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Abstract: This editorial paper reviews the state of the science about agent-based modeling (ABM), pointing out 

the strengths and weaknesses of ABM. This paper also highlights several impending tasks that warrant special 

attention in order to improve the science and application of ABM: Modeling human decisions, ABM transparency 

and reusability, validation of ABM, ABM software  and big data ABM, and ABM theories. Six innovative  papers 

that are included in the special issue are summarized, and their connections to the ABM impending tasks are 

brought to attention. The authors hope that this special issue will help prioritize specific resources and activities 

in relation to ABM advances, leading to coordinated, joint efforts and initiatives to advance the science and 

technology behind ABM. 
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Introduction 
 

1.1   The use of agent-based models (ABMs)1 has increased rapidly among various scientific communities over the 

last two decades. According to an online survey, the number of articles reporting the development or use of 

ABMs has been steadily increasing in an exponential rate since the mid-1990s, ranging across such research 

fields as ecology, epidemiology, human-environment  science, land systems science, sociology, and political 

science (An et al. 2017). 

1.2  This increasing interest in and use of ABMs is rooted in a set of challenges humans face: Virtually all major 

current challenges of humankind involve complex systems, such as economies, political and social-ecological 

systems or financial markets, comprised of autonomous, decision-making agents, including animals, people, 

families, parties, or companies.  Due to their complexity, researchers cannot handle these systems in a con- 

trolled way common to science. We need models that understand the internal organization  and processes of 

these systems sufficiently to address, for example, sudden regime shifts and collapse. Statistical and math- 

ematical models cannot fully capture many key features of complex systems: agents, including non-human 

organisms and social groups, among others, are different in that they interact not globally but locally or within 

complex networks, and they adapt their behavior to the current state of themselves and their spatially and 

temporally varying environment. Agent-based modeling  (ABM) can capture  these aspects and has therefore 

become a widely used tool. 
 
 

ABM Concept 
 

2.1    Agent-based modeling (ABM), or individual based modeling (IBM, named so largely by ecologists), is rooted on 

the fundamental philosophy of methodological individualism, which focuses on the uniqueness of individuals 

http://jasss.soc.surrey.ac.uk/23/1/13.html
mailto:lan@mail.sdsu.edu
http://jasss.soc.surrey.ac.uk/23/1/13.html


Doi: 10.18564/jasss.4012 JASSS, 23(1) 13, 2020 http://jasss.soc.surrey.ac.uk/23/1/13.html  

and interactions among them or between them and the associated environment(s).  Technologically, agent- 

based modeling has emerged and prospered with the advent of increasingly available computing power and 

data and, a decade or so later, with the advent of object oriented programming and specific software packages 

for ABMs (Askenazi et al. 1996). 

2.2   ABMs have intellectual origin from, and substantially contribute to, complexity science. Complexity science 

aims to understand complex systems, which often include heterogeneous subsystems, autonomous entities, 

nonlinear relationships, and multiple interactions among them (Arthur 1999; Axelrod et al. 2001; Crawford et al. 

2005; Levin et al. 2013). ABM’s basic paradigm of representing the entities and subsystems as agents (often at 

various, often hierarchical levels) and employing flexible rules to mimic many complex relationships and inter- 

actions — just satisfies the needs of understanding complex systems. Such systems feature path-dependence, 

self-organization, difficulty of prediction, and emergence that cannot be inferred from system components and 

their attributes alone (Bankes 2002a; Manson 2001). Hence it is suggested that the ABM approach be employed 

to understand, harness, and improve (rather than fully control) the system’s structure and function, taking in- 

novative actions to steer the system in beneficial directions (Axelrod et al. 2001). 

2.3   ABMs have witnessed increasing adoption when studying social systems, ecological systems, and social-ecological 

systems (Eliassen et al. 2016, 2009; Giske et al. 2014; Grimm et al. 2006).  A range of empirical studies also show 

that many social-ecological systems manifest complexity features: heterogeneity, reciprocal effects and feed- 

back loops, nonlinearity and thresholds, surprising outcomes (observable as a result of human-nature cou- 

plings), legacy effects and time lags, and resilience (An et al. 2017; Egli et al. 2019; Grimm & Railsback 2005; Liu 

et al. 2007; Zvoleff & An 2014). 

2.4   ABM is capable of addressing these complexity-related challenges because of its intrinsic capacity to incorpo- 

rate individual-level (e.g., heterogeneous subsystems, autonomous entities) information, to allow for multiple 

nonlinear relationships and interactions such as feedbacks, learning, and adaptation, to account for spatially 

and temporally variable information, and to integrate cross-scale and cross-discipline data and methods (An 

et al. 2005; National  Research Council 2014). Another key value of ABM is the ability to represent human behav- 

ior more realistically by accounting for bounded rationality, heterogeneity, agent-agent and agent-environment 

interactions, evolutionary learning and adaptation, among others (An 2012; Filatova et al. 2013; Groeneveld et al. 

2017; National Research Council 2014; Parker et al. 2003). 

2.5   Since the NAS Sackler Colloquium addressing the topic in 2001 (Bankes 2002a,b), agent-based modeling has 

made major advances in many areas, including the establishment of platforms supporting user-friendliness, 

diversity, usability,  and available open-source resources (e.g., https://www.comses.net/). Because the ABM 

methodology explores dynamic paths, ABMs are especially  useful when the processes under investigation in- 

volve abrupt changes, crises, and critical transitions related to social interactions and adaptive behavior, an- 

swering many “what-if” questions that shed light into the system’s paths or trajectories under given conditions. 

Therefore, according to National Academy of Science, ABMs are useful at the intervention design stage because 

they provide a means for projecting possible effects of policies or decisions ex ante (National Research Council 

2014). 
 

 
ABM Challenge 

 

 
3.1    Agent based models  were greeted with enthusiasm initially (Bankes 2002a; Huston et al. 1988), but this re- 

sponse faded quickly: “Scientists sometimes tend to rush to a new approach that promises to solve previously 

intractable problems, and then revert to familiar techniques as the unanticipated difficulties of the new ap- 

proach are uncovered” (Grimm et al. 2005, p. xi). Critiques of ABMs asked for the identification of outcomes that 

differ from or are better than other types of models and for validation of ABMs. Interestingly,  such responses 

are not always asked of other, non-ABM model types. A number  of difficulties (many of them are common to 

any type of modeling, not necessarily unique to ABM), in turn, may account for, at least partially account for, 

some hesitance, misuse, misunderstanding, or doubt about  ABM (Couclelis 2002; Roughgarden 2012). 

3.2   A number of challenges regarding ABM still warrant in-depth exploration and research, however, including dif- 

ficulties in communication of ABMs due to lack of common standards or protocols (with a few exceptions, e.g., 

Grimm et al. 2006, 2010), model verification and validation, and telling signal from noise in model structure 

and output (Grimm & Berger 2016). ABM challenges also entail making model design and analysis coherent and 

efficient instead of ad hoc, and identifying general principles underlying the systems’ internal organization, 

steep learning curves for non-modeling experts (novices in particular), difficulty to scale ABM models or find- 

ings from one level to another, high sensitivity to detail (the other side of the problem is ABM’s data hunger) as 
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well as stochastic elements, alternative decision models, and representation of spatial structure (e.g., An 2012; 

An et al. 2005; O’Sullivan et al. 2016; Parker et al. 2003). Equally important, ABMs are largely developed either on 

a PC (for exceptions see Tang et al. 2011; Tang  & Bennett 2010a) or on an ad hoc basis with substantial variation 

in platforms, programming languages, model details and sophistication, and the modeler’s preferences. These 

variations reduce ABM’s capacity  to facilitate high performance computing and handle big data (especially spa- 

tially and potentially temporally explicit data). According to the feedback we received from an NSF-sponsored 

conference (An et al. 2018), the following challenges are of particular attention. 

1. Modeling  human decisions, especially  decisions regarding  their interaction with the environment. There 

is increasing evidence that this topic is of prime interest. For instance, one review paper about model- 

ing human  decisions  using ABMs (An 2012) has become  highly  cited in the past 7 years (547 citations as 

of December 28, 2019) according  to Google Scholar. A more recent publication (Groeneveld et al. 2017) 

shows that most models of land use/land cover change use simple utility functions to represent decision 

making and that, while sometimes more sophisticated representations are used, in none of the 134 re- 

viewed article alternative decision models were compared. However, such comparisons are needed to 

select and develop the most flexible and predictive decision models (“pattern-oriented theory develop- 

ment”, Railsback & Grimm 2019; see also the framework for systematic comparison and development of 

human decision models suggested by Schlüter et al. 2017). 
 

2. ABM transparency  and reusability. These issues have been mentioned as one of the bottleneck prob- 

lems for the ABM community (An et al. 2014; National  Research Council 2014; Parker et al. 2003), even 

though important work suggests advances (e.g., the COMSES node  at www.comses.net). Without ade- 

quate transparency and reusability, it is not only difficult to verify and validate ABMs, but also wastes a 

large amount of resources, such as modules and programming libraries that have been developed and 

tested by ABM experts. When ABMs are largely not reusable, non-transparent, and difficult to be vali- 

dated, it is challenging, if not impossible, to compare  ABMs from different sites or applications and to 

generalize commonalities out of locale-specific details. As a result, the usefulness of ABM in hypothe- 

sis testing and theory formulation is reduced (An et al. 2014; Rindfuss et al. 2008). Correspondingly, it is 

sometimes problematic to convince people what insights may come uniquely from ABMs instead of tra- 

ditional equation-based models, such as various types of regression models.  Currently, the ODD protocol 

(Grimm et al. 2006, 2010; Polhill 2010; Polhill et al. 2008)2 is the most widely used standard format for 

describing ABMs, which  is also designed  to facilitate replication; it has already contributed to integrating 

research from different disciplines using ABMs (Vincenot 2018). Likewise, the benefits of starting a mod- 

elling project from the replication of existing models, rather than starting from scratch, are increasingly 

acknowledged (Thiele & Grimm 2015; Hauke et al. 2020). 
 

3. Validation of ABM. This has been a problem besetting ABM modelers and users for many years (An et al. 

2005; National Research Council 2014; Parker et al. 2003), and many doubts arise from this difficulty 

(Couclelis 2002; Roughgarden 2012). Without robust model validation, the reliability of ABM cannot be 

established, limiting its usefulness and application in various contexts. Pattern-oriented modelling has 

been suggested as a strategy that allows us to compare model output to multiple, instead of a single, 

patterns, observed a different scales and levels of organization. Each pattern is used to reject unreal- 

istic process representations or parameter combinations (Grimm & Railsback 2005; Railsback & Grimm 

2019). By this multi-criteria design and testing, the structural realism of ABMs is increased  and trust in the 

model’s validity is also increased. 
 

4. ABM Software  and Big data ABM. This emphatic topic comes from the increasing availability of big data, 

such as high resolution remote sensing imagery and large detailed, human socioeconomic datasets (Wang 

et al. 2013). Currently ABMs are largely based on relatively small or local scales, limiting the usefulness 

of ABM in large (spatial extent) and high-resolution contexts. A small  set of exceptions, however, exists in 

parallel computing, (Tang & Bennett 2010b,a; Tang et al. 2011). 
 

5. ABM theories.  We need testable, generative theories to understand how complex systems patterns and 

dynamics may emerge. Intuitively, buffer and recovery mechanisms based on diversity, heterogeneity, 

and adaptation are key to sustained functioning of systems, but it is challenging to quantify and under- 

stand their interaction  (Egli et al. 2019). 

 
3.3   A key to the further advancement of the theory of agent-based complex systems is a systematic development of 

theories of human behavior. It is critical to distinguish between imposed behaviors, which are based on empiri- 

cal and thus not transferable rules, and emergent behaviors, which emerge from first principles underlying each 
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agent’s decision making in response to changing conditions. While in ecology such first principles, such as fit- 

ness seeking and energy budgets, are increasingly used, corresponding principles still need to be identified for 

human behavior. A promising avenue for future research in this field is acknowledging the context-dependency 

of human behavior. In panic reaction, humans can be represented as “Brownian  agents”, i.e. like physical par- 

ticles, in other situations simple utility functions may be suitable, while in “hedonic modelling”, emotions such 

as fear are the central concept (Eliassen et al. 2016). Only if we are getting better in capturing the emergence 

and context dependency of human behavior will we be able to better understand and predict the dynamics of 

agent-based complex systems and develop theories for these systems. 
 
 

This Special Issue 
 

4.1    The aforementioned challenges regarding ABM may lead to inadequate or inappropriate ABM uses, constraining 

the advancement of the science in question if not addressed with high priority in ABM research.  This special 

issue features three standalone, yet interrelated goals:  (1) defining complex systems as agent-based systems, 

the object of a new, much-needed generic systems theory; (2) summarizing the generic features of such systems 

and the key questions about them; and (3) providing case studies where these features are relevant and these 

questions are addressed using agent-based modeling. 

4.2   Ligmann-Zielinska et al. (2020) offer a comprehensive overview of sensitivity analysis, providing a roadmap 

for ABM modelers or users to choose the most appropriate methods when performing sensitivity analysis. The 

methods for sensitivity analysis may vary, depending on whether the goal is to identify a proof of concept, to 

produce predictive outcomes (or to increase decision-making capacity), or to conduct exploratory modeling 

and gain insight into the effects of complexity features on a complex system of interest. Despite increasing use 

of ABM in many disciplines, broader adoption is hindered by a set of methodological and conceptual challenges. 

This context explains well the impetus of Manson et al. (2020) to explore methodological issues of spatial ABMs 

(SABM): space and time representation, scale and space, predictive or explanatory use of ABM, balance between 

model simplicity and complexity, qualitative modeling and collaboration, and the role of ABM in advancing the- 

ory or generative science. Manson et al. also provide a summary of common platforms that facilitate SABM de- 

velopment. On the other hand, An et al. (2020) provide an empirical study of employing ABM to integrate data 

and models from various domains (bearing different spatial and temporal scales by nature) in an agent-based 

complex system. With simulation of human and monkey activities, An et al. performed ABM-based experiments 

to examine the social and ecological impacts of a conservation policy, showing a surprising outcome that can- 

not be explained by common statistical or equation-based models. Another empirically calibrated ABM by Tang 

& Yang (2020) seeks to identify space-time locations of land developments at critical thresholds of water quality 

in eight North Carolina counties. In this model, land developers interact with land owners and decide where 

and how to develop land parcels, producing complex landscape patterns that drive spatiotemporal patterns 

of water quality over space. The work by Hauke et al. (2020) shows that replicated simulation models can be 

used to develop theory. In a context where most agent-based models have not been replicated, it is often dif- 

ficult to identify sources of information or insights in ABMs (e.g., from ad hoc assumptions or parameters or 

from theoretical insights). Applying the ODD (Overview,  Design concepts, and Details) protocol and DOE (de- 

sign of experiments) principles, the authors were able to develop experiments and generalize some theoretical 

insights built in a previous ABM, showing a promising use of ABM in generative science. The model by Dou et al. 

(2020) represents a new type of ABM — a systems simulation tool that quantifies the causes and effects of local 

land-use changes on distant locations using hierarchical modelling structure and the telecoupling framework. 

The model shows that potential subsidies from Brazilian government to local soybean farmers could reshape 

land uses in China through international soybean markets. 

4.3   This special issue addresses ABM problems and challenges at a time in which the use of ABMs is exploding. It 

assembles seven exceptional teams (including modelers, users, and domain experts) to disentangle the ABM 

challenges and advance the ABM science. This special issue also aims to identify a set of impending tasks in sev- 

eral topical subareas, such as model testing and validation through sensitivity analysis (Ligmann-Zielinska et al. 

2020) or replicability test (Hauke et al. 2020), ABM-enabled theory development (Manson et al. 2020; Hauke 

et al. 2020), modeling human decisions (An et al. 2020; Dou et al. 2020; Tang & Yang 2020),  and ABM trans- 

parency and reusability (Hauke et al. 2020). We hope this endeavor will help prioritize specific resources and 

activities in relation to ABM advances, leading to coordinated, joint efforts and initiatives to advance the science 

and technology behind ABM. It is our sincere hope that all papers in this special issue help outline a clearer pic- 

ture of ABM, including  strengths, weaknesses, available resources, and future directions. The ABM science will 

advance more steadily when more users, developers, and commercial companies are engaged, allocating more 

resources to the science, technology, and application of ABM, enhancing ABM software and capabilities. 
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Notes 

 
 

1 We use the acronym  ABM for agent-based modeling and ABMs for agent-based models throughout this 

editorial article. The term multi-agent systems (MAS) is also used to refer to agent-based models (Parker et al. 

2003), but often rather refers to software agents explored in Artificial Intelligence research. 

2 A new version of ODD, which comes with extensive guidance for how to write an ODD model  description 

and how to use it in different contexts, is under review (Grimm et al. 2020). The only change to the protocol 

itself is that the first element “1 Purpose” is now “1 Purpose and patterns”. This implies that the patterns are 

supposed to be listed now, which will be used to claim that the model is realistic enough for its purpose. Of 

course, the type and number of patterns used depends strongly on the model’s purpose (Edmonds et al. 2019). 
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