. We can give another interesting example when K ¼ F2. We leave it to the reader to check

that f ðT1,T2Þ ¼ ½T1,T2
2 þ ½T1,T2
 2 A2, 2 satisfies the hypothesis of Proposition 3.2. Using the same
ideas, we construct another counterexample for the regularity lemma. Consider the linear subspace

X ¼

0 d a 0 d a 0

	d 0 b 	d 0 b 0

a b 0 a b 0 0

0 d a 0 0 0 0

	d 0 b 0 0 0 0

a b 0 0 0 d 0

0 0 0 0 0 0 d

2
666666666664

3
777777777775

: a, b, c, d 2 K

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

:

Then rkðX 2, 2f gÞ is not a multiple of 2.
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