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Abstract. Let V be an n-dimensional algebraic representation over an algebraically
closed field K of a group G. For m > 0, we study the invariant rings K[Vm]G for the
diagonal action of G on V™. In characteristic zero, a theorem of Weyl tells us that we
can obtain all the invariants in K[Vm}G by the process of polarization and restitution
from K[V"]%. In particular, this means that if K[V"™]¢ is generated in degree < d, then
so is K[V™]% no matter how large m is.

There are several explicit counterexamples to Weyl’s theorem in positive characteristic.
However, when G is a (connected) reductive affine group scheme over Z and V* is a
good G-module, we show that Weyl’s theorem holds in sufficiently large characteristic.
As a special case, we consider the ring of invariants R(n,m) for the left-right action of
SLy X SLyp, on m-tuples of n X n matrices. In this case, we show that the invariants of
degree < n% suffice to generate R(n,m) if the characteristic is larger than 2n% + n?.

1. Introduction

Let K be an algebraically closed field. Suppose V is a rational representation
of a reductive group G. The ring of invariant polynomials K[V]% is a finitely
generated graded subalgebra of the coordinate ring K[V], see [27], [29], [30], [40].
A long standing theme in invariant theory is to extract a minimal set of generators
— apart from a few instances, this is perhaps too ambitious a problem. A more
approachable problem is to find upper bounds on the degree of generators.

Definition 1. We define 3(K[V]%) to be the smallest integer D such that inva-
riants of degree < D form a generating set, i.e.,

B(K[V]%) := min{D | K[V]gD is a generating set},
where K[V]€ ], denotes the invariants of degree < D.

A general bound for (K [V]%) is given in [3]. In this paper, we will be concerned
with the growth of S(K[V™]%) as m gets large, where V™ denotes the direct sum
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of m copies of the representation V. It is easy to see that 3(K[V]%) < B(K[V?]%)
if @ < b, and so for fixed G and V, the sequence B(K[V™]%) is increasing. In
characteristic 0, it is a remarkable result due to Weyl (see [50], [36]) that this
sequence is actually bounded!

Theorem 1 (Weyl’s polarization theorem —weak form). Assume char(K) is 0,
and let dim'V = n. Then for all m, we have

BIK[V™S) < BIK[V™Y).

Weyl’s result is actually a little stronger than the version we state above,
which we will now discuss. Interpreting V™ as V ® K™ illuminates a GL,, action
on V™. Since this GL,, action commutes with the G action, the invariant ring
K[V™% = K[V ® K™% inherits an action of GL,,. For a < b, we have the
inclusion K[V?]¢ C K[V*]Y. Suppose S is a generating set for K[V¢]. Starting
with S, we can construct some obvious invariants in K[V?]“. For example, take
any f € Sand g € GLy, then g-f € K[V?]%. In the same spirit, we can consider the
smallest GLj-stable subspace containing S, i.e., (S)g, € K[V’ (see Section 3
for a more detailed definition). Consider the subalgebra of K[V?]“ generated by
(S)ar,- This subalgebra may not be all of K[V and there may be some other
‘genuinely new’ invariants in K[V?]“. Weyl’s polarization theorem says that there
are no genuinely new invariants if we take a at least as big as n.

Theorem 2 (Weyl’s polarization theorem —strong form). Assume char(K) is 0,
and let dimV =n. Let S C K[V"]¢ be a generating set for K[V"|%. Then for all
m > n, the set (S)qy, s a generating set for K[Vvm<.

It is easy to see that the weak form of Weyl’s theorem stated before is a
consequence of the strong form stated above. In positive characteristic, one does
not have to look far to get counterexamples. Suppose char(K) = p > 0. Let C,
denote the cyclic group of order p, and consider the action of Cj, on V = K? where
(1) 1 . Weyl’s theorem fails in this case,
see [44]. Other examples of failure for finite groups can be found in [48]. We note
that finite groups are reductive in arbitrary characteristic. Knop showed in [35]
that the strong form of Weyl’s theorem holds for invariant rings of finite groups if
the characteristic is large enough.

In this paper, we will restrict ourselves to connected reductive groups. Even in
this restricted setting, Weyl’s theorem still fails. For example, in characteristic 2,
it fails for the natural action of G = SO(V') on V, see [12], [11]. An analogue of
Weyl’s theorem in positive characteristic was proved for separating invariants in
[22], see also [26].

the generator of C), acts by the matrix

1.1. Matrix invariants and semi-invariants

Let Mat, 4 denote the set of p x ¢ matrices. Consider the group G' = GL,, acting
on V = Mat,', by simultaneous conjugation, i.e.,

g- (Xla cee 7Xm) = (gxlg_la v 7ngg_1)'
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We set S(n,m) = K[V]%, the ring of invariants for this action. The ring S(n,m)
is often referred to as the ring of matrix invariants. Procesi showed that traces of
monomials (in the X;’s) generate S(n, m) in characteristic 0, see [42]. In [17], [18],
Donkin extended this result to all characteristics, by replacing traces with the
coefficients of the characteristic polynomial instead.

A bound on the degree of generators in characteristic 0 followed from the work
of Razmyslov, see [43].

Theorem 3 (Procesi-Razmyslov). Assume char(K) = 0. Then we have
B(S(n,m)) < n?.

One can observe that this bound is independent of m, as predicted by Weyl’s
theorem. It was pointed out to us by Domokos that the proof of the above result in
[23] goes through once characteristic is larger than n?+ 1. In particular, this means
that the statement of Weyl’s theorem holds for matrix invariants if we assume a
modest lower bound on characteristic! However, the techniques used for this are
very specific to matrix invariants, and it is not clear if they can be generalized. For
example, even in the closely related example of matrix semi-invariants discussed
below, such a result was not known prior to this paper.

Consider the left-right action of G = SL, x SL, on V = Mat,’,, i.e., for
(A, B) € SL,, x SL,, and (Xy, ..., X;,) € Mat,',,, we have

(A,B)-(X1,...,Xm) = (AX;B™', ... AX,,B7").

We set R(n,m) = K[V]¥, the invariant ring in this case. The ring R(n,m) is
often referred to as the ring of matrix semi-invariants. In recent times, connections
to computational complexity have generated a lot of interest in matrix semi-
invariants, see [5], [25], [32], [39].

A determinantal description for the generators follows from results on semi-
invariants of quivers, see [8, Cor. 3], [13] and [46]. A polynomial bound on the
degree of generators was given in [5], [7].

Theorem 4 ([5], [7]). Letn > 2. We have B(R(n,m)) <mn?®(n—1). If char(K)=
0, then we have B(R(n,m)) < nS.

The bound stated in [5], [7] for B(R(n,m)) was mn*, but these slightly stronger
bounds are evident in the proof of [5, Thm. 1.2]. The bound in characteristic 0 is
once again a consequence of Theorem 1. We prove that the statement of Weyl’s
theorem holds for matrix semi-invariants with only a modest lower bound on the
characteristic.

Theorem 5. Suppose char(K) = p > 2n® + n?. Then the statement of Weyl’s
polarization theorem holds for the left-right action of SL,, x SL,, on Mat, ,. In
particular, for all m € Z~o we have

B(R(n,m)) < B(R(n,n*)) < n’.

Our techniques give similar results for matrix invariants as well, but the lower
bound on characteristic we obtain is weaker than the already known n? + 1.
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Remark 1. In small characteristic (i.e., p < n), the statement of Weyl’s theorem
is false for matrix invariants, see [12], [9]. By a standard reduction, the same
phenomenon holds for matrix semi-invariants as well. However, it remains an open
problem to understand whether the statement of Weyl’s theorem holds for matrix
invariants for n < p < n? 4+ 1 and matrix semi-invariants for n < p < 2n% 4+ n2.

We can further decrease the lower bound on characteristic if all we want is a
bound that doesn’t depend on m. However, the degree bound will become a bit
worse. For example, the techniques in this paper can be used to show the following:

Proposition 6. Suppose char(K) = p > nS, then for all m € Zs;
B(R(n,m)) < B(R(n,n*)) <n’.

However, with these techniques, one cannot decrease the lower bound on charac-
teristic to O(n®=¢) for any € > 0.

1.2. Main results

We need some technical definitions, for which we follow [45]. An affine group scheme
G over Spec Z (or simply Z) is said to be reductive if G — Spec Z is smooth, and
the geometric fibers are connected reductive algebraic groups (in the usual sense).
Let G be a reductive group scheme over Z, and let V' be a free Z-module of finite
rank n with a linear action of G. We will call V" a free G-Z-module of rank n. We
will denote the ring of invariants by Z[V]% = Sym(V*)%.

For any algebraically closed field K, the K-points Gk form a connected reduc-
tive group over K, and the K-points of V', i.e., Vx =V ®y K is an n-dimensional
representation of Ggx. We will write K[V] = K[Vk] and K[V]|¢ = K[Vk]%x
for simplicity. Note that K[V]¢ is not necessarily the same as the base change
Z[V]|¢ @z K.

Definition 2. Let S = @,.,S5; be a graded R-algebra. Then let Si4; denote the
R-subalgebra generated by U;<4S;. Further, let d5(S) denote the smallest d such
that S is a finite extension over Sigy.

The following theorem requires the notion of good modules, which we recall in
Section 4. A reductive group scheme over Z is called split if there is a (fiberwise)
maximal torus defined over Z.

Theorem 7. Let G be a split reductive group scheme over Z, and let V be a
free G-Z-module of rank n. Suppose V* is a good G-module. Then, the following
statements hold.

(1) The number dz(Z[V™]|F) is finite.

(2) Suppose K is an algebraically closed field such that

char(K) > 2Q(n + 1) +n,

where Q = max{2, 2n(6z(Z[V"]9))?}. Then the statement of Weyl’s pola-
rization theorem holds for the action of Gk on Vi, i.e.,
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1. if S is a set of generators for K[V"|%, then (S)ar,, is a set of generators
for K[V™€ for all m > n;
2. we have B(K[V™]%) < B(K[V™Y) for all m > 1.

For the first part of the theorem, we will need some results of Seshadri from [45].
The bulk of the paper will go towards proving the second part of the above theorem.
The approach is a delicate interplay between combinatorics, representation theory
and commutative algebra.

Acknowledgements. We would like to thank Matyas Domokos, David Wehlau,
Jerzy Weyman and Jakub Witaszek for helpful discussions.

1.3. Organization

In Section 2, we recall some necessary preliminaries. We study polarization in
Section 3. Then, in Sections 4 and 5, we discuss good filtrations. In Section 6, we
discuss the technical details needed, and prove Theorem 5. Finally, in Section 7,
we bring together all the results to prove the main result, i.e., Theorem 7.

2. Preliminaries

2.1. Partitions

A partition A = (A, \g,...) is a (weakly) decreasing sequence of non-negative
numbers, such that only finitely many \; are non-zero. We often omit writing the
trailing zeros. We say A is a partition of n if >, \; = n, and we write A F n.
Associated to any partition is its Young diagram. For example, if A = (4,3,1,1),
then its Young diagram is

We will not distinguish between a partition and its Young diagram. For a
partition A, we define its size [A| := >, A\; = number of boxes in the Young
diagram, and its length [()\) = length of the first column in its Young diagram.
For the above example, we have |\| = 9 and [(\) = 4. We define A to be the
conjugate of the partition .

Definition 3 (Horizontal concatenation). Given two partitions A and p, we
define their horizontal concatenation A + p = (A1 + p1, A2 + p2, ... ). Note that
A+ p is a partition.

Example 1. We have + [ | ‘:

2.2. Schur functors

For any commutative ring R, any R-module F and any partition A, one can
construct a Schur module Sy (FE) (denoted E* in [24, Sect. 8.1]). Let EX* denote
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the direct product of |A| copies of E labelled by boxes in the Young diagram of
A. The Schur module Sy (E) is defined as the universal target for R-module maps
from E** that are multilinear, alternating along columns, and satisfying some
exchange relations. We do not restate the exchange relations, but refer instead to
[24, Sect. 8.1] for details.

Let K be an algebraically closed field. For any partition A, the aforementioned
construction gives a polynomial functor Sy : Vect — Vect, where Vect represents
the category of finite-dimensional vector spaces (over K). We call Sy the Schur
functor associated to A. We have S(,,y = Sym", the nt" symmetric power, whereas
Syt = S1n = A", the nth alternating power. Note that Sy is denoted by L+ in
1], [49].

We require the following result that is well known to experts.

Proposition 8. Let A and p be two partitions. Then, there is a GL(V)-equivariant
surjection Sx(V) ® S, (V) = Sayu(V)

We will discuss a stronger statement, i.e., Corollary 19, later using the theory of
good filtrations. Here, we indicate a combinatorial proof of the above proposition
for the reader who is more familiar with Young tableaux.

Proof of Proposition 8. One way to construct the partition A+ pu is to take all the
columns of (the Young diagrams) of A and p and rearrange them in decreasing
order. This gives a map V** x VX1 — VXAt Gy (V). We leave it to the
reader to check that this map factors to give a surjective map Sy(V) ® S, (V) —
Sa+u(V) as required. O

The above proposition has a version for an arbitrary reductive group. For any
reductive group G, fix T' C B a maximal torus and a Borel. Then for each dominant
integral weight A, one defines the K to the 1-dimensional representation of T'
corresponding to A and extended to a representation of B in the standard way.
For A, 1 dominant integral weights, the induced modules ind% (k) and ind%(K,,)
can be realized inside the coordinate algebra K[G] in the usual way. Multiplication
gives a surjective map ind%(Ky) ® ind%(K,) — ind%(Kxy,). In the case of G =
GL,,, these induced modules are the Schur modules, which recover the above result.

2.3. Polynomial representations of GL,, of degree n

We will only need Corollary 10 from this section, but a general reference for
the definitions and results in this section is [47]. We first note that S\(V) is a
representation of GL(V'). It is an irreducible representation in characteristic 0, but
not necessarily in positive characteristic. We denote by RepP® (GL,, )4, the category
of polynomial representations of GL,,, of degree d. This category is a highest weight
category, and the costandard objects are precisely the Schur modules Sy (K™) for
|A| = d. Totaro was able to give upper bounds on the homological dimension of
this category, and compute it precisely under mild assumptions, see [47].

Theorem 9 (Totaro). Let char(K) = p, and let a,(d) denote the sum of the
digits in the base p expansion of d. The homological dimension of ReppOI(GLm)d
is < 2(d — ayp(d)). Further, we have equality if m > d.

We refer the reader to [20], [41] for similar results in quantized or generalized
settings. For our purposes, Totaro’s result in the following special case will suffice.
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Corollary 10. Assume p > d. Then ReppOI(GLm)d 18 semi-simple. Further, the
Schur modules Sx(K™) for At d are irreducible representations of GL,.

Proof. The semisimplicity of RepP® (GL,, )4 follows from the aforementioned Tota-
ro’s theorem on homological dimension. The costandard objects in any semisimple
highest weight category are irreducible. Hence the Schur modules Sy (K™)’s with
A F d are irreducible. O

3. Polarization

Let E be a GL(W) representation. For any subset S C E, recall that we define
(S)rw) to be the smallest GL(W) stable subspace containing S. This is often
referred to as polarization. In more concrete terms (S}GL(W) consists of elements
e € E that can be written as a sum e = ), g;s; with s; € § and ¢g; € GL(W).
Let us note here that the definition of (S)qy,y) depends on the ambient GL(W)
representation E. For our discussion, it will almost always be obvious what the
ambient representation is.

Understanding the following special case is the most crucial part of this paper.

Problem 1. For an inclusion of vector spaces V' C W, we have S\(V) C Sy\(W).
When is (Sx(V))arwy = SA(W)?

In characteristic 0, this is always true as long as S (V) is non-empty, because
the module Sy (W) is an irreducible GL(W)-module. In positive characteristic, this
is often not the case as the following example shows:

Example 2. Suppose char(K) = 2, and let A\ = (2), so Sy = Sym?. Consider
K' < K?, and let z,y be a basis for K? with z being a basis for K'. Then we
have Sym?(K!) = span(x?), whereas Sym?(K?) = span(z?,y?,zy). It is easy to
see that <Sym2 (K1)>GL2 = span(z2, y?) which is a proper subset of Sym?(K?).

Remark 2. If dim V' > [A|, we will always have (Sx(V))gp,w) = Sx(W). This is a
simple consequence of the description of the Schur module in terms of semistandard
Young tableaux. We need a much stronger statement to be of any use for our
purposes.

Proposition 11. Suppose V =Vi & Ve C W. Further, suppose (Su(Vl»GL(W) =
S, (W) and (S,,(Vg))GL(W):S,,(W). Then

(S, (1)@ 5, (V2) 1) = Su(W) S, ().

Proof. Consider £ € S,(W) and F € S,(W). We will show that £ ® F' €
(5, (V1) ® S0 (Va)) gr,owy- Since we have (S, (V1))grayy = Su(W), we can write
E = ), gie; for some g; € GL(W) and e; € S, (V7). Similarly, we can write
F =3, h;fj for some h; € GL(W) and f; € S, (V2).

Decompose W = Wy @ Wy with V; C W;. Let (wq, ..., wg) be a basis for W
and (wi,...,w]) be a basis for Ws. Let (w1,...,wg, w],...,w;) be an ordered
basis for W. In this ordered basis, we have a block decomposition g; = [4; | B;l,
where A; represents the first k columns, and B; the last [ columns. Observe that
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since e; € S,(V1), the action of g; on e; only depends on A;. Similarly, write
hj = [P; | QJ] and the action of h; on f; only depends on @;. Hence, if we define
oi; = [Ai | Qj], we have

EQF =Y o0i-(e:®f;)
(2]
There is a small issue that o;; may not be invertible, but this is easy to

circumvent. For some non-zero constant c;;, we have c;;I 4 0;; is invertible, where
I denotes the identity transformation. Then we can write

E®F = Z(Cijj +0ij) - (e; @ fj) — (cijD) - (€; @ f;).
0,j

Since ¢;; 1 + 0,5 as well as ¢;;I are elements of GL(WW), we have that
E®F € (S,(V1)® S, (V: )>GL(W)

The proposition follows since elements of the form F ® F span S, (W) ®@ S, (W).
O

Theorem 12. Let A = p+ v, and let V1 & Vo = V. — W. Further, suppose
we have <SM(V1)>GL(W = Su(W) and (Su(V2))grwy = Su(W). Then we have

SNV arawy = (W)

Proof. Consider the surjection 7 : S, (W)®5S, (W) — Sx(W) from Proposition 8. It
suffices to show m(E® F) € (Sx(V)) g, for £ € Su,(W) and F € S, (W). Indeed
by the Proposition 11, we have EQF = ). g;-(e;® f;) for g; € GL(W),e; € S, (V1),
and f; € S, (Va). Thus we have m(E®@ F) =3, g; - (m(e; @ fi)) € (Sx(V))arow)-
([

Lemma 13. Let A b d such that I(\) < n. Fiz k > 2. Then we can write A =
w1+ po + -+ s for some positive integer s and non-empty partitions p; for
i=1,...,8 such that n(k — 1) < |p;| < kn for all i < s and |us| < kn. Further,
we have l(u;) < n for all i.

Proof. Suppose |A| < kn, then there is nothing to do. So, let us assume |A| >
kn. The lengths of the columns in A are given by the conjugate partition At =
(AT /\;7 ...). Let t be the smallest integer such that 2221 )\j > kn. Then let py be
the first (t — 1) columns of A, so that A = y1 + v, where v is a partition. We have
kn > Zt ! )\T by minimality of ¢, and we have Zt ! )\T > kn —n, since /\I <n by
hypothebls Hence we have n(k —1) < |u1] < kn. Now proceed by induction on v.
O

Example 3. Supposen =4 and k =3 and A = (8,8,7,4), then the decomposition
in the above lemma is best visualized by the following picture.
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Corollary 14. Let A F d such that I(\) < n, and suppose char(K) > kn for some
k > 2. Then for V.= W, with diim V' > n[d/(n(k — 1))], we have (Sx(V)) 1w =
Sx(W)

Proof. Write A\ = p1 + pa + -+ + ps be the decomposition from the previous
lemma. If s > [d/(n(k — 1))] 41, then since |u;| > n(k—1) for ¢ < s, and |us| > 0,
we have [A| = >, |wi| > (s — )n(k — 1) = [d/(n(k —1))]n(k — 1) > d, which
is a contradiction. Hence we have s < [d/(n(k —1))], and consequently, we have
sn < n[d/(n(k —1))] <dim V. This allows us to choose subspaces V1,...,V; CW
such that dimV; =nand V1 Vo & ---pV, C V.

First observe that S,,(V;) is non-zero as I(y;) < dimV; = n. Next, we see
from Corollary 10 that S, (W) is an irreducible GL(W) representation as |u;| <
kn < char(K). Hence, we have (S, (Vi))gr,wy = Su, (W). The result follows by a

repeated application of Theorem 12. O

Corollary 15. Suppose L : Vect — Vect is a functor such that it has a filtration
(of functors) whose subquotients are of the form Sy with A b d and l(A) <
n. Suppose char(K) > kn with k > 2, and let V € Vect such that dimV >
n[d/(n(k —1))]. Then for V<= W, we have (L(V))qy,wy = L(W).

4. Good filtrations and the Littlewood—Richardson rule

The theory of good filtrations is very powerful in positive characteristic. A
comprehensive introduction to this theory can be found in [14] (see also [15], [16],
[19], [38]). We also refer the reader to [10], [51] for an exposition with a view of
using them for invariant rings coming from quivers including matrix invariants and
semi-invariants.

Let G be a connected reductive algebraic group over an algebraically closed field
K. Let B be a choice of Borel subgroup of G and let T C B be a maximal torus
of G. Let AT denote the set of dominant integral weights. For each A € AT, one
can associate a one-dimensional representation of B. The corresponding induced
G-module is called a dual Weyl module, and denoted V(X). Note that for GL,
and SL,,, Schur modules are dual Weyl modules. There is a partial order < on AT
defined by A < p if 4 — X is a non-negative sum of roots.

Definition 4. A G-module V is called a good G-module if it has a filtration
0C Vo CVy C ... such that |JV; = V and each subquotient V;/V;_; is a dual

i
Weyl module. Such a filtration is called a good filtration.

The dual Weyl modules occuring as subquotients (including multiplicities) are
independent of the choice of filtration.

Remark 3. For a split reductive group defined over Z, Weyl modules and dual
Weyl modules are defined over Z, see [33] or [37]. More precisely, for A € AT, there
is a free G-Z-module Vz(\) such that Vz(\) ®z K is the dual Weyl module V()
for Gi for any algebraically closed field K. So, we call a free G-Z-module a good
G module if it has a filtration by the dual Weyl modules Vz(A)’s. Moreover, the
characters of dual Weyl modules are given by the Weyl character formula and in
particular independent of the characteristic.
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The following lemma is straightforward (see for example [14, Prop. 3.1.1]).

Lemma 16. Suppose a G-module V' has a filtration 0 C Vo C Vi C ... such
that | JV; =V and each subquotient V; /V;_1 is a good G-module, then V is a good

G-moldule.

Let us recall some well-known properties of good G-modules. They can be found
in the standard references mentioned above.

Lemma 17. Let V and W be good G-modules.

(1) If V.C W, then W/V is a good G-module.
(2) VoW is a good G-module.

(8) dim(V'Y) is the multiplicity of the trivial module in any good filtration for
G.

The following result is [14, Prop. 3.2.6].

Lemma 18. Suppose V is a good G-module. Suppose it has a good filtration 0 =
Vo €WV C - CV, =V with V;/JVi_y = V(\). Let m be a permutation of
{1,2,...,n} such that whenever Ax(;y = Ax(;), we have m(i) > n(j). Then there is
a good filtration 0 = Vg CV{ C --- C V) =V such that V;/Vi_1 = V(Ar@)-

The following result is already evident in the proof of the universal form of
the Littlewood—Richardson rule (see [2]). However, we will provide a sketch of the
proof. Let us note that the dominance order on partitions agrees with the partial
order < for G = GL(V).

Corollary 19. Suppose A\, u are two partitions, and V a vector space over an
algebraically closed field K. Then we have a surjection ¢ : S\(V) ® S,(V) —
Sxtu (V') such that ker(C) has a filtration whose subquotients are Schur modules of
the form S, (V) with v < XA + p.

Proof. Since Sx(V) and S, (V') are good GL(V') modules, so is Sx\(V) ® S, (V) by
Lemma 17. To understand the multiplicities of dual Weyl modules in any good
GL(V)iltration for Sy (V) ® S, (V), it suffices to write its character as a sum of
characters of dual Weyl modules. This is a computation that is independent of
characteristic as the dual Weyl modules have the same formal character in any
characteristic, see Remark 3.

In characteristic zero, the celebrated Littlewood—Richardson rule describes how
Sx(V)®5,,(V') decomposes as a sum of Schur modules. Hence, in any characteristic,
the Littlewood—Richardson rule describes the subquotients in any good filtration
of Sx(V) ® S,(V). The Schur module Sy, (V) occurs with multiplicity one, and
all others are of the form S, (V) with v < A + p.

Using the above lemma, we can get a good filtration 0 = Vy C --- C V, =
Sx(V) ® S,(V) such that V;/Vi—1 = Sxyu(V). Interpreting this as a map ¢ :
Vi —+ S >\+M(V) whose kernel is Vi_1, we get the required conclusion. [
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5. Good filtrations for invariant rings

For this section, let us assume G is a connected reductive group over an algebrai-
cally closed field K whose characteristic is p > 0, and V' is an n-dimensional good
G-module. The following lemma is [51, Lem. 2].

Lemma 20. The module N*(V) is a good G-module for i < p.
We can use the above lemma to prove the more general statement.
Lemma 21. If p > n, then S\(V) is a good G-module for all partitions .

Proof. The minimal elements in the dominance order on partitions are the parti-
tions of the form 1*. We note that Sy:(V) = A*(V). From the above lemma, we
see that all of these are good G-modules. We proceed by induction. Let A be a
partition such that S, (V) is a good G-module for all 4 smaller than X in the
dominance order. If I(A) > n, then Sy(V) = 0, so we can assume [(A\) < n < p.
Since I[(A\) < p, we can write A = u + 1* where p is a partition and ¢ < [(\) < p.

By the inductive hypothesis, S, (V) is a good G-module. Further, we have
already observed that Sy:(V) = Af(V) is also a good G-module. Hence, by Lem-
ma 17, M = S,(V) ® S1:(V) is a good G-module. By Corollary 19, we have
a surjection ¢ : M — S, 1:(V) = S\(V) such that ker(¢) has a filtration by
Schur modules S, (V) satisfying v < A. By induction, all such S, (V)’s are good
G-modules. This means that ker(¢) has a filtration by good G-modules, and so
by Lemma 16, we conclude that ker(¢) is a good G-module. By Lemma 17, we
conclude that Sy(V) = M/ ker(¢) is also a good G-module. [

Corollary 22. If p > n, then Sym(V) is a good G-module.

Lemma 23. Ifp > n, the module Sym(V @ W) is a good G-module for any finite-
dimensional W (G acts trivially on W).

Proof. We have Sym(V @ W) = Sym(V)®4mW So it is a good module by
Lemma 17. O

The following result first appeared in [21], but can also be found in [1].

Theorem 24 (Doubilet-Rota-Stein). Sym®(V @ W) has a natural filtration who-
se associated graded module is

D 5r(V) @ S, (W).

AFd

Corollary 25. Sym*(V ® W) has a natural filtration whose associated graded
module is

ED Sx(V) @ Sx(W).
A1V <n

Proof. This follows from the above theorem, since Sy(V) =0if {(A\) >n. O

Lemma 26. Suppose p > n. Then Symd(V ®@ W)C has a natural filtration whose
associated graded module is

B S\esm).

ARdI(N)<n
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Proof. Let 0 = Fy C Fy C --- C F,, = Sym*(V ® W) denote the G x GL(W)-
filtration from the above corollary. We know that F;/F;_ is of the form S\ (V) ®
S)\(W), SO (Fi/Fifl)G = S)\(V)G ® S)\(W)

Observe that Sym?(V ® W)& has a filtration

0=FS CFfC...C FS =Sym (V@ W),

The associated graded module of this filtration is @; F</F< . Hence, if we show
that FY/FY, = (F;/F;_1)¢, we would be done. It is easy to see that we have
natural injective maps 7; : FE/FC, «— (F;/F;,_1)¢ for each i. So, it suffices to
show that the maps 7; are isomorphisms. Indeed, if A C B are modules with
good filtrations, then the natural surjection B — B/A restricts to a surjection
BY — (B/A)Y (see for example [9, Prop. 1(ii)]), and hence descends to a surjection
BY/A% — (B/A)%. This shows that the 7;’s are all surjective, and hence isomor-
phisms. [

Corollary 27. Suppose p > n, then Symd(V®W)G has a natural filtration whose
associated subquotients are all of the form Sy(W) with A+ d and I(X) < n.

Corollary 28. Assume p > kn for some k > 2. Let W be a vector space with
dim W > n[d/(n(k —1))]. Then, for any inclusion of vector spaces W — W', we
have
d G d G
(Sym“(V @ W)%) qp yry = Sym“(V @ W%
Proof. First observe that p > kn > n. Consider the polynomial functor L defined
by L(U) = Sym(V ® U)%. L has a filtration by Sy with A - d and I(\) < n by the

previous corollary. Hence, by Corollary 15, we have (L(W))qp,mwn = L(W'). O

6. Technical details

We discuss a few elementary results before proceeding to the main technical
result.

6.1. Decomposable elements

For a graded ring R = @), Rq4, we define the notion of decomposable and
indecomposable elements.

Definition 5. A homogeneous element f € R, of degree d is called decomposable
if it can be written as f = Zie 7 gihi, where g;, h; are homogeneous elements of
degree < d. If a homogeneous element is not decomposable, we call it indecompos-
able.

Corollary 29. The set R<y = @5\7:1 R; is a set of generators for R if and only
if for all d > N, every element of Ry is decomposable.

For the rest of the section, let V' be a representation of a group G over some
algebraically closed field K. The following lemma is straightforward.

Lemma 30. The set of decomposable invariants in K[V™|§ = Sym®(V* @ K™)¢
is GL,,, stable.
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Lemma 31. Assume a < b and let S be a set of generators for K[VY. If
<K[Va]dG>GLb = K[V§ for all d < B(K[V*]Y), then (S)ar, s a generating set
for K[V*]9.

Proof. Clearly, it suffices to show that every indecomposable invariant in K[V?]¢
can be generated by (S)qp,. Take an indecomposable invariant f € K Vo9, Tt
has degree d < B(K[V?®]¥). Thus f € <K[V“]§>GLb by hypothesis. Hence, we have
f =9 fi with f; € K[V$ and g; € GLy. But since S is a generating set
for K[V*]%, we can write each f; = p;(s;,, ..., s;,,) for some polynomial p; in r;
variables, and s;; € S. Thus we have

F=Y 00 0i=) 0 pi(siyser8i,) = _0ilGi - Sins- -1 9i - Siy,)

But this means that f is generated by (S)qp,. U

6.2. Main technical result
For this section, let G be a reductive group over an algebraically closed field K of

characteristic p, and let V be an n-dimensional representation such that V* is a
good G-module. This section is devoted to proving the following result.

Proposition 32. Suppose Q > % is such that B(K[V™)¢ < mQ for all m > 1
and p > 2Q(n+ 1) +n. If S is a generating set for K[V, then (S)q, is a
generating set for K[V™% for all m > n.

To prove this proposition, we need some other results first.

Lemma 33. Assume char(K) > kn for some k > 2. If m > n[d/(n(k —1))],

then we have <K[Vm]g>GL L K[vmhg.

Proof. This follows from Corollary 28 because we assume that V* is a good G-
module. [

Corollary 34. Assume the hypothesis of Proposition 32. Suppose m > n. Then,
we have (K[V™$) 1 L= K[VmHG for all d < B(K[V™H]9).

Proof. Tt follows from the hypothesis that d < B(K[V™T%) < (m + 1)Q. Also,
observe that by hypothesis, we have p = char(K) > kn, where k = 2Q(1+1/n) +
1 > 2. So, in order to use the above lemma, we only need to show

m>n{

4
nk—1)|"
We have two cases:

Case 1: d/(n(k —1)) <1. In this case, we have m > n = n[d/(n(k—1))]| by
hypothesis.

Case 2: d/(n(k —1)) > 1. In this case, we have [d/(n(k —1))] < 2ﬁ7 hence
it suffices to show p od

> 9 = .
M k-1 k-1
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But this is the same as showing that d < m(k — 1)/2. We know that d <
(m+1)Q, so it suffices to show that (m+1)Q < m(k —1)/2. Rearranging,
we need to show that k& > 2Q(1 + 1/m) + 1. But it is easy to see that
E=2Q(1+1/n)+1>2Q(1+1/m)+1since m>n. O

Proof of Proposition 32. This follows from Lemma 31 and a repeated application
of the above corollary. O

Proof of Theorem 5. For n = 1, the result is obvious. Assume n > 2, and now the
result follows from Proposition 32 once we observe that the hypothesis is satisfied
for @ = n3(n — 1) by Theorem 4. One does need to be a little careful in applying
Proposition 32 as dim(Mat,, ,) = n? and not n. O

Proof of Proposition 6. One has to mimic the proof of Proposition 32. First, note
that we have to replace n by n? because dim(Mat, ,,) = n?. In Corollary 34, one
needs to adjust the assumption to m > n?. Accordingly the two cases in the proof
should be modified. Let us write T' = d/(n?(k — 1)). Then the two cases one should
use are that either [T] <nor [T]|<(1+1/n)T. O

Remark 4. Similar results can be formulated for various invariant rings and semi-
invariant rings associated to quivers, by standard reductions to be reduced to the
case of matrix invariants and semi-invariants, see [5], [6], [7] for details.

7. Proof of main theorem

The results of the previous section can be applied in any situation where an
explicit ) that satisfies the hypothesis of Proposition 32 is known. The importance
of Theorem 7 is to provide a plethora of examples. The only catch, though, is that
part (1) of Theorem 7 is an existential result rather than an explicit one. It is an
interesting problem to give any kind of explicit bound on the number Q).

In characteristic zero, an approach to upper bounds for the degree of generators
of invariant rings was proposed by Popov, and improved by the first author in [3].
For a collection of polynomials T', we denote its zero locus by V(T).

Definition 6. Let V be a representation of a reductive group G over an algebrai-
cally closed field K. The null cone is given by

NG, V) = V( D K[V]g’) CV.
d=1
Further, define
i (G, V) = min{D ‘ V( O K[V]g’) = N(G, V)} .
d=1

Now, let us study the null cone for the action of G on several copies of V. It
is easy to see that yx (G,V?) < vk (G, V?) for a < b. However, we claim that the
sequence stabilizes.
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Lemma 35. Let V' be an n-dimensional representation of a reductive group G
over an algebraically closed field K. For all a > 0, we have

FYK(Ga Va) S ’VK(Ga Vn)

Proof. Without loss of generality we can assume a > n. From the Hilbert—-Mumford
criterion for the null cone, it is easy to see that whether a tuple (v1,...,v,) € V@
is in the null cone or not depends only on the linear subspace span(vy,...,v,)
C V. So, for any tuple (v1,...,v,) not in the null cone, let v;,,...,v;. be a basis
for span(vy,...,vs). Then (v;,,...,v;, ) is not in the null cone for the action of G
on V", and observe that » < n. This gives an invariant f € K[V"]¢ such that
f(viys-- i) # 0. Now, define f € K[VE by f(wi,...,ws) = flwi,,...,w;i).
Then f(v1,...,0q) = f(viy,-..,v;,) # 0. This means there is an invariant of degree
< (G, V") < vk (G, V™) that doesn’t vanish on (vy,...,v,). This means that
the null cone for V* is cut out by invariants of degree < i (G, V™). This proves
the lemma. O

In the above, instead of using the Hilbert—Mumford criterion, one may also use
the results from [22] to establish a similar result.

If V is a free G-Z-module of rank n for some reductive group scheme G over
Z, then we write vk (G,V) = 7k (Gk, Vi) for simplicity. Recall the definition of
0r(S) from Definition 2.

Lemma 36. Let G be a reductive group scheme over Z. Suppose V' is a free G-Z-
module of rank n. Then vk (G, V) < 6z(Z[V]¥) for any algebraically closed field K .

Proof. This follows in two steps. The first is to see that yx (G, V) = dx (K[V]9).
This follows from [4, Lem. 2.5.5, Rem. 4.7.2]. The second is to check that & (K [V]%)
< 0z(Z[V]%). First, we note that Z[V]% is finitely generated, see [45, Thm. 2], so
in particular, we know that &7 (Z[V]%) < occ.

By definition of §7(Z[V]%), we have that Z[V]“ is a finite extension over the
ring Z[Gy, ..., G,] where G; are homogeneous of degree < d7(Z[V]%). But finite
extensions are preserved under base change, so Z[V]% ®z K is a finite extension
over Z[G1,...,G,] @z K =K[G1,...,G,]. Hence, if we show that K[V]% is a fi-
nite extension of Z[V]% ®z K, then it follows that K[V]% is a finite extension of
K[Gy,...,Gy). So, we can conclude that dx (K[V]%) <max{deg(G;)} <dz(Z[V]Y).

So, all that remains is to prove that K[V]% is a finite extension of Z[V]¢ @z K.
As we noticed before, Z[V] is finitely generated, so Z[V]¥ = Z[Fy,. .., F,], and so
Z|V|® @z K = K[F, ..., F,]. We see from [45, Prop. 6] that V(Fy,..., F,) C Vi is
the null cone for the action of G on V. Again, by[4, Lem. 2.5.5, Remark 4.7.2],
we see that K[V]¢ is a finite extension of K[Fy, ..., F.] = Z[V]“ ®z K as required.
O

Combining the above two lemmas, we get the following result.

Corollary 37. Let G be a reductive group scheme over Z. Suppose V is a free
G-Z-module of rank n. Then we have v (G, V) < vz(Z[V"]%) for all algebraically
closed fields K and for all a.
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Proof. From the previous two lemmas, we get
k(G V) < k(G V") < (Z[V7)S). O

We now discuss how the bounds for invariants defining the null cone translate
into bounds for the degrees of generators. Let us state the main result in [3] in a
slightly different way.

Theorem 38. Assume K is an algebraically closed field of characteristic 0. Let V/
be an n-dimensional representation of a reductive group G over K. Then we have

B(K[V]F) < max{2, 3nvk (G, V)?}.

There are two reasons that we need characteristic zero in the above statement.
The first is that invariant rings for reductive groups are Cohen—Macaulay in
characteristic zero, see [31]. The second is Kempf’s result that the Hilbert series
is a proper rational function, see [34]. In the situations that we are interested in,
these required ingredients are true in positive characteristic as well. The Cohen—
Macaulay condition was addressed by Hashimoto in [28].

Theorem 39 ([28]). Suppose G is a reductive group over an algebraically closed
field K. Suppose V is a representation of G such that K[V] = Sym(V*) is a good
G-module. Then K[V is strongly F-regular, and in particular Cohen—Macaulay.

To get Kempf’s result on the Hilbert series to arbitrary characteristic, we
use a comparison to the characteristic zero case. In order to compare across
characteristics, we will need the representation and the reductive group to be
defined over Z. So, we will work under the hypothesis of the Theorem 7 for the
following result.

Proposition 40. Let G be a split reductive group scheme over Z, and V a free
G-Z-module of rank n such that V* is a good G-module. Let K be an algebraically
closed field such that K[V] is a good G-module (for, e.g., if char(K) > n by
Corollary 22). Then the Hilbert series for K[V is the same as the Hilbert series
for C[V]. In particular, it is a proper rational function.

Proof. This fact that the Hilbert series of K[V] is the same as the Hilbert series
for C[V]¢ has been observed before in the context of matrix invariants and matrix
semi-invariants in [17], [9], [7]. The same proof works, and we sketch it.

First note that the group G¢ is reductive, and hence linearly reductive. In
particular, all G¢ modules have good filtrations. Since K[V]4 (resp. C[V]4) has
a good filtration, to get dim(K[V]Y) (resp. dim C[V]S), one has to write the
character of K[V]q (resp. C[V]4) as a sum of characters of dual Weyl modules and
read off the coefficient of the trivial character (see Lemma 17). The characters of
the dual Weyl modules are independent of characteristic, so the two computations
are identical. [

Thus the degree bound for invariants in Theorem 38 continues to hold in positive
characteristic if we add some hypothesis so as to use the above results. So, we get
the following:
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Corollary 41. Let G be a split reductive group scheme over Z, and V a free G-
Z-module of rank n such that V* is a good G-module. Let K be an algebraically
closed field such that K[V] is a good G -module. Then we have

BKIVI®) < max {2, (G, V)?).

Proof of Theorem 7. To prove the first part, it suffices to show that &7 (Z[V"]%) is
finite. This follows from the fact that Z[V"]¢ is finitely generated, see [45, Thm. 2].

Let us now turn to the second part. Let K be an algebraically closed field with
char(K) > 2Q(n + 1) + n. Observe that that since char(K) > n and V* is a good
G-module, we have that K[V™] is a good G-module for all m by Lemma 23. So
the above corollary applies and so for all m, we have

B(K[V™]F) < max {2, 2mnyk (G, V™)?} < max {Q,m(%n(SZ(Z[V”]G)Q)} < mQ.

The first inequality follows from the above corollary since dim(V™) = mn. The
second inequality follows from Corollary 37, and the last inequality follows from
the definition of Q. Since B(K[V™]%) < mQ, we can apply Proposition 32 and the
second part of the theorem follows. [

To conclude, we wish to emphasize an important future direction of research,
namely, to produce a strong upper bound for §z(Z[V™"])“. At the moment, we do
not have any kind of explicit bound!
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