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Abstract: The theory and practice associated with payments for ecosystem services (PES) feature a variety of 

piecemeal studies related to impacts of socioeconomic, demographic, and environmental variables, lacking 

efforts in understanding their mutual relationships in a spatially and temporally explicit manner. In addition, 

PES literature is short of ecological metrics that document the consequences of PES other than land use and 

land cover and its change. Building on detailed survey data from Fanjingshan National Nature Reserve (FNNR), 

China, we developed and tested an agent-based model to study the complex interactions among human liveli- 

hoods (migration and resource extraction in particular), PES, and the Guizhou golden monkey habitat occu- 

pancy over 20 years. We then performed simulation-based  experiments  testing social and ecological impacts 

of PES payments as well as human population pressures. The results show that with a steady increase in out- 

migration, the number of land parcels enrolled in one of China’s major PES programs tends to increase, reach 

a peak, and then slowly decline, showing a convex trend that converges to a stable number of enrolled parcels 

regardless of payment levels. Simulated monkey occupancy responds to changes in PES payment levels sub- 

stantially in edge areas of FNNR. Our model is not only useful for FNNR, but also applicable as a platform to 

study and further understand human and ecological roles of PES in many other complex human-environment 

systems, shedding light into key elements, interactions, or relationships in the systems that PES researchers 

and practitioners should bear in mind. Our research contributes to establishing a scientific basis of PES science 

that incorporates features in complex systems, offering more realistic, spatially and temporally explicit insights 

related to PES policy or related interventions. 
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Introduction 
 

1.1    Many grand challenges — global warming, loss and fragmentation of forest areas, biodiversity loss, wildlife ex- 

tinction, desertification, and the like — are besetting humanity at unprecedented rates. Yet virtually all these 

grand challenges can be traced back to rapidly growing human population and various human activities. Hu- 

mans are degrading or destroying ecosystems at an alarming rate, jeopardizing their vital “life-support ser- 

vices of tremendous value” such as food, water, clean air, soil, and forests  (Daily  & Matson 2008; Millennium 

Ecosystem Assessment 2005). Even so-called protected areas are not exempted from such degradation world- 

wide (Curran et al. 2004; Liu et al. 2001). Facing such crisis, the International Convention of Biological Diver- 

sity’s Aichi targets (https://www.cbd.int/sp/target/) have called for protecting natural habitats (Target 5), 
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threatened species (Target 12), and various ecosystem services from natural ecosystems (Target 14). The United 

Nations’ 17 Sustainable Development Goals, especially Goal 15, also aim to protect, restore, and promote sus- 

tainable use of terrestrial ecosystems (United Nations 2016). 
 
 

Payments for ecosystem services and challenges 
 
1.2  In response to the above challenges, payments for ecosystem services (PES) have been employed for decades, 

aiming to provide incentives directly to resource users to take actions or to refrain from previous actions to 

protect ecosystems and many services of tremendous value to humanity. As a result, a growing body of PES 

literature has focused on the mechanism and efficacy of PES programs, exploring what factors  — be they so- 

cioeconomic, demographic, and environmental conditions — may help sustain beneficial changes in PES par- 

ticipants’ behavior (Friess et al. 2015; Wunder 2005). 

1.3  Despite many reported successes in restoring ecosystems and improving human wellbeing, a set of challenges 

have surfaced in many PES programs. First, PES programs lack sustainability because many participants re- 

turn to their pre-PES behavior once PES payment ends. This problem has been observed not only in develop- 

ing countries such as China (Uchida et al. 2005) but also in developed countries such as USA (Claassen et al. 

2008). Existing PES research has focused on individual factors including agricultural income, land productivity, 

distance from household to land parcel, land plot slope, age of contract holders, labor supply, and livelihood 

alternatives (Adhikari & Agrawal 2013; Engel 2016; He & Sikor 2015). These variables, though very important, are 

treated in a piecemeal manner, overlooking complex features (e.g., feedback loops, nonlinear relationships) 

among them. Second, there is a dire need to measure the ecological performance of PES programs by more 

than just land use and land cover (LULC). Very few PES programs and program evaluations have considered 

faunal and/or detailed floral responses due to PES programs (for exceptions see Liu et al. 2008; Tuanmu et al. 

2016, which are equally important as LULC measures (Scullion et al. 2011). Therefore, Lewison et al. (2017) sug- 

gest that PES research and implementation consider “the complex interrelationship among socioeconomic, 

demography and ecological metrics” while developing and testing more representative ecological metrics. 

1.4   China’s Grain-To-Green Program (GTGP) provides an excellent opportunity to address these challenges. In re- 

sponse to the massive flooding in 1998, the Chinese central government started GTGP around 1999 (Phase I) 

and renewed it in 2007 (Phase II), aiming to reduce soil erosion and protect its natural environment through 

tree planting (“Green”) in steep farmland areas (>15◦ in northwestern China and 25◦ in southwestern China; Liu 

et al. 2008). Farmers are compensated through cash, rice, or corn (“Grain”) to maintain or increase their eco- 

nomic well-being (Liu & Diamond 2005; Liu et al. 2008). The 3rd phase of GTGP started in 2017 with increased 

payment level and total amount of enrollment (State Forestry Administration of China 2017). 
 
 

Complex systems 
 
1.5  Research on complex systems aims to understand complex systems, which often include heterogeneous sub- 

systems or elements, autonomous entities, nonlinear relationships and thresholds, legacy effects and time lags, 

resilience, and multiple interactions and feedback loops among them (Axelrod & Cohen 2001; Levin et al. 2013; 

Liu et al. 2007b). Such systems often feature path-dependence, self-organization, difficulty of prediction, and 

emergence not analytically tractable from system components and their attributes alone — particularly sur- 

prising outcomes observable as a result of human-nature couplings (National Research Council 2014). These 

generic features have been found in six empirical complex systems studies (Liu et al. 2007a), as well as in many 

other sites (Irwin & Geoghegan 2001; Malanson et al. 2006; Messina & Walsh 2005). 

1.6   The increasing popularity of agent-based modeling (ABM) 1  in modeling and understanding complex human- 

environment systems is rooted in challenges we face: Most major challenges in such systems involve autonomous, 

decision-making agents such as people and animals. The high level of complexity in these systems makes it ex- 

tremely difficult, if not impossible, to represent and simulate these systems in a controlled way. ABM, based on 

the object-oriented programming (OOP) paradigm, represents the related entities and subsystems as agents 

at various, often hierarchical, levels. Employing flexible rules to mimic relevant actions of agents and many 

complex relationships and interactions, ABM satisfies the needs of understanding complex systems (An et al. 

2005, 2014). Hence it is suggested that an ABM approach be employed to understand, harness, and improve 

(rather than fully control) the system’s structure and function, taking innovative actions to steer the system in 

beneficial directions (Axelrod & Cohen 2001). 
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Goal and research questions 
 

1.7  The complex systems approach offers a great potential to understand the cascading impacts of many ecolog- 

ical / environmental, socioeconomic, and demographic factors in a spatially and temporally explicit manner 

when their complex, reciprocal relationships are considered. The goal of this paper is therefore to measure and 

project the social-ecological impacts of PES over a relatively long term. We will use not only land use and land 

cover metrics as in previous studies, but also wildlife occupancy indicators. 

1.8   Specifically, we aim to answer three questions: 1) what are the effects of PES on human demography, liveli- 

hoods, and related activities? 2) what are the spatially explicit effects of PES on wildlife habitat use after incor- 

porating human demography, livelihoods, and related activity data? Moreover, 3) what factors may make PES 

programs ineffective in the long run? 
 

 
Methods 

 
 

Study site 
 

2.1    Fanjingshan National Nature Reserve (FNNR), located in the northeast part of Guizhou Province, China, is a 

flagship reserve of subtropical ecosystems in China (Figure 1). FNNR is part of the 25 global biodiversity hotspots 

(Myers et al. 2000), replete with over 6000 plant, animal, and bird species (GDF & FNNR 1990). Totaling  419 km2
 

in area 2 , the reserve (roughly 27.5◦ N âĂ� 28.0◦ N and 108.55◦ E - 108.8◦ E) encompasses low elevation (700 m) 

evergreen broadleaf ecosystems, mixed deciduous-broadleaf ecosystems at mid-elevations (1000-1300 m), and 

subalpine, meadow, and conifer ecosystems at higher elevations (1600-2600 m), manifesting large variability 

in biophysical conditions (Yang et al. 2002). The reserve is also home of the last and only population (around 

750 animals) of the Guizhou golden monkeys (Rhinopithecus brelichi; GGMs hereafter), also known as Guizhou 

snub-nosed monkeys, an umbrella, engendered species highly sensitive to human presence, activity, and the 

resultant habitat degradation (Yang et al. 2002). 

2.2   FNNR is the home of over 13,000 villagers (70% are Tujia and Miao minorities), who live within or near FNNR 

boundaries in a subsistence lifestyle. These villagers are allowed to enter non-core habitat areas for resource 

collection and livestock herding, though illegal production of charcoal, wood collection, and poaching in the 

core habitat area also occur occasionally year round (Yost et al., in press). Over the last two decades, local 

villagers have increasingly migrated to cities for higher-pay jobs, and only returned to home villages for short 

times (e.g., during a spring festival). Migration in this paper is defined as outmigration outside of county bound- 

aries, and the dominating migration destinations are coastal big cities. The total number of out-migrants was 

350 (57.85%) out of all the 605 households we surveyed in 2014 (Sections 2.4-2.5). In 2001 when GTGP started, 

there were very few out-migrants (10 for all 350 migrants). Once GTGP was in operation, a substantial (near ex- 

ponential) increase in the number of migrants occurred, suggesting that the related laborers, once released due 

to GTGP, may have migrated out at a slower pace at earlier times yet at an accelerated speed later. We therefore 

consider GTGP to be a trigger and catalyst of migration because it not only freed labor that had been bonded 

to farmland, but also provided a start-up fund (e.g., for travel expenses) for those relatively poor households to 

migrate out. 
 

2.3   This study focuses on the northern area of FNNR, where two villages (Taohuayuan and Pingsuo) closest to Yan- 
gaoping (approximately 29.97◦ N, 108.75◦ E) are located. Yangaoping is the breeding area where GGMs gather 

to mate in April and September (the red circle in Panel D, Figure 1). Human settlements typically are located 

around the borders of the reserve, which are at lower elevations. 
 
 

Social survey 
 
2.4   We administered household interviews in 2014. Using the roster of all 3,256 households used in the 2013 FNNR 

census as our sampling frame, we surveyed 605 households (yellow squares in Panel A, Figure 1) based on a 

stratified random sampling strategy (detail in Yost et al., in press). The survey focused on 1) individual-level 

characteristics: age, gender, education level, etc. of each member in the surveyed household; 2) household 

characteristics: living conditions, household economy including incomes, expenses, and time, number of peo- 

ple, and income related to migration and local off-farm jobs; 3) household land use and PES characteristics: 
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Figure 1: Map of the study site: Fanjingshan National Nature Reserve (Panel A), Guizhou Province (Panel B) in 

China (Panel C). The core habitat and its surrounding environment is shown in Panel D, where the blue triangles, 

yellow squares, and pentagons represent households surveyed in 2016, households surveyed in 2015, and sites 

with cameras mounted in 20162̃018. In Panel A, the area above the pink, horizontal line represents the northern 

area we simulated, the black rectangle the area shown in Panel D, and red circle Yangaoping. 
 
 

total land area, amount of time (labor), and income or compensation related to GTGP; and 4) household ex- 

traction of local resources: time, frequency, amount, and location (recorded in Google Earth maps) related to 

various resources (Yost et al. 2020). 

2.5   In 2015, we revisited all these 605 households with similar questions, although focus was more on household 

land use, participation in GTGP, and detailed household income. We ended up with a survey of 494 households 

in 2015. In 2016 we surveyed all households in five natural villages within two administrative villages of Pingsuo 

and Taohuayuan (blue triangles in Panel A, Figure 1). The aim was to obtain full coverage of all households in 

these two administrative villages for agent-based modeling, verification, and data analysis purposes.  We sur- 

veyed all the available households in these two administrative villages, ending up with a total of 94 households. 

All the surveys were conducted under permits from the San Diego State University’s Institutional Review Board 

(Protocol #: 1732093). 
 
 

Ecological survey 
 
2.6   To investigate vegetation structure and habitat use of wildlife under human disturbance, we established 71 sam- 

pling plots in FNNR. Each plot was 20 m x 20 m (a subset of them is shown as pentagons in Panel D, Figure 1). 

Location of plots was decided based on accessibility, elevation, distance to other plots, and suggestions pro- 

vided by FNNR staff and local field guides with the goal to spread out plots across FNNR. For each plot, we 

recorded species of understory, midstory, and overstory vegetation and estimated the percentage of cover for 

each species. We also deployed a Bushnell Trophy Cam infrared camera at each plot to monitor presence of 

mammals (>0.5 kg) and pheasants from April 2015 to January 2018, relocating cameras to other places to in- 

crease site diversity (Chen et al. 2020). Typically, cameras were mounted on trees 0.3 to 1 m above the ground. 

We set cameras at auto-sensitivity to record three photos upon each detection, with a 1-second delay between 
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photographs. Field efforts were conducted under permits from the San Diego State University’s Institutional 

Animal Care and Use Committee (Protocol #: 14-01-002L). The camera-trap photos, after downloaded  from the 

cameras, were processed via Adobe Bridge, a photo-formatting and tagging program. Due to our focus on the 

Guizhou golden monkeys (GGMs hereafter),  data processing focused on the 44 presence points (Mak 2019). The 

data were then imported into Excel to process the point data in a csv file. 
 
 

Agent-based modeling 
 

2.7   We constructed  an agent-based model (ABM) that integrates environment and ecology, human demographics 

and livelihoods, PES policy, and their interactions. The agent-based model aims to simulate the 94 households 

for which we have collected detailed demographic, livelihood, and activity data, while some rules in the ABM 

are based on the 605 and 494 households surveyed in 2014 and 2015, respectively (Sections 2.4-2.5). We choose 

a 5-day temporal resolution, which is a compromise of the following considerations. First, some processes need 

finer resolutions — for instance, local people’s resource collection takes place daily. Second, other processes 

are recorded or operate at coarser resolutions, and examples include local people’s migration and returning 

farmland to forestland or fallow (data recorded at monthly or yearly levels). Lastly, choosing a coarser temporal 

resolution makes simulation much faster. We choose to simulate over 20 years (1460 time-steps) using the ABM, 

a time span that is long enough to allow for observable changes in the FNNR complex human-environment 

system but not too long to bring in much uncertainty in simulation outcomes. 
 
 

Environment and ecology 
 

2.8   The ABM creates an 85 x 100 grid spanning the entire FNNR, with a spatial resolution of approximately 300 m. 

The spatial resolution is chosen to balance the need to represent seasonal movement of monkey family-groups 

and human resource extraction activities and simulation speed. Among the 8500 cells within the lattice, 4897 

are within the FNNR boundary with the following attributes assigned to them: elevation and 13 land cover or use 

types: Bamboo, Coniferous, Broadleaf, Mixed Forest, Lichen, Deciduous, Shrublands, Clouds, Farmland, House- 

hold, Farm, PES Forest, and Outside_FNNR. These vegetation categories were generated through a combination 

of supervised and unsupervised image classification routines from near-anniversary-date summer Landsat 5 

satellite imagery (Tsai et al. 2016). Elevation data were extracted from a 30 m ASTER DEM GeoTIFF released by 

NASA in 2011 (Tsai et al. 2016). 

2.9   Our representation of the environment and ecology is from two aspects. First, we incorporate land use and land 

cover data as mentioned above. Second, we use golden monkey habitat occupancy as an indicator of intactness 

of a certain  land area for GGM habitat  use (the inverse  of this measure is the degree of human intrusion): 
 

Occupancy = # of simulated GGM visits on a pixel per year (1) 

 
2.10   Our choice of this occupancy measure is based on the ecology of GGMs: They avoid direct encounter with hu- 

mans (Yang et al. 2002). This metric for the impact of PES programs enables us to address the need to quantify 

broader, ecological dimensions of PES as mentioned in Section PES and Challenges. 
 
 

Guizhou golden monkeys (GGMs) 
 

2.11   With GGM life traits well-documented (e.g., Bleisch et al. 1993; Wu et al. 2004; Yang et al. 2002; Zhang et al. 

2016) an agent-based model was developed and posted online, which simulates the 750 GGM agents’ seasonal 

movement and their life events such as birth, death, and grouping (Mak 2019). The literature shows that GGMs 

live and travel in family groups of 20-45, while larger groups (Bleisch et al. 1993; Yang et al. 2002) and all-male 

groups 3 are observable. Yet in the model larger groups of more than 45 individuals were split into two. For 

space limit we do not elaborate other GGM features  in the model (Mak 2019). 

2.12    Building  on (Mak 2019), the ABM in this paper models GGM habitat use or occupancy primarily with considera- 

tion of elevation, vegetation types, and avoidance of human presence in the context of human livelihoods and 

demographic changes. This modeling choice also hinges upon the fact that FNNR has high primary forest cover, 

representing excellent habitat that provides food and water for golden monkeys (detail in Yang et al. 2002, p. 43). 

This situation makes it reasonable to not incorporate GGM feeding or water seeking behavior  in our model. 

2.13  GGMs prefer to stay in areas from 1500 4 to 1700 m (Wu et al. 2004), and in extreme situations to 2300 m (Bleisch 

et al. 2008). Accordingly, the model limits GGM family-groups to elevations between 1000 m and 2200 m, human 
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settlements (i.e., they escape when approaching a radius = 400 5 m centering each settlement), farms (radius = 

300 m), and GTGP enrolled land parcels (radius = 200 m). Finally, whenever away from human settlements, GGM 

family-group agents either move according to free semi-random walk based on their vegetative surroundings 

or are traveling to and from Yangaoping in mating and breeding seasons. The monkey agents tend to stay in 

mixed, deciduous, conifer-broadleaf, and broadleaf forests, but also travel through other types of vegetation 

(Bleisch et al. 1993; Wu et al. 2004; Yang et al. 2002; Zhang et al. 2016). 
 
 

Human demographics and livelihoods 

 
2.14  The ABM generates  land parcel objects (one special kind of agents) that belong to a total of 94 household 

agents. Then the model assigns household attributes (e.g., household ID, village, x and y coordinates, dry- 

land area, paddy land area, GTGP land area, non-GTGP land area) to each of these parcels. These parcels 

may convert between GTGP and non-GTGP land uses, depending on the PES program implemented within 

the model as well as a set of socio-demographic variables (Section GTGP participation and land use). A sum 

of 370 human agents are also created with individual attributes such as person ID, age, gender, education 

level, marriage status, and working status (work on own farm, off-farm agricultural work, non-farm business, 

being student, not working, unable to work) assigned to each agent based on the survey data. Each person 

agent goes through relevant life events: being born, growth, going to college, marriage (simultaneously bring- 

ing in a female or male from outside the two villages 6 ), bearing a child, death, migration (outmigration and 

re-migration listed below separately), and collecting resources. For space limit, we give detail of bearing chil- 

dren (for the rest we refer interesting readers to the Python code at https://www.comses.net/codebases/ 

0852f2b8-6517-4b83-b7fa-8304eb538421/releases/1.0.0/): 

2.15  Once a woman reaches 20 (the minimum age for a woman to marry), assign her a birth plan (or fertility rate) 

representing the number of children for her whole life: she may have 0, 1, 2, 3, 4, or 5 children in her whole life 

with the probabilities of 0.03125, 0.15625, 0.3125, 0.3125, 0.15625, and 0.03125 (An et al. 2005). The average birth 

plan is 2.5 children per woman. 

2.16   When 13̃ years (a parameter that is randomly chosen to be 1, 2, or 3 years) elapse since her marriage (i.e., she 

reaches 20 years old), she may have her 1st child. Then after another 13̃ years (another parameter that is ran- 

domly chosen to be 1, 2, or 3 years), she may have her 2nd child. . . till her birth plan is accomplished (An et al. 

2005). 
 
 

Resource extraction 

 
2.17    Based on our survey data of the 94 households, each household sends a person agent to designated cells to 

collect resources such as fuelwood, medicinal herbs, bamboo shoots, mushroom, fodders (for pigs and oxen), 

and others while the order of collecting these resources is randomly chosen. At each time step, the person agent 

only gathers one resource at a time. The person agent is usually the household head (if within the range of 15-59 

years old); if s/he migrates out, the next capable person is designated as a substitute head of household and 

collect these resources. 

2.18  When human agents venture out to collect resources at a certain time step, their paths are marked to act as a bar- 

rier at the same step for GGM family-group agents that travel around the reserve freely but avoid humans. Along 

with human avoidance and seasonal migration to breeding habitat (the circle in Panel A, Figure 1), Guizhou 

snub-nosed monkeys also avoid low elevations and choose weighted semi-random paths based on favored 

vegetation. 

2.19   Each person agent gathers this resource at the corresponding  frequency determined by the 2016 survey. Each 

time a resource collection action takes often one day, part of the 5-day time step that includes the day. During 

the step, all the cells that the person agent traverses (from the household cell to the collection cell) receive a 

weight  of 1/5 for avoidance. This weight is proportional to the collection frequency. The mismatch in temporal 

resolution may affect the influence human presence exerts on GGM habitat use, which will be discussed in Sec- 

tion Discussion. Human resource gathering and other activities in the northern area (Panel A, Figure 1) may be 

suppressed with influences such as higher income or higher rates of human out-migration. Below we describe 

how we represent outmigration. 
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Outmigration 

 
2.20   Modeling human decision has been a big challenge in understanding and envisioning human-environment sys- 

tems, and ABM may offer unique power in this regard (An 2012). Migration happens only if the household under 

consideration has a person between  15 and 59. According to our field survey in 2015 (Yang 2019), the annual 

probability of outmigration can be calculated based on a logistic function: 

 
mig_prob = 

 
eLogit/(exp_Logit + 1)/    

 
 

 
(2) 

 
where 

eLogit = exp(2.07 − 0.00015 ∗ income_local_off_farm  + 0.67 ∗ num_labor  + 4.36 ∗ 

migration_network − 0.58 ∗ non_gtgp_land_per_labor + 0.27 ∗ gtgp_part  − 0.13 ∗ 

age + 0.07 ∗ gender + 0.17 ∗ education  + 0.88 ∗ marriage + 1.39 ∗ farm_work + 0.001 

∗ mig_remittances) 

 
 
 
 
(3) 

 

where annual local off-farm income (income_local_off_farm) and remittances from migrants (mig_remittances) 

are measured in Yuan, number of laborers (num_labor) is the number of people between 15 and 59, migration 

network (migration_network) is defined as a binary variable about whether the household has social connec- 

tions to earlier migrants (0 for no and 1 for yes), the area of non-GTGP farmland per laborer 

(non_gtgp_land_per_labor) is the average amount of farmland divided by the number of people between 15 and 

59, GTGP participation (gtgp_part) is also binary (0 for no, 1 for yes), marriage is binary and refers to whether 

someone is married or not (0 if no, 1 if yes), and farm work status (farm_work) is a binary variable (0 for no and 

1 for yes)). The rest of the variables are self-evident. 

2.21    However, the migrants can choose to return to their rural home, and we model the corresponding probability as 

a function of the age at the time of the most recent migration (age) and the number of years s/he has migrated 

out (yr_mig) according to a logistic regression by Yang (2019): 

re_mig_prob = exp(−1.2 + 0.06 ∗ age − 0.08 ∗ yr_mig)/(−1.2 + 0.06 ∗ age − 0.08 ∗ yr_mig) (4) 

 
2.22   Therefore, a person might migrate out, return, re-migrate out, and continue this cycle if s/he is between 15 and 

59 years old and the randomly generated numbers are less than the probabilities determined by Equations 2 

and 4 are greater than the threshold. The coefficients in Equations 3 and 4 are results of the above-mentioned 

logistic regression based on survey data collected in 2015 (Yang 2019). 
 
 

GTGP participation and land use 

 
2.23   The ABM reads in parcel level data for each household from a CSV file. The CSV file contains whether a parcel is 

enrolled in GTGP (named a GTGP parcel) or not (named a non-GTGP parcel), x and y coordinates, whether the 

land is dryland or paddy land (land_type), and the amount of time to travel to the corresponding land parcel 

from the household (time_land). 

2.24   Local farmers may fallow some parcels even without any payment for various reasons. Therefore we combine 

fallowing of land with GTGP participation, resulting in an action of returning farmland to other uses, including 

planting cash crops, fallowing land, or planting ecological trees (Yost et al. 2020). A logistic function is used to 

calculate the probability of returning farmland to other uses (including participating in GTGP and leaving the 

parcel fallow) at parcel level. Yet for terminology consistency and conciseness,  we still call it GTGP participation 

and the corresponding probability is named GTGP_par_prob: 

GTGP_par_prob = exp(2.52 − 0.012 ∗ Age − 0.29 ∗ Gender + 0.01 ∗ Education + 0.001 ∗ hh_size 

− 2.45 ∗ land_type + 0.0006  ∗ GTGP_net_cash  + 0.04 ∗ time_land)/ 

(1 + exp(2.52 − 0.012 ∗ Age − 0.29 ∗ Gender + 0.01 ∗ Education + 0.001 ∗ hh_size 

− 2.45 ∗ land_type + 0.0006  ∗ GTGP_net_cash  + 0.04 ∗ time_land)) 

 

(5) 

 
2.25   This equation was derived through logistic regression analysis based on data from 2015 (Yang 2019), where 

land_type and time_land are explained earlier, and GTGP_net_cash is the difference between GTGP payment 

and income from growing crops on the same land parcel. 
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2.26   When enrolling non-GTGP parcels, there are three conditions to meet simultaneously. First, the area of non-  

 

GTGP land in the household must be greater than or equal to 0.3 mu (a parameter based on the data from 2015; 
subject to sensitivity analysis) to provide vegetables. Second, a randomly generated number is less than the 

probability calculated using Equation 5. Third, the GTGP payment is greater than zero. Note that if GTGP pay- 

ment is zero (GTGP ends), there is still a small chance that the household may fallow the parcel (as mentioned 

earlier we still call this action participating in GTGP for terminology conciseness) at a much lower probability. 
This low probability defaults at GTGP_par_prob   ∗ 0.25, where parameter 0.25 is based on data from 2015 and 

subject to sensitivity analysis (same for 0.3 below). 

2.27   When deciding to reconvert a GTGP parcel to non-GTGP parcel (i.e., farmland), a very small probability 

(GTGP_par_prob ∗ 0.3) is calculated, where 0.3 is a parameter subject to sensitivity analysis (Sections 2.28-2.39). 
Once a parcel is enrolled in GTGP, it will be reconverted to farmland once a randomly generated number is less 
than this small probability. 

 
 

Model evaluation 
 

2.28   The model evaluation is comprised of two elements: model verification that warrants that the code does what 

it intends to do and is free of coding bugs, and model validation that compares model structure, processes, 

and results with expected ones based on data, theory, or experts’ opinions (An et al. 2005; Manson 2002). As 

model verification is progressive (debugging continues), the results below contribute to both verification and 

validation. 

2.29   We first show the dynamics of model projected human population size, births, deaths, and number of migrants 7 

over 20 years (on a monthly basis) (73 × 20 steps) for the two villages in the northern area (Figure 2). As we do 
not have empirical data for population size after 2016, we are not able to compare our projected population 
sizes with empirical data. Instead, we calculate various measures such as population increase rate, births, and 

deaths, and then compare them with data from other sources. The overall population dynamics shows a slow 

increase (i.e., from 370 in 2016 to around 400 in 2036), which can be explained by the accumulated numbers of 

births, deaths, and migrants in Table 1: There are 85 births and 54 deaths, implying natural increase of 31 per- 

sons. There are 27 marriages, bringing in 27 people from outside. So the total number of increase in population 

size is 31 + 27 = 58; if subtracting the increase in number of out-migrants (105 - 76 = 29), the total increase through 

migration is 58 - 29 = 29 persons. So the total population in 2036 should be 370 (base) + 29 = 399, which explains 

the simulated population size 399.40 in Year 2026 (or Step 1458) in Table 1. These results exactly corroborate 

the projected population size in Month 240 (Year 20) in Figure 2 (under BP = 2.5). When birth plan (fertility rate) 

is set to be 1.5 and 3.5, the total population in 2036 changes to 366 and 435 respectively (see more in Sections 

2.40-2.42 and Section 3). 

 

 
 

Figure 2: Overall population and migrants dynamics. BP stands for birth plan (fertility rate). 
 

 

2.30   We also validate these demographic results using external data and information. From the simulation results in 

Table 1, the annual birth rate is (72 - 0) / (20 × 370) = 0.973%, or 9.73‰. According to China’s National Bureau of 
Statistics (2018), the nationwide birth rate is 1.093% or 10.94‰. Considering the decreasing trend in the most 
recent 20 years (e.g., from 14.03‰ in 2000 to 10.94‰ in 2018), our average annual rate of 9.73‰ for the next 20 
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years is reasonable. Similarly we calculate the annual death rate to be (54 - 0) / (20 × 370) = 0.730% or 7.30‰,  

 

while the same national rate is 7.09% in 2016 (National Bureau of Statistics 2017). 

 
Step Population Births Deaths Marriages Laborers Migrated 

6 370.80 0 0.17 0 160.6 76.20 
732 391.87 47.30 25.03 14.73 122.70 93.37 
1458 399.40 84.80 53.73 27.33 106.33 105.40 

 

Table 1: Simulated human population dynamics. Note: Under our temporal resolution, 6 steps = 0 years, 732 

steps = 10 years, and 1460 steps = 20 years. All the numbers are average of 30 runs 
 
 

2.31    Next, we examine the age and gender structures of the two upper villages at Year 0 (from 2016 survey data), 

Year 10 (from ABM simulation),  and Year 20 (from ABM simulation). We do not have data to validate those in 

Year 10 (2016) and Year 20 (2036), yet we can take a close look at specific age groups for verification purposes. 

For instance, the male, 10-20 group is 15% of the total population (left), which turns to be around 7% ten years 

later (Middle) and 8% 20 years later (right, Figure 3). We explain these decreases using the migration, growth 

(age-out), and death data: The male group at age 10-20 had 47 people in Year 0, while 0 died and 3 migrated out 

at Years 0̃10. Given that the simulated total population sizes at Years 0̃10 are 389, we calculate the percentage 

of this group at Year 10 to be (47 - 0 - 3) / 389, or 44 / 389  = 11.311%, which matches up with the Year 10 bar for 

males aged 10-20 in Figure 3. Similarly, we explain other percentages in Figure 3. 

 

 
 

Figure 3: Age and gender structure at Years 0 (left), 10 (middle), and 20 (right) for the population at the two 

northern villages of FNNR. 
 
 

2.32   Third, we examine the projected total area of farmland, which decomposes to GTGP and non-GTGP land area 

for each of the 94 HHs (Table 2). For verification purposes, we examine land use areas at time 0, time 10, and 

time 20. The average number and area of non-GTGP parcels both decline with increasing payment, while at the 

same time the same numbers for GTGP parcels increase. This finding is consistent with literature regarding the 

impact of payment on PES enrollment (Wunder 2008; Yost et al. 2020). 
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Comp. Level∗ Steps∗∗ Total # of Non- 

GTGP Parcels 

Total # of GTGP 

Parcels 

Avg. # 

Non-GTGP 

Parcels∗∗∗ 

of Avg. # of GTGP 

Parcels 

0 6 233.27.00 144.13.00 02.48.00  01.53.00 
270 6 231.33.00 146.07.00 02.46.00  01.55.00 
540 6 228.30.00 149.10.00 02.42.00  01.59.00 
0 732 145.00.00 232.00.00 01.54.00  02.47.00 
270 732 124.47.00 252.53.00 01.32.00  03.09.00 
540 732 108.10.00 269.30.00 01.15.00  03.26.00 
0 1458 184.47.00 192.53.00 02.36.00  02.05.00 
270 1458 182.10.00 195.30.00 02.34.00  02.07.00 
540 1458 182.50.00 194.50.00 02.34.00  02.07.00 

 
Table 2: Number of GTGP and non-GTGP land parcels for the 94 households at time 0, time 10, and time 20 
(results are average of 30 runs). Note: ∗ Comp. Level stands for three GTGP compensation levels: 0, 270, and 

540 Yuan/Mu  (1 Mu = 1/15 ha); ∗∗ Steps are time units, which are five days (see Sections 2.7-2.27). ∗∗∗Avg. # 

of Non-GTGP Parcels=Total Non-GTGP Parcels/ number of households at the time (similar for Avg. # of GTGP 

Parcels). 
 

 

2.33   Fourth, we simulate  GGM births, deaths, and overall population size from  Month #1 to Month #240 (Figure 4). 

The overall GGM population  dynamics  (Figure 4a) is consistent with literature (Yang et al. 2002). Yet the over- 

all population dynamics alone may not warrant correctness of processes that constitute such dynamics. For 

instance, a mistakenly high birth date may offset the impact of a high, yet wrong mortality rate (at some age 

group) and thus generate “correct” population size, yet giving rise to unbalanced, likely incorrect age structure. 

Below we examine this potential issue and explore the projected GGM age structure. 

 

 
 

Figure 4: Simulated GGM overall population dynamics (A) and births/deaths over 20 year (B). 
 
 

2.34   We run the ABM and generate GGM age structure (i.e., percent of individuals of 0-1, 1-3, 3-7, 7-10, 10-25 age groups 

in total GGM population) at Year 10 and 20 (Figure 5). It seems that the two age-structures at Years 10 and 20 are 

similar to that at Year 0 that is based on literature, yet there are some small differences (e.g., lower % for age 

0-1 group and higher  % for age 3-7 group). For detailed information and discussion we refer to Mak (2019). 
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Figure 5: Simulated GGM age-structure at years 0, 10 and 20. 
 

 
2.35   Fifth, we evaluate habitat occupancy using several methods by: 1) presenting  the ABM-generated occupancy 

maps to FNNR managers, seeking their qualitative evaluation of these maps; 2) visually comparing the ABM- 

generated occupancy maps with a paper habitat map (n o digital file) generated from FNNR staff’s long-term 

fieldwork (Yang et al. 2002); and 3) by comparing occupancy outcomes generated by the ABM (Figure 6) with 

a small subset of camera-based GGM density data, i.e., only data from the top 11 camera sites (where we have 

recorded human activity from the 94 households). For each cell, we standardize the GGM occurrence number 

to a gradient between 0 and 1 by dividing the observed captures by the max captures we have observed there. 

Then we standardize the ABM predicted occupancy numbers using the same procedure. We calculate the Pear- 

son’s correlation between them. Out of the above three methods, the last one (3) is quantitative, yet subject to 

several limitations (details in Section 4). 

2.36   The spatial evaluation of habitat occupancy (Figure 6) from experts’ opinions is very positive, suggesting that 

the overall trend in GGM habitat use has been captured (Y. Yang, personal communication). The qualitative 

comparison between the FNNR paper map and our ABM-generated map also suggests a good match. The quan- 

titative test gives a moderate result, in which the Pearson’s correlation coefficient is 0.55 (0.69 when a pair of 

data suspicious of equipment error are removed).  We ascribe this to the small sample size (n = 11), short term 

of data collection (1 year) compared to our simulation length (20 years), and equipment bias (e.g., no-detection 

of GGMs). However, worthy of mention is that the ABM-based occupancy results have been compared to the 

results from an independent, different modeling approach called MaxEnt, and the results largely match (Mak 

2019). 
 

 
 

Figure 6: ABM-generated habitat occupancy map, where the numbers represent occupancy (i.e., # of visits/cell 

within 20 years). 
 

 

2.37   Last, we perform sensitivity analysis using the parameter-sweeping approach (An et al. 2005). In Sections 2.11- 

2.13, the model performance may be sensitive to three parameters, i.e., three radii (centered on a human set- 

tlement, farm, and GTGP land parcel) that each define a zone of avoidance by GGMs. We therefore design a 

GGM-escape test (Table 3). As each parameter has 3 values for test, there are a total of 3 × 3 × 3 = 27 experi- 
ments. For each experiment, we 1) generate and report habitat occupancy data at the end of simulation and 2) 
calculate the kappa index between each experiment map and the baseline map at the end of simulation. 

2.38   Similarly, there is uncertainty regarding minimum amount of cropland that a household hopes to keep and 

probabilities of enrolling cropland in GTGP or reconverting GTGP land back to cropland (Section GTGP partici- 

pation and land use). We therefore design a second test named land-decision test (Table 3). As each parameter 
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has 3 values for test, there are also a total of 3×3×3 = 27 experiments under this land-decision test. For each 

experiment, we collect data regarding  1) the number of GTGP parcels and number of non-GTGP parcels over 

20 years (240 months); 2) occupancy data at the end time, and 3) kappa value between experiment occupancy 

map and baseline occupancy map at the end time. 

 

Test label Parameter Min Max Default Inc∗∗ Outcomes 

GGM- Settlement 100 700 400 300 1) Occupancy (end) 
escape radius      
test       

 Farm radius (m) 0 600 300 300 2) Kappa (end) 

 Land radius (m) 0 400 200 200  

Land- Min cropland 0.1 0.5 0.3 0.2 1) #  of GTGP &  non- 
decision (Mu)      GTGP parcels over all 
test       time steps 

 Prob multiplier 0.1 0.4 0.25 0.15 2) Occupancy (end) 

 1∗       
 Prob multiplier 0.1 0.4 0.25 0.15 3) Kappa (end) 

 2∗       

 
Table 3: Design of sensitivity analysis. Note: ∗ This probability multiplier is unitless (between 0 and 1). ∗∗Inc 

stands for increment of parameter values 

 
2.39   The above sensitivity analysis results are positive. The two tests do not give any model crash, nor lead to un- 

interpretable outcomes. The Kappa values in the GGM-escape test have a largely decreasing trend when the 

threshold (i.e., threshold count for # of steps a cell is used by GGMs: above this value the cell is counted as occu- 

pied) increases. The spatial locations of occupied habitat also agree with our experience and experts’ opinion 

(Appendix B). In land-decision test, the numbers of GTGP-parcels and non-GTGP parcels still converge even 

when different parameter combinations are used in the model, suggesting that the outcome in Figure 7 is ro- 

bust, not likely being an ad hoc outcome (Appendix B). 
 

 

Experiment design 
 
2.40   Once we have evaluated the model and deemed to represent processes in a satisfactory manner, the model 

is then used to perform scenario experiments. Here we are interested in seeking insights into the impact of 

GTGP policy on long-term land use, migration, and GGM habitat use. We consider three scenarios: 1) Scenario  1, 

where GTGP policy stops (payment = 0); 2) Scenario 2, in which GTGP stays as is (payment = 270 Yuan/Mu); and 

3) Scenario 3, in which the payment is doubled (payment = 540  Yuan/Mu). 

2.41    We also examine the potential impact of varying population pressures. In this regard, we design two population 

scenarios with GTGP payment set at default (270 Yuan/Mu): Scenario 4 features a lower birth plan or fertility rate 

(1.5 children per woman), in which an eligible woman may have 0, 1, 2, 3, 4, or 5 children in her whole life with 

a probability of 0.09, 0.5, 0.3, 0.06, 0.03, and 0.02. In contrast, the probabilities are 0.03125, 0.15625, 0.3125, 

0.3125, 0.15625, and 0.03125 in the baseline simulation (corresponding to 2.5 children per woman; see Sec- 

tion Human demographics and livelihoods). Scenario 5 features a higher birth plan of 3.5, in which an eligible 

woman may have 0, 1, 2, 3, 4, or 5 children in her whole life equally with a probability of 0.02, 0.02, 0.04, 0.38, 

0.44, and 0.1. 

2.42   For each of the above scenarios, we intend to estimate the amount of land enrolled in GTGP land (accumulated 

GTGP land area of 94 HHs), number of accumulated migrants (note that returnee migrants are subtracted), and 

the related densities  of GGMs at FNNR over time. To quantitatively measure the degree of change in GGM occu- 

pancy between scenarios, we adopt the Cohen’s kappa statistic that offers an overall agreement (no change in 

our application) and disagreement (change in our application) on the cell-by-cell basis (Carletta 1996). 
 
 

Experiment Results 
 

3.1    Before  we come to our focus regarding the impacts of GTGP policy and population pressure on land use, we 
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to around 366 under Scenario 4 (BP = 1.5) and increases to around 435 under Scenario 5 (BP = 3.5). The three 

birth plans do not affect the number of migrants (Figure 2), which may arise from the fact that our time span 

(20 years) is not long enough for most new births to grow to migration age. 

3.2   Next, we turn to the impacts of GTGP policy and population pressure on land use (Figure 7). Payment levels do 

make a big difference in increasing GTGP enrollment in earlier times, e.g., prior to Month 100 in Figure 7a. This 

finding is consistent with relevant literature, where the positive impact of payment levels on participation has 

been reported extensively (Wunder 2008; Yost et al. 2020). Yet at later times, some interesting patterns emerge: 

The non-GTGP land decreases to a nadir, then rises slowly (a concave curve), while the GTGP land rises till a 

peak is reached, followed by slow decrease (a convex curve). The difference made by the PES payments (or no 

payment) is the level of increase or decrease and the timing of reaching the peak and nadir. Interestingly, the 

number of parcels in all three scenarios turns to converge to around two parcels near the end of the 20-years’ 

time span (we will discuss this finding later). When examining the impact of population pressure, the above 

convergence pattern is still prevalent at all birth plan values. Yet birth plan values seem to have no impact on 

land use for the first half of simulation time, and small differences begin to occur at later times: the increase in 

non-GTGP parcels and decrease in GTGP parcels tend to become slower, resulting in a later convergence time 

(Figure7b). 

3.3   Worthy of mention is that the above convergence pattern occurs in other parameter settings. As shown in the 

sensitivity analysis section, this convergence trend also occurs in the 27 experiments with very different param- 

eter values (Appendix B) and is not likely an ad hoc outcome due to this specific parameter setting. 

 

 
 

Figure 7: Impacts of GTGP payment level (a) and impacts of birth plan (b) on enrollment (i.e., # of GTGP and 

non-GTGP parcels). 
 

 

3.4   The changes in spatial patterns of habitat use densities are quite informative. When interpreting these maps, 
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it is preferable to reference to Figure 8, which portrays that the surrounding areas are less used by GGMs. In 

this context, we can see increasing payment level does improve habitat quality in edge areas, especially areas 

surrounding the two villages. This arises from local villagers’ resource extraction patterns; mostly they go to 

nearby areas but do visit remote places occasionally. Therefore, there is no substantial improvement in remote 

(often core) habitat areas due to a higher GTGP payment. We discuss why this comes out in Section Discussion. 

Higher or lower fertility rates (birth plans) do not generate big differences in GGM occupancy visually (Scenarios 

4 and 5 vs. Baseline; Figure 8), yet quantitative analysis of Kappa index does show that a decrease in birth plan 

(from 2.5 to 1.5) makes bigger changes in GGM occupancy  more than an increase (from 2.5 to 3.5) does after 

taking into account the randomness in generating the occupancy measures (Table 8, Appendix C). 

 

 
 

Figure 8: Occupancy maps of scenarios 1, 2, 3, 4, and 5, where the numbers represent occupancy (habitat use 

density per cell within a year). 
 
 
3.5   For the northern part of FNNR (our study site) with 94 households, the number of migrants shows a slight, near- 

linear increasing trend from around 75 to around 105 individuals from 2016 to 2036 (Figure 9; also see Table 

1), representing an annual rate of 0.02 person/household. This trend is lower than the general trend between 

2000 and 2014 for all the 605 households we surveyed in 2014. There were almost no migrants in 2000 and 340 

in 2014, representing an annual rate of increase of 0.04 person per household. This higher rate during 2000 and 

2014 is due to the rapid increase near 20022̃005 due to the implementation of GTGP in 2000 (Yang 2019). On the 

other hand, the payment levels did not change the total number of migrants over time substantially except that 

stopping payment  gives rise to slightly lower number of migrants  from Months 49 to 130 (Figure 9). 

 

 
 

Figure 9: Impact of GTGP on migration. 
 
 
3.6   When evaluating the differences in occupancy due to changes in payment, it appears that compared to the 

status quo scenario (Scenario 2), the payment level makes a moderate difference in occupancy when threshold 

is relatively high. When using a threshold of 400 visits/cell (i.e., 20 visits/year; we chose this relatively high value 

to assure that changes are not by chance, but by substantial changes in GGM visit frequency after consulting 

experts on GGM ecology and behavior) as a threshold to classify a cell as occupied (a binary classification is 

required by the Kappa calculation), the Kappa statistic between 0 and 270 payment levels (i.e., Scenarios 1 vs. 

2) is 0.8025, while that between 270 and 540 payment levels (i.e., Scenarios 3 vs. 2) is 0.7839. This suggests that 

changes made by increasing payment are larger than changes (degradation) made by canceling the payment. 
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Figure 10: Difference occupancy maps between scenarios 1 and 2 at time 10 (Panel A) and time 20 (Panel C); 

then between scenarios 2 and 3 at time 10 (Panel B) and time 20 (Panel D). The darkness tone represents the 

level of difference in habitat use density made by the related scenario or policy. See Panel a in Figure 1 for the 

geographic extent of the above maps. 
 

 
Discussion 

 
4.1    As reported above, the average number of parcels from model simulations based on all three GTGP scenarios 

and two population pressure scenarios converges near the end of the 20-year time span (Figure 7). Specifically, 

GTGP land parcels increase until a peak is reached and then decrease; correspondingly non-GTGP land parcels 

decrease until a nadir is reached and then increaseâĂŤthis convergence pattern occurs regardless of payment 

level (Figure 7a). We explain this outcome first by food security. Local households tend to keep a small portion of 

land unenrolled (i.e., non-GTGP land does not decrease to zero) despite great benefits associated with enrolling 

in GTGP. During our interviews, respondents repeatedly mentioned this choice, and we translate this choice into 

a lower bound of non-GTGP land (parameter min cropland in Table 3, default at 0.3 mu). This may reflect the 

great attraction of labor from local businesses and particularly migration (Zhu 2002). 

4.2   Interestingly, the convergence pattern occurs regardless of birth plans (fertility rates) as well, and birth plans 

have little impact on GTGP enrollment, especially at earlier times of simulation (Figure 7b). As household size 

has a small, positive impact on GTGP enrollment (see Equation 5), an increase in household size due to a larger 

birth plan (fertility rate) may stimulate the household to enroll more farmland in GTGP, yet other factors such 

as the above lower bound of non-GTGP land and distance between farmland parcel and household (Equation 

5) may stop or dilute this increase in enrollment. For instance, if the increase in household size happens to be 

in a household with available farmland quite far away, then the tendency in probability increase (due to big- 

ger household size) may be offset by a decrease due to higher household-land distance. Under this condition, 

capturing spatial heterogeneity (as we did here in terms of mapping all households and their land parcels and 

thus being able to calculate household-land distances) is very important. Therefore, this surprising conver- 

gence pattern is jointly accounted for by the complexity existing in the system (Liu et al. 2008), likely associated 

with feedback loops and interactions among system components. Although with initial conditions specified 

by users, any ABM software program could decompose to a set of discrete-time or discrete-event difference 

equations in principle, such analytical representations become very a dauting task when the system becomes 

highly complex (Tesfatsion 2017). In this regard, ABM has unique power when addressing  questions  in complex 

systems as shown above. 

4.3   Why does higher GTGP payment increase habitat in edge areas? This finding may arise from the following paths. 

When GTGP pay increases, the GTGP net cash increases (Equation 3), which will escalate the probability of GTGP 

participation and simultaneously decrease non-GTGP land. According to Equation 2, a decrease in non-GTGP 

land will promote out-migration  — once people of 15-49 migrate out, local households tend to limit visits to 

surrounding areas for resource extraction such that GGMs can visit these places at a higher frequency. Again, 

this finding, though insightful and understandable, is also not one that is intuitive or was expected beforehand. 

For instance, another potential  outcome — GTGP leads to habitat degradation  — is possible if this pathway 

exists: GTGP participation leads to considerable labor released from farming, then local farmers may spend 

“extra” time extracting local resources for self-use and sale at local markets. However, our data and model 

results do not support this outcome. 

4.4   In summary, the merits of this paper lie in the following aspects. First, our research moves forward PES re- 

search, which is in nature embedded in both human and environment systems. Participants of PES programs 
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are humans, who make decisions and act in response to various human-environment contexts including PES 

regulations. Following a set of empirically-established behavioral rules, GGM agents rover on the landscape 

and respond to changes in the environment, especially human activities. All such processes take place on a 

spatially explicit landscape, leading to changes in the complex human-environment system. In this context, 

we have employed a complex systems framework, characterized by an agent-based model that integrates data 

of varying types, processes or relationships operating at multiple temporal and spatial scales, and knowledge 

from both natural and social science disciplines. 

4.5   Our research is innovative in using wildlife (GGM) occupancy  as a measure of environmental changes (Scullion 

et al. 2011), which may be applicable to evaluation of other environmental policies. In addition, movement 

analysis and modeling is a hot topic in space-time analysis and animal behavioral ecology (An et al. 2015; Tang 

& Bennett 2010). Our semi-random walk approach — in the context of human disturbance — may provide bet- 

ter understanding of animal behavior. Furthermore, our agent-based modeling practice contributes to ABM 

testing (e.g., using structural measures such as age structure, parameter sweeping test), model transparency 

and reusability (all code in the CoMSES repository), and modeling of human decision — a daunting challenge 

that attracts increasing recognition in many simulation and modeling (including ABM) domains. Such contribu- 

tions may help advance complexity science (Manson 2001), addressing the YAAWN syndrome in the ABM arena 

(O’Sullivan et al. 2016) and many other challenges in the ABM domain (An et al. 2017). 

4.6   Caveats arise concerning spatial and temporal resolutions. In our model, the temporal resolution is 5 days, 

while resource collection takes place on a daily basis. This mismatch (1-day vs. 5-day time step) has forced us to 

spread the 1-day influence  into a 5-day period (see Section Resource extraction). This may bias the simulated 

influence of human visits on GGM habitat  use, especially the temporal dimension of such influence. In the fu- 

ture, a finer temporal resolution (e.g., daily or even hourly) should be tested if simulation speed is not sacrificed 

much, or parallel or cloud computing techniques can be employed.  A similar issue is for the relatively coarse 

spatial resolution (near 300 m). In the future, a 30 m spatial resolution may be adopted, which enables us to 

map GGM and human activities on a more precise basis. 

4.7   Also worth of mention is the moderate quality of spatial projections  about GGM occupancy. Although able to 

capture generic trends of GGM habitat use, the model results are not in high agreement with our observed 

camera-trap data. In addition to the reasons mentioned above (low sample size, short term of data collection, 

and equipment bias), we also offer one important reason: The spatial locations of cameras, subject to human 

accessibility, are not very representative of all GGM accessible habitat areas. At such human-accessible loca- 

tions, collection of human activity data may be more challenging due to reasons such as local people’s unwill- 

ingness to share their activities or spatial inaccuracy when mapping human activities. 
 

 
Conclusion 

 

 
5.1    This paper aims to reveal complex, reciprocal relationships among PES, human livelihoods, and the environ- 

ment (both land use and land cover and habitat occupancy) at Fanjingshan National Nature Reserve, China. 

The agent-based model contributes to integrating data from different spatial and temporal scales and disci- 

plines, revealing land use and habitat patterns that are difficult to obtain otherwise. Instead of being used as a 

predictive tool, we recommend that our model be used as a platform to study and further understand complex 

human-environment systems, shedding light on key elements, interactions, or relationships in such systems. 

Efforts in this regard will help us establish PES science that incorporates features in complex systems, such as 

heterogeneity, feedback, and nonlinearity, offering more realistic, spatially and temporally explicit scenarios 

related to human policy or intervention. All these contribute to achieving the United Nations’ 17 Sustainable 

Development Goals (United Nations 2016), especially Goal 15 that aims to protect, restore and promote sustain- 

able use of terrestrial ecosystems. 
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Model Documentation 
 

The model was built in Phyton with MESA and is fully accessible here: https://www.comses.net/codebases/ 

0852f2b8-6517-4b83-b7fa-8304eb538421/releases/1.0.0. 
 

 
Appendix A: ODD protocol 

 

 
The ODD (Overview, Design concepts, & Details) Protocol for an agent-based model is a standardized document 

which outlines a model’s purpose, variables, framework, schedule, and data. The format was conceptualized by 

a team of twenty-eight authors who had previously published or worked with agent-based models, and serves 

as a universal set of guidelines for describing a model (Grimm et al. 2006, 2010). 
 
 

Purpose 
 

This agent-based model serves a variety of inter-connected purposes: 

 
• To simulate the demographic changes of humans living in the FNNR, including births, deaths, marriages, 

out-migration and re-migration. These changes are modeled on the existing human data gathered from 

the FNNR. Heads of household are also designated. Various other statistics, such as income level and 

education level, are projected as well. Finally, human age structures are recorded. 
 

• To simulate GGM movement  within the FNNR in a movement sub-model, which follows seasonal pat- 

terns of migration to a mating area and avoids human settlements or low elevations. Movement is also 

weighted according to the nearby vegetation: monkeys are more likely to move to vegetation that they 

are modeled to favor. 
 

• To simulate human resource collection in the movement sub-model, which may impact the movement 

of humans  upon GGM habitat. 
 

• To simulate Green-to-Grain Program (GTGP) enrollment or dis-enrollment and GTGP land conversion, 

which is based on factors such as current income and types of land owned. 
 

• To simulate the demographic changes of the Guizhou Golden Monkey (referred to henceforth as GGM) 

of the Fanjingshan National Nature Reserve (referred to henceforth as FNNR) over time, including births, 

deaths, formation of new families from a large group or of all-male groups, and mating behavior. Monkey 

demographic (age and gender) structures are also recorded. 
 
 

Entities, State Variables, & Scales 
 

Time  — Each time-step of the model represents approximately 5 days. Therefore, every 73 steps of the model, 

the model “advances” one year. Individual processes such as birth, death, and adulthood are continuous, and 

may occur at any time-step once conditions are met. While not an entity in itself, the passage of time will trigger 

events, such as birth or the formation of new groups. 
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Entity State, Variables, & Attributes Spatiotemporal, Scales & Extents  

 

 
 

Guizhou Golden 

Monkey (indi- 

vidual agents in 

mostly-stacked 

collective) 
 

Monkeys are defined 

by  families  in 

the visualiza- 

tion  submodel 

and by indi- 

viduals  in  the 

population 

submodel. 

ID 
 

Age Age 

Category 

Gender 

Birth 

Interval 

Family ID 

Family Size 

Mother ID 

Current Position 

Past Position 

Family Type 

Split Flag (if families grow too 

large) 

Spatial: One pixel represents a family group of 20-50 

monkeys, which move together. 
 

Temporal: Monkeys have a lifespan of approximately 

30 years. At 8 years, they become adults and can 

begin to mate. 
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Entity State, Variables, & Attributes Spatiotemporal, Scales & Extents  

 

 

 
Human (stacked col- 

lective, single 

moving agents) 
 

In the movement 

model,  only 

heads of house- 

holds move 

to collect 

resources. 

Unique ID 
 

Age Gender 

Education 

Work Status 

Marriage Status 
 

Household ID 
 

Past HH ID (if migrated) 

Home Location 

Migration Status 

# of Migrated Years 

Migration Network 

Migration Remittances 

Resource Location 

Resource Frequency 

Current Position 

GTGP Participation (Household) 

GTGP Area (mu, Household) 

Off-Farm Income 
 

(Household) 

Spatial:  One pixel represents a non-moving house- 

hold, each of which has zero or one human agents 

who is a fuelwood collector and a varying num- 

ber of total human agents within it.   Any hu- 

man agents that travel will always return to their 

household pixel. 
 

Temporal: Like monkeys, humans age, sometimes re- 

produce, and die. Their lifespan and other vari- 

ables are set in the model. 

 

 
 
 

Environment (grid 

cell) 
 

Potential Subtype: 

Household, 

Farm,  PES, 

(Managed) 

Forest 

Elevation 
 

Vegetation Type 

Spatial: The extent of the FNNR. Elevation is adapted 

from 30m raster DEMs, scaled down by 10 to cre- 

ate a manageable grid. 
 

The sq.  area of the rectangular grid containing the 

FNNR extent — that is, not the FNNR itself — is ap- 

proximately 640 sq. km. One environmental grid 

cell represents approximately 275m in diameter, 

or 0.075 sq. km in area. 
 

Temporal: None, though the agents interact with the 

environment by avoiding areas of low or high el- 

evations. 
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Entity State, Variables, & Attributes Spatiotemporal, Scales & Extents  

 

 

Land (GTGP Area; not 

shown in movement 

model) Unique ID 

Household ID 
 

GTGP Participation GTGP 

Land Area (mu) GTGP 

Net Income (yuan) Total 

Land Income 

Head-of-Household  Age, Gen- 

der, & Education Level 
 

Land Type (rice or dry) 

Land Travel Time 

Plant Type 
 

Household Size 
 

GTGP Dry Land Area (mu) 

GTGP Paddy Land Area (mu) 

Total Dry Area (mu) 

Total Rice Area (mu) 
 

Non-GTGP Output (yuan) 

Pre-GTGP Output (yuan) 

Non-GTGP Area (mu) 

Unit Compensation 

 

 
Spatial: None 
 

Temporal: Every step, there is a small chance GTGP 

conversion will be checked. If it is checked, then 

there is a chance that a land parcel may convert 

to a GTGP or non-GTGP land parcel, which will af- 

fect household-level variables such as income or 

land type. This chance is based on a regression 

formula that includes factors such as land type, 

current household income, and unit compensa- 

tion. 

 

 
 

Table 4: Entities, State Variables, & Scales. 
 

 
 
 

Process, Overview, & Scheduling 
 

All agents move in a random order, which does not affect the processes within each step. The processes are 

carried out in the same order for every agent; for example, for individual monkey agents, the death check always 

occurs at the end of every step. Possible agent actions, which may be restricted by certain agent attributes such 

as gender or age, are as follows: 

 
Model (Step 0 only): Create GGM family agents, monkey agents belonging to each family, human agents, land 

agents that refer to household-level lists that humans access, resource agents, and environmental grids 
 

Land Parcels (each step, land submodel only): simulate GTGP conversion, update household income, update 

GTGP area changes from conversion 
 

Humans (each step, movement/visualization submodel only): Head to resources, gather resources, head back 

to house, and randomly select another resource to gather 
 

GGM Family (each step, movement submodel only): Avoid humans if paths cross, avoid areas of low or high 

elevation (seasonally), move to Yangaoping (breeding site), move away from Yangaoping, and move to 
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neighboring cells according to a correlated random-walk (path determined by vegetation and elevation) 

as described by Ahearn et al. (2016). 
 

GGM Individual (each step, population submodel only): Age, possibly give birth (if female and of age), possibly 

out-migrate to another group (depending on age, gender, and current group sizeâĂŤmale monkeys may 

defect to an all-male group, and large families can split into smaller groups), and die 
 

Human Individual (each step, population submodel only): Age, possibly give birth (if female and of age), pos- 

sibly marry, possibly out-migrate (sometimes in a special case due to college, where they typically do 

not re-migrate from) and re-migrate, gain education levels, change work status, possibly change head-of- 

household status, and die 
 
 

Design concepts 
 

Discussed here are the eleven design concepts of the ODD protocol: basic principles, emergence, adaptation, 

objectives, learning, prediction, sensing, interaction, stochasticity, collectives, and observation (Grimm & Rails- 

back 2005). 
 
 

Basic principles 

 
Visualization submodel âĂ�– This assumes spatial patterns among all GGM families, such as yearly migration 

to Yangaoping; movement patterns are also calibrated according to movement needs as determined by known 

travel speeds, vegetation preferences, and behavior around humans from the literature (Grimm  & Railsback 

2005; Yang et al. 2002). Because the model input is directly based on observations from a field study, the default 

output — a showcase of movement over ten years — is expected to be fairly predictable.  What is new about this 

model is the comparison of its output  — a point density map of its movements — to a Maxent model through 

Cohen’s Kappa, and a discussion of how different versions of this model — based on configuration settings such 

as GTGP unit compensation — may differ through a similar comparison. 

Population  submodel  — This confirms GGM population  structure observations from Yang et al.’s field study 

(2002) by modeling changes to the population over ten years based on birth, mortality, and birth-interval rates 

per age category. It does not consider intermediate factors that are not currently well-understood by the lit- 

erature, such as low genetic diversity and the impact of this phenomenon on birth defects or miscarriages, or 

whether or not closely-related monkeys can breed. However, it considers the observed patterns of male depar- 

ture from groups and refreshed fertility after a recent loss of an infant. The population submodel also assumes 

a stable human age demographic, stable migration, and consistent birth, death, and marriage rates in relation 

to China’s national averages. 

GTGP conversion submodel âĂ�– This assumes that households will enroll in GTGP given that they meet a cer- 

tain threshold as determined by the regression formula, and that they are likely to revert after a number of years 

without compensation after the program ends. 
 
 

Emergence 

 
Visualization submodel âĂ�– Avoidance of humans and human settlements may have more or less of an impact 

than expected; vegetation weights may more or less than an impact than expected. 

Population submodel –âĂ� Fertility “recovery” after loss of an infant may have more or less of an impact than 

expected. 

GTGP conversion submodel –âĂ� GTGP unit compensation may have more or less of an impact than expected; 

the model also does not account for any land area changes as a result of GTGP enrollment in the visualization 

submodel. 
 
 

Adaptation 

 
Visualization submodel –âĂ� Family agents avoid less-desirable cells with human settlements and lower eleva- 

tions, and choose their neighboring cell by weights determined by vegetation type. 
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Population submodel âĂ�– Fertility “recovery” or the lessening of between-birth intervals, after the loss of an 

infant is an adaptive trait that female individuals may have. 

GTGP conversion submodel âĂ�– GTGP enrollment affects income and GTGP land area, which plays a role in 

future GTGP enrollment. 
 
 

Objectives 

 
Visualization submodel — GGM Family agents primarily avoid humans, move to ideal vegetation, and visit Yan- 

gaoping for breeding and giving birth. The human agents’ only objective is to gather resources and return to 

their homes. 

Population submodel — Adaptations — and therefore objectives — are more chance-based rather than individual- 

objective based. For example, human and GGM agents have a small chance of dying every step, which cumu- 

lates to a yearly mortality rate every 73 steps. 

GTGP conversion submodel — Adaptations — and therefore objectives — are more chance-based rather than 

individual-objective based. For example, land parcels have a chance of conversion and adjusting household 

income every step. 
 
 

Learning 

 
This model does not have agents change their traits responsively as part of its process, but can be modified 

to do so using “self” variables. The closest feature it has is using the outputs of processes, such as increased 

income from GTGP conversion, to inform other future decisions. 
 
 

Prediction 

 
Agents do not estimate future consequences of decisions; decisions made are based on information available 

at the time, and often impact current decisions immediately thereafter, or on a cumulative basis. 
 
 

Sensing 

 
Visualization submodel — GGM Family agents sense the presence of humans gathering resources and human 

settlements, and will move so as not to overlap them. They also “sense” the vegetation and elevation around 

them. 

Population submodel — Female monkey agents give birth at the correct ages, and if male, may migrate to other 

groups. 

GTGP conversion submodel — Income and land parcel interaction affect each other, so higher temporary income 

may result in lower GTGP enrollment, which creates a negative feedback loop (lower GTGP enrollment may also 

temporarily lower income). 
 
 
Interaction 

 
Visualization submodel — Humans gather resources, but otherwise do not interact with GGMs. The model may 

be changed later, e.g. to implement a poaching behavior. 

GGMs avoid humans,  and will not move to occupy the same or sometimes even an adjacent pixel (each pixel is 

a 300-meter space) as a human agent. 

Population submodel — if any monkey infant dies, its mother may give birth again the following year (a “re- 

covery” of fertility), even though the normal birth interval rate is 3 years. Humans will gather resources less 

efficiently if they are marked as a resource-gathering household, but the head of the household/workers of age 

are currently migrated or die without a replacement. 

GTGP conversion  submodel  — increased  household  income from GTGP conversion  may result in higher out- 

migration rates; the end of the PES program will cause some households to revert their GTGP-enrolled land 

parcels. 

http://jasss.soc.surrey.ac.uk/23/1/5.html


Doi: 10.18564/jasss.4196 JASSS, 23(1) 5, 2020 http://jasss.soc.surrey.ac.uk/23/1/5.html 

 

 

Stochasticity 

 
Visualization submodel — GGM agents move to their 8-cell (diagonal and adjacent) neighbors according to a 

weighted choice, which in turn is informed by the vegetation type of each neighbor. Males can also travel be- 

tween groups or form an all-male group when of a sufficient age. 

Population  submodel  — For both monkey and human agents, births and deaths are random chances deter- 

mined by a birth-interval rate or yearly rate. 

GTGP conversion submodel — A weighted-probability-based formula decides whether or not a land parcel con- 

verts to GTGP, which in turn affects human household income. 
 
 

Collectives 

 
In both the movement and population submodels, GGM individuals belong to a family; occasionally, all-male 

families can break off. 

Land parcels belong to a household collective, which humans also belong to; the collective is accessed via lists, 

so there are no household agents. 
 
 

Observation 

 
The output of the movement model is a .csv file of all points that individual agents traveled to, from which a 

heatmap or point density map may be generated. 

The output of the population submodel are .csv files tracking changes in the population and age/sex structure 

over time. 

The output of the GTGP conversion submodel is a .csv file of non-GTGP and GTGP land parcel counts, areas, and 

household income tracking. 
 
 

Initialization 
 

All initial values for humans and GGMs are either taken from Yang et al.âĂŹs (2002) field study of the GGMs (in 

the case of population structure rates), or from data which was gathered as part of the greater FNNR project (in 

the case of environmental, resource, or human household data). 

Visualization submodel — Initial settings (number of years the model runs for, number of monkey families, GTGP 

compensation structure, PES program span, etc.) are set by the user in fnnr_config_file.py  before running the 

model. 

Population submodel — Each family group contains 25-45 agents, and in total, there are between 600-900 mon- 

keys in the reserve (very likely 650-750). 

GTGP conversion submodel — Income is determined at the start by current land income and off-farm income 

combined. Some land parcels are already enrolled in GTGP. 
 
 

Input data 
 

 
 

Submodels 
 

The processes for the three submodels are outlined here. 

Step 0 âĂ� all agent and environment types (families, individual monkeys, humans, resources, land parcels, 

environment) are parametrized and created. 
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Entity  Input Data Data Source 
 

Guizhou Golden Monkey                 Seasonal   movement  behavior 

(qualitative), birth rates, death 

rates, birth-interval rates, group- 

migration or infant-loss behavior 

(qualitative) 

Humans Household locations, birth rates, 

death rates,  marriage rates, 

education rates,  regression fac- 

tors for migration probability, 

income levels,  age/work sta- 

tus/gender/education levels for 

current FNNR residents 

 

Field study (Yang et  al.  2002), 

other literature 
 
 

 
FNNR Project at SDSU 

Resources Resource location Resource type FNNR Project at SDSU 

Environment                                  Vegetation map DEM (digital ele- 

vation model) 

 
Land Parcel                                     Regression  factors   for   GTGP 

conversion, current area/land 

type/land travel time for current 

FNNR land parcels 

FNNR Project at SDSU; vegeta- 

tion categories  map and DEM pro- 

cessed by Tsai et al. (2016) 

FNNR Project at SDSU 

 

 

Table 5: Input data sources for each variable 
 
 

Visualization submodel ordered priorities for GGM family agents: 
 

1. Avoid humans and human settlement buffers (cannot enter certain occupied cells or face lower random 

odds of entering weighted cell). 
 

2. Head to or from Yangaoping if it is directly before, during, or after mating season or birthing season (e.g. 

September, or steps 46-55 in a year of 73 steps). 
 

3. Avoid certain low or high elevations. If traveling to or from Yangaoping, they may temporarily pass through 

those cells. 
 

4. Move to neighboring cells (usually 5-10 times  in a step to match the distances covered over five days, or 

one step, as noted in the literature) based on a random choice affected by weights assigned to each neigh- 

bor, which in turn is determined by one of nine vegetation types: mixed, broadleaf, deciduous, conifer, 

bamboo, shrublands, lichen, clouds (usually random; artifact from classification process), or farmland. 
 
 

Visualization submodel ordered priorities for human agents: 
 

1.  If at home, choose a random resource from an imported list of resources their household gathers, and 

head towards the resource in a shortest-distance path. 
 

2. Once at the resource, head back home to deposit the resource, and repeat the process. 

 
Since humans gather resources faster than the time resolution of the model (one time-step represents 5 days), 

the visualization will show human agents “jumping” back and forth between resources up to each step; how- 

ever, the coordinates traveled along the paths are recorded. 
 
 

Population submodel for GGM individuals: 
 

1.  Face a low-level mortality rate each five-day step (slightly less than the yearly mortality rate divided by 

73, since 73 ∗ 5 = 365 days in one year, because of compounding probability). Mortality rates differ by age 
category. 
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2. If female and of age, birth interval increases every step; if it exceeds 3 (with no recent infant loss), give 

birth. If it exceeds 1 (recent infant loss), also give birth. Once a female has given birth, their birth interval 

resets to 0, and builds up again over time. 
 

3. If male and of age, and if enough are “flagged” by a low-level chance once they reach of age, an all-male 

group may break off, and males will change families. 
 

4. Each step, population dynamics are recorded (in some versions of the model; other versions only record 

the first and last step), and at the final step (ten years = 730 steps; twenty years = 1460 steps), a .csv file is 

generated. This file includes the starting/ending population and average age/sex structure of the popu- 

lation. 
 
 

Population submodel for Human individuals: 
 

1.  Face a low-level mortality rate each five-day step (slightly less than the yearly mortality rate divided by 

73, since 73 ∗ 5 = 365 days in one year, because of compounding probability). 
 

2. Every step, there is a low chance a new baby will be born. If that chance is met, a random married female 

who has not given birth in the last two years will be selected to bear a child, and the household size will 

increase. Once a female has given birth, their birth interval resets to 0, and builds up again over time. 
 

3. If single and of age, there is a low chance of marriage occurring every step. Divorce is not accounted for 

in the model. 
 

4. Miscellaneous variables such as education and work status update semi-randomly depending on other 

weighted factors such as the person’s age. 
 

5. Humans may migrate out or re-migrate back if they have migrated. These are based on regression formu- 

las that consider gender, age, income, migration networks, ratio of land owned to laborers in the house- 

hold, and education level. 
 

6. Migration changes who is designated as the head of the household, which may in turn impact resource 

gathering (alternative heads of households, especially if not of age, may gather resources more slowly). 
 

7. Each step, population dynamics are recorded (in some versions of the model; other versions only record 

the first and last step), and at the final step (ten years = 730 steps; twenty years = 1460 steps), a .csv file is 

generated. This file includes the starting/ending population and average age/sex structure of the popu- 

lation. 
 
 

GTGP conversion submodel: 
 

1.  Each step, a small probability for GTGP enrollment or dis-enrollment is evaluated for each land parcel. 

This is based off a formula that considers the head of the land parcelâĂŹs householdâĂŹs gender, age, 

education, and income. It also considers the time taken to travel to the parcel from the household, the 

land type, and the number of humans in the household (household size). 
 

2. Non-GTGP land area, GTGP land area, and household income (for all land parcels of that household) are 

updated to reflect changes from GTGP enrollment. 
 

 
Appendix B: Sensitivity analysis results 

 
 
 
Sensitivity design 

 
The sensitivity analysis is comprised of two tests: the Guizhou golden monkey (GGM) escape test (or GGM- 

escape test) and the land-decision test. For detail of the test design, see Sections 2.28-2.39 and Table 3 in the 

main text. 
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Results of GGM-escape test 
 

Below is the GGM habitat occupancy under the GGM-escape test, in which three radii (centered on a human 

settlement, farm, and GTGP land parcel) are exposed to sensitivity test. Note that each radius defines a zone of 

avoidance by GGMs. For each scenario or parameter setting, the simulation is run 30 (or 10 depending on the 

scenario) times with results collected and saved in a certain directory. Once all simulation results are collected, 

we calculate values of several key variables such as human population size, # of migrants, number of GTGP or 

non-GTGP parcels, etc. 

 
Threshold count  (TC) for  # of 

steps  a cell is used by GGMs: 

above this TC the cell is counted 

as occupied 

Kappa Average for other 29 com- 
bos vs. 0.25-0.25-0.3∗ 

Kappa Average at baseline 

(0.25-0.25-0.3) scenario∗∗ 

50 0.9184 0.9181 

100 0.9267 0.9265 

200 0.8790 0.9006 

400 0.7712  0.7837 

600 0.5948 0.6348 
 

 
Table 6: Kappa results for the GGM-escape test. Notes: ∗ Here for each of the 29 non-baseline simulations (call 
them S1, S2, . . . , S29), there are 30 runs. Run 1 of S1 (the 1st non-baseline simulation)  is compared with Run 
1 of the baseline setting (0.25, 0.25, and 0.3 are for Min cropland, Prob multiplier 1, and Prob multiplier), and 

the Kappa is calculated for Run 1; we replicate this for Run 2, Run 3, . . . up to Run 30. Finally, an average Kappa 

is calculated for S1: KappaS1. The numbers reported in each cell below are the average of 26 Kappa values 
calculated this way, e.g., 0.9184 = (KappaS1+ KappaS2+ . . . + KappaS29) / 29. ∗∗ Here Run 1 of baseline simulation 

(0.25-0.25-0.3 for the three parameters) is compared with Run 2 of the same baseline simulation and Kappa is 

calculated. We repeat this for Run 3, . . . , Run 30. Finally, the average Kappa is calculated at each threshold level. 

Visually comparing maps for spatial locations of habitat occupancy (Figure 11), we do not see big differences 

due to the three parameters. Then we turn to examine the Kappa values. It appears that the model is not very 

sensitive to changes in the three parameters settlement radius, farm radius, and land radius (Table 6) given the 

magnitudes of Kappa index among baseline results (the right column in Table 6). When the threshold increases 

from 50 to 600, the differences in Kappa between a certain GGM-escape test and the baseline tend to increase 

as well. 
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Figure 11: GGM habitat occupancy under each of the 27 experiments. Here Household area, farm area, and 

managed forest area stand for radii centering on settlement, farm, and land. 
 
 
Results of land-decision test 

 
From the dynamics of the number of GTGP parcels and that of non-GTGP parcels, we can see that the converging 

trend still exists (Figure 12). Note that we sweep the three parameters min cropland (Mu), probability multiplier 

1, and probability multiplier 2 at values specified in Table 3 of the main text. 
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Figure 12: Trend of GTGP and non-GTGP parcels under the three land-decision parameter values. 
 
 

Below we show the differences in Kappa due to changes in the three parameters of min cropland (mu), proba- 

bility multiplier  1, and probability  multiplier  2 (Table 7). Comparisons between two Kappa values at the same 

threshold show that changes in the three parameters give small-to-moderate changes in habitat occupancy. 

 
Threshold count  (TC) for  # of 

steps  a cell is used by GGMs: 

above this TC the cell is counted 

as occupied 

Kappa Average for other 26 com- 

bos vs. baseline (400m-300 m- 

200 m)∗ 

Kappa Average at baseline (400 
m-300 m-200 m) scenario∗∗ 

50 0.9226 0.9181 

100 0.9259 0.9265 

200 0.8930 0.9006 

400 0.7705 0.7837 

600 0.6104 0.6348 
 

 
Table 7: Kappa results for the land-decision test. Notes: ∗ Similar to that in Table 6 except that there are 27 

combos here; ∗∗ Same as that in Table 6. 
 

 
 

Appendix C: Kappa analysis results for population scenarios 
 

Here we present the Kappa analysis results showing the occupancy differences between different birth plan 

(fertility rate) scenarios (Table 8). As the average Kappa among baseline simulation results is around 0.63 (Table 

6), it seems that changing birth plan to a higher or lower value does affect habitat occupancy in the long run. 
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Threshold count  (TC) for  # of 

steps  a cell is used by GGMs: 

above this TC the cell is counted 

as occupied 

Scenario 4 (1.5 BP∗) vs. Baseline 

(2.5 BP) (30 Run Comparisons) 

Scenario 5 (3.5 TFR) vs. Baseline 

(2.5 BP) (30 Run Comparisons∗∗ 

50 0.9193  0.9189 

100 0.9309 0.9300 

200 0.8872 0.8931 

400 0.7706 0.7785 

600 0.5882 0.5754 
 

 
Table 8: Kappa differences as a function of birth plan. Notes:  ∗ BP = Birth plan, which is total fertility rate (av- 
erage # of children born by each human female who reaches childbearing age); see Table 6 for calculation of 
Kappa; ∗∗ Because there exist stochastic processes in the model, we run another 30 runs under the same pa- 
rameter setting (BP = 2.5) to show Kappa differences between scenarios and between threshold counts. See 
Table 6 for calculation of Kappa. 

 

 
 

Notes 
 
 

1 According to an online survey, the numbers of articles and authors reporting the development or use of 

ABMs have risen steadily in an exponential rate since the mid-1990s, covering a wide range of disciplines (An 

et al. 2020) 

2 In 2018 FNNR has been approved to a World Natural Heritage Site, and its territory will likely be expanded 

(Shi, personal communication). 

3 Such groups consist  of males  aged 10-25 that have migrated out from original groups. 

4 The lower bound could be 1300 m (Bleisch et al. 2008) 570 m in extreme situations (Niu et al. 2010). 

5 This and other two radii are based on personal communications with expert in GGM behavior, Mr. Yeqin 

Yang (February 28 - March  1, 2019). They are parameters subject to changes. See Sections 2.28-2.39 for our 

sensitivity test following An et al. (2005). 

6 There is a small chance that two people within the two villages may marry, thus not bringing in a person 

from outside. As the probability is very small according to An et al. (2005), we overlook this to simplify the 

model. 

7 If a return migrant comes back, then s/he is not considered as migrant. I want the total number of people 

who are outside of FNNR and considered as migrants at each month (aggregate to 6-time steps). 
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