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Abstract: Agent based modeling (ABM) is a standard tool that is useful across many disciplines. Despite widespread 

and mounting interest in ABM, even broader adoption has been hindered by a set of methodological challenges 

that run from issues around basic tools to the need for a more complete conceptual foundation for the ap- 

proach. After several decades of progress, ABMs remain difficult to develop and use for many students, schol- ars, 

and policy makers. This difficulty holds especially true for models designed to represent spatial patterns and 

processes across a broad range of human, natural, and human-environment systems. In this paper, we de- scribe 

the methodological challenges facing further development and use of spatial ABM (SABM) and suggest some 

potential solutions from multiple disciplines. We first define SABM to narrow our object of inquiry, and then 

explore how spatiality is a source of both advantages and challenges. We examine how time interacts with space in 

models and delve into issues of model development in general and modeling frameworks and tools specifically. 

We draw on lessons and insights from fields with a history of ABM contributions,  including eco- nomics, ecology, 

geography, ecology, anthropology, and spatial science with the goal of identifying promising ways forward for 

this powerful means of modeling. 
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Introduction 
 

 
1.1   Agent based modeling  (ABM) became  a commonly known, if not broadly used, method in the 1990s and is now 

widely accepted as a standard modeling approach across many disciplines. Despite significant interest in the 

ABM approach, broader adoption is hindered by a set of methodological and conceptual challenges. After sev- 

eral decades of development,  ABMs still remain difficult to design and use for many scholars, students, and 

policy makers, and can present challenges to standard inference frameworks that hinder their interpretation 

and understanding. These difficulties apply in particular to models that represent complicated spatial patterns 

and processes across a broad range of human, natural, and human-environment systems. Spatial ABMs are 

http://jasss.soc.surrey.ac.uk/23/1/3.html
mailto:manson@umn.edu
http://jasss.soc.surrey.ac.uk/23/1/3.html


Doi: 10.18564/jasss.4174 JASSS, 23(1) 3, 2020 http://jasss.soc.surrey.ac.uk/23/1/3.html  

those where space is an explicit component in the model, and geographical proximity effects form part of model 

behavior, and will be the focus of this examination. 

1.2  This paper originated in a session on the methodological issues of spatial ABMs at a workshop sponsored by 

United States National Science Foundation (NSF) on the state of the art in agent-based modeling (An et al. 2017). 

Spatial agent based models (SABM) have long been of interest to many different disciplines and it comes as lit- 

tle surprise that different fields have different modeling standards, foci, and practices. As such, there is much 

to gain from fostering communication and sharing knowledge among disciplines. Some research areas, such 

as land-change, ecology, and political opinion dynamics, have seen a relatively greater degree of communica- 

tion given their shared concepts and problems, but even then, the vast majority of this ABM research occurs 

within specific disciplines (Lorscheid et al. 2019). We offer a framework for exploring a range of methodolog- 

ical challenges tied to engagements by fields invested in SABM, including anthropology, ecology, economics, 

geography, and the spatial sciences in general. 
 
 

Framework for exploring methodological challenges 
 
1.3  This paper identifies and structures key methodological challenges in the development and use of spatial ABMs 

and offers potential solutions from many disciplines. There has been interest in defining these challenges for 

nearly as long as spatial agent-based modeling has existed. Workshop participants — before,  during,  and af- 

ter the event  — discussed obstacles and identified key papers, milestones achieved, and issues tackled by a 

range of scholars and research fields, and have identified the challenges to spatial ABM. Spatiality may be con- 

sidered in explicit terms but it is also often implicit to the context of a given problem domain like ecology or 

biogeography, or social systems including land use, voting systems, or disease propagation. 

1.4   It is illuminating, and somewhat humbling, to consider how persistent most of the methodological challenges 

remain. Table 1 summarizes these challenges elucidated by papers that workshop participants identified as 

especially helpful overviews of agent based modeling with a spatial focus (or that speak to spatial problems) 

published over a period of twenty years (1997 to 2017). Interestingly, most challenges are evergreen in the sense 

that they are considered as pressing today as they were two decades ago. Some topics are conceptual in that 

they explore the epistemology of modeling, the role of ABM in generative science, or questions about whether 

or how these models can advance theory. The majority of the issues raised are methodological in some way 

and span from programming and operationalizing models through to conducting calibration, verification, and 

validation; all the way to sharing and documenting models and their results. Many of these challenges are 

shared by modeling in general but all take on additional dimensions when considering the role of space and 

place in particular. Of course, any focus on methodological issues necessarily bears on conceptual topics given 

that theory and method are scientifically entwined. This relationship may hold unusually so for ABM given its 

primary role in generative science and process exploration in many areas of academic inquiry (Epstein 1999). 
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Paper Author(s) Challenges 

1 Axelrod (1997) Programming and operationalizing models 

  Model verification via internal validity 

  Analyzing and sharing complex results 

  Model replication Building a modeling community and interdisci- 

  plinarity 

2 Parker et al. (2003) Abstraction versus realism Building an experimental frame in space 

  and time 

  Understanding complexity and complex results 

  Representing decisions and behavior 

  Empirical parameterization and model validation 

  Communication of results 

  Model replication and documentation 

3 Crooks et al. (2008) Model purpose (e.g., description vs. prediction) and whether ABM is 

  best choice 

  Extent model is based in, or can advance, theory 

  Replication with complicated and subtly varying models 

  Verification, calibration and validation 

  Choosing appropriate agent representation with respect to aggre- 

  gation and dynamics 

  Making models more easily operationalized 

  Model communication  and sharing 

4 Crooks & Heppenstall (2012) Verification, validation, and calibration 

  Communication and visualization 

  Degree of model abstraction vs. nature of the system being modeled 

  Need to conduct multiple runs and explore parameter space 

  Path dependence and complexity 

5 Filatova et al. (2013) Model design and parameterization 

  Verification, validation and sensitivity analysis 

  Integrating models across domains 

  Spatial representation 

6 O’Sullivan et al. (2016) Balancing empirically rich models with simpler theory 

  Model evaluation for parameters and structure 

  Difficulty of hybrid modeling 

  Communicating model processes and outcome to stakeholders 

7 Schulze et al. (2017) Model purpose and definition 

  Ad hoc design versus being based on generic principles  or theory 

  Representation of agent decision making and behavior 

  Model documentation and reproducibility 

  Testing and calibration 

  Theory development and testable new predictions 

8 Wallentin (2017) Theory construction/contribution and generalization 

  Need to balance emergence with structure in complex systems 

  Yet another agent based model syndrome 

  Model validation Model communication 

 
Table 1: Twenty years of considering the challenges of spatial agent based modeling 

 
 
1.5  Instead of creating a new list that is largely replicative of those existing — as profoundly valuable as these lists are 

and continue to be — we instead developed a framework of cross-cutting themes for considering key method- 

ological challenges for spatial ABM identified by the overviews noted above and by many other studies of more 

specific issues. In addition to adding a new perspective on methodological challenges, this framework gets 

at the premise that methodological issues are often implicated in various ways by a variety of themes. These 

cross-cutting themes include: model definitions; issues of space and scale; capturing time and process; model 
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development; and modeling frameworks and tools. Table 2 describes these areas and offers key examples and 

citations that identify specific challenges from the papers noted above (in square brackets) and one or two other 

key papers. These and many other works are referenced throughout the paper. 

 
Challenge Key examples and issues 

Definitions Defining agents in a way that captures complexity [3] (Couclelis 2001) 

Abstraction versus realism, including avoiding too simple or too complex agents [2, 6] 

(O’Sullivan et al. 2012) 

Choosing appropriate agent representation with respect to aggregation and dynamics 

[3], making models fully agent based (Tesfatsion 2017), and the limits of simplicity (Clarke 

2004) 

Representing decisions and behavior [2, 3, 7], including basic features (Gilbert 2008), spa- 

tiality (Filatova 2015), and networks (Morgan & Daigneault  2015) YAAWN (“Yet Another 

ABM”) syndrome [8] (O’Sullivan et al. 2016) 
 

Space                           Basic notions of space in models  (Manson  & O’Sullivan 2006), conceptual space versus 

applied model concepts (Dainton 2001), and degrees of spatiality (Stanilov 2012) 

Spatial representation and modeling (Birch et al. 2007), including modeling discrete or 

continuous space (O’Sullivan & Perry 2013), data models including raster, vector, and ob- 

ject (Hammam et al. 2007), and networks (Andris 2016) 

Context specific models (Crooks et al. 2008) 

Scale, pattern, and process (Turner et al. 1989) 

Identifying the role of space in reality vs. model (Wallentin 2017), especially as related to 

data vs. theory (Railsback & Grimm 2011) 

Representation (Ajelli et al. 2010) and scale impacts on modeling (Shook & Wang  2015) 
 

Time Building an experimental frame in space and time [2] and choosing spatial representa- 

tion [5] including between equal-time and event-based (O’Sullivan & Perry 2013) and syn- 

chronous or asynchronous updating (Ruxton 1996) 

Path dependence, emergence, and complexity  [1, 4, 8] including interaction effects and 

heterogeneity (Couclelis 2001) 

Generative science (Millington et al. 2012) and its relationship to standardized models 

with standard concepts of prediction and change over time (Stillman et al. 2015) 

Spatiotemporal modeling needs (Jjumba & Dragicevic 2016; O’Sullivan 2005) including 

impacts of representation on model function (Peuquet & Duan 1995) 

Data types related to aggregation and spatiality (An et al. 2015) and challenges of big data 

and dynamics (Clarke 2003; Parry & Bithell 2012) 

Motion over space (Torrens 2010) and what it means for pattern vs. process (O’Sullivan 

et al. 2006) 
 

Model development      Identifying how ABM contribute to theory [3], especially in terms avoiding ad hoc design 

at the cost of generic principles or theory or creating testable predictions [7, 8] (Axelrod 

et al. 2002; Gilbert & Troitzsch 2005) 

Model purpose in terms of pragmatic and paradigmatic models [3] (DeAngelis & Grimm 

2014), especially as tied to model design and parameterization [5], and parsimony, sim- 

plicity, and complexity (Batty & Torrens 2005) 

Validation, verification, and calibration [1 - 8], including the needs for multiple runs [1, 4], 

challenges of evaluation for complex models (Grimm et al. 2005; Manson 2007), and need 

to include mixed approaches (Koch et al. 2019) and a range of data (Robinson et al. 2007) 

Replication experimentation and generative science [1, 2, 3, 7] (Batty 2008) and linking 

models for conceptual  advances  (Van Nes & Scheffer 2005) as well as linking multiple 

data models to ABM (Grignard et al. 2013) 

Analyzing, sharing, and communicating complex results [1 - 8] (Grimm et al. 2010; Polhill 

et al. 2008) 
 

Modeling frameworks Programming and operationalizing models [1], including making models more easily op- 

erationalized [3], and dealing with programming from scratch (Crooks et al. 2008) 

Complexity of choosing among existing systems (Tobias & Hofmann 2004) and modeling 

packages (Kravari & Bassiliades 2015) 
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Challenge Key examples and issues 
 

Dealing with large numbers of agents (Crooks et al. 2008) and the potential (Clarke 2003) 

and challenges of high-performance computing (Shook et al. 2013) Challenges of hybrid 

modeling [6]; (Parker et al. 2003) including building out functionality found in other 

models (Thiele & Grimm 2010) 

Difficulties  of linking spatial tools to ABM (Crooks & Castle 2012) or building spatial func- 

tionality  into ABM (Grignard et al. 2013; Klugl et al. 2006) 

Building a modeling community and interdisciplinarity [1] and integrating models across 

domains [5] including social and natural sciences (O’Sullivan & Manson 2015) 

 
Table 2: Framework to guide examination of methodological issues 

in spatial ABMs with representative citations. Papers from Table 1 de- 

noted by numerals in square brackets 
 
 
 

1.6   We build on this framework by examining these methodological issues in spatial ABMs in the remainder of the 

paper. We first define what we mean by spatial  ABM to narrow our object of inquiry and describe how spatiality 

is the source of both benefits and challenges, including drawing on lessons from economics on defining spatial 

agents. We then examine the various challenges  of including space within ABMs, including the various ways of 

understanding and representing space, and look to geography and its concepts of scale for insight in dealing 

with spatiality. We then turn to the temporal aspects that complicate space in ABM, particularly  the challenges 

of integrating space and time, and examine the lessons that experience with ABMs in ecology holds for stan- 

dardizing dynamics and behaviors. We then look at model development in general and examine ways in which 

collaboration with anthropologists has advanced this development. We also consider modeling frameworks 

and tools, with a specific focus on how spatial science is expanding the SABM toolkit. 
 

 
Defining Spatial ABMs 

 

 
2.1    What is a spatial ABM? We start by exploring the terms agent, environment, and spatial to specifically address the 

methodological issues connected to spatiality in ABMs in contrast to ABMs or spatial models in general. ABMs 

have developed in a manner that has led to different definitions of the term agent. Most descriptions rely on 

listing a set of agent characteristics. Drogoul & Ferber (1994) describe an agent in a model as a virtual entity with 

nine different features, ranging from the capability to communicate, interact, and reproduce, to possession of 

skills and resources. Wooldridge  & Jennings (1995) list autonomy, social ability, reactivity, and proactivity as 

critical features of an agent. Gilbert (2008) defines agents in simulation models as: 

. . . either separate computer programs or, more commonly, distinct parts of a program that are 

used to represent social actors — individual  people, organizations  such as firms, or bodies such 

as nation-states. They are programmed to react to the computational environment in which they 

are located, where this environment is a model of the real environment in which the social actors 

operate. (p. 5) 

 
2.2   Parker et al. (2003) described agents as autonomous entities that share an environment through communica- 

tion and interaction with other agents and decision-making as the processes that tie agents to other agents and 

their environment. Importantly, the characteristics common to these definitions are the autonomy of agents 

and the ability to interact with other agents and the environment, so we take these characteristics as the bare 

minimum. 

2.3   Many definitions show the importance of the environment as a component of ABMs. Gilbert (2008) terms the 

environment a virtual world in which the agents act. This description poses few restrictions on what qualifies 

as an environment  in ABM. The environment  in these models can be a network of agents described by different 

features with agents being the nodes in a network and their relationship being represented in the form of links 

between nodes Riolo et al. (2001). Environments can also be social spaces or networks through which innova- 

tion and knowledge spread, such as when social networks help spread agricultural innovations that manifest 

as land-cover change (Gilbert et al. 2001). 
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2.4   ABMs often represent the environment as spatial, including models without a geographic representation of 

space but possessing agents with coordinate locations. In spatial ABMs, the level of detail of the representa- 

tion of the geographic environment as well as the level of detail of the agent-environment interaction can vary 

considerably (Stanilov 2012). Agents often have x and y coordinates, although other representations exist, such 

as topologically-defined agents that exist in graphs that map onto an environment with spatial characteristics, 

such as networks of farmers in a simplified agricultural landscape. In many spatial models, the environment is 

digitally encoded as a grid on which the agent behavior plays out, where the grid cells and their neighbors can 

have values that influence behavior. 

2.5   Traditionally, the focus of SABMs has been on the implementation of agents and social processes, and less on 

detailed descriptions of the geographic environment (Brown et al. 2005a). The degree to which space is made 

explicit in SABM has significant impacts on model performance (Ajelli et al. 2010) and the extent to which the 

model is accurate and realistic and therefore useful (Barnaud et al. 2013). 

 
• SABM may use implicit or non-geographic notions of space. An ABM of vehicles and transportation flows, 

for example, or farmers within a trust network, may focus primarily on the network dynamics that are only 

partially or topologically tied to space. Transportation flows have spatial elements, such as the physical 

distance between origin and destination pairs that only partially bear on travel time, cost, or mode. Simi- 

larly, trust relationships among farmers have a spatial element, as seen in the way neighboring actors are 

more likely to trade information or ideas, but these are joined by other kinds of network relationships, 

such as kinship or group affiliation, that may outweigh these spatial aspects (Manson et al. 2016; Morgan 

& Daigneault 2015). 
 

• Space may be explicitly represented but abstract in how it maps onto reality, such as Tobler’s early work 

on cellular geographies (1979) and models of segregation (Hegselmann 2017; Sakoda 1971; Schelling 1971). 

The foundational Sugarscape Model used a two-dimensional grid and mobile agents with x/y coordinates 

(Epstein & Axtell 1996). More spatially realistic examples include analyses of the coastal land market (Fi- 

latova 2015), studies of farmer decisions on land change (Valbuena et al. 2010), or a SABM that models 

urbanization patterns (Koch et al. 2019). 
 

• Explicit and realistic  spatial ABMs may boast one-to-one relationships between agents and a range of en- 

vironmental features (Stanilov 2012). The ENVISION framework (Bolte et al. 2007) offers models including 

process representations for urban expansion, vegetation growth, changes in climate, as well as the emer- 

gence of wildfires (Spies et al. 2017). More realistic and explicit representations of space abound (Filatova 

2015; Wallentin 2017). 

 
2.6   There has been a trend toward increasing spatial and temporal explicitness and realism in ABMs as many mod- 

elers seek to move from system explanation to future state forecasting. While this trend toward realism may 

improve the empirical  validity  and usefulness  of ABM in some contexts, there is a risk that the model may not 

generalize well to other geographies or require a considerable amount of reparameterization.  Scale dependent 

factors play a significant role in mediating spatiotemporal processes (Shook & Wang 2015), an issue we discuss 

in more detail below. 
 
 

Lessons from economics: Defining spatial agents 
 

2.7   Agent-based Computational Economics (ACE) is a variant of agent-based modeling that focuses specifically on 

the computational modeling of economic processes (including whole economies) as open-ended dynamic sys- 

tems of interacting agents (Tesfatsion 2018). Tesfatsion (2017) presented and motivated seven ACE modeling 

principles that distinguish ACE from other types of modeling. An ACE agent is defined as any software entity ca- 

pable of acting over time on the basis of its own state (data, attributes, and methods). Thus, agents are locally 

constructed and can represent a broad range of entities, from individuals to groupings in the social, biological, 

and physical domains. The state of the system as a whole at any given time is then determined by the ensemble 

of agent states, interaction among agents, and interaction between agents and their environment. Finally, the 

role of the ACE modeler is limited to the setting of the initial agent states and to the observation, analysis, and 

reporting of model outcomes. 

2.8   Taken together, the seven ACE modeling principles express the fundamental goal of many agent-based model- 

ers: namely, to be able to study real-world systems as historical processes unfolding through time. In addition, 

however, they also require ACE models to be fully agent based; i.e., all entities capable of acting (passively or 

consciously) within an ACE computationally-constructed world are to be modeled as some form of agent. 
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Figure 1: Wiring diagram of an agent-based computational economics (ACE) model of a watershed (derived from 

Tesfatsion 2017. 
 

 
2.9   With regard to spatial modeling, ACE differs from other modeling approaches in that all entities defining a spa- 

tial environment are modeled as agents along with the decision-making entities that populate this environ- 

ment. This approach has two key advantages. First, it enhances conceptual transparency by forcing modelers 

to be careful about the empirical credibility of their modeled cause-effect linkages, since all factors affecting 

world events (including spatial factors) must be clearly identified as an agent or agent component. Second, it 

facilitates plug-and-play model scalability. 

2.10   For example, the ACE watershed basin model developed by Tesfatsion (2017) includes a broad hierarchy of 

environmental, institutional, and decision-making agents. These include a Basin agent that encompasses an 

upstream Farmland agent and a downstream City agent as members (Figure 1). In turn, the Farmland agent 

has decision-making Farmer agent members and the City agent has a Levee agent and a decision-making City 

Manager agent as members.  A Market agent has distinct instantiations into input and output markets for corn 

production. A Climate agent generates weather patterns (hourly rainfall amounts) for the basin during each 

simulated year. Finally, a Hydrology agent generates river water-flow outcomes for the basin that depend on 

Basin, Market, and Climate outcomes. ACE allows a rich and detailed expression of multiple human and en- 

vironmental factors while piecing them together in a way that captures a range of dynamics that occur over 

different spatial and temporal scales. 
 
 

Space 
 

3.1    Spatial  ABMs are a representationally flexible simulation framework able to incorporate a diversity of theoreti- 

cal assumptions about space, time, and scale. While this flexibility is beneficial, it may also impact conceptual 

completeness and computational efficiency (O’Sullivan et al. 2012). Appropriate representations of space and 

time depend on the specific modeling question, degree of realism sought, and, whether the model formulation 

is derived from theory or more from empirical data (Couclelis 2001; Railsback & Grimm 2011). Spatial represen- 

tation in models hinges on how agents relate to space and each other as well as on the choice of data model 

used to implement space in both agents and environment. 

3.2   Two common complementary approaches exist for representing how agents perceive and interact with space 

(Manson & O’Sullivan 2006). The first, absolute space, focuses on how local characteristics influence the decision- 

making of agents (e.g., Ricardian view) and derives heavily from Newtonian space, where space possesses spe- 

cific properties. In contrast, relative space is the idea that the relationships among objects define spatial re- 

lationships (e.g., bid-rent Alonso or Von Thünen circles) and derives from the broader notion of relationality 

proposed by Leibniz (Massey 2005). Under this framework, space is represented as relationships among ob- 

jects; there is no pre-existing container that hosts objects (Dainton 2001). 

3.3   SABMs typically start with absolute space. Objects may move or change attributes, and events may occur 

or come into being, but all the while the underlying spatial context or container remains unchanged. Most 

ABMs represent space as absolute by using coordinate systems that create a reference into which agents can be 

mapped. This approach has a long tradition within the social and natural sciences and has been used to under- 

stand diverse phenomena ranging from urban expansion and agricultural land-use change to tropical ecology 

and animal migration (Wallentin 2017). 

http://jasss.soc.surrey.ac.uk/23/1/3.html


Doi: 10.18564/jasss.4174 JASSS, 23(1) 3, 2020 http://jasss.soc.surrey.ac.uk/23/1/3.html 

3.4   Relative and hybrid views of space in SABM continue to advance with contributions from many disciplines. Early  

 

examples included models of human capital accumulation that examine the interplay between local spillover 

and global market participation (Bala & Sorger  2001). Alexander et al. (2013) modeled perennial energy crop 

diffusion and market creation in the United Kingdom using both notions of space. In this model, farmer agents 

calculate their distance to market in order to determine costs, and also utilize local land characteristics to deter- 

mine production decisions. Network space captures elements of absolute and relative space by treating agents 

as nodes that are assigned a coordinate pair and a set of relationships to other agents and the environment. 

Network characteristics have been shown to dramatically impact diverse phenomena across a range of social 

systems and need to be further incorporated into spatial ABM (Agrawal et al. 2013). 

3.5   Beyond addressing issues of absolute versus relative space, one of the primary challenges for modelers is whether 

to treat space as discrete or continuous (O’Sullivan & Perry 2013). Discrete space often relies on a regular tessel- 

lation of squares or more complex shapes such as hexagons. Alternatively, continuous space can be represented 

using vector data objects including points, lines, and polygons. Even more complicated, discrete entities like 

agents or land parcels may be best represented with vector data (e.g., points for agents, polygons for areas) 

while smoothly varying surfaces, such as precipitation gradients or elevation, are often best represented with 

tessellations. Another variant is where agents may take on any vector form, although this possibility remains 

underexplored (Hammam et al. 2007). 

3.6   The selection of discrete or continuous space representations is made more real by the choice of data model. 

The raster data model is common in ABM, where space is gridded into equal-sized cells, and each cell is ho- 

mogeneous holds one or several key variables. Over time, each cell may change status or attributes according 

to rules, and accordingly, grids represent the changing status of the cells and their neighbors over time. This 

data model has been criticized for lack of efficiency — particularly in how the same grids are stored over time 

and how square grids can introduce geometric artifacts — yet it remains popular given its conceptual simplic- 

ity, ease of comprehension and interpretation, and ready availability of mathematical and computational tools 

that work with matrices and Geographic Information Systems (Birch et al. 2007). 

3.7   The vector (and by extension, object) data model is gaining ground in ABM. A point is a single location in space 

defined by a coordinate pair. At many scales of analysis, points serve as appropriate (if necessarily unrealistic) 

representations of agents. We say unrealistic given how nuanced an complex real agents can be; as Hagerstrand 

(1982) put it for representing a person with a space-time path, we are tasked with trying to capture “a living body, 

endowed with memories, feelings, knowledge, imagination and goals — in other words capabilities too rich for 

any conceivable kind of symbolic representation" (p. 324). Yet, scholars forge ahead, even when they know 

their models incomplete. When agents move, interact with one another or act upon their spatial environment, 

vectors can accordingly change their attributes or geometry. SABMs are increasingly embracing vector models 

for both agents and environment because raster models are simple, but they impose computational overhead 

in mapping individual grid cells onto complex areas that constitute regions, such as modeling land parcels. The 

vector data model also dovetails with the object-oriented programming paradigm commonly used in languages 

that implement ABM, in that points, lines, or polygons can be represented as discrete software objects that 

represent real-world entities. 

3.8   The network data model is also gaining prominence in ABM. Networks consist of links or edges and nodes that 

form a graph. Networks can be of interest for the mechanisms driving link formation or for the overall topo- 

logical and metric characteristics of the graph. Network properties and agent behaviors can be mediated by 

absolute or relative spatial parameters, or according to social variables such as homophily mechanisms (where 

similar entities are more likely to be connected) or institutions that define relationships (for an overview see An 

2012). Distance in network space is a function of the number of network edges separating individuals, and small 

network distances can cross vast spatial distances. Network ties can also vary qualitatively and quantitatively 

in ways that realistically map onto myriad real-world relationships (Manson et al. 2016), including among social 

media. Yet another variant is where actions of agents cause the structure of the space represented as a network 

to change (O’Sullivan 2009). 

3.9   Broader issues exist beyond the challenges posed by choosing among, or reconciling, competing notions of 

space (absolute, relative) or spatial representations (raster, vector/object, network). Regardless of conceptu- 

alization or data representation, there is an ongoing need to more clearly define the role that distance plays 

on agent decision making, especially since it can be measured in so many ways, including Euclidian distance, 

cost, perceptual distance, travel time, and network distance (Illenberger et al. 2013). Further work needs to be 

done to make tools easier to use for representing both network and geographic space, particularly in the realm 

of spatial statistics (Andris 2016). Large bodies of work exist on spatiality and spatial networks but have been 

generated largely by computer scientists and physicists (Barthélemy 2011). Social science would benefit from 
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these conceptualization and methods, while researchers outside of social science could learn more of the do-  

 

main knowledge found in social science (O’Sullivan & Manson 2015). Finally, it is incumbent upon the modeler 

to engage with larger debates around space that lie beyond the scope of spatial ABM and this paper, such as 

being aware of how differing notions of space can influence how people speak about their lived experiences or 

understanding of space, and extensions including potential loss of indigenous space, for example or fixing on 

simple notions of how spaces are used as opposed to contested views (Fox et al. 2006). 
 
 

Lessons from geography: Scale and space 
 
3.10   Scale concepts improve our understanding of space and place. Many fields recognize scale, but for geography 

it is a primary organizing concept. While a range of epistemological orientations exist around scale (Manson 

2008), it is often used to define the basic terms of the modeled system in regard to spatial resolution, or grain, 

and the extent of data. More broadly, it encompasses temporal, spatial, and organizational scales of a host of 

human, natural, and human-environmental systems. Thinking on scale continues to change and evolve given 

how complicated it is as a concept (Herod 2010; Phillips 2012). 

3.11    Beyond resolution and extent, there are two main approaches to thinking about scale in spatial ABM (Evans & 

Kelley 2004). The first form of scale typically used in ABM is hierarchical, where different scales are understood 

as nested hierarchies. In this conception of scale, analysis can be done at the scale of the body, the urban 

neighborhood, the regional, the national, or the global, and over days, months, years, decades or centuries. 

Importantly, phenomena at local space-time extents can produce phenomena at greater extents. In ABM work 

that draws on the complexity sciences or uses concepts from complex systems, higher scale phenomena are 

often seen emerging non-linearly from more detailed-scale agents and interactions among agents or between 

agents and the environment (Manson et al. 2012). 

3.12   The second approach to scale is to see it as horizontal, flat, or networked; where scale is understood as a func- 

tion of network connectivity properties. Models of spatial networks and socio-spatial networks have seen ma- 

jor advances due to an influx of highly detailed data. Location-based services, environmental sensor networks, 

geo-enabled social media, among other geospatial technologies, have produced a deluge of data for scientists 

(Shelton et al. 2015). Network scales are of relevance across a variety of spatial ABM applications ranging from 

the diffusion of agricultural innovations (Evans et al. 2011) and from international teleconnections driving land- 

use change (Munroe et al. 2014) to disease transmission in epidemiology (Riley 2007). 

3.13  The ability to represent interactions across scales is often theoretically required and practically necessary in 

spatial ABM. An et al. (2005) presented an ABM where institutions are represented explicitly and are able to 

dynamically interact with individual agents. This and other studies exemplify the importance of scale variance, 

whereby a common phenomenon, namely the interactions of human agents, is represented as two separate 

human phenomena, namely individual decision-making and larger scale social and institutional actions. While 

this type of scale variance is a strength of spatial ABM, Tesfatsion (2002) argues that in representing humans, 

individual human agents should retain their agency, and not be forced to act in a way that is determined without 

reflecting their own individual agent states, rules, and goals. 

3.14  In many disciplines, there is a belief that a phenomenon can be studied at an optimal spatial scale, whereby the 

resolution of inquiry is fit to real-world phenomena. Within discrete representations of space, the critical choice 

is to relate the grain of the cell to the phenomenon being studied in order to capture the relevant processes. 

Shook  & Wang (2015) demonstrated how the choice of spatial and temporal resolution in an epidemiological 

SABM dramatically  affects the modeled dynamics of disease spread in space and time. Evans & Kelley (2004) 

provided a similar application in land-change science, showing that spatial resolution affects agent land-use 

decision making. These and other SABMs illustrate that serious consideration of scale effects is essential to 

many modeling domains. 
 

 
Time 

 
4.1    Much of the interest in SABMs stems from their ability to model system dynamics. Despite this interest, there 

are many methodological challenges and opportunities in representing time in these models. Key decisions 

revolve around how to conceive of time and how to represent it in the model, while others involve how the 

model is updated in response to the actions of agents and changes in their environment. The nature of the data 

being used also matters, in that there tend to be several kinds of temporal data and each bears on a range of 

modeling choices. The advent of big data has only made these choices more demanding. 
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4.2   Most ABMs rely on one of two approaches to modeling time: equal-time and event-based (O’Sullivan & Perry  

 

2013). The equal-time approach maps each model iteration to a common interval of time change (e.g., day, 

month, or year) and time steps are of equal duration, with agent actions happening (or at least being recorded) 

synchronously. In contrast, event-based simulations calculate the time elapsed from a previous event to a sub- 

sequent event in a queue of events or actions. Equal-time approaches are often preferred for their conceptual 

simplicity, because all modeling processes operate or are measured at the same pace. However, they may re- 

quire more computation to simulate the same duration compared to event-based approaches and modelers 

must carefully select the time step that they need to capture changes, processes, actions, and decisions across 

multiple scales (Shook & Wang 2015). Event-based time offers the advantage of simulating longer durations with 

fewer computational costs because agents are only considered at points of change. Similarly, the model does 

not need to consider long periods of time without changes. This can present a major benefit if there are highly 

variable levels of activity through time in the simulation and it is also efficient in terms of memory and stor- 

age (Peuquet & Duan 1995). However, event-based models can have difficulty capturing continuous processes 

where the meaning of an event or action is hard to define. 

4.3   Model update is either synchronous or asynchronous in determining how agents, other objects, and their re- 

spective actions and attributes change over time. Synchronous updates are those that happen simultaneously, 

whereas asynchronous updates happen one at a time. O’Sullivan & Perry (2013) organized updating strategies 

into three categories. The first is complete synchrony, which is both realistic and computationally challenging 

as it requires the modeler to make many decisions about how to represent a process. For example, if two agents 

in a synchronous simulation reach a resource at the same time, the modeler needs to model how agents break 

such ties. Computationally, a copy of the original model or grid is made to reflect the model behavior, and at the 

time increment this copy replaces the original. The second strategy, random asynchronous updates, requires 

agents to update their states and act on the world at every time step in a random order. Without randomization, 

geometric biases can appear, such as when a grid is always scanned for agents top to bottom and left to right. 

This randomness is often used when more principled or empirically based approaches to ordering agent actions 

do not exist. The third strategy, ordered asynchronous updates, is preferable when the exact order of events can 

be determined from theory or empirical observation. For example, rule changes or new environmental factors 

can be introduced at specific times. 

4.4   Most spatial ABMs update time asynchronously using a single thread, though new parallel applications for syn- 

chronous updating are in development (Shook et al. 2013). While a seemingly small decision, updating routines 

can have substantial impacts on model outcomes (Ruxton 1996). Updating routines can also have a large impact 

on computational performance. When models that require synchronization contain many agents, then syn- 

chronous updates can force the model to break many ties for "popular" shared resources (e.g., agents compet- 

ing for space while moving in a congested area). Tie breaking procedures require additional computation and 

result in longer simulation times. On the other hand, in uncongested areas synchronous updates can improve 

performance, because updates can happen simultaneously (i.e., in parallel) rather than forcing each agent to 

be updated in sequence. 

4.5   The nature of the model’s data often determines whether an ABM emphasizes  event-based or equal-time ap- 

proaches.  Most data tend to fall into two categories, tracking data and spatial panel data (An et al. 2015), which 

differ in aggregation and spatiality. At the level of an individual, tracking data measure attribute changes of ob- 

jects, such as agent events or transactions in specific locations at specific times. Spatial panel data include ob- 

servations at the level of collections (areas) or cross-sectional data, and measure attributes or events of agents 

or other objects for spatial units or groups of agents. Individual object data may lend itself more to event-based 

time than cross-sectional units in the sense that their actions are more readily and explicitly calibrated from 

individual-level data. 

4.6   Big data — often explicitly temporal — offer both potential and pitfalls to the treatment of time in ABMs, and 

especially SABMs. The overarching challenge for most modelers is whether they can extract useful knowledge 

(agent rules, system dynamics) from their data. From this one larger challenge flow three specific ones. First, 

most modeling tools and frameworks are rarely designed to handle massive amounts of data. This technical 

disconnect makes it difficult to explore the intersection between ABMs and big data. Overcoming this challenge 

will require the development of new ABM frameworks that scale to the size and scope of massive datasets, or 

that employ high performance computing (Clarke 2003; Parry & Bithell 2012). Second, there remains a sig- 

nificant disconnection among different forms of big data that need be connected, explored, and managed in 

developing new flavors of ABMs. The hope is that these data, once connected, will better support libraries of 

behaviors and spatial dynamics, as well as offer more robust model calibration and validation (e.g., providing 

better confidence levels from actual data). All these features could both heighten the appeal to policymakers 

and begin to align ABMs with other forms of modeling, such as regional economic models, climate models, or 
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those of disasters (Torrens 2014). Third, research is needed to explore where big data can be an asset rather than  

 

a hindrance in model design, development, deployment, and usage for decision making. It is unclear whether 

ABM simulation data should be validated using big data, whether big data should be used to inform the creation 

of parameters and rules that govern models, or whether there exist myriad other possible intersections between 

these two emerging approaches. More broadly, even if knowledge extraction can be automated through ma- 

chine learning techniques, will there always need to be a human element in interpretation? The answer is very 

likely ‘yes’ given the importance of human interpretation and domain knowledge for preserving the ability to 

explain and understand system dynamics. Big data for SABMs remains a vibrant and open research area for 

further exploration, but as explored next, big data are not always a panacea. 
 
 

Lessons from ecology: Standardized dynamics and behaviors? 
 

4.7   There have been a growing number of calls for domain-specific standard sub-models in fields including land- 

use and land-cover modeling, urban systems, and ecology (Stillman et al. 2015). Other fields, such as land-cover 

dynamics and forestry, for example, have developed, with some success, generic models that are designed 

to capture general processes like stream flow, reforestation or evapotranspiration that can be tailored to spe- 

cific settings. Of course, the fundamental roadblock to developing generic models is possessing a sufficiently 

accurate and robust understanding of the system in question. Grimm (1999) describes the tension between 

pragmatic and paradigmatic reasons for ABM, where the former implies a focus on finding the most adequate 

method to model a system while the latter, paradigmatic motivation, is concerned with rearticulating concep- 

tual paradigms. 

4.8   While modelers often cry out for more data, availability of large data sets is rarely the main problem in building 

and using ecological ABMs. More important and difficult is the paradigmatic drive to develop an understanding 

of agent behavior. Ecological ABMs almost always need information on organism behavior and physiology that 

determine how individual fitness depends on behavior. This kind of information is often not available, yet too 

often, producing it is not seen as innovative or fundable science. Consequently, a key challenge for biological 

and ecological ABMs is to find the funding and motivation to produce the basic knowledge of organisms neces- 

sary to build ABMs. For example, much of the existing theory for agent behavior, or behavioral ecology, is not 

useful for ABMs because this theory does not address feedbacks. Existing theory works for one agent in a world 

that is not affected by the behavior of other agents, not in a world of interacting  agents, and ABM projects get 

stuck on the problem of how to model decisions where tradeoffs and feedbacks are important. Big data can be 

used to elucidate some of these feedbacks, but these data can rarely replace theory that drives behavior. 

4.9   Stillman et al. (2015) argue that ecology is on the cusp of developing a robust and readily modeled understand- 

ing of adaptive behavior, energetics, and interactions. Having these concepts in hand could make it possible 

to develop repertoires of spatial agent behaviors (e.g., movement and selecting spaces more generally, mental 

maps) as well as spatial dynamics (e.g., agent-agent, agent-environment). Eventually this would allow us to 

develop more expressive languages for designing and implementing spatially explicit agent models. ABMs of 

animal movements are a case in point, where empirical findings and subsequent conceptual frameworks (e.g., 

size of animal matters) lead to regularities that can drive modeling (Tang & Bennett 2010). 

4.10   Of course, while ecologists look for standardized rules and dynamics, it is not clear whether these would apply 

to human systems, although we believe these rules would be a step in the right direction. Modelers are devel- 

oping better and more nuanced treatments of how spatial perception is differentiated among agents. These ap- 

proaches offer consideration of subjective agent experience of space and open up avenues to incorporate more 

and ‘thick’ representations of agent systems, or those that provide observations with nuanced and subjective 

experiences of the participants. Millington et al. (2012) used sequentially recorded individual states to create 

narratives that unpack the individual-level dynamics driving bird colony breeding synchrony. Also promising 

are recent advances combining cognition, machine learning, and spatial ontologies — ontologies for represent- 

ing spatial concepts — as a way of identifying agent behaviors (Couclelis 2010). This work illustrates the role 

that subjective individual perspectives and contingent events play in driving temporal dynamics as well as a 

promising avenue to exploit big data in advancing ABMs, and SABMs in particular. 
 

 
Spatial Model Development 

 

 
5.1    The SABM development process should ideally encapsulate essential research processes, including hypothesis 

formulation, model design, parameter choice, behavioral and interaction rules, and validation. What follows 
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are some observations specific to the methodological challenges for spatial ABM development. For broader 

takes on model development, see Gilbert & Troitzsch (2005); Railsback & Grimm (2011); O’Sullivan & Perry (2013); 

Wilensky & Rand (2015). In particular, modelers face basic questions about whether an ABM makes sense for a 

given problem as well navigating the balance between predictive or explanatory modeling, model design and 

construction, and simplicity and complexity. 

5.2   The first and too-often ignored step in model development is simply to determine whether ABM is the most 

suitable approach. The increasing availability of ABM software platforms  such as NetLogo, Repast, MASON and 

an abundance of data has led to an upsurge of SABM applications that could be better executed through other 

approaches. Determining whether ABM is the most appropriate technique for simulating a system requires a 

critical assessment of whether the advantages offered by ABM outweigh the difficulties associated with model 

development. O’Sullivan et al. (2012) described the ideal characteristics of a system suited to ABM, including 

heterogeneity of the decision-makers and context of agents; importance of interaction effects among agents 

and their environment; and being medium-sized in terms of numbers of components, threading the needle 

between being too large and complicated for mathematical tractability and too small for statistical averaging 

(a perspective closely tied to early thinking about complexity science, see Weaver 1968. 

5.3   An important challenge in developing ABM is deciding whether the model is predictive or explanatory. Predic- 

tive models aim to simulate a system with a degree of realism so that the results — often those at an aggre- 

gate level — can be used empirically. A predictive  ABM of a socio-spatial phenomenon (such as crime, traffic, 

or protests) may include a realistic representation of the underlying environment that allows the models to 

make predictions about the future state of the real-world directly. Explanatory modeling, in contrast, is typi- 

cally concerned with refining the theoretical explanations of a phenomenon (Macy & Willer  2002). While ABM 

can certainly aim to develop predictive capacity, they can also have the goal to increase our understanding of 

fundamental processes that may appear in a variety of applications (Axelrod 1997). 

5.4   Another important challenge lies in determining the balance between model design and model construction 

(Wilensky & Rand 2015).  Modelers  are generally encouraged to comprehensively plan the characteristics and 

behaviors of agents, the environment, and all possible interactions. However, there is often pressure or a desire 

to implement the model, which means that design and implementation in most models coevolve (Crooks et al. 

2008). The ABM community has developed innovative means of developing and describing models, including 

those with spatial elements such as Pattern-Oriented Modeling (Grimm et al. 2005) and standardized ways to 

design and document models, such as the Overview, Design concepts, and Details (ODD) protocol (Grimm et al. 

2010) and extensions such as ODD+D for describing human decision-making (Müller et al. 2013). There is also 

much promise in the idea of using established and existing modules and submodules to develop building block 

models (O’Sullivan & Perry 2013). There is also interest in the modelers’ notebook paradigm, which proposes 

more traceability in model development and could conceivably be implemented via version control systems or 

other metadata and process-tracking workflows (Grimm et al. 2014). 

5.5   Another challenge in SABM is striking a balance between simplicity and complexity. Most modelers agree that 

the level of model complexity needs to be justified by the complexity of the target system, but opinions as to 

how to reach the ‘appropriate’ level of complexity are polarized. The ‘Keep It Simple, Stupid’ (KISS) argument 

posits that models should be as simple as possible initially, with additional complexity added only if the model 

is unable to appropriately represent the system in its simplest form. Conversely, the ‘Keep It Descriptive, Stupid’ 

(KIDS) approach (Moss & Edmonds 2005) starts with a model that reflects the evidence and knowledge about 

the target system, however complex it makes the model, and then iteratively removes features that appear to 

be unnecessary. 
 
 

Lessons from anthropology: Qualitative modeling and collaboration 
 
5.6   Cultural anthropologists bring skills and concepts to the development and implementation of SABMs, espe- 

cially models that emphasize the relationship between human decision-making and the environment. These 

scholars employ qualitative research methods including ethnographic fieldwork, interviews, and focus groups 

to better understand how humans make decisions. These methods offer flexibility and open-endedness that 

allows for deeper understanding of topics that were unanticipated by the researchers. As the ABM approach 

is not inherently quantitative (Yang & Gilbert 2008), collaboration with cultural anthropologists lends itself to 

inform the development and parameterization of SABMs. 

5.7   The advantages of qualitative methods are well understood in the field of integrated environmental modeling, 

which has many parallels to the research often accomplished with SABM. Model development and parameteri- 

zation often relies heavily on stakeholder participation, especially in the form of facilitated workshops (Voinov & 
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Bousquet 2010). These workshops can be helpful at the cost of being resource intensive (in the sense of requir- 

ing trained facilitators) and often overwhelming for participants given the amount of time and effort required. 

They also run the risk of introducing incomplete information and bias into modeling given how human behavior 

in groups under observation can be performative. 

5.8   In contrast, qualitative research methods such as ethnographic fieldwork and interviews are a useful way to 

collect information on the nature and spatial variation of interaction of humans with their living and non-living 

environment. In-depth and semi-structured interviews can provide additional understanding of the decision- 

making process and underlying motivations of the interviewee about issues such as interactions with other 

people or the environment. For example, anthropological field work was essential to developing SABM on social 

network and institutional relationships in the fire-prone landscapes of Central Oregon (Spies et al. 2017). This 

hands-on research is also vital to overcome potential biases in knowledge generation in spatial models as such; 

(Barnaud et al. 2013) note how spatial representation can impose arbitrary or unforeseen restrictions on how 

people view their interactions and attachments to space. Skilled qualitative research can winkle these issues 

out and deal with them. 

5.9   However, these collaborations are not without challenges. First, as with many interdisciplinary approaches, it 

takes much time and intentionality to develop the trust necessary for collaboration (Adams 2014). The second 

challenge stems from turning qualitative information into quantitative data; even with training and collabora- 

tion, qualitative research is painstaking when done well, and converting this knowledge into a model or valida- 

tion data is even more difficult and exacting. Third is the tension between specificity and generalization in how 

the interest of cultural anthropologists in exploring individuals and their specific decision-making approaches 

may be at odds with the goal of simplification and aggregation in model development. However, approaches 

exist that allow researchers to overcome these challenges, such as concept mapping by using qualitative data 

for the conceptual modeling stage, especially when model developers serve as facilitators (Gray et al. 2015; 

Kragt et al. 2013). More broadly, there is the promise of using ABM to develop narratives as an extension to the 

expectation of a bottom-up nature for these models (Perry & OâĂŹSullivan 2018). 
 

 
Modeling Frameworks 

 

 
6.1    Implementing an ABM is more involved than many other modeling approaches. This is partly due to the com- 

plexity of the underlying systems that ABMs attempt to simulate and in part because the modeling frameworks 

themselves are complicated. However, in the last decade a number of toolkits have emerged that substantially 

reduce the time and cost of implementation (Table 3; see also Abar et al. 2017; Clarke 2018; Crooks & Castle 2012; 

Crooks et al. 2018; Kravari & Bassiliades  2015). Most agent-based modeling toolkits share similar features but 

in general there is a trade-off between ease of use (particularly for new programmers) and power; for exam- 

ple, Repast Simphony includes a High Performance Computing extension (North et al. 2013) but this advanced 

feature can only be leveraged by using the C++ language. A key decision in implementing an ABM is examining 

how complex and computationally expensive the final model will be, and then deciding whether the additional 

difficulty in learning more advanced tools will outweigh attendant performance and flexibility advantages. 
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Swarm  MASON Repast NetLogo GAMA ENVISION 

Santa Fe Evolutionary University Centre  for UMMISCO, Oregon 
Institute  Compu- of Chicago, Connected France State  Uni- 

 

 
 

Developers 
 

/ SWARM 

Devel- 

opment 

Group 

tation 

Laboratory 

and Center 

for   Social 

Complex- 

ity, George 

Mason 

University 

Depart- 

ment    of 

Social 

Science 

Research 

Comput- 

ing and 

Argonne 

National 

Laboratory 

Learn- 

ing and 

Computer- 

Based 

Modeling, 

North- 

western 

University 

versity, 

Biologi- 

cal and 

Ecological 

Engineer- 

ing 

Date of inception  1996 2003 2000 1999 2007 2001 

Implementation lan- 

guage(s) 

Objective- 

C/Java 

Java  Java,  Mi- 

crosoft.Net 

Python, 

Groovy, 

ReLogo 

Scripting Proprietary 

scripting: 

GAMA 

Modeling 

Language 

C++ 

Required   program- 

ming experience 

Strong Strong Medium to 

Strong 

Basic Basic to 

Medium 

Strong 

Integrated GIS func- 

tionality 

Yes (e.g., 

Kenge GIS 

library 

for  Raster 

data) 

Yes Yes Yes Yes Yes 

Integrated charting / 

graphing / statistics 

Yes (e.g., R 

and S-plus 

statistical 

packages) 

Yes (e.g., 

wrap- 

pers for 

JFreeChart) 

Yes Yes Yes Yes 

Availability  of 

demonstration 

models 

Yes Yes Yes Yes Yes Yes 

 

 

Table 3: Open-source ABM toolkits for creating geographical explicit models (adapted and extended from Parker 

et al. 2003; Crooks et al. 2008; based on Crooks et al. 2018). See reference section for permanent links to archived 

web sites. 
 

 
6.2   As the agent-based research community grows, so too does the range of modeling frameworks and platforms 

(Kravari & Bassiliades 2015). Does this expansion of frameworks constrain the development of the field, or high- 

light a strong and vibrant research community? Answering this question involves examining the investment 

of resources in using and developing SABM frameworks when compared with the development of a range of 

more ‘bespoke’ models developed using object-oriented programming (OOP) languages and toolboxes such as 

Repast (North et al. 2013). NetLogo (Wilensky 1999) is widely used within the community in part because it is 

self-contained and assumes no prior programming knowledge and provides constructs that allow beginners to 

achieve a lot with very little code (O’Sullivan & Perry 2013; Railsback & Grimm 2011). NetLogo does not include an 

integrated development environment (IDE), however, which can make it hard to develop large or complicated 

models. This may lead the modeler to explore other frameworks that better meet their needs. 

6.3   More broadly, the modeler must consider the advantages and disadvantages of building a model using a con- 

ventional programming language versus using existing ABM platforms. The latter offers the advantage of avoid- 

ing the reimplementation of common elements such as graphics libraries, common algorithms, data input/output 

procedures, and analytical tools. Nonetheless, standard OOP languages such as Java, C++, Python, or Visual 

Basic form the majority  of ABM frameworks, and importantly, are also used to extend these frameworks. While 

eschewing  ABM frameworks offers the benefits of increased knowledge and confidence stemming from coding 

your own model, these frameworks will only grow in popularity given their lower demand for programming 

skills, greater reproducibility, and ability to leverage open-source improvements more generally. For example, 

RePast uses GeoTools, a Java GIS Toolkit that is compliant with the Open Geospatial Consortium (OGC) specifi- 
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cations (North et al. 2013), while MASON and NetLogo use libraries from the Java Topology Suite (Sullivan et al. 

2010). 

6.4   The range and diversity of ABM frameworks  in itself is not a problem and we will likely see new and revised 

approaches to developing ABMs. This process aligns with software development in a range of other areas, such 

as the development of new programming languages. We are also seeing a greater embrace of hybrid models, 

where ABMs are combined with regression, systems dynamics, automated calibration and validation metrics 

and other commonly used approaches (Parker et al. 2003; Wallentin 2017). For these reasons, we see the range 

and variation in ABM frameworks as a sign of a healthy research community, rather than an ongoing hindrance 

to the field, although the choice of modeling environment will always need to be well-informed and deliberate. 
 
 

Lessons from spatial science: Extending spatiality in modeling frameworks 
 

6.5   Integration of spatial science and agent-based modeling frameworks has and continues to be a significant chal- 

lenge for spatial ABMs (Schüle et al. 2004; Wallentin 2017). A broad range of standard Geographic Information 

System (GIS) features are unevenly implemented  in ABM. Paltry support for geographic representation and un- 

derlying analytics limits SABMs to simplified concepts of space (e.g., gridded cells) and basic spatial methods 

(e.g., distance-based thresholds) rather than richer spatial concepts (e.g., neighborhoods, safe spaces, spatial 

networks) and complex analytics (e.g., viewsheds and spatial clustering). Circumventing these limitations gen- 

erally relies on coupling models and platforms to enable a range of GIS analyses and functions, such as using 

spatial functions within a statistical package like R (Thiele & Grimm  2010) or engaging in sometimes cumber- 

some preprocessing and postprocessing of model data in stand-alone GIS platforms. Coupling GIS and ABMs to 

support complex spatial structures has been used to alleviate some of these challenges (Brown et al. 2005b). 

6.6   There are additional challenges beyond simply representing standard spaces. A GIS tends to have poor support 

for time and dynamics, which are central to SABMs, and this highlights the need for greater control over the 

representation and analysis of space and time directly within the ABM frameworks. Network modeling has long 

been part of SABM but still offers only moderate integration with existing social network analysis tools such as 

Pajek. Similarly, most SABMs are of two-dimensional spaces but interest is growing in three-dimensional (3D) 

systems (e.g., ocean environments, indoor spaces, ecology). For some modelers, the problem is less about the 

modeling as such and more about the challenges of model interpretation with 2-D visualizations. For others, 

there is a need to model continuously moving agents in 3-D space, including indoor spaces such as homes, 

cars, and institutions like schools or hospitals. As Wallentin (2017) notes, simulation modeling frameworks have 

come a long way toward implementing their own spatiality. 

6.7   A fully integrated modeling system/GIS would overcome many of these fundamental limitations. It would sup- 

port complex geographic information representations, analytical methods, and the modeling procedures of- 

fered by spatial science.  One ABM framework that integrates GIS strongly is GAMA or the GIS Agent-based Mod- 

eling Architecture (Grignard et al. 2013). GAMA is a development environment for building spatial agent-based 

simulations and has been used to develop ABMs that range from exploring coastal flood prevention (Becu et al. 

2008) and agricultural landscapes (Thierry et al. 2017), to urban accessibility (Fosset et al. 2016). The GIS capa- 

bilities of GAMA extend  to a range of useful geospatial operations, such as buffering, distances, metrics (such 

as Moran’s or Gini indexes), clustering, inverse distance weighting, network centrality, and coordinate transfor- 

mations. 

6.8   Finally, there is much potential for high performance computing (HPC) and parallel computing in SABM (Tang & 

Wang 2009). HPC promises to increase the spatial extent and resolution of ABM by overcoming the memory and 

computing limitations of the desktop environments that host most SABM (Wang 2010). Broadly, there are two 

ways to parallelize spatial ABM in HPC environments. The most straightforward is the ‘embarrassingly parallel’ 

approach of running spatial ABM independently across processors, such as when running the model multiple 

times for sensitivity analyses (Tang et al. 2011). The second is to decompose the SABM into sub-models that are 

executed in parallel, which allows for simultaneous, and realistic, updating of agents, but this approach is still a 

research challenge because it requires conceptualizing space-time interactions closely and carefully (e.g., when 

agents compete for a resource, multiple agents cannot consume the same resource). SABM present significant 

load-balancing problems, because parts of the model run at different speeds, yet the next time step requires all 

elements to be updated before the model can proceed to the succeeding time step. HPC will most likely become 

common for SABM only when SABM frameworks  are integrated into emerging spatial data science tools such as 

Jupyter notebooks (Shook et al. 2016; Yin et al. 2017). Achieving this form of spatial ABM-HPC platform requires 

ongoing research into spatiotemporal computation in general and ABM in particular (Shook et al. 2013), and 

perhaps even reworking of geographical information systems (Gahegan 2018). 
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Conclusion 
 

 
7.1    Agent-based models are a class of computational models for simulating the actions, behavior, and interactions 

of autonomous individual or collective entities, with the goal of exploring the impact of one agent or a behavior 

type on the system as a whole (Clarke 2018). Spatial ABMs add geographic space and spatial distribution to the 

agents themselves, and to the environments in which they function. SABMs have met with considerable success 

in the last decade or so, and are used in a variety of disciplines and contexts with positive results. 

7.2   The authors believe that the challenges and limitations of the method have received increased scrutiny in the 

growing literature on ABM, with some notable advancements in modeling, and in accommodating spatiality. 

Some of the generic issues facing SABM development relate to the inevitable choice between building standard 

models within common modeling systems (notably NetLogo and Repast) and building custom models within 

object-oriented programming languages. In either case, the modules and libraries that continue to improve 

have increased utility, and the amount of programming/scripting knowledge required of a potential modeler 

has fallen as common user interfaces and modular structures have emerged and become more sophisticated. 

From a technical point of view, there are now few obstacles to SABM as an alternative modeling paradigm when 

the circumstances dictate. 

7.3   Why haven’t some of these challenges been addressed? One thought that emerged from the workshop is that 

researchers have been focusing on data and trying on ABMs for their novelty (especially easy-to-build toy mod- 

els) and less focused on addressing methodological issues such as robust calibration and validation of these 

models.  Complex models create complex output and the ABM community still needs appropriate tools to ana- 

lyze these outputs (Ligmann-Zielinska & Sun 2010). There is also the sense that — as with many kinds of research 

— ABM development  is siloed, and disciplines really should talk more. While we all see promise in OpenABM 

and the broader move towards open and shared development, there is no central community or repository akin 

to what climate scientists or microbiologists have for depositing code and exchanging best practices. Finally, 

there is an ongoing need to show that ABMs are robust enough for use by policymakers. There is great potential 

for these models, but they are affected by the need for validation or dynamic data assimilation that can fuse 

streams of new data to create real time simulations (Ward et al. 2016). 

7.4   Clarke (2018) noted that ABM is suited for simulations where there is no prior precedent, no past data, or when 

system knowledge is absent. This makes ABM subject to the accuracy of the formalization of the agents and 

their programmed behaviors. Bithell et al. (2008) pointed out that a principal challenge of ABM is to find sets 

of rules that best represent the beliefs and desires of humans represented as agents, so that they reflect the 

cultural context, yet still allow system exploration. This is a challenge for ABMs of physical systems, but even 

more so for ecological, biological, and human systems, where many unmodeled factors contribute to behavior, 

and behavior itself is almost always non-deterministic. Some innovations in ABMs have included adding multi- 

agent interactions, adding learning (modified behavior based on past experience of model behavior) during 

model sequences, and allowing agents to negotiate, for example using voting rules. 

7.5   Parker et al. (2003) made a distinction among ABMs between ‘generative’ vs. ‘fitting’ (or fitted) models. The for- 

mer involves setting the environment, then custom designing agents and their behaviors to be credible within 

the environment. Fitted models use outside data to design the models, again with the environment fixed. As 

shown, the fitting can be statistical, through calibration, or by making careful, even qualitative, judgements 

about the agents and their rules by observing the real actors that the agents are intended to simulate. Both of 

these ABM model types are attractive, yet fail to examine the interactions among the agents and their environ- 

ment. A change among animal  species in a forest ultimately changes the forest, just as the conversion of forest 

and agricultural land to urban areas impacts natural and human systems. 

7.6   Yet it is at this human-environment interface where ABMs have seen some success. We note that models serve 

more functions than simply accurate forecasting — they are also important tools for learning and understanding 

the nature of systems and for exploring unobserved behaviors. Can a SABM demonstrate emergent features 

and behaviors that could not be discovered in other ways? Can SABMs be used to test and explore the limits of 

systems or their tipping points? It is the goal of exploration that holds most promise for ABMs next decade, as 

we enter a world profoundly changed by human action and a climate-balance seemingly irreversibly damaged. 

A major strength of ABM has been to serve as a conduit for interdisciplinary sciences engaging on issues facing 

humanity. It is our hope that spatial agent-based models can play a significant role for those seeking to learn 

more about, envision, and create better understanding of our changing world. 
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