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Abstract: Crop raiding by wild boars is a growing problem worldwide with potentially damaging
consequences for rural dwellers’ cooperation with conservation policies. Still, limited resources
inhibit continuous monitoring, and there is uncertainty about the relationship between the biophysical
realities of crop raiding and humans’ perceptions and responses. By integrating data from camera
traps, remote sensors, and household surveys, this study establishes an empirical model of wild
boar population density that can be applied to multiple years to estimate changes in distribution
over time. It also correlates historical estimates of boar population distribution with human-reported
trends to support the model’s validity and assess local perceptions of crop raiding. Although the
model proved useful in coniferous and bamboo forests, it is less useful in mixed broadleaf, evergreen
broadleaf, and deciduous forests. Results also show alignment between perceptions of crop raiding
and actual boar populations, corroborating farmers’ perceptions which are increasingly dismissed as
a less reliable source of information in human—wildlife conflict research. The modeling techniques
demonstrated here may provide conservation practitioners with a cost-effective way to maintain
up-to-date estimates of the spatial distribution of wild boar and resultant crop raiding.
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1. Introduction

Human—wildlife conflict is an increasingly prevalent challenge throughout the world, with
potentially severe implications for environmental conservation [1]. These conflicts are centered on
competing social and environmental values, and while research cannot point to “correct” solutions,
it can help conservation managers predict potential conflicts prior to policy implementation and
manage them accordingly. Human—wildlife conflict is a special concern in protected areas and their
surroundings. As ecosystems recover, growing populations of some wildlife species can threaten the
livelihoods and safety of nearby rural communities [2], especially when these species invade farm fields
and devour crops. Not only does crop raiding bring economic hardship to already poor families [3] and
contribute to food shortages [4], it can also breed resistance to conservation programs [5] and interfere
with their outcomes [3]. Managing wildlife crop raiding is thus socially and environmentally vital.
While there have been several studies on crop raiding near protected areas [5-8], few have examined
how crop raiding changes over time, likely because field estimates are expensive to obtain [9].

Crucial to the management of human—wildlife conflict is understanding the habitat and distribution
of the wildlife species in question. Remotely sensed imagery, especially those from the Landsat satellite
series, have long been used to estimate wildlife distribution and habitat suitability due to their cost-free
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accessibility [10,11] and their ability to cover large spatial extents [12]. While several studies have
simultaneously considered different topographic, hydrologic, and human variables [13], vegetation
characteristics remain keystone explanatory variables, usually measured through remotely derived
vegetation indices such as the Normalized Difference Vegetation Index (NDVI) [13,14]. In addition,
strategies for interpreting results vary, with some studies assigning ordinal suitability ratings ranging
from “low” to “very good” [15], while others use a continuous suitability scale [16], and then
establish a threshold to determine whether a species is potentially “present” or “absent” at a site [17].
All these models are empirical, requiring on-the-ground population measurements to calibrate the
relationships between environmental characteristics and actual wildlife occurrences and distribution.
Ground-measurements are increasingly being done using noninvasive camera traps [18,19], although
different population distribution indicators have also been employed [11,19].

While many studies that model species distribution using remotely sensed data are undertaken to
aid conservation of vulnerable/endangered species [9,20], comparatively few address relationships
between economically vulnerable human populations and highly resilient and pervasive wildlife
species such as wild boars (Sus scrofa). As in many places around the world, forest recovery in China
has brought a resurgence of wild boars, especially near protected areas [21], which often has severe
economic consequences for farmers, many of whom are poor. In China, this is even more problematic
because Killing or trapping wild animals is restricted in many places, while alternative methods to
control crop raiding, such as fencing, have proven ineffectual [7]. Due to their dense populations,
adaptable diets, large bodies, and high reproduction rates, it is difficult to control wild boar populations
and/or mitigate their damage to crops [7]. Growth in wild boar populations has even induced cropland
abandonment, as is the case in the mountainous Chongqing Province [22], and the problem may be
growing in other areas where conservation policies bring increasing forest cover that allows wild boar
populations to flourish. This poses a threat to any further conservation action, and data from other
regions (e.g., Tianma National Nature Reserve) suggest that these losses offset the social benefits of
even voluntary conservation programs [23]. Thus, understanding the distribution of wild boars and
crop raiding will improve our ability to assess their burdens to farmers, land-use practices in response
to these burdens, and overall long-term dynamics of local ecosystems.

When creating habitat models, it is critical to consider several variables that affect the species’
key needs: space, cover, and food. Prior studies have suggested that wild boars prefer deciduous
forests in southern Sweden [24] and deciduous or coniferous forests in South Korea [25], although
there may be wide regional differences for this extremely widespread species [26]; thus it is necessary
to perform site-specific evaluations. Elevation is also a key habitat variable, as lower elevations may
provide steadier year-round feeding opportunities, as evidenced by studies in the United States which
show that some boars remain at lower elevations while others shift to feed at higher elevations during
summer [27]. Meanwhile boars may tolerate steep terrains and in fact be drawn to them when they
provide a protective barrier against threats [28]. Furthermore, because slope aspect can influence
vegetation through its effects on soil moisture availability [13], aspect values may be reclassified
on a scale of 0 to 20 based on Parker’s [29] topographic relative moisture index (TRMI). Park and
Lee [25] found that east- and southeast-facing slopes were most suitable to wild boars in South Korea,
which corresponds to low-to-moderate relative soil moisture values based on the TRMI conversion.
Preference for east-facing slopes may also occur because these areas are less likely to be covered by
forage-inhibiting snow during the winter months [30], and thus may also exhibit lower soil moistures
during spring and summer.

The triadic relationship among farmers, wild boars, and forest growth has been reported by a few
studies using empirical data collected within a single season [3,7,31]. This study integrates biophysical
and socioeconomic data to illustrate a system in rural China wherein impoverished, small-scale farmers
are subjected to an increase in crop losses due to foraging wild boar, a species that stands to flourish
amid the region’s forest gains, over a period of 26 years from August 1990 to August 2016. Results of
this study may provide a cost-effective way to evaluate long-term socioeconomic effects of successful
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socioeconomic effects of successful forest conservation programs, help with the development of
appropriate mitigation and compensation programs, and further enhance the long-term success of
forestoarisenvattoonprograms, help with the development of appropriate mitigation and compensation
programs, and further enhance the long-term success of conservation actions.

2. Materials and Methods
2. Materials and Methods
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Figure 1. True €olor image of Fanjingshan National Nature Reserve; boundary in white.
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Figure 2. IDW interpolated boar density by k-value.
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Figure 2. IDW interpolated boar density by k-value.
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the past 10 years. These interviews also covered each household’s demographics, work and migration
history, participation in GTGP, experience with crop raiding, agricultural holdings, and other topics
related to livelihood and lifestyle. This produced a total of 605 household interviews; in 2015, all
605 households were revisited to provide more information on land use and assist in participatory
mapping of their agricultural holdings. A total of 494 household interviews were completed in 2015.
Each household identified the location of its agricultural parcels on a local map, which were later
converted to point coordinates. This provided a dataset with 1298 agricultural fields, each assigned to
a household with the household’s respective survey responses.

2.3. Data Analyses

To evaluate the ability to predict boar density from WDRVI, slope, elevation, and aspect, separate
Ordinary Least-Square (OLS) regression analyses were run for each vegetation type and for all five
vegetation types combined, using the three interpolated boar densities (obtained using three different
k-values in the IDW) as dependent variables. Prior studies have shown OLS regressions are useful for
habitat suitability models [46] despite imperfectly linear relationships and may even fit the data better
than alternatives like nonlinear quantile regression [47]. While a nonlinear function like a general
additive model may have provided slightly more accurate predictions of boar density at the validation
parcels based on the calibration parcels, because the OLS stage of this analysis was simply meant to
test the usefulness of these variables at each vegetation type before geographically weighted analysis
later on, we opted for the simplicity of OLS. Separate regressions for each vegetation type were run
to account for differences in how attracted boar are to different types [24]. These OLS models were
calibrated using clustered random samples of agricultural fields for each vegetation class; parcels were
chosen via arandom number generator where the parcel with the unique ID matching that number,
and those with the next four unique IDs, were selected. This clustering technique was selected to save
time over simple random sampling of one parcel at a time, while the clusters were small enough (5 out
of 1298 parcels at atime) to help ensure wide distribution and relative independence among selected
parcels. This selection process was repeated until 25% of the parcels had been chosen; these would
become the “validation” group and the rest would form the “calibration” group. The linear models
derived from each calibration group were then applied to the validation parcels within the same
vegetation class, and a new OLS regression was run to relate predicted to observed (i.e., interpolated)
boar density. A positive, statistically significant relationship between predicted and observed values
indicated that the model was useful in predicting boar density. Closer slope estimates to 1.0, together
with intercepts closer to zero, showed that the model exhibited higher accuracy and transferability.
After calibrating and validating models for each k-value and each vegetation type, we needed to select
the k-value that best reflected the dispersal of wild boar around the camera traps. The best k-value is
that for which predicted and measured values are the closest, which can be answered using R? [48].
Regressions based on the k = 1 interpolated boar density produced the highest R? values in calibration
for three of the five forest types and the combined model. It also provided the highest R2 values when
validating the regressions for four of the five forest types and the combined model. Thus, the IDW
interpolation using k = 1 was used for the remainder of analysis. Models obtained using the calibration
and validation datasets are listed in Table 1.
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Table 1. OLS regression models for interpolated boar population density in 2016.

Vegetation Type Linear Regression n R2
— c — - 4

Evergreen broad  BPD = 0.034 +0.007(WDRVI) + 0.0004 “(Siope) - 0.000004(Elev) - 0.0008 ((TRMI) 189 0.18
BPD = —0.008 + 1.226 *(Predicted) 63 0.19
Barmb BPD = 0.025 - 0.001(WDRVI) + 0.003 °(Slope) - 0.00008 °(Elev) — 0.0004(TRMI) 161 0.49
amboo BPD = -0.009 + 1.460 *(Predicted) 53 0.51
Cont BPD = 0.028 + 0.014 S(WDRVI) + 0.0001°(Slope) - 0.00003 °(Elev) - 0.0002°(TRMI) 283  0.68
oniter BPD = 0.0007 + 0.974 ¢(Predicted) 95  0.55
Mixed broad BPD = 0.057 + 0.061 °(WDRVI) - 0.0002(Slope) — 0.00005 °(Elev) - 0.00003(TRMI) 295  0.21
xed broa BPD = -0.010 + 1.518 °(Predicted) 98  0.38
Decid BPD = 0.008 + 0.066 °(WDRVI) + 0.003(Slope) - 0.00007 ¢(Elev) - 0.00004(TRMI) 46 098
eciduous BPD = 0.041 - 0.049 ?(Predicted) 15 0.19
Combined BPD = 0.053 + 0.048 S(WDRVI) + 0.0005 °(Slope) - 0.00004 *(Elev) - 0.0010 ((TRMI) 974  0.45
ombine BPD = -0.0009 + 1.086 °(Predicted) 324 043

a: p<0.10, b: p< 0.05and c: p< 0.01 (based on robust standard errors).

After investigating whether remotely sensed variables could be used to predict wild boar density,
a new series of regression analyses was run to predict boar population density over time. First, the same
variables from the OLS models were put into a geographically weighted regression (GWR) model to
estimate a spatially variable model of boar density based on vegetation type, WDRUVI, elevation, slope,
and aspect-derived moisture index in the 500 m surrounding each agricultural field. GWR was selected
as it is likely to provide more spatially accurate estimations of the effects of environmental variables
than global OLS models could when spatial variability in the research question is of importance [49].
(Slope was not included as a coefficient for deciduous forests because its values were too clustered
for the software to process without error; we deemed this an acceptable omission given slope’s lack
of significance in the OLS model for deciduous forests.) These models were calibrated using the
WDRVI values from the 2016 Landsat image and the slope, aspect, and elevation values from the
DEM, then the point-specific coefficients were applied to the 1990, 1996, 2002, and 2011 Landsat
images to estimate boar exposure on each field during those years. The model was applied across
multiple years to estimate whether boar populations had increased or decreased overall over time and
whether our modeled population densities correlated with crop raiding reported by farmers. These
years were selected because they provided mostly cloud-free near-anniversary dates and covered
periods before and after the implementation of GTGP in 2000. The boar density value at each parcel
for each year was then subtracted from the GWR-predicted value based on the 2016 image, producing
four new variables estimating change in boar density between the given year and 2016. This was
an appropriate way to estimate historical boar distributions because habitat suitability, which can
be modeled through indicators like vegetation index and topography, is a widely used indicator of
population distribution [12,16]. Figure 4 illustrates the methodology for estimating boar density in
current and past years. This dataset was then joined by household ID with the 2015 household survey
dataset (n = 494). These records went into a random effects logistic regression grouped by household,
where the dependent variable was whether or not the household had experienced “serious” or “very
serious” crop raiding over the past 12 months (scores 4-5 on the Likert scale), and the independent
variable was the GWR-predicted boar density from the 2016 image. A separate regression was run for
each vegetation type. A similar set of regressions was then run wherein the dependent variable was
whether the respondent believed crop raiding had decreased in the past 10 years and the independent
variable was the estimated change in boar density at the parcel since 1990, 1996, 2002, and 2011. This
was to help validate our model of historical boar population distribution by comparing it with the
local understandings of people who would have experienced these fluctuations firsthand. With five
vegetation types and four images prior to 2016, this produced an additional 20 regressions.
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was an appropriate proxy for crop damage risk. “Boar per day” estimates for each camera trap ranged
from O to 0.18; 48 of the 71 camera traps did not record any boar during summer, and the highest

number of boars observed in one day was four.
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for crop damage risk. “Boar per day” estimates for each camera trap ranged from 0 to 0.18; 48 of the
71 camera traps did not record any boar during summer, and the highest number of boars observed in
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within the model (R? = 0.49) and it fit the validation parcels well (81 = 1.460; By = -0.009; p < 0.01;
R2=0.51). In bamboo forests, boar density was positively correlated with slope (+0.003 BPD per degree;
p < 0.01), negatively correlated with elevation (-0.008 BPD per 100 m; p < 0.01), and uncorrelated with
vegetation index or aspect. In evergreen broadleaf domains, where the model had a somewhat low
internal consistency (R? = 0.18), boar density was positively correlated with slope (+0.0004 BPD per
degree; p < 0.01), negatively correlated with aspect-derived moisture index (—0.0008 BPD per point;
p < 0.01), and uncorrelated with vegetation index and elevation. The validation performed similarly
well to the calibration (B4 = 1.226; By = -0.008; p < 0.01; RZ = 0.19). Model RZ2 for mixed broadleaf
forests was also moderately low (R2=0.21), and the model applied less effectively to validation
parcels (B4 = 1.518; By = -0.010; p < 0.01; R2= 0.38). Here, boar density was positively correlated
with vegetation index (+0.061 BPD per unit WDRVI; p < 0.01), negatively correlated with elevation
(-0.005 BPD per 100 m), and uncorrelated with slope and aspect. The deciduous forest model had
the highest internal consistency; with an R2 of 0.98, it showed boar density positively correlated
with vegetation index (+0.066 BPD per unit WDRVI; p < 0.01), negatively correlated with elevation
(-0.007 BPD per 100 m; p < 0.01), and uncorrelated with slope or aspect. Despite the high internal
consistency, model validation failed; the relationship between predicted and interpolated boar density
was negative. This was unsurprising given the smaller sample size and dense clustering of most
deciduous plots. Overall, estimated boar density decreased slightly across the study site between 1990
and 2016; it decreased in evergreen broadleaf, conifer, and mixed broadleaf forests, but increased in
bamboo and deciduous domains. Still, the direction and magnitude of change varied considerably
within each vegetation type.

Table 2. Mean estimated boar density by vegetation type.

Vegetation Type Est. Boar Per Day One Boar Per—Days
Evergreen broad 0.034 (SD = 0.007) 30
Bamboo 0.029 (SD = 0.017) 35
Conifer 0.007 (SD = 0.005) 133
Mixed broad 0.014 (SD = 0.012) 72
Deciduous 0.032(SD = 0.013) 31
Combined 0.019(SD = 0.015) 52

Table 3. Mean change in estimated boar per day between years, and maximum increase and maximum
decrease between 1990 and 2016.

. Mean Mean Mean Mean Max. Max.
Veg!reyt::on Change Change Change Change Increase Decrease
1990-2016 1996-2016 2002-2016 2011-2016 1990-2016 1990-2016
Evergreen broad -0.00007 -0.0005 -0.0017 +0.0005 +0.00006 -0.0013
Bamboo Conifer +0.0014 -0.00004 +0.0008 +0.0002 +0.0134 -0.0029
Mixed broad -0.0001 -0.0002 -0.0003 +0.0001 +0.0014 -0.0023
Deciduous -0.0009 -0.0013 -0.0021 +0.0005 +0.0063 -0.0114
Combined +0.0007 +0.0049 +0.0014 +0.0019 +0.0082 -0.0018
=0.00005 =0.0002 =0.0006 +0.0003 F0.0134 =0.0T74

Geographically weighted regressions reflected survey-reported perceptions of crop raiding in
some vegetation types. In conifer and deciduous forests, higher estimated boar density correlated
with a greater likelihood that a householder had experienced “serious” or “very serious” crop raiding
over the previous twelve months. Relationships between predicted boar density and reported crop
raiding severity were not statistically significant for evergreen broadleaf, bamboo, or deciduous
forests. Probability of reporting crop raiding as “serious” or “very serious” is illustrated in Figure 7.
Changes in estimated boar density also correlated with reported changes in severity for some years in
evergreen broadleaf, conifer, and deciduous forests. In evergreen broadleaf forests, respondents who
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had experienced greater decreases in boar density since 1990 or 1996 were more likely to report crop
raiding having decreased during the past 10 years. This was also the case for conifer and deciduous
forests that had experienced greater decreases in estimated boar density since 1996. Estimated changes
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Table 4. Log-odds of reporting crop raiding as “serious” or “very serious” in the 2015 survey based on
interpolated boar density (“In 2015”); log-odds of reporting crop raiding as becoming less severe in the
past 10 years based on estimated changes in boar density between a given year and 2016 (“Since [year]”).

Vegetation In 2015 Since 1990 Since 1996 Since 2002 Since 2011

Evergreen -22.6 - 340(d) -1.73 - 9967(Ad) **  -2.21 - 6025(Ad) **  3.62 - 1324(Ad) -3.73 - 597(Ad)
Bamboo -1.10 + 42.6(d) 1.28 — 259(Ad) -3.75 + 1030(Ad) 0.807 — 78.9(Ad) -4.69 + 625(Ad)
Conifer -7.85 + 646(d)**  -0.502 — 1596(Ad) -2.05- 4395(Ad)* -1.10 - 2689(Ad)  1.18 — 1860(Ad)
Mixed -5.15 + 111(d) 0.416 — 15.0(Ad) -3.54 - 411(Ad) -4.07 - 470(Ad)  -1.41 - 52.2(Ad)

Deciduous -8.30 + 217(d) ** 6.07 — 488(Ad) 31.8-13233(Ad) **  -18.9+ 523(Ad)  -1.17 - 43.3(Ad)
d = predicted boar density (boar per day) from 2016 image and GWR regressions; * p < 0.05; ** p< 0.01.

4. Discussion

Our results suggest remotely sensed variables are useful for estimating boar population density
and crop raiding severity under certain vegetation types. Bamboo and coniferous forests produced
models with moderate to high internal consistency and transferability (moderately high R?in the OLS
calibration and validation models within each forest type). In these vegetation types, remotely sensed
vegetation indices and topography seem to be useful for estimating boar density with minimal costs,
and it is also feasible to estimate year-to-year variations in wild boar population density. However,
this should be further verified with multiyear ground estimates of boar populations. Although the
modeling strategy was less internally consistent and transferrable for mixed and evergreen broadleaf
forests than it was for bamboo and coniferous forests, it still may provide some useful information,
but results from this model need to be interpreted more cautiously. Furthermore, the model’s lack of
significant relationship with vegetation index in evergreen broadleaf and bamboo domains suggests
this technique would not be useful in providing multi-year estimates there because vegetation index is
the only predictive variable that can change substantially from year to year. The model for deciduous
forests, although exhibiting extremely high internal consistency, exhibited no transferability as the
relationship between predicted and interpolated values was negative and small. This contradiction
may have occurred due to the smaller sample size and densely clustered pattern of the deciduous units;
most of these fields were densely packed at the south end of the reserve with a few fields scattered
along the northern end. The randomly selected calibration parcels all happened to occur at the south
end, soit is unsurprising that the model would have poor predictive ability in parcels located more than
30 km away and whose vicinity was not represented in the calibration. With better dispersed survey
units, it may be feasible to derive a usable model for deciduous forests using this method. It should
also be noted that camera traps were generally placed in more geographically accessible locations due
to the region’s rough terrain [40]; this may have limited our model’'s usability in some regions.

While this dataset does not allow us to verify crop damage or historical boar populations through
ground estimates, household survey responses offer insights that can be used to corroborate the models.
In conifer and deciduous forests, households whose fields showed higher risk of crop raiding by wild
boars were more likely to report having experienced “serious” or “very serious” crop raiding in the
past 12 months. This suggests that the model constitutes a useful predictor of boar density in these
forest types. In conifer, evergreen broadleaf, and deciduous forests, households whose fields had
higher estimated decreases in boar exposure since 1996 were more likely to report that crop raiding
had decreased in the past 10 years; this was also true for changes since 1990 in evergreen broadleaf
forests. While there was no correlation between the estimated boar densities since 2002 or 2011 and the
reported crop raiding trajectory, this does not necessarily undermine the hypothesized relationship
during the decade in question. It cannot be assumed that respondents confined their thought processes
to the 10 years specified in the survey (2005-2015), as it is common for respondents to “telescope” prior
years into a given period, especially regarding routine, non-landmark events [50]. Their responses may
thus reflect changes prior to the decade defined by the survey if changes before 2005 are “telescoped”
in. Further, although our results suggest our modeling framework best captures population conditions
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in conifer forests, it is important to underline that these forests have the lowest boar densities among
the vegetation types evaluated despite conifer forests’ wide geographic coverage and high sample size
(n = 378). While this may reduce the model’s utility at this study site, it shows our methods are more
useful in conifer-dominated landscapes that experience substantial crop raiding by wild boars.

The results obtained in this study address a critical issue in human-wildlife conflict: that of gaps
between human perceptions of wildlife actions and biophysical realities [51]. Human—wildlife conflict
is fraught with misconceptions, and farmers often overestimate the threat that wildlife pose to their
crops [52]. This can exacerbate the resistance to conservation efforts and environmental gains [3,5];
it may also lead to misdirected efforts to mitigate farmers’ losses and reduce tensions. However,
this study’s correlations between perceived crop raiding occurrence, and its temporal trajectories,
with modeled boar population density provides preliminary evidence that perceptions and reality
are often in sync, at least within our study area. Under these circumstances, technical assistance
to reduce crop raiding may effectively reduce tensions and preserve cooperation with conservation
actions. Of course, given that this dataset does not measure actual crop damage or ask landholders
for more detailed information on their experiences, this study does not provide sufficient proof on its
own. Further research with objective, physical measurements of crop damage, together with more
detailed information on landholders’ perceptions, are needed to verify correlations among modeled
boar density, actual crop raiding, and perceived crop raiding. Nevertheless, this study does provide
nascent support for the validity of crop raiding perceptions as well as a methodological skeleton for
further investigation with more detailed data.

The authors emphasize this study is exploratory, intended more to test the feasibility of the
methodological framework than to provide concrete answers on wild boar and crop raiding at
Fanjingshan. Along these lines, it is important to note that forecasting based on population estimates
from such a limited timeframe is dubious; this methodology would be better employed with camera
trap data from several years, ideally spread out. Adding temporal depth to the camera trapping
estimates would also allow for the inclusion of critical climatic data like year-to-year variations in
temperature and moisture, which may vastly improve habitat and population predictions. This
study indeed demonstrates the utility of camera traps, remotely sensed images, and household
surveys in deriving empirical relationships between boar distributions and present-day crop raiding
burdens. Meanwhile the correlations between estimated boar distributions over time and landholders’
perceptions of worsening or abating crop raiding suggest the modeling techniques described here
may be useful for updating habitat maps and planning interventions based on time-variant, remotely
sensed variables like vegetation and weather. Creating reliable forecasts of boar population and crop
damage using these methods will, of course, call for richer data from which to calibrate the models.
Future studies should refine this methodology with multi-year camera trap measurements (or other
reliable population estimation techniques), weather data, and physical measurements of crop damage
that do not rely solely on landholders’ perceptions. After investing in a robust foundation of data,
this modeling technique may provide an effective, affordable means of managing wildlife and their
damage to crops as populations fluctuate and shift over time.

5. Conclusions

This study uncovers the potential to improve crop raiding monitoring and management over
multi-decade periods at minimal cost after initial ground population estimates are made. This may
help design cost-effective, easily updatable compensation schemes and technical interventions to
minimize economic burdens to farmers. It also empirically affirms anecdotal understandings of crop
raiding’s relationship to regional ecological changes in some vegetation domains. Although the model
suggests crop raiding is not increasing for all households, it demonstrates fine-scale heterogeneity
in both realities and perceptions. While the boar density models obtained for Fanjingshan cannot
(and should not) be applied to other areas directly [13], the methods for deriving geographically
weighted coefficients described here may allow for cost-effective, long-term monitoring of wild boar
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populations and crop raiding risks at other sites around the world. Given the expense of continuous
ground measurements and the limited resources in many affected communities, this may improve boar
management and compensation arrangements at minimal cost by allowing practitioners to update
distribution maps using remotely sensed imagery.
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Appendix A
Table A1. Empirical line corrections for radiometric rectification.
Band Year Equation R2 n
1996 Rcorr = 0.831 x Ryggs + 534.56 0.85 258
NIR 2002 Rcorr = 0.952 x Ry + 342.27 0.85 258
2011 Rcorr = 1.022 x Ryp11 — 47.223 0.86 249
2016 Rcorr = 0.906 x Ryp16 +218.48 0.85 234
1996 Rcorr = 1.226 x Ryggs + 20.32 0.91 235
Red 2002 Reorr= 1.113 x Rypp2 + 69.99 0.86 248
© 2011 Rcorr = 0.892 x Rypq1 +99.455 0.85 243
2016 Rcorr = 1.034 x Ryp16 + 138.25 0.85 240
Appendix B
Table A2. Camera trap coordinates and dates of operation.
Plot ID Start Date End Date Long. Lat. Interruption Start  Interruption End
(WGssa)  (WGS84)
2 17 April 2015 16 March 2016 108.761 27.85246
5 22 April 2015 16 March 2016 108.7325 27.88133 7 September 2015 23 October 2015
7 26 April 2015 16 March 2016 108.7217 27.8868
19 28 April 2015 15 March 2016 108.6994 27.91098 23 June 2015 6 July 2015
20 28 April 2015 15 March 2016 108.7029 27.90261 30 June 2015 23 October 2015
21 28 April 2015 15 March 2016 108.6998 27.90731 7 September 2015 23 October 2015
22 29 April 2015 15 March 2016 108.7075 27.90061
23 29 April 2015 15 March 2016 108.712 27.89908 7 September 2015 23 October 2015
24 29 April 2015 15 March 2016 108.7245 27.89716
27 2 May 2015 18 March 2016 108.7736 27.85997
28 2 May 2015 18 March 2016 108.7725 27.85966
29 4 May 2015 18 March 2016 108.7331 27.90562 1 September 2015 8 September 2015
30 4 May 2015 18 March 2016 108.7302 27.90692
31 14 May 2015 15 March 2016 108.697 27.78216
32 14 May 2015 15 March 2016 108.7005 27.78644 26 June 2015 30 October 2015
34 19 May 2015 8 April 2016 108.641 27.81311
35 20 May 2015 7 August 2016 108.6495 27.76345
36 20 May 2015 7 August 2016 108.6499 27.77022
37 20 May 2015 9 April 2016 108.6522 27.77409 14 November 2015 20 November 2015
38 21 May 2015 2 August 2016 108.6257 27.88032
39 22 May 2015 5 August 2016 108.6357 27.87258 16 September 2015 9 November 2015

40 22 May 2015 5 August 2016 108.6422 27.87614
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Table A2. Cont.

15 of 18

Plot ID Start Date End Date Long. Lat. Interruption Start  Interruption End
(WGS84) (WGS84)
41 28 May 2015 30 June 2016 108.6579 27.91372
42 9 November 2015 2 August 2016 108.6471 27.91849
43 31 May 2015 1 July 2016 108.6558 27.92395
44 2 June 2015 9 April 2016 108.7692 27.97725
45 2 June 2015 28 April 2016 108.755 27.97899
46 2 June 2015 19 April 2016 108.7478 27.97599 1 July 2015 27 October 2015
47 4 June 2015 15 August 2016 108.7607 27.98081
48 5June 2015 15 August 2016 108.7549 27.98858
49 13 June 2015 30 July 2016 108.7384 28.004
50 13 June 2015 30 July 2016 108.7409 28.00193
54 23 June 2015 28 July 2016 108.6826 27.91677
55 23 June 2015 28 July 2016 108.6838 27.91513 28 October 2015 4 November 2015
57 24 June 2015 16 November 2015 108.6862 27.78472 3 July 2015 13 November 2015
58 10 July 2015 8 August 2016 108.6769 27.93495 24 November 2015 17 February 2016
59 10 July 2015 14 September 2015 108.6747 27.93743
60 10 July 2015 1 April 2016 108.6676 27.95285
10 25 October 2015 30 July 2016 108.7412 28.00497
8 4 December 2015 13 August 2016 108.7705 27.97893
9 2 November 2015 27 July 2016 108.7394 27.90263
11 4 November 2015 27 July 2016 108.7733 27.85921
12 19 March 2016 27 July 2016 108.79 27.90854
13 13 November 2015 27 July 2016 108.7959 27.90966
14 8 April 2016 5 August 2016 108.6466 27.81613
77 18 March 2016 12 July 2016 108.7488 27.89871
76 18 March 2016 27 July 2016 108.7764 27.85929
75 19 March 2016 10 August 2016 108.7725 27.99097
15 19 March 2016 18 July 2016 108.7708 27.98718
74 22 March 2016 24 July 2016 108.7411 27.83366
73 22 March 2016 12 May 2016 108.7505 27.82971
72 23 March 2016 10 August 2016 108.7774 27.98696
71 23 March 2016 12 August 2016 108.7817 27.99012
70 25 March 2016 14 August 2016 108.7466 27.9684
68 13 April 2016 15 August 2016 108.7664 27.99333
67 27 March 2016 20 July 2016 108.781 28.00514
66 27 March 2016 11 August 2016 108.7815 27.99568
65 28 March 2016 11 August 2016 108.7746 27.99835
64 28 March 2016 24 June 2016 108.77 28.0013
63 29 March 2016 12 August 2016 108.7759 27.96883
62 29 March 2016 11 August 2016 108.7852 27.98265
61 30 March 2016 13 July 2016 108.7564 28.02354
53 2 April 2016 23 April 2016 108.6678 27.97648
51 4 April 2016 10 July 2016 108.7497 28.02282
18 4 April 2016 30 July 2016 108.7404 28.02277
16 6 April 2016 31 July 2016 108.5902 27.91872
17 6 April 2016 25 June 2016 108.6088 27.92623
78 10 April 2016 28 July 2016 108.69 27.90617
79 10 April 2016 28 July 2016 108.6875 27.89934
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