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Abstract: Crop raiding by wild  boars is a growing problem worldwide with potentially  damaging 

consequences for rural dwellers’  cooperation with  conservation policies.  Still, limited  resources 

inhibit continuous monitoring, and there is uncertainty about the relationship between the biophysical 

realities of crop raiding and humans’ perceptions and responses. By integrating data from camera 

traps, remote sensors, and household surveys, this study establishes an empirical model of wild 

boar population  density that can be applied to multiple years to estimate changes in distribution 

over time. It also correlates historical estimates of boar population distribution with human-reported 

trends to support the model’s validity and assess local perceptions of crop raiding.  Although the 

model proved useful in coniferous and bamboo forests, it is less useful in mixed broadleaf, evergreen 

broadleaf, and deciduous forests. Results also show alignment between perceptions of crop raiding 

and actual boar populations, corroborating farmers’ perceptions which are increasingly dismissed as 

a less reliable source of information in human–wildlife conflict research. The modeling techniques 

demonstrated here may provide conservation practitioners with  a cost-effective way to maintain 

up-to-date estimates of the spatial distribution of wild boar and resultant crop raiding. 
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1. Introduction 
 

Human–wildlife conflict is an increasingly prevalent challenge throughout the world,  with 

potentially severe implications  for environmental  conservation [1]. These conflicts are centered on 

competing social and environmental values, and while research cannot point to “correct” solutions, 

it can help conservation managers predict potential conflicts prior  to policy implementation and 

manage them accordingly. Human–wildlife conflict is a special concern in protected areas and their 

surroundings. As ecosystems recover, growing populations of some wildlife species can threaten the 

livelihoods and safety of nearby rural communities [2], especially when these species invade farm fields 

and devour crops. Not only does crop raiding bring economic hardship to already poor families [3] and 

contribute to food shortages [4], it can also breed resistance to conservation programs [5] and interfere 

with their outcomes [3]. Managing wildlife crop raiding is thus socially and environmentally vital. 

While there have been several studies on crop raiding near protected areas [5–8], few have examined 

how crop raiding changes over time, likely because field estimates are expensive to obtain [9]. 

Crucial to the management of human–wildlife conflict is understanding the habitat and distribution 

of the wildlife species in question. Remotely sensed imagery, especially those from the Landsat satellite 

series, have long been used to estimate wildlife distribution and habitat suitability due to their cost-free 
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accessibility [10,11] and their ability  to cover large spatial extents [12]. While several studies have 

simultaneously considered different topographic, hydrologic, and human variables [13], vegetation 

characteristics remain keystone explanatory variables, usually measured through remotely derived 

vegetation indices such as the Normalized Difference Vegetation Index (NDVI)  [13,14]. In addition, 

strategies for interpreting results vary, with some studies assigning ordinal suitability ratings ranging 

from  “low” to “very  good”  [15], while  others use a continuous  suitability scale [16], and then 

establish a threshold to determine whether a species is potentially “present” or “absent” at a site [17]. 

All these models are empirical, requiring  on-the-ground  population  measurements to calibrate the 

relationships between environmental characteristics and actual wildlife occurrences and distribution. 

Ground-measurements are increasingly being done using noninvasive camera traps [18,19], although 

different population distribution indicators have also been employed [11,19]. 

While many studies that model species distribution using remotely sensed data are undertaken to 

aid conservation of vulnerable/endangered species [9,20], comparatively  few address relationships 

between economically vulnerable human populations  and highly  resilient and pervasive wildlife 

species such as wild boars (Sus scrofa). As in many places around the world, forest recovery in China 

has brought a resurgence of wild  boars, especially near protected areas [21], which often has severe 

economic consequences for farmers, many of whom are poor. In China, this is even more problematic 

because killing or trapping  wild  animals is restricted in many places, while alternative methods to 

control crop raiding, such as fencing, have proven ineffectual [7]. Due to their dense populations, 

adaptable diets, large bodies, and high reproduction rates, it is difficult to control wild boar populations 

and/or mitigate their damage to crops [7]. Growth in wild boar populations has even induced cropland 

abandonment, as is the case in the mountainous Chongqing Province [22], and the problem may be 

growing in other areas where conservation policies bring increasing forest cover that allows wild boar 

populations to flourish.  This poses a threat to any further conservation action, and data from other 

regions (e.g., Tianma National Nature Reserve) suggest that these losses offset the social benefits of 

even voluntary conservation programs [23]. Thus, understanding the distribution of wild  boars and 

crop raiding will improve our ability to assess their burdens to farmers, land-use practices in response 

to these burdens, and overall long-term dynamics of local ecosystems. 

When creating habitat models, it is critical to consider several variables that affect the species’ 

key needs: space, cover, and food.  Prior studies have suggested that wild  boars prefer deciduous 

forests in southern Sweden [24] and deciduous or coniferous forests in South Korea [25], although 

there may be wide regional differences for this extremely widespread species [26]; thus it is necessary 

to perform site-specific evaluations. Elevation is also a key habitat variable, as lower elevations may 

provide steadier year-round feeding opportunities, as evidenced  by studies in the United States which 

show that some boars remain at lower elevations while others shift to feed at higher elevations during 

summer [27]. Meanwhile boars may tolerate steep terrains and in fact be drawn to them when they 

provide a protective barrier against threats [28]. Furthermore, because slope aspect can influence 

vegetation through  its effects on soil moisture availability [13], aspect values may be reclassified 

on a scale of 0 to 20 based on Parker ’s [29] topographic relative moisture index (TRMI). Park and 

Lee [25] found that east- and southeast-facing slopes were most suitable to wild boars in South Korea, 

which corresponds to low-to-moderate relative soil moisture values based on the TRMI conversion. 

Preference for east-facing slopes may also occur because these areas are less likely to be covered by 

forage-inhibiting snow during the winter months [30], and thus may also exhibit lower soil moistures 

during spring and summer. 

The triadic relationship among farmers, wild boars, and forest growth has been reported by a few 

studies using empirical data collected within a single season [3,7,31]. This study integrates biophysical 

and socioeconomic data to illustrate a system in rural China wherein impoverished, small-scale farmers 

are subjected to an increase in crop losses due to foraging wild  boar, a species that stands to flourish 

amid the region’s forest gains, over a period of 26 years from August 1990 to August 2016. Results of 

this study may provide a cost-effective way to evaluate long-term socioeconomic effects of successful 
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FFiigguree 11.. TTrruee ccolor iimage of Fanjiingshan National Nature Reserve; boundary in white. 
 

2.2. EEmppiirriiccaall Dattaa 

A time series of Landsat imagery taken on near-anniversary dates covering the study area was 
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the time series . The WDRVI was chosen because it is sensitive to variation 
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Figure 2. IDW interpolated boar density by k-value. 
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In-person interviews  were conducted with  households in a stratified random sample. Based 
In-person interviews were conducted with households in a stratified random sample. Based on 

on a 2013 census that had identified  3256 households, 1160 households were selected in hopes of 
a 2013 census that had identified 3256 households, 1160 households were selected in hopes of 
obtaining 650 usable interviews after eliminating households with no knowledgeable member present 
obtaining  650  usable  interviews  after  eliminating  households  with  no  knowledgeable  member 
due to travel or other circumstances. The target of 650 households was selected somewhat arbitrarily 
present due to travel or other circumstances. The target of 650 households was selected somewhat 
to ensure satisfactory statistical power. The 3256 households were divided  into 123 sampling units; 
arbitrarily to ensure satisfactory statistical  power. The 3256 households were divided into 123 
58 of these units were selected and assigned to 20 administrative villages in proportion to each 
sampling  units;  58  of  these  units  were  selected  and  assigned  to  20  administrative  villages  in 
village’s population  size.  This produced a slight overrepresentation of smaller villages.  In total, 
proportion to each village’s population size. This produced a slight overrepresentation of smaller 
20 households were selected from each administrative village per sampling unit; 1160 households 
villages. In total, 20 households were selected from each administrative village per sampling unit; 
were ultimately selected, and full  surveys were completed for 605 households in 2014. In 2015, 
1160 households were ultimately selected, and full surveys were completed for 605 households in 
these 605 households were revisited, and 494 full surveys were completed [44]. Details are available 
2014. In 2015, these 605 households were revisited, and 494 full surveys were completed [44]. Details 
at http://complexities.org/pes/research/recent-updates. The household head was interviewed when 
are available at http://complexities.org/pes/research/recent-updates. The household head was 
possible; otherwise any other available, knowledgeable adult was interviewed.   Each interviewee 
interviewed when possible; otherwise any other available, knowledgeable adult was interviewed. 
indicated the level of crop raiding over the past twelve months on a five-point Likert scale where 1 = “no 
Each interviewee indicated the level of crop raiding over the past twelve months on a five-point 
crop raiding,” 2 = “non-serious crop raiding,” 3 = “somewhat serious crop raiding,” 4 = “serious crop 
Likert scale where 1 = “no crop raiding,” 2 = “non-serious crop raiding,” 3 = “somewhat serious crop 
raiding,” and 5 = “very serious crop raiding.” The Likert scale is useful for analyzing ordinal data like 
raiding,” 4 = “serious crop raiding,” and 5 = “very serious crop raiding.” The Likert scale is useful for 
this when the distances between values, i.e., perceived seriousness, cannot be practically measured [45]. 
analyzing ordinal data like this when the distances between values, i.e., perceived seriousness, cannot 
Respondents also answered whether the severity had increased, decreased, or remained constant over 
be  practically  measured  [45].  Respondents  also  answered  whether  the  severity  had  increased, 

http://complexities.org/pes/research/recent-updates
http://complexities.org/pes/research/recent-updates
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the past 10 years. These interviews also covered each household’s demographics,  work and migration 

history, participation  in GTGP, experience with crop raiding, agricultural holdings, and other topics 

related to livelihood and lifestyle.  This produced a total of 605 household interviews;  in 2015, all 

605 households were revisited to provide more information on land use and assist in participatory 

mapping of their agricultural holdings. A total of 494 household interviews were completed in 2015. 

Each household identified  the location of its agricultural parcels on a local map, which were later 

converted to point coordinates. This provided a dataset with 1298 agricultural fields, each assigned to 

a household with the household’s respective survey responses. 

 
2.3. Data Analyses 

 

To evaluate the ability to predict boar density from WDRVI, slope, elevation, and aspect, separate 

Ordinary  Least-Square (OLS) regression analyses were run for each vegetation type and for all five 

vegetation types combined, using the three interpolated boar densities (obtained using three different 

k-values in the IDW) as dependent variables. Prior studies have shown OLS regressions are useful for 

habitat suitability models [46] despite imperfectly linear relationships and may even fit the data better 

than alternatives like nonlinear quantile regression [47]. While a nonlinear function like a general 

additive model may have provided slightly more accurate predictions of boar density at the validation 

parcels based on the calibration parcels, because the OLS stage of this analysis was simply meant to 

test the usefulness of these variables at each vegetation type before geographically weighted analysis 

later on, we opted for the simplicity of OLS. Separate regressions for each vegetation type were run 

to account for differences in how attracted boar are to different types [24]. These OLS models were 

calibrated using clustered random samples of agricultural fields for each vegetation  class; parcels were 

chosen via a random number generator where the parcel with the unique ID matching that number, 

and those with the next four unique IDs, were selected. This clustering technique was selected to save 

time over simple random sampling of one parcel at a time, while the clusters were small enough (5 out 

of 1298 parcels at a time) to help ensure wide distribution and relative independence among selected 

parcels. This selection process was repeated until 25% of the parcels had been chosen; these would 

become the “validation” group and the rest would form the “calibration” group. The linear models 

derived from each calibration  group were then applied to the validation  parcels within the same 

vegetation class, and a new OLS regression was run to relate predicted to observed (i.e., interpolated) 

boar density. A positive, statistically significant relationship between predicted and observed values 

indicated that the model was useful in predicting boar density. Closer slope estimates to 1.0, together 

with intercepts closer to zero, showed that the model exhibited higher accuracy and transferability. 

After calibrating and validating models for each k-value and each vegetation type, we needed to select 

the k-value that best reflected the dispersal of wild boar around the camera traps. The best k-value is 

that for which predicted and measured values are the closest, which can be answered using R2 [48]. 

Regressions based on the k = 1 interpolated boar density produced the highest R2 values in calibration 

for three of the five forest types and the combined model. It also provided the highest R2 values when 

validating the regressions for four of the five forest types and the combined model. Thus, the IDW 

interpolation using k = 1 was used for the remainder of analysis. Models obtained using the calibration 

and validation datasets are listed in Table 1. 
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Table 1. OLS regression models for interpolated boar population density in 2016. 
 

Vegetation Type  Linear Regression n R2
 

Evergreen broad  
BPD = 0.034 + 0.007(WDRVI) + 0.0004 c (Slope) − 0.000004(Elev) − 0.0008 c (TRMI)  189 0.18 
BPD = −0.008 + 1.226 c (Predicted) 63 0.19 

BPD = 0.025 − 0.001(WDRVI) + 0.003 c (Slope) − 0.00008 c (Elev) − 0.0004(TRMI)  161 0.49 
Bamboo 

BPD = −0.009 + 1.460 c (Predicted) 53 0.51 
 

Conifer  
BPD = 0.028 + 0.014 c (WDRVI) + 0.0001 b (Slope) − 0.00003 c (Elev) − 0.0002 c (TRMI)  283 0.68 

 
 

Mixed  broad 

Deciduous 

Combined 

BPD = 0.0007 + 0.974 c (Predicted) 95 0.55 

BPD = 0.057 + 0.061 c (WDRVI) − 0.0002(Slope) − 0.00005 c (Elev) − 0.00003(TRMI)  295 0.21 

BPD = −0.010 + 1.518 c (Predicted) 98 0.38 

BPD = 0.008 + 0.066 c (WDRVI) + 0.003(Slope) − 0.00007 c (Elev) − 0.00004(TRMI)  46 0.98 

BPD = 0.041 − 0.049 a (Predicted) 15 0.19 

BPD = 0.053 + 0.048 c (WDRVI) + 0.0005 c (Slope) − 0.00004 c (Elev) − 0.0010 c (TRMI)  974 0.45 

BPD = −0.0009 + 1.086 c (Predicted) 324 0.43 

a: p < 0.10, b: p < 0.05 and c: p < 0.01 (based on robust standard errors). 
 

 

After investigating whether remotely sensed variables could be used to predict wild boar density, 

a new series of regression analyses was run to predict boar population density over time. First, the same 

variables from the OLS models were put into a geographically weighted regression (GWR) model to 

estimate a spatially variable model of boar density based on vegetation type, WDRVI, elevation, slope, 

and aspect-derived moisture index in the 500 m surrounding each agricultural field. GWR was selected 

as it is likely to provide more spatially accurate estimations of the effects of environmental variables 

than global OLS models could when spatial variability in the research question is of importance [49]. 

(Slope was not included as a coefficient for deciduous forests because its values were too clustered 

for the software to process without error; we deemed this an acceptable omission given slope’s lack 

of significance in the OLS model for deciduous forests.) These models were calibrated using the 

WDRVI values from the 2016 Landsat image and the slope, aspect, and elevation values from the 

DEM, then the point-specific coefficients were applied to the 1990, 1996, 2002, and 2011 Landsat 

images to estimate boar exposure on each field during  those years. The model was applied across 

multiple years to estimate whether boar populations had increased or decreased overall over time and 

whether our modeled population densities correlated with crop raiding reported by farmers. These 

years were selected because they provided  mostly cloud-free near-anniversary dates and covered 

periods before and after the implementation of GTGP in 2000. The boar density value at each parcel 

for each year was then subtracted from the GWR-predicted value based on the 2016 image, producing 

four new variables estimating change in boar density between the given year and 2016. This was 

an appropriate way to estimate historical boar distributions because habitat suitability, which can 

be modeled through indicators like vegetation index and topography, is a widely  used indicator of 

population  distribution [12,16]. Figure 4 illustrates the methodology for estimating boar density in 

current and past years. This dataset was then joined by household ID with the 2015 household survey 

dataset (n = 494). These records went into a random effects logistic regression grouped by household, 

where the dependent variable was whether or not the household had experienced “serious” or “very 

serious” crop raiding over the past 12 months (scores 4–5 on the Likert scale), and the independent 

variable was the GWR-predicted boar density from the 2016 image. A separate regression was run for 

each vegetation type. A similar set of regressions was then run wherein the dependent variable was 

whether the respondent believed crop raiding had decreased in the past 10 years and the independent 

variable was the estimated change in boar density at the parcel since 1990, 1996, 2002, and 2011. This 

was to help validate our model of historical boar population  distribution by comparing it with  the 

local understandings of people who would have experienced these fluctuations firsthand. With five 

vegetation types and four images prior to 2016, this produced an additional 20 regressions. 
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was an appropriate proxy for crop damage risk. “Boar per day” estimates for each camera trap ranged 

from 0 to 0.18; 48 of the 71 camera traps did not record any boar during summer, and the highest 

number of boars observed in one day was four. 
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performed respectably (R2 2  = 0.45) and generally followed the correlations found in separate models. 
and generally followed the correlations found in separate models. Across the entire study area, boar 
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Mean 

Change 

1990–2016 

Mean 

Change 

1996–2016 

Mean 

Change 

2002–2016 

Mean 

Change 

2011–2016 

Max. 

Increase 

1990–2016 

Max. 

Decrease 

1990–2016 

−0.00007 −0.0005 −0.0017 +0.0005 +0.00006 −0.0013 

+0.0014 -0.00004 +0.0008 +0.0002 +0.0134 −0.0029 

−0.0001 −0.0002 −0.0003 +0.0001 +0.0014 −0.0023 

−0.0009 −0.0013 −0.0021 +0.0005 +0.0063 −0.0114 

+0.0007 +0.0049 +0.0014 +0.0019 +0.0082 −0.0018 

−0.00005 −0.0002 −0.0006 +0.0003 +0.0134 −0.0114 

 

 
 

within the model (R2 = 0.49) and it fit the validation parcels well (β1 = 1.460; β0 = −0.009; p < 0.01; 

R2 = 0.51). In bamboo forests, boar density was positively correlated with slope (+0.003 BPD per degree; 

p < 0.01), negatively correlated with elevation (−0.008 BPD per 100 m; p < 0.01), and uncorrelated with 

vegetation index or aspect. In evergreen broadleaf domains, where the model had a somewhat low 

internal consistency (R2 = 0.18), boar density was positively correlated with slope (+0.0004 BPD per 

degree; p < 0.01), negatively correlated with aspect-derived moisture index (−0.0008 BPD per point; 

p < 0.01), and uncorrelated with vegetation index and elevation. The validation performed similarly 

well to the calibration (β1 = 1.226; β0 = −0.008; p < 0.01; R2 = 0.19). Model R2 for mixed broadleaf 

forests was also moderately  low  (R2 = 0.21), and the model applied  less effectively to validation 

parcels (β1 = 1.518; β0 = −0.010; p < 0.01; R2 = 0.38). Here, boar density was positively  correlated 

with vegetation index (+0.061 BPD per unit WDRVI; p < 0.01), negatively correlated with elevation 

(−0.005 BPD per 100 m), and uncorrelated with  slope and aspect. The deciduous forest model had 

the highest internal consistency; with  an R2 of 0.98, it showed boar density positively  correlated 

with vegetation index (+0.066 BPD per unit WDRVI; p < 0.01), negatively correlated with elevation 

(−0.007 BPD per 100 m; p < 0.01), and uncorrelated with  slope or aspect. Despite the high internal 

consistency, model validation failed; the relationship between predicted and interpolated boar density 

was negative.  This was unsurprising given the smaller sample size and dense clustering of most 

deciduous plots. Overall, estimated boar density decreased slightly across the study site between 1990 

and 2016; it decreased in evergreen broadleaf, conifer, and mixed broadleaf forests, but increased in 

bamboo and deciduous domains. Still, the direction and magnitude of change varied considerably 

within  each vegetation type. 

 
Table 2. Mean estimated boar density by vegetation type. 

 

Vegetation Type Est. Boar Per Day One Boar Per—Days 

Evergreen broad 0.034 (SD = 0.007) 30 

Bamboo 0.029 (SD = 0.017) 35 

Conifer 0.007 (SD = 0.005) 133 

Mixed broad 0.014 (SD = 0.012) 72 

Deciduous 0.032 (SD = 0.013) 31 

Combined 0.019 (SD = 0.015) 52 

 
Table 3. Mean change in estimated boar per day between years, and maximum increase and maximum 

decrease between 1990 and 2016. 

 
Vegetation 

Type 
 

Evergreen broad 

Bamboo Conifer 

Mixed broad 

Deciduous 

Combined 
 
 

Geographically weighted regressions reflected survey-reported perceptions of crop raiding in 

some vegetation types. In conifer and deciduous forests, higher estimated boar density correlated 

with a greater likelihood that a householder had experienced “serious” or “very serious” crop raiding 

over the previous twelve months. Relationships between predicted boar density and reported crop 

raiding  severity were not statistically  significant  for evergreen broadleaf, bamboo, or deciduous 

forests. Probability of reporting crop raiding as “serious”  or “very serious” is illustrated in Figure 7. 

Changes in estimated boar density also correlated with reported changes in severity for some years in 

evergreen broadleaf, conifer, and deciduous forests. In evergreen broadleaf forests, respondents who 
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10 years based on estimated changes in boar density between a given year and 2016 (“Since [year]”). 
10 years based on estimated changes in boar density between a given year and 2016 (“Since [year]”). 

Vegetation In 2015 Since 1990 Since 1996 Since 2002 Since 2011 
Vegetation In 2015 Since 1990 Since 1996 Since 2002 Since 2011 

Evergreen     −22.6 − 340(d)  −1.73 − 9967(Δd) **   −2.21 − 6025(Δd) **     3.62 − 1324(Δd)   −3.73 − 597(Δd) 
Evergreen     −22.6 − 340(d)  −1.73 − 9967(Δd) **  −2.21 − 6025(Δd) **    3.62 − 1324(Δd)  −3.73 − 597(Δd) 
Bamboo   −1.10 + 42.6(d)    1.28 − 259(Δd)   −3.75 + 1030(Δd)  0.807 − 78.9(Δd)   −4.69 + 625(Δd) 
Bamboo   −1.10 + 42.6(d)    1.28 − 259(Δd)   −3.75 + 1030(Δd)  0.807 − 78.9(Δd)   −4.69 + 625(Δd) 
Conifer −7.85 + 646(d) ** −0.502 − 1596(Δd) −2.05 − 4395(Δd) * −1.10 − 2689(Δd)  1.18 − 1860(Δd) 
Conifer −7.85 + 646(d) ** −0.502 − 1596(Δd) −2.05 − 4395(Δd) * −1.10 − 2689(Δd)  1.18 − 1860(Δd) 
Mixed  −5.15 + 111(d)  0.416 − 15.0(Δd)  −3.54 − 411(Δd)  −4.07 − 470(Δd) −1.41 − 52.2(Δd) 
Mixed  −5.15 + 111(d)  0.416 − 15.0(Δd)  −3.54 − 411(Δd)  −4.07 − 470(Δd) −1.41 − 52.2(Δd) 

Deciduous   −8.30 + 217(d) **  6.07 − 488(Δd)   31.8 − 13233(Δd) **     −18.9 + 523(Δd)  −1.17 − 43.3(Δd) 
Deciduous   −8.30 + 217(d) **  6.07 − 488(Δd)   31.8 − 13233(Δd) **     −18.9 + 523(Δd)  −1.17 − 43.3(Δd) 

d = predicted boar density (boar per day) from 2016 image and GWR regressions; * p < 0.05; ** p < 0.01. 
d = predicted boar density (boar per day) from 2016 image and GWR regressions; * p < 0.05; ** p < 0.01. 
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Vegetation In 2015 Since 1990 Since 1996 Since 2002 Since 2011 

Evergreen −22.6 − 340(d) −1.73 − 9967(∆d) ** −2.21 − 6025(∆d) ** 3.62 − 1324(∆d) −3.73 − 597(∆d) 

Bamboo −1.10 + 42.6(d) 1.28 − 259(∆d) −3.75 + 1030(∆d) 0.807 − 78.9(∆d) −4.69 + 625(∆d) 

Conifer −7.85 + 646(d) ** −0.502 − 1596(∆d) −2.05 − 4395(∆d) * −1.10 − 2689(∆d) 1.18 − 1860(∆d) 

Mixed −5.15 + 111(d) 0.416 − 15.0(∆d) −3.54 − 411(∆d) −4.07 − 470(∆d) −1.41 − 52.2(∆d) 

Deciduous −8.30 + 217(d) ** 6.07 − 488(∆d) 31.8 − 13233(∆d) ** −18.9 + 523(∆d) −1.17 − 43.3(∆d) 

d = predicted boar density (boar per day) from 2016 image and GWR regressions; * p < 0.05; ** p < 0.01. 

 
4. Discussion 

 

Our results suggest remotely sensed variables are useful for estimating boar population density 

and crop raiding severity under certain vegetation types. Bamboo and coniferous forests produced 

models with moderate to high internal consistency and transferability (moderately high R2 in the OLS 

calibration and validation models within each forest type). In these vegetation types, remotely sensed 

vegetation indices and topography seem to be useful for estimating boar density with minimal costs, 

and it is also feasible to estimate year-to-year variations in wild  boar population  density. However, 

this should be further verified with multiyear  ground estimates of boar populations.  Although the 

modeling strategy was less internally consistent and transferrable for mixed and evergreen broadleaf 

forests than it was for bamboo and coniferous forests, it still may provide some useful information, 

but results from this model need to be interpreted more cautiously. Furthermore, the model’s lack of 

significant relationship with vegetation index in evergreen broadleaf and bamboo domains suggests 

this technique would not be useful in providing multi-year estimates there because vegetation  index is 

the only predictive variable that can change substantially from year to year. The model for deciduous 

forests, although exhibiting  extremely high internal consistency, exhibited no transferability as the 

relationship between predicted and interpolated values was negative and small. This contradiction 

may have occurred due to the smaller sample size and densely clustered pattern of the deciduous units; 

most of these fields were densely packed at the south end of the reserve with a few fields scattered 

along the northern end. The randomly selected calibration parcels all happened to occur at the south 

end, so it is unsurprising that the model would have poor predictive ability in parcels located more than 

30 km away and whose vicinity  was not represented in the calibration. With better dispersed survey 

units, it may be feasible to derive a usable model for deciduous forests using this method. It should 

also be noted that camera traps were generally placed in more geographically accessible locations due 

to the region’s rough terrain [40]; this may have limited our model’s usability in some regions. 

While this dataset does not allow us to verify crop damage or historical boar populations through 

ground estimates, household survey responses offer insights that can be used to corroborate the models. 

In conifer and deciduous forests, households whose fields showed higher risk of crop raiding by wild 

boars were more likely to report having experienced “serious”  or “very serious” crop raiding in the 

past 12 months. This suggests that the model constitutes a useful predictor of boar density in these 

forest types. In conifer, evergreen broadleaf, and deciduous forests, households whose fields had 

higher estimated decreases in boar exposure since 1996 were more likely to report that crop raiding 

had decreased in the past 10 years; this was also true for changes since 1990 in evergreen broadleaf 

forests. While there was no correlation between the estimated boar densities since 2002 or 2011 and the 

reported crop raiding trajectory, this does not necessarily undermine the hypothesized relationship 

during the decade in question. It cannot be assumed that respondents confined their thought processes 

to the 10 years specified in the survey (2005–2015), as it is common for respondents to “telescope” prior 

years into a given period, especially regarding routine, non-landmark events [50]. Their responses may 

thus reflect changes prior to the decade defined by the survey if changes before 2005 are “telescoped” 

in. Further, although our results suggest our modeling framework best captures population conditions 
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in conifer forests, it is important to underline that these forests have the lowest boar densities among 

the vegetation types evaluated despite conifer forests’ wide geographic coverage and high sample size 

(n = 378). While this may reduce the model’s utility at this study site, it shows our methods are more 

useful in conifer-dominated landscapes that experience substantial crop raiding by wild boars. 

The results obtained in this study address a critical issue in human–wildlife  conflict: that of gaps 

between human perceptions of wildlife  actions and biophysical realities [51]. Human–wildlife conflict 

is fraught with misconceptions, and farmers often overestimate the threat that wildlife pose to their 

crops [52]. This can exacerbate the resistance to conservation efforts and environmental  gains [3,5]; 

it may also lead to misdirected efforts to mitigate farmers’ losses and reduce tensions.  However, 

this study’s correlations between perceived crop raiding  occurrence, and its temporal trajectories, 

with  modeled boar population  density provides preliminary evidence that perceptions and reality 

are often in sync, at least within our study area. Under these circumstances, technical assistance 

to reduce crop raiding may effectively reduce tensions and preserve cooperation with conservation 

actions. Of course, given that this dataset does not measure actual crop damage or ask landholders 

for more detailed information on their experiences, this study does not provide sufficient proof on its 

own. Further research with objective, physical measurements of crop damage, together with more 

detailed information on landholders’ perceptions, are needed to verify correlations among modeled 

boar density, actual crop raiding, and perceived crop raiding. Nevertheless, this study does provide 

nascent support for the validity of crop raiding perceptions as well as a methodological skeleton for 

further investigation with more detailed data. 

The authors emphasize this study is exploratory,  intended more to test the feasibility  of the 

methodological  framework  than to provide  concrete answers on wild  boar and crop raiding  at 

Fanjingshan. Along these lines, it is important to note that forecasting based on population estimates 

from such a limited timeframe is dubious; this methodology would be better employed with camera 

trap data from several years, ideally spread out.  Adding temporal depth to the camera trapping 

estimates would  also allow for the inclusion of critical climatic data like year-to-year variations in 

temperature and moisture, which  may vastly improve  habitat and population  predictions.   This 

study indeed demonstrates the utility of camera traps, remotely  sensed images, and household 

surveys in deriving empirical relationships between boar distributions  and present-day crop raiding 

burdens. Meanwhile the correlations between estimated boar distributions over time and landholders’ 

perceptions of worsening or abating crop raiding  suggest the modeling techniques described here 

may be useful for updating habitat maps and planning interventions based on time-variant, remotely 

sensed variables like vegetation and weather. Creating reliable forecasts of boar population and crop 

damage using these methods will,  of course, call for richer data from which to calibrate the models. 

Future studies should refine this methodology with multi-year camera trap measurements (or other 

reliable population estimation techniques), weather data, and physical measurements of crop damage 

that do not rely solely on landholders’ perceptions. After investing in a robust foundation  of data, 

this modeling technique may provide an effective, affordable means of managing wildlife and their 

damage to crops as populations fluctuate and shift over time. 

 
5. Conclusions 

 

This study uncovers the potential to improve crop raiding  monitoring and management over 

multi-decade periods at minimal  cost after initial  ground population  estimates are made. This may 

help design cost-effective, easily updatable compensation schemes and technical interventions  to 

minimize economic burdens to farmers. It also empirically affirms anecdotal understandings of crop 

raiding’s relationship to regional ecological changes in some vegetation domains. Although the model 

suggests crop raiding  is not increasing for all households, it demonstrates fine-scale heterogeneity 

in both realities and perceptions. While the boar density models obtained for Fanjingshan cannot 

(and should not) be applied to other areas directly  [13], the methods for deriving  geographically 

weighted coefficients described here may allow for cost-effective, long-term monitoring  of wild boar 
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1996 RCorr = 0.831 × R1996 + 534.56 0.85 258 

2002 RCorr = 0.952 × R2002 + 342.27 0.85 258 

2011 RCorr = 1.022 × R2011 − 47.223 0.86 249 

2016 RCorr = 0.906 × R2016 + 218.48 0.85 234 

1996 RCorr = 1.226 × R1996 + 20.32 0.91 235 

2002 RCorr = 1.113 × R2002 + 69.99 0.86 248 

2011 RCorr = 0.892 × R2011 + 99.455 0.85 243 

2016 RCorr = 1.034 × R2016 + 138.25 0.85 240 

 

 
 
populations and crop raiding risks at other sites around the world.  Given the expense of continuous 

ground measurements and the limited resources in many affected communities, this may improve boar 

management and compensation arrangements at minimal  cost by allowing  practitioners to update 

distribution maps using remotely sensed imagery. 
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Appendix A 

 
Table A1. Empirical line corrections for radiometric rectification. 
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Appendix B 

 
Table A2. Camera trap coordinates and dates of operation. 

 
 

Plot ID 
 

Start Date 

 

End Date   
Long. 

(WGS84) 

Lat. 
Interruption Start 

(WGS84) 

 

Interruption End 

2 17 April 2015 16 March 2016 108.761 27.85246  
5 22 April 2015 16 March 2016 108.7325 27.88133 7 September 2015 23 October 2015 

7 26 April 2015 16 March 2016 108.7217 27.8868  
19 28 April 2015 15 March 2016 108.6994 27.91098 23 June 2015 6 July 2015 

20 28 April 2015 15 March 2016 108.7029 27.90261 30 June 2015 23 October 2015 

21 28 April 2015 15 March 2016 108.6998 27.90731 7 September 2015 23 October 2015 

22 29 April 2015 15 March 2016 108.7075 27.90061  
23 29 April 2015 15 March 2016 108.712 27.89908 7 September 2015 23 October 2015 

24 29 April 2015 15 March 2016 108.7245 27.89716  
27 2 May 2015 18 March 2016 108.7736 27.85997  
28 2 May 2015 18 March 2016 108.7725 27.85966  
29 4 May 2015 18 March 2016 108.7331 27.90562 1 September 2015 8 September 2015 

30 4 May 2015 18 March 2016 108.7302 27.90692  
31 14 May 2015 15 March 2016 108.697 27.78216  
32 14 May 2015 15 March 2016 108.7005 27.78644 26 June 2015 30 October 2015 

34 19 May 2015 8 April 2016 108.641 27.81311  
35 20 May 2015 7 August 2016 108.6495 27.76345  
36 20 May 2015 7 August 2016 108.6499 27.77022  
37 20 May 2015 9 April 2016 108.6522 27.77409 14 November 2015 20 November 2015 

38 21 May 2015 2 August 2016 108.6257 27.88032  
39 22 May 2015 5 August 2016 108.6357 27.87258 16 September 2015 9 November  2015 

40 22 May 2015 5 August 2016 108.6422 27.87614  
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Table A2. Cont. 
 

 

Plot ID 
 

Start Date 

 

End Date   
Long. 

(WGS84) 

Lat. 
Interruption Start 

(WGS84) 

 

Interruption End 

41 28 May 2015 30 June 2016 108.6579 27.91372  
42 9 November  2015 2 August 2016 108.6471 27.91849  
43 31 May 2015 1 July 2016 108.6558 27.92395  
44 2 June 2015 9 April 2016 108.7692 27.97725  
45 2 June 2015 28 April 2016 108.755 27.97899  
46 2 June 2015 19 April 2016 108.7478 27.97599 1 July 2015 27 October 2015 

47 4 June 2015 15 August 2016 108.7607 27.98081  
48 5 June 2015 15 August 2016 108.7549 27.98858  
49 13 June 2015 30 July 2016 108.7384 28.004  
50 13 June 2015 30 July 2016 108.7409 28.00193  
54 23 June 2015 28 July 2016 108.6826 27.91677  
55 23 June 2015 28 July 2016 108.6838 27.91513 28 October 2015 4 November  2015 

57 24 June 2015 16 November 2015 108.6862 27.78472 3 July 2015 13 November 2015 

58 10 July 2015 8 August 2016 108.6769 27.93495 24 November 2015 17 February 2016 

59 10 July 2015 14 September 2015 108.6747 27.93743  
60 10 July 2015 1 April 2016 108.6676 27.95285  
10 25 October 2015 30 July 2016 108.7412 28.00497  
8 4 December 2015 13 August 2016 108.7705 27.97893  
9 2 November  2015 27 July 2016 108.7394 27.90263  
11 4 November  2015 27 July 2016 108.7733 27.85921  
12 19 March 2016 27 July 2016 108.79 27.90854  
13 13 November 2015 27 July 2016 108.7959 27.90966  
14 8 April 2016 5 August 2016 108.6466 27.81613  
77 18 March 2016 12 July 2016 108.7488 27.89871  
76 18 March 2016 27 July 2016 108.7764 27.85929  
75 19 March 2016 10 August 2016 108.7725 27.99097  
15 19 March 2016 18 July 2016 108.7708 27.98718  
74 22 March 2016 24 July 2016 108.7411 27.83366  
73 22 March 2016 12 May 2016 108.7505 27.82971  
72 23 March 2016 10 August 2016 108.7774 27.98696  
71 23 March 2016 12 August 2016 108.7817 27.99012  
70 25 March 2016 14 August 2016 108.7466 27.9684  
68 13 April 2016 15 August 2016 108.7664 27.99333  
67 27 March 2016 20 July 2016 108.781 28.00514  
66 27 March 2016 11 August 2016 108.7815 27.99568  
65 28 March 2016 11 August 2016 108.7746 27.99835  
64 28 March 2016 24 June 2016 108.77 28.0013  
63 29 March 2016 12 August 2016 108.7759 27.96883  
62 29 March 2016 11 August 2016 108.7852 27.98265  
61 30 March 2016 13 July 2016 108.7564 28.02354  
53 2 April 2016 23 April 2016 108.6678 27.97648  
51 4 April 2016 10 July 2016 108.7497 28.02282  
18 4 April 2016 30 July 2016 108.7404 28.02277  
16 6 April 2016 31 July 2016 108.5902 27.91872  
17 6 April 2016 25 June 2016 108.6088 27.92623  
78 10 April 2016 28 July 2016 108.69 27.90617  
79 10 April 2016 28 July 2016 108.6875 27.89934  

 

 
References 

 
1. Dickman, A.J. Complexities of conflict: The importance of considering social factors for effectively resolving 

human–wildlife conflict. Anim. Conserv. 2010, 13, 458–466. [CrossRef] 

2.  Distefano, E. Human-Wildlife  Conflict Worldwide: Collection of Case Studies, Analysis of Management Strategies and 

Good Practices; Sustainable Agriculture and Rural Development Initiative  (SARDI); Food and Agricultural 

Organization of the United Nations (FAO): Rome, Italy, 2005. 

3. Linkie, M.; Dinata, Y.; Nofrianto, A.; Leader-Williams, N. Patterns and perceptions of wildlife  crop raiding in 

and around Kerinci Seblat National Park, Sumatra. Anim. Conserv. 2007, 10, 127–135. [CrossRef] 

4.  Mojo, D.; Rothschuh, J.; Alebachew, M. Farmers’ perceptions of the impacts of human–wildlife conflict on 

their livelihood and natural resource management efforts in Cheha Woreda of Guraghe Zone, Ethiopia. 

Hum. Wildl. Interact. 2014, 8, 7. 

http://dx.doi.org/10.1111/j.1469-1795.2010.00368.x
http://dx.doi.org/10.1111/j.1469-1795.2006.00083.x


Remote Sens. 2020, 12, 618 16 of 18  
 

 
5. Nyhus, P.J.; Tilson, R. Crop-raiding elephants and conservation implications at Way Kambas National Park, 

Sumatra, Indonesia. Oryx 2000, 34, 262–274. [CrossRef] 

6. Wang, P.; Wolf,  S.A.; Lassoie, J.P.;  Poe, G.L.; Morreale, S.J.;  Su, X.; Dong, S. Promise and reality  of 

market-based environmental policy in China: Empirical analyses of the ecological restoration program on 

the Qinghai-Tibetan Plateau. Glob. Environ. Chang. 2010, 39, 35–44. [CrossRef] 

7. Cai, J.; Jiang, Z.; Zeng, Y.; Li, C.; Bravery, B.D. Factors affecting crop damage by wild  boar and methods of 

mitigation in a giant panda reserve. Eur. J. Wildl. Res. 2008, 54, 723–728. [CrossRef] 

8.  Ango, T.G.; Börjeson, L.; Senbeta, F.; Hylander, K. Balancing ecosystem services and disservices: Smallholder 

farmers’ use and management of forest and trees in an agricultural landscape in southwestern Ethiopia. 

Ecol. Soc. 2014, 19. [CrossRef] 

9. McDermid, G.J.; Hall, R.J.; Sanchez-Azofeifa, G.A.; Franklin, S.E.; Stenhouse,  G.B.; Kobliuk, T.; LeDrew, E.F. 

Remote sensing and forest inventory for wildlife habitat assessment. For. Ecol. Manag. 2009, 257, 2262–2269. 

[CrossRef] 

10. Szantoi, Z.; Smith, S.E.; Strona, G.; Koh, L.P.; Wich, S.A. Mapping orangutan habitat and agricultural areas 

using Landsat OLI imagery augmented with unmanned aircraft system aerial photography. Int. J. Remote Sens. 

2017, 38, 2231–2245. [CrossRef] 

11. Viña, A.; Bearer, S.; Zhang, H.; Ouyang, Z.; Liu, J. Evaluating MODIS data for mapping wildlife habitat 

distribution.  Remote Sens. Environ. 2008, 112, 2160–2169. [CrossRef] 

12. Ackers, S.H.; Davis, R.J.; Olsen,  K.A.; Dugger, K.M. The evolution of mapping habitat for northern spotted 

owls (Strix occidentalis caurina): A comparison of photo-interpreted, Landsat-based, and lidar-based habitat 

maps. Remote Sens. Environ. 2015, 156, 361–373. [CrossRef] 

13. De Leeuw, J.; Ottichilo, W.K.; Toxopeus, A.G.; Prins, H.H. Application of remote sensing and geographic 

information systems in wildlife mapping and modelling. Environ. Model.  GIS Remote Sens. 2002, 4, 121–131. 

14. Simons-Legaard, E.M.; Harrison, D.J.; Legaard, K.R. Habitat monitoring and projections for Canada lynx: 

Linking the Landsat archive with carnivore occurrence and prey density. J. Appl. Ecol. 2016, 53, 1260–1269. 

[CrossRef] 

15. Porwal, M.C.; Roy, P.S.; Chellamuthu, V. Wildlife habitat analysis for ‘sambar ’ (Cervus unicolor) in Kanha 

National Park using remote sensing. Int. J. Remote Sens. 1996, 17, 2683–2697.  [CrossRef] 

16. Schairer, G.L.; Wynne, R.H.; Fies, M.L.; Klopfer, S.D. Predicting landscape quality for northern bobwhite 

from classified Landsat imagery. In Proceedings of the Southeastern Association of Fish and Wildlife Agencies; 

SEAFWA: Flora, MS, USA, 1999; Volume 53, pp. 243–256. 

17. Pearce,  J.; Ferrier, S. Evaluating  the predictive  performance of habitat models developed using logistic 

regression. Ecol. Model. 2000, 133, 225–245. [CrossRef] 

18. Cove, M.V.; Spínola, R.M.; Jackson, V.L.; Sáenz, J.C.; Chassot, O. Integrating  occupancy modeling  and 

camera-trap data to estimate medium and large mammal detection and richness in a Central American 

biological corridor. Trop. Conserv. Sci. 2013, 6, 781–795. [CrossRef] 

19. Massei, G.; Coats, J.; Lambert, M.S.; Pietravalle, S.; Gill, R.; Cowan, D. Camera traps and activity signs to 

estimate wild boar density and derive abundance indices. Pest Manag. Sci. 2018, 74, 853–860. [CrossRef] 

20. Bechtel, R.; Sanchez-Azofeifa, A.; Rivard, B.; Hamilton, G.; Martin,  J.; Dzus, E. Associations between 

Woodland  Caribou telemetry data and Landsat TM spectral reflectance.  Int.  J. Remote  Sens. 2004, 25, 

4813–4828. [CrossRef] 

21. Sekhar, N.U. Crop and livestock depredation caused by wild animals in protected areas: The case of Sariska 

Tiger Reserve, Rajasthan, India. Environ. Conserv. 1998, 25, 160–171. [CrossRef] 

22. Hua, X.; Yan, J.; Li, H.; He, W.; Li, X. Wildlife  damage and cultivated land abandonment: Findings from the 

mountainous areas of Chongqing, China. Crop Prot. 2016, 84, 141–149. [CrossRef] 

23. Chen, X.; Zhang, Q.; Peterson, M.N.; Song, C. Feedback effect of crop raiding in payments for ecosystem 

services. Ambio 2019, 48, 732–740. [CrossRef] 

24.  Thurfjell, H.; Ball, J.P.; Åhlén, P.A.; Kornacher, P.; Dettki, H.; Sjöberg, K. Habitat use and spatial patterns of 

wild boar Sus scrofa (L.): Agricultural fields and edges. Eur. J. Wildl. Res. 2009, 55, 517–523. [CrossRef] 

25. Park, C.R.; Lee, W.S. Development of a GIS-based habitat suitability model for wild boar Sus scrofa in the Mt. 

Baekwoonsan region, Korea. Mammal Study 2003, 28, 17–21. [CrossRef] 

http://dx.doi.org/10.1046/j.1365-3008.2000.00132.x
http://dx.doi.org/10.1016/j.gloenvcha.2016.04.004
http://dx.doi.org/10.1007/s10344-008-0203-x
http://dx.doi.org/10.5751/ES-06279-190130
http://dx.doi.org/10.1016/j.foreco.2009.03.005
http://dx.doi.org/10.1080/01431161.2017.1280638
http://dx.doi.org/10.1016/j.rse.2007.09.012
http://dx.doi.org/10.1016/j.rse.2014.09.025
http://dx.doi.org/10.1111/1365-2664.12611
http://dx.doi.org/10.1080/01431169608949100
http://dx.doi.org/10.1016/S0304-3800(00)00322-7
http://dx.doi.org/10.1177/194008291300600606
http://dx.doi.org/10.1002/ps.4763
http://dx.doi.org/10.1080/01431160410001705042
http://dx.doi.org/10.1017/S0376892998000204
http://dx.doi.org/10.1016/j.cropro.2016.03.005
http://dx.doi.org/10.1007/s13280-018-1105-0
http://dx.doi.org/10.1007/s10344-009-0268-1
http://dx.doi.org/10.3106/mammalstudy.28.17


Remote Sens. 2020, 12, 618 17 of 18  
 

 
26.  Liu, X.; Wu, P.; Shao, X.; Songer, M.; Cai, Q.; He, X.; Zhu, Y. Diversity  and activity patterns of sympatric 

animals among four types of forest habitat in Guanyinshan Nature Reserve in the Qinling Mountains, China. 

Environ. Sci. Pollut. Res. 2017, 24, 16465–16477. [CrossRef] 

27.  Keuling, O.; Stier, N.; Roth, M. Commuting, shifting or remaining? Different spatial utilisation patterns of 

wild boar Sus scrofa L. In forest and field crops during summer. Mamm. Biol. 2009, 74, 145–152. [CrossRef] 

28. Anderson, S.J.; Stone, C.P. Snaring to control feral pigs Sus scrofa in a remote Hawaiian rain forest. Biol. Conserv. 

1993, 63, 195–201. [CrossRef] 

29. Parker, A.J. The topographic relative moisture index: An approach to soil-moisture assessment in mountain 

terrain. Phys. Geogr. 1982, 3, 160–168. [CrossRef] 

30. Rho, P. Using habitat suitability model for the wild boar (Sus scrofa Linnaeus) to select wildlife passage sites 

in extensively disturbed temperate forests. J. Ecol.  Environ. 2015, 38, 163–173. [CrossRef] 

31. Thapa,  S. Effectiveness of crop protection methods against wildlife damage: A case study of two villages at 

Bardia National Park, Nepal. Crop Prot. 2010, 29, 1297–1304. [CrossRef] 

32. Myers, N.; Mittermeier,  R.A.; Mittermeier,  C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for 

conservation priorities. Nature 2000, 403, 853–858. [CrossRef] 

33. Aitken, S.C.; An, L. Figured worlds: Environmental complexity and affective ecologies in Fanjingshan, China. 

Ecol. Model. 2012, 229, 5–15. [CrossRef] 

34. Wandersee, S.M.; An, L.; López-Carr, D.; Yang, Y. Perception and decisions in modeling coupled human and 

natural systems: A case study from Fanjingshan National Nature Reserve, China. Ecol. Model. 2012, 229, 

37–49. [CrossRef] 

35. Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and socioeconomic effects of China’s policies for 

ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [CrossRef] [PubMed] 

36. Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. 

Remote Sens. Environ. 2008, 112, 4086–4097. [CrossRef] 

37. Jin, S.; Sader, S.A. Comparison of time series tasseled cap wetness and the normalized difference moisture 

index in detecting forest disturbances. Remote Sens. of Environ. 2005, 94, 364–372. [CrossRef] 

38. Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. 

Int. J. Remote Sens. 1999, 20, 2653–2662.  [CrossRef] 

39. Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics 

of vegetation. J. Plant Physiol. 2004, 161, 165–173. [CrossRef] [PubMed] 

40. Chen, H.L.; Lewison, R.L.; An, L.; Tsai, Y.H.; Stow, D.; Shi, L.; Yang, S. Assessing  the effects of payments for 

ecosystem services programs on forest structure and species biodiversity.  Biodivers. Conserv. 2020, in press. 

41. Coppin, P.R.; Bauer, M.E. Digital  change detection in forest ecosystems with  remote sensing imagery. 

Remote Sens. Rev. 1996, 13, 207–234. [CrossRef] 

42. Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 

2008, 34, 1044–1055. [CrossRef] 

43. Ohashi, H.; Saito, M.; Horie, R.; Tsunoda, H.; Noba, H.; Ishii, H.; Toda, H. Differences in the activity pattern 

of the wild boar Sus scrofa related to human disturbance. Eur. J. Wildl. Res. 2013, 59, 167–177. [CrossRef] 

44.  An, L.; Mak, J.; Yang,  S.; Lewison, R.; Stow, D.A.; Chen, H.L.; Xu, W.; Shi, L.; Tsai, Y.H. Cascading impacts of 

payments for ecosystem services in complex human-environment systems. J. Artif. Soc. Soc. Simul. JASSS 

2020, 23, 5. [CrossRef] 

45. Allen, I.E.; Seaman, C.A. Likert scales and data analyses. Qual. Prog. 2007, 40, 64–65. 

46. Ricotta, C.; Godefroid, S.; Rocchini, D. Patterns of native and exotic species richness in the urban flora of 

Brussels: Rejecting the ‘rich get richer ’model. Biol. Invasions 2010, 12, 233–240. [CrossRef] 

47. VanDerWal,  J.;  Shoo, L.P.;  Johnson, C.N.;  Williams,  S.E. Abundance  and  the environmental  niche: 

Environmental suitability estimated from niche models predicts the upper limit of local abundance. Am. Nat. 

2009, 174, 282–291. [CrossRef] 

48.  Griffiths, R.I.; Thomson, B.C.; Plassart, P.; Gweon, H.S.; Stone, D.; Creamer, R.E.; Bailey, M.J. Mapping and 

validating predictions of soil bacterial biodiversity using European and national scale datasets. Appl. Soil Ecol. 

2016, 97, 61–68. [CrossRef] 

49. Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for 

exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [CrossRef] 

http://dx.doi.org/10.1007/s11356-017-9232-x
http://dx.doi.org/10.1016/j.mambio.2008.05.007
http://dx.doi.org/10.1016/0006-3207(93)90712-A
http://dx.doi.org/10.1080/02723646.1982.10642224
http://dx.doi.org/10.5141/ecoenv.2015.018
http://dx.doi.org/10.1016/j.cropro.2010.06.015
http://dx.doi.org/10.1038/35002501
http://dx.doi.org/10.1016/j.ecolmodel.2011.05.024
http://dx.doi.org/10.1016/j.ecolmodel.2011.08.004
http://dx.doi.org/10.1073/pnas.0706436105
http://www.ncbi.nlm.nih.gov/pubmed/18621700
http://dx.doi.org/10.1016/j.rse.2007.12.013
http://dx.doi.org/10.1016/j.rse.2004.10.012
http://dx.doi.org/10.1080/014311699211994
http://dx.doi.org/10.1078/0176-1617-01176
http://www.ncbi.nlm.nih.gov/pubmed/15022830
http://dx.doi.org/10.1080/02757259609532305
http://dx.doi.org/10.1016/j.cageo.2007.07.010
http://dx.doi.org/10.1007/s10344-012-0661-z
http://dx.doi.org/10.18564/jasss.4196
http://dx.doi.org/10.1007/s10530-009-9445-0
http://dx.doi.org/10.1086/600087
http://dx.doi.org/10.1016/j.apsoil.2015.06.018
http://dx.doi.org/10.1111/j.1538-4632.1996.tb00936.x


Remote Sens. 2020, 12, 618 18 of 18  
 

 
50. Gaskell, G.D.; Wright, D.B.; O’Muircheartaigh, C.A. Telescoping of landmark events: Implications for survey 

research. Public Opin. Q. 2000, 64, 77–89. [CrossRef] 

51. Muhar, A.; Raymond, C.M.; van den Born, R.J.; Bauer, N.; Böck, K.; Braito, M.; Mitrofanenko, T. A model 

integrating  social-cultural concepts of nature into frameworks of interaction between social and natural 

systems. J. Environ. Plan. Manag. 2018, 61, 756–777. [CrossRef] 

52. Hill, C.M. Farmers’ perspectives of conflict at the wildlife–agriculture boundary: Some lessons learned from 

African subsistence farmers. Hum. Dimens. Wildl. 2004, 9, 279–286. [CrossRef] 
 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

http://dx.doi.org/10.1086/316761
http://dx.doi.org/10.1080/09640568.2017.1327424
http://dx.doi.org/10.1080/10871200490505710
http://creativecommons.org/licenses/by/4.0/

