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1. Introduction
1.1. Motivation

A compelling reason to study linear subspaces of matrices is its connection to the problem of
Polynomial Identity Testing (PIT), see [3, 7]. A polynomial time algorithm for PIT would be a
major breakthrough in the field of computational complexity. While an efficient algorithm for
PIT remains elusive, efficient algorithms for the related problem of Rational Identity Testing
(RIT) have been found recently. An analytic algorithm was given in [3] when the underlying field
is Q. For sufficiently large fields, an algebraic algorithm was given in [5, 6] based on polynomial
degree bounds for matrix semi-invariants proved in [1]. An excellent introduction to these prob-
lems, their connection to various subjects, and their significance can be found in [3].

Crucial to the algebraic algorithm is the regularity lemma proved in [5]. Curiously enough, the proof
of the regularity lemma requires a sufficiently large field. The authors of [5] pose the open problem of
whether the regularity lemma holds over small fields as well, see [5, Remark 5.9]. The purpose of this note
is to give counterexamples to the regularity lemma when the field is too small. The counterexamples can
be generated naturally from understanding the alternate proof of the regularity lemma given in [2].

1.2. Definitions and main results

Let K be a field. Let Mat, ; denote the space of p X q matrices with entries in K, and let X C
Mat,, ; be a linear subspace of p x q matrices.

Definition 1.1. We define the rank of X to be
rk(X) = max{rk(X) | X € X}.

CONTACT Visu Makam @ visu@umich.edu e School of Mathematics, Institute for Advanced Study, Princeton, New
Jersey, USA.
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Given two matrices A € Mat,, ; and B € Mat, ;, we recall that their Kronecker product is

a”B auB s alnB
aZIB .

AR®B= € Maty, 4.
amlB Ce Ce amnB

The notion of tensor blow-ups of linear subspaces was introduced by Ivanyos, Qiao and
Subrahmanyam in [5].

Definition 1.2. We define the (r,s)™ blow-up of the linear subspace of matrices X' to be

Xt .= X @ Mat, , = X; @ M; | X; € X,M; € Mat, ;| C Mat,, ..
> i P> q

Tensor blow-ups arise naturally in the study of the left-right action of SL, x SL, on Mat]’,.
Given a tuple X = (Xj,...,X,;) € Mat” , let X =span(X,...,X,,) C Mat,, ,. Then it turns out

n,n’
that X is not in the null cone for the left-right action if and only if X has full rank for some
d. We refer the reader to [1, 5] for more details. This invariant theoretic view point emphasizes
the need to understand the properties of ranks of tensor blow-ups. Two such results are the regu-
larity lemma proved in [5], and the concavity property shown in [1]. In this paper, we are
focused on the regularity lemma.

Theorem 1.3 (Regularity lemma, [5]). Let X C Mat, , be a linear subspace of matrices. Let
d € Ty, and let |K| > (dn)®™. Then k(X% is a multiple of d.

The proof of the regularity lemma in [5] is algorithmic in nature. Given a matrix in the (d, d)™
blow-up whose rank is rd + k with 1 < k < d, the proof consists of constructing efficiently a matrix
in the (d.d)™ blow-up whose rank is at least (r + 1)d. The procedure requires the lower bound on
field size, so it was unclear whether this lower bound on field size is really necessary for the statement
to hold. We show that the lower bound on the field size cannot be entirely removed.

Theorem 1.4. Let d,n € Z>,. Suppose |K| < log 4(n—1). Consider the n x n matrix

t to
L(to,t1) | ] -t b

fo —t 1o
D(to,tl) = . s where L(to,tl) =

to —h to
—t —t

is square of size |K|%. Consider the 2-dimensional linear subspace X = {D(x,y)|lx,y e K} C
Mat,, ,. Then tk(X{*%) is not a multiple of d.

2. Linear matrices

Linear subspaces of matrices can be described using the language of linear matrices.
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Definition 2.1. A p x g linear matrix L(t;,t,....t,) is @ p X g matrix whose entries are linear
expressions in a collection of indeterminates ty,t,, ...t,, with coefficients from K. Equivalently, we
can write L(ty, ..., t) = H Xy + X5 + ... + t,,X,, for some X; € Mat, ,(K).

Example 2.2. An example of a 3 x 3 linear matrix is given by

0 4 b
L(tl,tz,t_g) = —f 0 t3
—t, —t3 0

A linear matrix can be thought of as a parametrization of a linear subspace of matrices.
Indeed, by specializing the indeterminates in a linear matrix to all possible values of the field K,
we get a linear subspace of matrices. In the above example, the linear matrix L(t;,t,,t;) parametr-
izes the subspace of 3 x 3 matrices consisting of all skew-symmetric matrices.

We can even substitute matrices for the indeterminates. More precisely, if L(ty,...,t,) is a
p % q linear matrix, and Ay,...,A,, are rXxs matrices, then L(Aj,...,A,) denotes the pr x gs
matrix obtained by replacing each entry in L(ty, ..., t,,) with the corresponding linear combination
of A;. For instance, in the above example,

0 A A
L(Al,Az,A3) = —A1 0 A3 S Mat3r)3s.
—A; —A, 0

Observe that if L(f,....tm) = 6 X1 + ... + tuXm, then L(Ay, ... Ap) = X1® A1 + ... + X @ Apy.
Definition 2.3. The rank of a linear matrix L(¢1, ..., t,,) is defined as

tk(L(ty, .o tn)) = max{rk(L(al, wolp)) | ai € K}

Definition 2.4. We define the (r,s)" blow-up rank of a linear matrix L(ty, ..., f,,) as

rk(L1"*) = max{rk(L(A}, ... An) | A; € Mat, ((K) }.

Remark 2.5. For a linear matrix L(f;,....t,), let X denote the associated linear subspace of
matrices. Then it is easy to see that rk(L) = rk(X;) and rk(L{") = rk(x{").

3. Ring of matrix functions

For this section, let us fix d € Zs,. Consider the skew polynomial ring Ay, = K(T1, ..., Ty) in
n indeterminates. Any f(Ti,..., T,;) € Agm can be interpreted as a function evy(f) : Matj'; —
Mat, 4 given by evy(f)(A1, ..., Am) = f(A1, ..., Ay). This gives a homomorphism

evy : Agm — Homse(Mat]] ;, Matg 4).

Suppose K is an infinite field. Then it is a result of Amitsur that the image ev (A4, ) is a domain.
Further its central quotient is a division algebra and is called a universal division algebra. This result
allows for a proof of the regularity lemma using Gaussian elimination, see [2] for details.

In particular, Amitsur’s results imply this astonishing fact that for every f such that ev,4(f) # 0,
we will be able to find A, ..., A,, € Maty 4 such that f(Ay, ..., A,,) is invertible. This is no longer true
if K is a finite field, and we will exploit this to get counterexamples to the regularity lemma.
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3.1. Higman'’s trick
Higman’s trick is a technique that converts non-commutative polynomials to linear matrices.

Lemma 3.1 (Higman’s trick). Let f(t;,....tm) be a non-commutative polynomial. There is a
(square) linear matrix Ly (to, ..., t,,) with the property that using elementary (block) row and (block)
column operations, for any (Aj,...,An) € Maty ,; for any d, one can transform

(1 0 .. O 0 T
0 I
Li(LApy s A) — | : SN
0 I 0
L 0| f(A1 .. Am) |

Higman’s trick first appeared in [4]. We also refer to [3] for details. We point out that in the
above lemma, while f is a polynomial in m indeterminates, Ly is a linear matrix in m +1 indeter-
minates. This extra indeterminate (which is ty) is important. We will not delve into the proof of
Higman’s trick. We will be content to mention that Higman’s trick is constructive. In the cases
that we are interested, we will simply exhibit the required Ls and explicitly check that it satisfies
the conclusion of Higman’s trick.

We will need a modification of the linear matrix obtained from Higman’s trick. For r € Z>,,
we consider the linear matrix

[L] ]
to
Df,?‘: .. >

to
where the lower right block is of size r x r.

Proposition 3.2. Suppose f € Ay, such that f(Ai,...,An) is singular for all (Ay,...A,) €
Mat} ;(K), and evy(f) # 0. Then rk(D}i’d}) is not a multiple of d.

Proof. Suppose the size of the linear matrix Ly is m x m, then Dy, is a linear matrix of size
(m+71)x (m+r). The first step is to prove that rk(Dy(Ao,....,An)) <d(m+r) for all
A, ... Ay € Maty 4(K). If A, is not invertible, then since Dy (Ao, ...,An) has diagonal blocks of
the form Ay, it cannot have full rank. On the other hand, if A, is invertible, then
l’k(Df’r(Ao,Al, ,Am)) = l‘k(Lf(AQ,Al, ,Am)) + dT
= rk(Ls(L Ay 'Ars . Ay ' A)) + dr
= (d(m—1) + rk(f(Ay'Ar, ... Ay ' A)) + dr
The first equality follows from the structure of Dy ,, and the second follows from a simple
change of basis argument. The last equality follows from Lemma 3.1. But now, we know that
rk(f(Ay A1, ... Ay 'An)) < d by hypothesis, so tk(Dy, (A1, ..., Ap)) < d(m + 7).
The second step is to show that rk(D}fir’d}) > d(m 4+ r—1). Observe that since ev,(f) # 0, there
exist (B, ..., B,) € Mat} ;(K) such that f(By,...,B,) # 0. Thus, by the above computation, we
have
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tk(Dy, (I, Byy vy By)) = d(m—1) + 1k(f(By, ..., Bu)) + dr > d(m + r—1).

Thus we have
d(m+r—1) < tk(D) < d(m + 7).
Thus rk(Df{’dr’ d}) cannot be a multiple of d. O

Corollary 3.3. Suppose f and Dy, are as in the above proposition. Suppose Xy, . denotes the linear
subspace parametrized by the linear matrix Dy, .. Then rk(X}’dr’ d}) = rk(Dj}{,dr’ d}) is not a multiple of d.

4. Proof of main result

From the previous section, we know that one can generate counterexamples to the regularity
lemma by finding non-commutative polynomials f € A, that satisfy the hypothesis of
Proposition 3.2. So, it remains to find such non-commutative polynomials.

Lemma 4.1. Let K=F, be the field with q elements, and let f=T{—T) € Ay, where
s=q = |K|". Then f satisfies the hypothesis of Proposition 3.2.
Proof. For any d x d matrix with entries in K, its characteristic polynomial is a polynomial of

degree d. In particular its roots lie in some extension of F, of degree at most d. Let s = g%,
and let f=T;—T;. Then observe that ev;(f) #0, since f(E; ;) #0, where E;; is the

matrix with a 1 in (1,d)" spot, and 0 everywhere else. On the other hand, any A, € Mat,, 4
must have an eigenvalue that is a root of f. So f(A;) cannot be invertible for any
A; € Mat, 4. O

Lemma 4.2. Let f = T{—T,. Then the s x s matrix

t to
-t 1
-t f

-t
—h —h

can be used as the linear matrix Ly in the statement for Higman’s trick.

Proof. We have to be a little careful while applying block operations. One can add left multiplied
block rows to other block rows, and right multiplied block columns to other block columns. We
refer to [1] for an explanation.

Consider L(I,A;), and let us do the following block row and column operations. Left
multiply the first block row by A; and add it to the second block row. Then right multi-
ply the second block column by A; and subtract from the first block column. The net
result is
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[0
A2 0 I
—A 1
A I
_-Al _Al J

Now, left multiply the second block row by A; and add it to the third block row. Then, right
multiply the third block column by A® and subtract it from the first block column. Continuing
this process, we end up with

| A5-A, 0

Then by permuting (block) columns, we can get it to the required form. m|

Proof of Theorem 1.4. Taking f = T;—T; where s = |K |d. If we take Ly as in the above lemma,
then for r = n—|K|* > 1, we have Dy,» = D(ty, t;) and Xy,, = X, the linear subspace in the state-
ment of the theorem. The theorem follows from Corollary 3.3. O

Remark 4.3. We can give another interesting example when K = F,. We leave it to the reader to check
that f(Ty, T2) = [T1. Tz]2 + [T, Ty] € A, satisfies the hypothesis of Proposition 3.2. Using the same
ideas, we construct another counterexample for the regularity lemma. Consider the linear subspace

[0 d a| 0 d a]|0]
—d 0 b|—-d 0 b|O
b 0| a b 0|0
X = 0 d al 0 0 0[0]|:abcdeK
—-d 0 b| 0 0 00
b 0] 0 0 d|O0
[0 00/ 0 0 0 d]

Then rk(X{>2?}) is not a multiple of 2.
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