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A Deliberate Bit Flipping Coding Scheme for
Data-Dependent Two-Dimensional Channels

Mohsen Bahrami

Abstract—1In this paper, we present a deliberate bit
flipping (DBF) coding scheme for binary two-dimensional
(2-D) channels, where specific patterns in channel inputs are the
significant cause of errors. The idea is to eliminate a constrained
encoder and, instead, embed a constraint into an error correction
codeword that is arranged into a 2-D array by deliberately
flipping the bits that violate the constraint. The DBF method
relies on the error correction capability of the code being used
so that it should be able to correct both deliberate errors
and channel errors. Therefore, it is crucial to flip minimum
number of bits in order not to overburden the error correction
decoder. We devise a constrained combinatorial formulation for
minimizing the number of flipped bits for a given set of harmful
patterns. The generalized belief propagation algorithm is used to
find an approximate solution for the problem. We evaluate the
performance gain of our proposed approach on a data-dependent
2-D channel, where 2-D isolated-bits patterns are the harmful
patterns for the channel. Furthermore, the performance of the
DBF method is compared with classical 2-D constrained coding
schemes for the 2-D no isolated-bits constraint on a memoryless
binary symmetric channel.

Index Terms—Data dependent channels, constrained coding,
probabilistic inference, graphical models, and generalized belief
propagation (GBP).

I. INTRODUCTION

ECENT advances in magnetic recording systems [3], [4],

optical recording devices [5] and flash memory drives [6]
necessitate to study two-dimensional (2-D) coding techniques
for reliable storage/retrieval of user data. Most channels in
such systems introduce errors in messages in response to cer-
tain data patterns, and messages containing these patterns are
more prone to errors than others. For example, in a single-level
cell flash memory channel, inter-cell interference (ICI) is
at its maximum when 101 patterns are programmed over
adjacent cells in either horizontal or vertical directions [7]-[9].
As another example, in two-dimensional magnetic recording
channels, 2-D isolated-bits patterns [10] are shown empirically

Manuscript received December 20, 2018; revised May 5, 2019,
September 4, 2019, and November 23, 2019; accepted November 25, 2019.
Date of publication December 2, 2019; date of current version February 14,
2020. This work is supported by the National Science Foundation (NSF)
under grants ECCS-15001170 and SaTC-1813401. This article was presented
in part at the IEEE GLOBECOM Conference 2016 [1] and in part at the
8th International Conference on Algebraic Informatics (CAI 2019) [2]. The
associate editor coordinating the review of this article and approving it for
publication was H. Saeedi. (Corresponding author: Mohsen Bahrami.)

The authors are with the Department of Electrical and Computer
Engineering, The University of Arizona, Tucson, AZ 85721 USA (e-mail:
bahrami@email.arizona.edu; vasic@ece.arizona.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2019.2957086

, Student Member, IEEE, and Bane Vasi¢

, Fellow, IEEE

to be the dominant error event, and during the read-back
process inter-symbol interference (ISI) and inter-track inter-
ference (ITI) arise when these patterns are recorded over
the magnetic medium. Shannon in his seminal work [11]
presented two techniques for reliable transmission of messages
over noisy channels, namely error correction coding and con-
strained coding. In the first method, messages are protected via
an error correction code (ECC) from random errors which are
independent of input data. The theory of ECCs is well studied,
and efficient code construction methods are developed for sim-
ple binary channels, additive white Gaussian noise (AWGN)
channels and partial response channels [12], etc. On the other
hand, constrained coding reduces the likelihood of corruption
by removing problematic patterns before transmission over
data-dependent channels. Prominent examples of constraints
include a family of binary one-dimensional (1-D) and 2-D
(d, k)-run-length-limited (RLL) constraints [13], [14] which
improves resilience to ISI timing recovery and synchroniza-
tion for bandwidth limited partial response channels, where
d and k represent the minimum and maximum number of
admissible zeros between two successive ones in any direction
of array. In principle, the ultimate coding approach for such
data-dependent channels is to design a set of sufficiently
distinct error correction codewords that also satisfy channel
constraints [15], [16]. Designing channel codewords satisfying
both ECC and channel constraints is important as it would
achieve the channel capacity [17]. However, in practice this is
difficult, and we rely on sub-optimal methods such as forward
concatenation method (standard concatenation) [18], reverse
concatenation method (modified concatenation) [19], [20], and
combinations of these approaches [21], [22].

As discussed earlier, constrained codes have been used
to overcome effects of harmful patterns in 1-D information
storage systems. In [23], a systematic approach for designing
1-D constrained codes known as the state splitting algorithm is
established. Marcus et al. used the results of the state splitting
algorithm to design an encoder in the form of a finite state
machine and a sliding window decoder with limited error
propagation [24]. The theory of 1-D constrained coding is
mature as well as practical aspects of 1-D code and decoder
design. However, for the 2-D case it remains a challenge to
design efficient, fixed-rate encoding and decoding algorithms
(due to difficulty of certain problems that link to 2-D con-
straints compared to to the 1-D case [25], [26]). A number
of variable-rate encoding methods have been proposed for
2-D constrained channels, including bit-stuffing encoders [10],
[27]-[29] and tiling based encoders [30], [31]. Furthermore,
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various row-by-row coding methods for specific 2-D con-
straints were presented in [32], [33]. Vasi¢ and Pedagani pro-
posed an alternative approach in [34], known as deliberate bit
Slipping (DBF), for applying binary 1-D (0, k)-RLL constraint
to error correction codewords (when k is large e.g., k = 15)
to overcome the non-linear effects of 1-D constrained codes.
Using a (0, k)-RLL constraint monitor, a deliberate bit error
is introduced into an error correction codeword whenever the
number of consecutive zeros in the codeword reaches k. The
method only relies on the capability of the ECC to correct
both the deliberate errors and channel errors at the receiver.
In [35]-[37], the problem of number of deliberate bit errors
for imposing (0, k)-RLL constraint into low-density parity-
check (LDPC) codewords was partially addressed. Neverthe-
less, there is no attempt to minimize the number of bit flips for
removing the forbidden configurations by the 1-D (0, k)-RLL
constraint from a given binary codeword. Moreover, the main
problem with the DBF method introduced in [34] still is the
number of deliberate bit errors that may overwhelm the ECC
decoder and affect the error-floor performance (which limits
its applications).

Our Contributions: One of the practical motivations
to design a DBF coding scheme for data-dependent chan-
nels is to address the error propagation phenomena existing
in conventional 2-D constrained coding methods. Most of
these constrained coding schemes are non-linear, and their
encoder/decoder has a memory such that over noisy channels
single channel bit errors may cause a decoder to lose track of
encoded bits and therefore propagate errors indefinitely with-
out recovering. On the other hand, the main problem with the
DBF method is the number of deliberate flips. This problem
becomes also much more difficult for the 2-D case, and it
is a challenge to design efficient algorithms for identifying
harmful configurations in channel input patterns, let alone
the problem of minimizing the number of bit flips which
may overwhelm the error-correction decoder. In this paper,
we reformulate the problem of minimizing the number of bit
flips in the DBF scheme for removing harmful configurations
from 2-D channel input patterns as a constrained combinatorial
optimization problem. Furthermore, we design a Generalized
Belief Propagation (GBP)-guided DBF algorithm for identi-
fying 2-D harmful configurations and removing them with
minimal number of flips. In order to use the GBP algorithm,
we present a probabilistic graphical model for the constrained
combinatorial minimization problem using the factor graph
formulation in [38], [39]. In this framework, patterns which
do not contain harmful configurations are assumed to be
uniformly distributed, and each pattern containing a harmful
configuration has zero probability. In this way, we reformulate
the problem as a 2-D maximum a posteriori (MAP) problem,
and demonstrate that the GBP algorithm can approximately
solve this 2-D MAP problem. In order to study and analyze
the performance of our proposed method, we introduce a
binary 2-D channel with memory which captures the effect
on an information bit from its surrounding patterns, i.e., the
neighboring bits. The channel is characterized by rules defined
by a set of configurations with a specific shape, which we
call the set of harmful configurations. At the channel output,

the probability of error for bits contained in any of the harmful
configurations are larger than for the other bits. We evaluate
the performance of the GBP-guided DBF method over the
introduced channel where the 2-D isolated-bits configura-
tions are considered as the channel harmful configurations.
Furthermore, the performance of the DBF method for 2-D
no isolated-bits (n.i.b.) constraint on a memoryless binary
symmetric channel (BSC) is compared with the row-by-row
and bit-stuffing based 2-D n.i.b. encoders, presented in [10]
and [40], respectively.

Paper Organization: The rest of this paper is organized
as follows. Section II presents the notations and definitions
used throughout the paper. In Section III, the data-dependent
channel model is introduced. In Section IV, the problem of
minimizing the number of flipped bits in the DBF method
is formulated. In Section V, we reformulate the minimization
problem as a 2-D MAP problem, and explain the ideas of using
the GBP algorithm for solving this problem. Numerical results
are presented in Section VI. Section VII concludes the paper.

II. NOTATIONS AND DEFINITIONS

We denote a discrete random variable with an upper case
letter (e.g., X) and its realization by the lower case letter
(e.g., ). We denote the probability density function of X
with p(z) and the conditional probability density function
of Y given X by p(y|x). [n1: k: na] represents the set of
real numbers {ni,n; + k,n1 +2k...,no}, and [n] denotes
[1:1:n]. We denote a random array of size m xn by
X = [Xijlicim),je[n)- An array of binary symbols with
size¢. m xn is denoted by x = [;jlicim) jen) Where
z;; €{0,1} is the (i,7)™ component of array. A, =
{(i,j) € Z* :i € [m] and j € [n]} denotes the index set of
an array of size m x n and is the subset of the 2-D lattice
Z2. The Hamming weight of an array x of binary symbols
is determined by wgy(x) = inﬁx 1{x;; = 1}, where
1{.} equals one (respectively, zero) when its argument is true
(respectively, false). The XOR operation between two binary
arrays (x and y of size m x n) is done component-wise,
ie., xPy = (Zi,j)ie[m €] where Zij = Xi5 D Yij and Tij
and y; ; are the (4,7)™ component of x and y, respectively.
Furthermore, the Hamming distance between x and y is
determined by dp (x,y) = wy (x@®y). A binary BCH code of
length N with N — K parity bits and minimum distance dp;,
is denoted by BCH-[N, K, din]. A binary Reed-Muller code
of length N = 2™ with N — K = 2™ — Y7 (") parity bits
and minimum distance dp, = 2™ " is denoted by RM-(r, m).

A polyomino of order k, called also a k-ominoe, is a plane
geometric figure formed by joining k neighboring square
shapes. Among polyominoes are 2 x 2 square-shaped poly-
ominoes

Qi 5) ={G.4),(i,j +1), i+ 1,5), i+ 1,j+ 1)}, (1)

and cross-shaped polyominoes

QJr(ivj) = {(ia.j_l)a (i_lvj)7 (ivj)7 (i7j+1)7 (i+1aj)}7
2

over the 2-D lattice Z2, which are shown in Fig. 1.
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Fig. 1. Two examples of polyominoes: (a) a 2 X 2 square and (b) a cross.
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Fig. 2. The set of all binary configurations of a 2 X 2 square-shaped
polyomino.
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Fig. 3. Figure demonstrates P; ; over a rectangle when the polyomino is:

(a) a 2 x 2 square and (b) a cross.

Anm x n binary pattern is denoted by X = [2; j]ic[m],je[n]»
where z;; indicates the value of bit in i-th row and j-th
column. Throughout the paper, white squares denote zero bits
and black squares represent 1. Consider a k-ominoe P and the
set of all 2¥ binary configurations of that shape X'». We refer
to them as to P-shaped configurations and denote them by
xp. As an example, Fig. 2 shows all binary configurations of
a 2 x 2 square-shaped polyomino.

Consider x; ; over an m X n rectangular pattern x, then the
union of all P-shaped polyominoes that intersect with this bit
is denoted by P; ;. The configuration of P; ; is denoted by
xp, ;. For the cases of 2 x 2 square-shaped and cross-shaped
polyominoes, we have

P = U Q"' 4, 3)
(#.4)€QP(i—1,j—1)
and
Ph=|J @i, )

(i",5)€Q+ (i,5)

respectively. Fig. 3 shows P; ; for these polyominoes.

III. CHANNEL MODEL

In this section, we introduce a communication channel
transmitting binary rectangular patterns and producing as an
output a binary pattern. The channel is data-dependent and
characterized by rules defined by a set of binary configurations
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Fig. 4. 2-D isolated-bits patterns containing the bit x; ;.

of a P-shaped polyomino. We call this set of P-shaped con-
figurations the set of harmful configurations. At the channel
output, the error probability of bits contained in configurations
which belong to the set of harmful configurations is larger than
the other bits. Therefore, the channel has states and its error
statistics depends on input binary patterns. In the following,
we formally present error and state characterizations.

The input and output alphabets X and ) are two sets
of binary rectangular patterns of size m xXn. An m xXn
binary pattern x = [xm]Le[m] je[n) is chosen randomly and
uniformly from & as an input to the channel. The channel
output, y = [ym]ie[m];je[n] € ), is also a binary pattern of
size m x n. For x;;, P;; denotes the union of P-shaped
polyominoes that intersect with this bit, and xp, ; is the
configuration of P; ;, as defined in Section II. We assume
that the set of all possible configurations for P; ;, denoted by
Xp, ., can be partitioned into two disjoint subsets Xg , and
XBJ_, ie., Xp, , = X5 UXBJ_, where XBJ_ is the set of
configurations contammg P-shaped conﬁguratlons which are
harmful for the channel. For example, Xp ~ can be the set of
binary configurations of P; ; given in Fig. 3(b) which contains
the 2-D isolated-bit patterns. The 2-D isolated-bit patterns are
shown in Fig. 4.

For w; ; contained in a harmful P-shaped configuration,
the channel is in the bad state, and the probability of error is
ay,. However, passing though the channel, a bit that does not
belong to a harmful configuration is in error with a probability
of oy, and the channel is in the good state. We assume that
ap > ay, or, in other words, the probability of error for bits
contained in a harmful configuration is much larger than that
of the other bits. The received binary pattern is y = x @
et where eH = [e SI;I] is the channel error array. Therefore,

" has either Bernoulli(cr,) or Bernoulli(cy,) distribution,
dependmg on the pattern xp, . In fact, the channel is a binary
symmetric channel (BSC) w1th crossover probability oy, when
Xp,; € XPB and a BSC with crossover probability oz when
xp,, & XPB , respectively.

We define an indicator function for
Jen @ Xp, ; — {0,1} over every z; ;,

Jen (xp, ;) =1 {XPM € Xpp, }7 (5)

to identify bits which are contained in harmful configurations,
where z; ; belongs to at least one harmful configuration if
fen (Xpw.) = 1. Using the above indicator function, we can
determine the channel state for transmission of z; ; as follows

b, fou(xp,,) =1,
g, fou (xp,,) =0,

where “b" and “g" stand for the bad and the good channel
states, respectlvely. Let the probability distribution function

the channel

(6)

Sij =
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Fig. 5. A schematic representation for the channel model is given. Passing
through the channel, ; ; is in error with probability ab if the configuration of
Pi,j» Xp, ;, belongs to the set of harmful patterns X , otherwise it inverts
with a probablhty of ag. It should be noted that the top arm of the figure can
be removed when oy = 0, which reduces the channel into a constrained
2-D channel with the list of forbidden configurations X . However, in our

channel removing the harmful patterns does not make the “channel noiseless.
Removing all the harmful patterns in the set X5 B ; before transmission
through the channel, makes it a BSC with the cross- over probability ag.

of channel be p(y|x). According to the aforementioned error
characterization, the probability distribution function of chan-
nel can be factored into

H p yL,J|X’P7 7) ) @)

(4,9)

p(ylx) =

since y; ; only depends on the configuration of P; ; in the
input pattern x. Fig. 5 gives a schematic illustration for the
channel.

Remark 1: In this paper, we use the concept of polyominoes
to just demonstrate the effect of harmful configurations on its
neighboring bits over a 2-D binary pattern. As two examples,
we consider 4-ominoes and 5-ominoes, as these reflect physi-
cal effects of 2-D ISI and ICI over the plane. For this purpose,
we defined the square and cross shaped polyominoes in (1)
and (2).

Remark 2: The channel is similar to the Gilbert-Elliot
channel [41], as it has two states, where each state acts
as a BSC with a different cross-over probability. However,
the state transitions in our channel model depend on input
patterns. For such channels, calculating the information rate,
let alone the capacity, is much more challenging than for
discrete memoryless channels. Except for very special cases,
there are no simple expressions for information rates available,
and so, one needs to rely on upper and lower bounds and/or
on stochastic techniques for estimating the information rate,
examples are [42]-[44].

Remark 3: The probability that the channel is in the bad
state (or, in the good state) depends on the input probability
distribution. If we assume that input bits are i.i.d., then
there is no Markovian assumption on the channel states. The
probability that the channel is in the bad state for sending z; ;
is

x5

|Xpi,j|,

p(sij=0b)=p(fou (xp,,) =1) = (3)
as the patterns are chosen randomly and uniformly, and in the
good state is p (s; j = g) = 1—p (s, ; = b). For different input
probability distributions, this probability can be computed
accordingly. Throughout the paper, we do not consider any

Markovian properties on input bits.

o

[=2]

Fig. 6. A 7 X 7 binary pattern x is transmitted through the channel with the
set of 2-D isolated-bits patterns as the set of harmful patterns. The bits x2 6,
3,5, £3,6, 3,7, £4,6, 6,7, 7,6 and x7 7 belong to the 2-D isolated-bits
patterns. Passing through the channel, the probability of error for these bits
is ayp, and for the rest of them is ay.

In the following, we present an example of an input binary
pattern to the channel, where the 2-D isolated-bits patterns are
the harmful patterns for the channel, to illustrate the effects
of harmful patterns on input binary patterns passing through
the channel.

Example 1: Fig. 6 shows an example of a 7 x 7 input
binary pattern x transmitted over the introduced channel.
We assume that the set of harmful patterns for the channel is
the set of 2-D isolated-bits patterns, which are given in Fig. 4.
In order to determine the channel state for all bits over the
pattern, we assume zero entries outside of x, i.e., x;; = 0,
while s < 1,7 < 1,7 > 7, 0or 5 > 7. There are two isolated-bits
patterns in x, which are xg+36) and xg+(77). Passing
through the channel, the bits contained in these two harmful
configurations are in error with a probability of «;. These bits
2,6, £3,5, 3.6, L3,7, Ta,6, L6,7, L7,6 and x7 7. For instance,

for X265
Pog = U
(7,5)€Q*(2,6)
Since Q7 (3,6) C P26 and X+ (36) is a 2-D isolated-bits
pattern, we have the fact that xp, ; contains a 2-D isolated-bits
pattern, and therefore, x5 ¢ is in the bad state. Similarly, we can
check this for the rest of bits in x.

QT 4. ©)

IV. PROBLEM FORMULATION

The user uniformly and randomly selects a binary
message m out of 2% messages denoted by M =
{m;, my, ..., myx }, where each message is of length K € N.
The user message m is first encoded by an error correction
encoder with rate R = % The error correction encoding
function ¢pcc : M — SEc assigns a binary codeword c(m)
of length N to the user data m such that

¢Ecc(m),

where S« = {c(m1),c(ms3),...,c(my~r))} is the code-
book (the set of binary codewords of length IN) associated
with the ECC being used. A codeword ¢ € Si{ is represented
by N binary symbols, ¢ = (¢, ¢2,...,cn), and N =m X n.
Each codeword is arranged into an array x of size m X n,
such that x = [xi,j]ie[m};je[n], and z;; = C(i—1)m+;- The
array x can be considered as a binary rectangular pattern

c(m) = (10)
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of size m xn. We want to send the pattern x over the
communication channel in Section III, with the list of harm-
ful configurations X? Assuming that oy > g, then bits
contained in conﬁguratlons of list XP _are more prone to
error than the other bits. To overcome effects of harmful
configurations, we use a deliberate error insertion approach
to remove the harmful configurations from the input pattern
x before transmission through the channel. Whenever there
is a configuration from the list X? in the input pattern x,
the color of selected bits in x are inverted to remove the
harmful configurations. We denote the set of m x n binary
patterns which do not contain the harmful configurations by S.
For the 7 x 7 pattern x in Example 1, we can remove the 2-D
isolated-bits patterns from the given 7 X 7 binary pattern by
inverting the bits x3 6 and x7 7.

This method of eliminating harmful configurations from
binary patterns with deliberating flipping bits can be viewed
as the mapping ¢ from the set of m x n binary patterns X" to a
set of m x n binary patterns S that do not contain the harmful
configurations. The mapping function ¢ : X — S assigns an
m x n binary pattern X to the input pattern x so that

% = ¢(x). (11)

Let 0 : X — {0,1}™*™ be the function selecting bits need to
be flipped for removing the harmful configurations from the
pattern x. Using the function @, we define eP®F to identify the
positions of these bits,

= H(X) = [GE?F]iE[m],je[n]a (12)

where ePBF =1 if the

i (¢,7)-th bit is flipped, otherwise,

ep3" = 0. Therefore, x @ e”®" does not contain any P-shaped
harmful configurations from the list X B Furthermore,
we have

d(x) =x @ 0(x), (13)

and the number of flipped bits is equal to wg (eppr). Now, X
is transmitted over the channel instead of x, and the m X n
binary pattern y is received. We identify the locations of
channel errors by the array ecy which is X & y. Then,

if the chosen message is m, since y = X @ ecy and
% = x(m) @ ePBF, we have
y =x @ eM g elBF, (14)

Naturally, such an encoder will have a corresponding decoder
(let us denote the decoder by ). The decoder ) assigns
an estimate of m € M to each received pattern y from the
channel such that

VY —M,

m = (y).
The performance of this deliberate error insertion method is
measured by the probability that the estimate of the message
m is different from the actual message m. Let A\, = p
(m # m|m) be the probability of error given that the actual
message is m. Then, the average probability of error is given

by
M =pn#m)= ) Amp(m
meM

15)

LNRJ me, (16)
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where (a) comes from the fact that m is chosen uniformly
from the set M and |[M|= sqz. A rate R is said to
be achievable if, given an e > 0, there exists an N, such
that péNﬁ) < ¢. The capacity of the method is defined as the
supremum over all achievable rates.

We assume that the decoder v is a bounded-distance
decoder which should ideally be able to retrieve the binary user
data from the received pattern y for every message m € M.
This bounded-distance decoder can correct the error patterns
with Hamming weights lying within the error correction
capability of the code, i.e., if
dmin -1

dir (x(m),y) < [=5—], (17)

where dpi, i1s the minimum distance of the code, the decoder
should be able to correct the errors. There are two types
of errors in this communication system with the deliberate
error insertion method. The first type is the deliberate errors
for removing harmful configurations from the input pattern.
The second is the channel errors which may have or may not
have overlaps with the deliberate errors. Since appearances of
harmful patterns in the input pattern dominate the channel
errors, we can assume that wps (eCH) ~ ( after removing
harmful patterns from the input pattern. Under this assumption,
we have y ~ x @ ePBF and

du (x,y) ~ dg (x,x @ ePPF) = wy (ePBF). (18)

Therefore, if wy (ePF) < |4is=L|  the decoder can correct
the errors. For this case, the probability of error for retrieving
the message m and the average probability of error are
approximately

dmin_1
= planzem [ m)=p (i) > [ 2L fm). 19
and
(N) ~ Z DBF) > Ldmin - 1” (20)
DPe QLNRJ P wH 2 m,

respectively. In the following remark, we discuss the channel
noiseless assumption after removing harmful configurations.

Remark 4: The theory of constrained coding began with
Claude Shannon’s classical 1948 paper [11], “A Mathemati-
cal Theory of Communications.” In his setting, the channel
“seen” by a constrained encoder/decoder is noiseless. Strictly
speaking, this is not a realistic assumption because constrained
coding is in practice used on noisy channels. In other words,
even if the constraint is satisfied, bits can be in error. The
probability of error is thus data-dependent. This assumption
which is also used here is a generalization of the assumption
made in Shannon’s paper.

Now, the goal is to minimize the average probability of error
in (20). There may be different choices of deliberate errors
ePBF that can remove the harmful configurations from the
input pattern, but some of them may exceed error correction
capability of the code. The first challenge is to not overburden
the decoder with flipping bits more than the number of
errors that the decoder can correct. Ideally, the bit selection
function needs only to search for deliberate error patterns with
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Hamming weight lying within the error correction capability
of the code being used. However, there may exist an input
pattern/patterns where the number of deliberate bit errors
required for removing harmful configurations exceeds the
error correction capability of the code. Therefore, the coding
method in this case might not be capacity achieving, and
the probability of error correspondingly might be non-zero
for those input patterns. The second challenge of using the
deliberate error insertion method is to find the error pattern
which has the minimum Hamming weight among the error
patterns that can remove the harmful configurations, or, equiv-
alently, wy (€PBF) should be minimized for each message
m € M. Therefore, the roles of the bit selection function
0 are (i) to identify and remove the harmful configurations
Xg . from a given input pattern and (ii) to find the error
pattern which can remove the harmful configurations and has
the minimum Hamming weight. It is worth mentioning that the
overall performance of system is a function of d,y;, of the code
being used and depends on the choice of ECC, not the DBF
method by itself. In the following, we characterize the role of
bit selection function 6.

For the input pattern x, let £* be the set of all error patterns
that can remove the P-shaped configurations from the input
pattern x, i.e.,

& ={e"PFx=xp e eS}. (1)
In order to minimize the average probability of error in (20),
we need to find an error pattern efyzr which has the minimum
Hamming weight among the error patterns in £*, or another
word,

ehpr = arg min_{wy (™)} (22)

eDBF c £x

This problem can be regarded as a combinatorial optimization
problem in which one needs to find an array e®F minimizing
w (ePBF) subject to the constraint that ePBF € £,

In the following, we provide examples of BCH-[15,5, 7]
codewords that are arranged into 3 x 5 arrays, as they help
to explain the concepts we have introduced so far. We want
to characterize the above constrained minimization problem
for removing forbidden configurations by 2-D n.i.b. constraint
from the 2-D arrays.

Example 2: We assume that the user messages are the fol-
lowing binary vectors of length 5, m; = (0,1,0,0,0), my =
(1,0,0,0,0), ms = (0,1,1,1,1) and my = (0,1,1,0,1),
and are encoded by the triple-error correcting BCH-
[15,5,7] code. We have the codewords c¢; = (0,1,0,0,0,
1,1,1,1,0,1,0,1,1,0), ¢z = (1,0,0,0,0,1,0,1,0,0,1,1,0,
1,1), s = (0,1,1,1,1,0,1,0,1,1,0,0,1,0,0), and ¢4 =
(0,1,1,0,1,1,1,0,0,0,0,1,0,1,0) of length 15 which are
then arranged into 3 x 5 arrays as four different patterns.
The patterns are shown in Fig. 7, where the first row of
each pattern is equipped with its corresponding user message.
We only consider these four patterns out of 32 possible
patterns by BCH-[15,5,7] code as they cover all different
flipping scenarios using the deliberate error insertion method.

We are interested in removing 2-D isolated-bits configura-
tions entirely from the above patterns with minimal number

1 2 3 45 1 2 3 4 5 12

3 4 5 1 2 845
1 1 1 |
2 2 2 2

(a) (b) ) (d)

(e

Fig. 7. The input patterns for Example 2: (a) Xq, (b) X3, (¢) X¢, and (d) x4.
We assume zero entries outside of each input pattern.

of bit flips. In other words, the goal is to find the error
pattern ePBF for each input pattern x which has the minimum
Hamming weight and x @ ePPF does not contain any of the
2-D isolated-bits configurations. Therefore, we have

00000 00 000
ey =10 0 0 0 0|, e, =100 1 0 0},
00 0 0 0 000 0 0 0]
[0 0 0 0 0] (00 0 0 0]
ey =10 0 0 0 0], e,=10 00 1 1
000 1 0 0 00 0 0 0]

In Fig. 7(a), the pattern does not contain any of the
2-D isolated-bits configurations, therefore there is no need
to flip any bit, and wg(e(,)) = 0. The pattern in Fig. 7(b)
contains only one 2-D isolated-bits pattern, which is xg+(2,3)-
One can remove this 2-D isolated-bits pattern by inverting
the color of any one of the bits in Q*(2,3), and therefore
wr(ep)) = 1. For the pattern in Fig. 7(c), there are two
overlapping 2-D isolated-bits patterns, which are xg+ (2 3) and
XQ+(3,3)- These two isolated-bits patterns can be removed
simultaneously by flipping either xo 3 or x3 3, and therefore
for this case also wp(e«)) = 1. In Fig. 7(d), the pattern
contains two non-overlapping 2-D isolated-bits patterns, which
are X+ (1,5) and X+ (3,4). One needs to flip at least two bits
over this input pattern, and for this case w (e(4)) = 2. For the
above systematic BCH-[15,5, 7] code (where the codewords
are arranged into 3 x 5 arrays and the first row is equipped
with the user bits), we identified the minimum number of
bit flips required for removing 2-D isolated bit patterns from
each of the possible BCH-[15, 5, 7] codewords. Assuming the
codewords are chosen randomly and uniformly, in average
it needs to flip 0.6563 bits/pattern to remove the forbidden
configurations by the 2-D n.i.b. constraint from an input
pattern.

In the following, we provide remarks on the difficulty of the
constrained minimization problem in the DBF method, and the
difference of this method with conventional constrained coding
methods.

Remark 5: Finding the error pattern which removes a given
set of 2-D configurations from a 2-D pattern and has the
minimum Hamming weight via an exhaustive search among
all admissible error patterns can be computationally prohibitive
for large patterns. The above deliberate error insertion method
can be regarded as a procedure for finding the minimum
number of inversion operations required for converting a
binary pattern to another binary pattern which does not contain
any of channel forbidden configurations. This problem can
be considered as a sub-class of Levenshtine distance prob-
lem [45], which is known as a hard combinatorial problem.
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Remark 6: 1t is worth mentioning that problems related to
2-D constrained coding are in general difficult, as mainly it
is hard to enumerate the patterns satisfying a 2-D constraint
and having a uniform distribution, or, achieving the Shannon’s
noiseless channel capacity of the constraint. Let’s denote
this set of uniformly distributed patterns which satisfy the
constraint by S. The capacity of 2-D constraint is given by

Cz_D = lim
m,n—oo M,

1
10g2 Z(ma TL), (23)
n
where Z(m,n) is the number of admissible m x n binary
patterns, i.e.,

Z(m,n) = ‘Sﬁ {0,137 (24)

The probability distribution achieving the 2-D noiseless chan-
nel capacity (or the maximum entropy of constraint) is

p(%) = {f’

Therefore, the patterns in the set S are equiprobable. In our
method, instead of enumerating the patterns in S (the way of
conventional constrained coding methods), for a given input
pattern x (which may or may not be in S), we try to find an
% € S which minimizes wy (x @ X).

In the following section, we reformulate this minimization
problem with a probabilistic graphical formulation to cater the
possibility of using message passing algorithms for finding
approximate solutions.

X €S,
(25)
other.

V. A PROBABILISTIC GRAPHICAL FORMULTION
FOR MINIMZING BIT FLIPS

In this section, we devise a probabilistic graphical for-
mulation for the problem of minimizing the number of bit
flips in the DBF method. The probabilistic graphical model
of the problem defines a uniform distribution over S where
each pattern containing any of harmful configurations has
zero probability. In this framework, the Hamming distance
metric is replaced with a binomial expression, and for a
given input pattern x, the constrained minimization problem
becomes a 2-D maximum a posteriori problem. We use GBP,
as a MAP inference method, to find approximate solution for
marginal probabilities with minimizing the Bethe free energy
(using the region based approximation method), and therefore
an approximate solution for the problem of minimizing the
number of flipped bits in the DBF scheme.

For a given binary pattern x € X', the problem is to find
an assignment, X € S, that has the minimum Hamming dis-
tance with x, or, equivalently, minimizes wg (X @ x). Since
wy (x @ x) = 0, if the pattern x € S, the optimal answer is x
itself, i.e., there is no need to flip bits in x. For the case x ¢ S,
we need to calculate the Hamming distance between each
%X € S and x, which can be intractable for a large pattern. As it
can be verified for x; ; locally over a finite neighborhood of
bits P; ; whether the bit is contained in a harmful pattern of the
set Xg’i » we define a local distortion function D for each z; ;
over P; ; to compute the Hamming distance between different
% € S and the given input x locally as follows. For every
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%ij € Am.n, the function D : {0, 1}‘7)""-7| x {0, 1}'7)"”1" — N
is defined over wp, ; as follows

D ()A(’Pi,,j )y XPi )

- {’ZUH ()A(Pihj @Xpi,j)) )A('Pi.] ¢ ng;

26
)A('Pi,,j S X’PB,LJa (20)

OO)
where wp ()A('piyj &) XP,;,j) is the Hamming distance between
xp,; and xp, , and the patterns belonging to the set of
harmful patterns are specified by oco. We should note that
there can be different configurations of Xp, . ¢ Xg . which
have the same Hamming distance with x; ;. One may use the
outputs of D for the bits z; ; € A, ,, to find x* € S which has
the minimum Hamming distance with x. This process can be
intractable for large patterns as it needs to compute the output
of D for every bit x;; € A, ,, which has 21Piil different
configurations, and take exponentially large memory just to
store. In the following, we present a probabilistic formulation
using a graphical model to find approximate solution for this
problem using the GBP algorithm.

In order to present a probabilistic formulation for the dis-
tortion indicator function defined in (26), we use the binomial
expression to translate the Hamming distance metric into the
probability domain. We assume that the color of each bit
contained in a harmful configuration is inverted with the
probability 0 < A < 1. For every bit z; ; € A,, ,, we define
a function D, : {0,1}79 x {0,1}" — RI®U over the bits
indexed by P; ;,

DP(XPi,j ) )A(Pi.])

)\wH(eP,;,j)(l _
= 0,

A)"P“J ‘7wH(e’Pi’j)) )A(,Piwj ¢ X’PBi‘],
)A(pm € X’PB’L\J’
27)

where ep, ; = Xp, ; © Xp, g and |P; ;| indicates the number of
bits in P; ;. This function is called as the local probabilistic
distortion function. For each bit z; ; € A,, ,, the distortion
now is defined as the probability of having a distorted pattern
xp, , which has the Hamming distance wp (Xp, ; &Xp, ;) with
xp,, € X5 . When Xp, , € X5 , this probability is zero,
as we are lookmg for patterns Wthh do not belong to the
set of harmful patterns. For a given input pattern x and a set
of forbidden patterns Xp we are now interested in finding
X € S maximizing p (x|x), which is equivalent to finding x
that minimizes wy (X ® x). In another word, we want to find

X = argrpag{ {p(x]x)} . (28)
bS
The a-posteriori probability p (X|x) for a fixed A is
max p (%[x)
p(x[x)p (%)
p(x)

(4,5)€EAm n

II

(4,5)€EAm n

max
X€eS

(c)

(¢) 1-1{%p, ;€XF, i}
= A

max

- B
)\R{XPW €Xp, ;) (
X€eS

1-))

(29)
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where (a) comes from this fact that the a-priori probability of
choosing each pattern x € S is equiprobable, (b) is established
as for each z; ; we can determine locally over P; ; that the
bit is contained in a harmful pattern, and (c) is obtained
based on the definition of the local probabilistic distortion
function, given in (27). The probability p (x; j|%p, ;) indicates
that the bit x; ; is flipped depending on the realization of its
neighboring bits xp, ., whether belongs to the set of harmful
configurations or not. Therefore, we have

p (X[x)
1

7w 1

(4,5)€EAm,n

~ B X B
)\]l{xPi.] eXpi,j}(l . A)l—l{xpiyj EXPZ',] }’

(30)

where the normalization constant Z(x), so called the partition
function, is given by

Z(x)

- ¥

%€{0,1}™%" (i,5)EAm.n

€1V

In order to compute the a-posteriori probability p (X|x)
with the factorization given in (30), we need to calculate the
partition function given in the equation (31). Providing either
exact or approximate solutions for the partition function in
general is a NP-hard problem [46]. In [39] and [47], it is
shown that the region-based approximation (RBA) method
provides an approximate solution for the partition function by
minimizing the region-based free energy (as an approximation
to the variational free energy). In Appendix A, we first define
a factor graph representation for the problem (maximizing
p(%X|x) in (30) for a given input pattern x subject to the
constraint that X € S) and then formulate the RBA scheme
for finding an approximate solution for this constrained max-
imization problem.

The following remarks discuss the optimality of the
GBP-guided DBF method and the theoretical guarantee on
the existence of solutions for the maximization problem given
in (28).

Remark 7: For a given input pattern x, we should note
that the zero probability in (27) ensures that an approxi-
mate solution X does not contain any harmful configurations,
i.e., X € S. However, due to the fact that the RBA method
only provides an approximate solution for (28), the solution
might not necessarily be the optimal pattern which minimizes
wig (X @ x).

Remark 8: The problem of minimizing the number of bit
flips in the DBF method can be considered as an instance of
a constraint satisfaction problem (CSP). Statistical physicists
consider different geometries of the solution space for a given
CSP based on the density of constraint, which is defined as the
ratio of the number of constraints to the number of variables.
This density of constraint identifies satisfiability thresholds for
the solution space of CSPs [48]-[52]. For the minimization
problem in the DBF method for removing channel harmful
configurations from an input pattern of a specific size, if the

density of constraint lies in the satisfiable regions, then we
can assume that there exist optimal solution/solutions for the
problem.

VI. NUMERICAL RESULTS

In this section, we present numerical analyses of the
GBP-based DBF method for removing harmful patterns. With-
out loss of generality, we focus on the 2-D isolated-bits
configurations in all our experiments. We first present the
analysis on statistics of the number of flipped bits for removing
2-D isolated-bits patterns from random 2-D patterns. Fur-
thermore, we study the convergence of the GBP algorithm
as a function of the number of GBP iterations for different
values of A, the probability of flipping a bit in xp, ; for
(i,j) € A, which is defined in (27). To illustrate the
usefulness of DBF method, we investigate its performance
over the data-dependent channel in Section III under different
scenarios in terms of the probability of uncorrectable bit errors,
where the harmful configurations for the channel are the 2-D
isolated-bits patterns. Finally, we compare the performance of
the DBF method on a memoryless BSC with the row-by-row
and bit-stuffing constrained coding schemes for the 2-D n.i.b.
constraint, presented in [40] and [10] respectively.

Remark 9: It should be noted that the parent-to-child
message passing steps ( [39]) in the GBP algorithm with
considering all the regions for removing 2-D isolated-bits
configurations operates with reasonable speed and memory
requirements on binary patterns with maximum size of 32 x 32.
Thus in practice, the system would process these 32 x 32
(or smaller) arrays in a sequential way. As long as the
scalability of method is concerned, the GBP algorithm can be
implemented in a parallel fashion to work on multiple 32 x 32
binary patterns simultaneously.

A. Statistics of the Number of Bit Flips for Removing
2-D Isolated-Bits Patterns

The performance of the DBF method relies on the error
correction capability of the code being used, and of course
the number of deliberate bit errors. Therefore, it is necessary
to find how many bits in average are flipped within a code-
word, and how this number compares to the error correction
capability of the code. We have extracted the statistics of the
number of bit flips for removing 2-D isolated-bits patterns
from random 2-D patterns by the DBF method. In Fig. 8§,
we present an approximation of the occurrence probability of
bit flipping, p(wz (ePBF)), as a function of the number of
flipped bits, wg (ePPF). The statistics of number of flipped
bits is obtained by using DBF for removing 2-D isolated-bits
patterns from a sample set of 8000 random binary patterns of
size 32 x 32. Throughout all the simulations, we assume zero
entries outside of random patterns. The average number of
flipped bits is obtained by taking the average over all observed
numbers of flipped bits, which is wy(e) = 12.84. Therefore,
approximately, it needs in average 12.84 bit flips in a random
32 x 32 pattern to remove the 2-D isolated-bits patterns.
We extend the same analysis for random input patterns of
size 8 x 8 and obtained the average number flipped bits of

Authorized licensed use limited to: The University of Arizona. Downloaded on July 16,2020 at 03:27:46 UTC from IEEE Xplore. Restrictions apply.



760

0.14

0.12} Y

0.1r

‘~a
P

0.08 -

eDBF))

£ 006F

0.04
./.

. %-..-T/TI
5

Fig. 8. An approximation of the occurrence probability of bit flipping for
removing the forbidden patterns by the 2-D n.i.b. constraint from random
32 x 32 arrays are given over 8000 trials. For this experiment, A = 0.1
in (28).
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1.46 bits/pattern for removing the 2-D isolated bit patterns
entirely from the input patterns.

As long as the number of deliberate bit errors lies within
the error correcting capability of an ECC, the codeword is
guaranteed to be corrected. Using the occurrence probability
of bit flipping, we can obtain the uncorrectable bit error rate
(UBER) for an ECC used to correct these deliberate errors on
a noiseless channel as follows

UBER = wr (€”®")p (wy (e”PF)) | /N,

>

wir (€PBF)> | dnig—1 |

(32)

where dy, is the minimum distance of code, N = m X n is
the size of the pattern (length of the code), and R is the rate
of the ECC. Using BCH codes of length 1024 for correcting
deliberate errors introduced in random 32 x 32 binary patterns
for removing the 2-D isolated-bits configurations, the UBER is
given as a function of dy,;, in Fig. 9. This figure shows UBER
corresponding to different code rates (and consequently dyyin)
supported by the BCH code of length 1024.

The choice of A\ in the probabilistic formulation of
problem, (28), depends on the constraint and the underlying
method for solving the minimization problem. Note that A is
not a critical parameter in the DBF method. However, it should
be chosen to be in the convergence region of GBP. As an
example, we present the convergence of the GBP algorithm for
finding the optimal error pattern to remove 2-D isolated-bits
patterns from random 32 x 32 binary arrays for different
values of \. Fig. 10 shows the average number of flipped
bits as a function of the number of iterations for different
values of A. It can be seen that convergence behaviors of
the GBP algorithm for A € {0.04,0.1,0.18} are very similar,
and it is only the matter of choosing a A that lies within the
convergence region of the GBP algorithm. Throughout all our
experiments in this paper A = 0.1, and the number of iterations
for the GBP algorithm is 50 for 2-D isolated-bits patterns.
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Fig. 9. BCH codes of length 1024 with different code rates are used to correct
the deliberate errors introduced in random 32 X 32 patterns for removing
2-D isolated-bits patterns. Using the flipping probabilities in Fig. 8 and (32),
the UBER is calculated for BCH codes of length 1024 with different rates
(and consequently dpmin).
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Fig. 10. The average number of flipped bits for removing 2-D isolated-bits
patterns from a random 32 X 32 array for different A € {0.04,0.1,0.18,
0.22,0.26} over 1000 trials versus the number of GBP iterations.

B. Performance Evaluation of the GBP-Guided DBF Method

In this section, we investigate the usefulness of DBF method
for data-dependent 2-D channels, where specific patterns in
channel inputs are the main cause of errors. We consider the
introduced channel in Section III with the 2-D isolated-bits
patterns as the harmful patterns for channel. For different
values of oy and a,, we compare the average probability of
error with and without incorporating the DBF method.

The user message m of length K is encoded via an
ECC with rate R = £, and the codeword c(m) of length
N =m xn is arranged into a 2-D array x(m) of size
m X n. Prior to transmission over the channel, the 2-D
isolated-bits patterns are removed from the input pattern by
flipping minimum number of bits. The transmitted pattern over
the channel is now x(m) @ ePPF, and the received pattern
is x(m) @ ePBF @ eM. The transmitted pattern and channel
output without DBF are x(m) and x(m) @ &, respectively.
Note that the channel is data-dependent, and therefore chan-
nel errors with and without incorporating DBF method are
different. Using the bounded-distance decoder that can correct
error patterns with Hamming weights lying within the error
correction capability of the code, the average probability of
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—-=-BCH-[1024,728,62] with DBF
—-=-RM-(5,10) with DBF
—-=-RM-(4,10) with DBF
--@--BCH-[1024,728,62] w/o DBF
--@--RM-(5,10) w/o DBF
--@--RM-(4,10) w/o DBF
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(b)

Fig. 11. The average probability of error with and without
incorporating for the cases (a) ayg =0 and «p € [0.1:0.1:1], and
(b) cg € [0.001 : 0.001 : 0.01] and o, = 100 X avg is presented. The BCH-
[1024, 728, 62], RM-(4,10) and RM-(5,10) codes are being used. The
BER comparison results are obtained using the equations (33) and (34),
and executing the GBP-guided DBF algorithm over at least 50,000 random
instances of user messages.

error with and without incorporating the DBF method is
simplified to

(DBF) __ DBF CH min
Pe _thmgp(wH(e © >[5

!fm)

(33)

and
(w/o DBF) __ 1 ~CH dmin -1
Pt —QLNRJZp w (& )>LTHm . (34

respectively, where dy,;, is the minimum distance of the ECC.

In Fig. 11(a), we assume that channel errors solely come
from appearances of 2-D isolated-bits configurations in input
patterns, and «, = 0. Under this assumption, removing the
2-D isolated-bits configurations from channel input patterns
prior to transmission makes the channel noiseless. However
without incorporating the DBF method, the bits contained
in a 2-D isolated-bits configuration invert with a proba-
bility of «3. Therefore, the average probability of error
with incorporating the DBF method for different values of
ag is constant. Fig. 11(a) shows the BER results with
and without incorporating DBF for different values of «y,
when the BCH-[1024, 728, 62], RM-(4,10) and RM-(5,10)

codes are used. It can be seen that for 0.3 < ap <1 we
obtain approximately four orders of magnitude gain in the
average BER with the GBP-guided DBF method using the
BCH-[1024, 728, 62] code. However, this gain is lower for
smaller «’s as the number of deliberate bit errors introduced
for removing 2-D isolated-bits configurations dominates the
random channel bit errors. Fig. 11(b) shows the BER results
with and without incorporating the GBP-guided DBF method,
when ¢, € [0.001:0.001:0.01] and «a; =100 X «g. This
figure shows a reasonable gain in the BER performance with
incorporating the GBP-guided DBF method, and using the
BCH-[1024, 728, 62] code.

C. Comparison Results on BSC

In this section, we compare the proposed scheme of impos-
ing the 2-D n.i.b. constraint by deliberate errors against the
row-by-row and the bit-stuffing coding schemes on a BSC.
This can be interpreted as the case that 2-D isolated-bits
configurations are the problematic patterns for the channel, and
they must be removed before transmission, but removing these
patterns does not make the channel noiseless. In our channel
model, it is the case that a;, = 1 and a4 # 0. In the following,
we first review the row-by-row and bit-stuffing methods for
2-D n.i.b. constraint and then present the comparison results.

Row-by-Row Coding Scheme for 2-D n.i.b. Constraint [40]:
The encoder is a finite-state machine with 4 states, which
maps each 3 information bits into a 2 X 2 binary pattern. For
encoding information bits into an m X n array, strips of size
2 x n are constructed using the encoded 2 x 2 binary patterns.
Then, these strips are arranged in such a way to satisfy the
2-D n.i.b. constraint over the m x n array. The decoder is
sliding-block decoder, where the decoding window size of the
encoder is 3 bits.

Bit-Stuffing Scheme for 2-D n.i.b. Constraint [10]: The
bit-stuffing method for mapping binary random sequences into
a 2-D rectangular array satisfying the 2-D n.i.b. constraint is a
variable rate coding scheme. First, the boundaries of the 2-D
arrays are initialized with some fixed probability distribution.
The encoding process has two steps. The encoder first gener-
ates two sequences with different statistics, Bernoulli(1/2) and
Bernoulli(1/3), from the sequence of information bits using
a probability transformer. Then, it encodes the unbiased and
biased sequences into a 2-D array by inserting additional bits
in such a way to ensure that the constraint is satisfied. At the
decoder, the two sequences are recovered by doing the reverse
process of inserting additional bits, and the binary sequence
is recovered using an inverse probability transformer.

Raw BER Comparison Results: We compare the perfor-
mance of the DBF method for imposing 2-D n.i.b. constraint
into 2-D arrays of size 32 x 32 with the bit-stuffing and row-
by-row constrained coding methods in terms of BER. It should
be noted that the probability transformer in the bit-stuffing
method is implemented in a one-to-one manner. Hence we
can apply the reverse transformation to recover the original
information bits. Fig. 12 shows the BER comparison results
of the DBF, row-by-row and bit-stuffing methods over the
BSC with the cross-over probability («). It can be seen that

Authorized licensed use limited to: The University of Arizona. Downloaded on July 16,2020 at 03:27:46 UTC from IEEE Xplore. Restrictions apply.



762

> --®--Row-by-Row Coding
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Fig. 12.  Figure shows the BER comparison results of the DBF, bit-stuffing
and row-by-row coding methods on the BSC with the cross-over probabil-
ity (). The effect of error propagation can be observed in the BER curve of
bit-stuffing which shows that this method is vulnerable to channel errors. The
coding rate of DBF with BCH-[1024, 923, 22] code is close to the bit-stuffing
method, and the rate of DBF with BCH-[1024, 768, 54] is close to the rate
of row-by-row coding method.

the effect of error propagation in the row-by-row method is
less severe than bit-stuffing as the row-by-row method uses a
sliding-block decoder with error propagation window of 3 bits
and the effective rate of 0.75. The average rate of bit-stuffing
method for imposing 2-D n.i.b. constraint on a 32 x 32 array
is >~ 0.91. The bit-stuffing achieves a fairly high encoding
rate for the 2-D n.i.b. constraint, but it suffers from the error
propagation over noisy channels. The redundancy for imposing
the constraint is now used in our scheme to strengthen the
ECC (BCH code), resulting in a gain over the other schemes.
For this purpose, we use the BCH-[1024, 923, 22] along with
the DBF method for comparison with bit-stuffing method,
and the DBF with BCH-[1024, 768, 54] for comparison with
the row-by-row coding method. We should note that we did
not employ any forms of error correction in the row-by-
row and bit-stuffing methods. Nevertheless, all the methods
(including the DBF method with the BCH code) are designed
to have the same overall coding rate. As another comparison,
we used a column-weight 4 quasi cyclic LDPC code over
two-dimensional magnetic recording channels for removing
harmful patterns in our earlier work [1], where an order
of magnitude gain in the frame-error-rate was obtained for
Voronoi based 2-D magnetic recording channels with low
magnetic grain densities.

VII. CONCLUSIONS AND FUTURE WORK

To summarize, we proposed a coding scheme for
data-dependent 2-D channels which is based on a deliberate
bit flipping method. Deliberate errors are introduced into
an error correction codeword which is arranged into a 2-D
array to remove harmful patterns before transmission. The
technique relies on the error correction capability of the code
being used, and the number of deliberate errors should be
small enough not to overburden the error correction decoder.
In this paper, we have focused on minimizing the number
of deliberate errors in the DBF scheme for removing a set
of given configurations from input patterns. We devised a
probabilistic graphical model for the minimization problem
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by reformulating it as a 2-D MAP problem. We used the GBP
algorithm to find an approximate solution for the 2-D MAP
formulation of the problem. Statistics of the number of bit flips
for removing 2-D isolated-bits patterns are extracted, and we
showed that how these numbers are comparable with the error
correction capability of BCH codes being used. Furthermore,
we investigated the suitability of DBF method for imposing
2-D constraint over a BSC against classical constrained coding
methods which suffer from error propagation.

As a future work, the DBF method can be reformulated for
2-D semiconstrained coding. In some applications, we rather
prefer not to remove entirely the harmful configurations, and
we only want to limit the number of occurrences of specific
configurations in a 2-D pattern. As in the case when the
number of bit flips for imposing strong constraints is large and
may overwhelm the ECC decoder, there is a need to allow
some of the harmful configurations patterns to appear, yet
not very often. For this purpose, the function D,, in (27) can
be reformulated as a probability transformer function, which
maps random binary patterns to binary patterns satisfying a
desired empirical distribution for appearances of harmful con-
figurations. The GBP algorithm still can be used to minimize
the number of flipped bits for this mapping.

APPENDIX A
(THE REGION BASED APPROXIMATION
METHOD AND GBP)

In this appendix, we present factor graph and region graph
representations for the constrained maximization problem
given in (28). Furthermore, we explain the RBA method using
GBP [39] to find an approximate solution for the problem.

For the maximization problem in (28), we showed in (29)
that the a-posteriori probability p (X|x) is proportional to

II

(1,)EAm n

p (x]x) o NP €y R €

(35)

We consider a multiplicative factor graph [38], i.e., a factor
graph where the global function is a product of local functions.
We consider a bipartite graph G = (X, F, E) with two sets of
nodes X and F, and a set of edges E connecting only different
node types. The set X consists of N random variables which
present the N bits over the m X n input pattern x, where
N = m x n. Therefore, X = {X; ; : (i,j) € Apn}, and X; ;
takes value O or 1. The set F = {f; ; : (¢,7) € A n}, and the
factor node f;; represents the local probabilistic distortion
function D, (xp, ;,Xp, ;) which is defined in (27). The factor
node f; ; € F is connected to the variable node X; ; € X if
the local function associated with the factor node f; ; involves
X ;. This graphical model serves as a basis for the RBA
scheme to solve our constrained maximization problem given
in (28).

The free energy Fy is defined by —InZ (log partition
function) in statistical mechanics. Using the properties of
Kullback-Liebler divergence [53], we can obtain an approx-
imation for the free energy by minimizing the variational
free energy with respect to a trial probability distribution
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Fig. 13.  (a) Factors f; ; (-) of a 2 x 2 pattern are shown. (b) The region
graph corresponding to the factor graph is given.

b(x) for the a-posteriori probability distribution p (x|x). The
trial probability distribution b (X) should be normalized and
0<b(x) <1 for all x. We can also consider b (%) as the
belief of the a-posterior probability of x. The variational free
energy corresponding to b (%) is defined by

F(x)=Ubx)-H(bE),
where for our problem

UBE) =— S0 S blkp,) AR

(1) EAm n %P, |

(36)

x(1— A)l_l{*”w EXP. },

H(b(X) ==> b(X)Inb(%), (37)
are the average energy and entropy, respectively, and b ()273])
is the corresponding belief of bits Xp, ;. The variational free
energy can be estimated using the RBA scheme [39], [47].
In order to use the RBA method, we need to construct a valid
region graph in such a way that each variable/factor node
contains at least in one region. A region graph consists of
clusters of variable and factor nodes, and can be constructed
from a factor graph. A region graph initially is formed by clus-
tering every factor node and its neighboring variables nodes
into a region, which is called an ancestor region, so that every
ancestor region consists of one factor node and its neighboring
variable nodes. Then, the cluster variation method [39] is
applied to establish the remaining of the region graph. The
remaining regions are formed by taking the intersection of the
basic regions and their intersections — as shown in Fig. 13(b).
For the region R, we denote the set of variable nodes in the
region R by X and the state of these variables by xg. Let
b(xr) and p(xg) be the belief and the probability of xp.
Furthermore, we denote the collection of all the regions in the
region graph by R.

According to [39], the variational free energy can be esti-
mated using the RBA method such that

F(b(%) =Ur (b(%)) — Hr (b(%)),

where Ur and Hpy are respectively the region average energy
and region entropy and given by

R 06) == 3 3 blan, )4 O

1,JEAm 0 Xp,

(38)

(1= M) P R )

X
Hg (b(%)) = Y cr Y _b(kr)lnb(Xg), (39)
RER XR

where Xy are the variables belonging to the region R € R
and cp is the counting number of the region R given by cr =
1= > e, Cp Where Ap is the set of ancestors of region
R identified by Ar = {R' € R|R C R'}. The a-posteriori
probability p (X|x) can be now estimated by minimizing (38)
subject to the edge constraints given by

> bkv) =b(kr) Vp€ Pr,YRER,

XU EXp\R

(40)

where X p\ r denotes the set of variables in the parent region P,
but not in R. Furthermore, the normalization constraints are
> %, 0(Xr) = 1,VR € R. The edge constraints ensure
that the belief of a region can be obtained from its parent
regions. The message and belief update equations in the GBP
algorithm for finding an approximate solution for the problem
of minimizing the number of flipped bits in DBF method
can be obtained from solving the constrained minimization
problem of F, given in (38), using the Lagrange multipliers.
In the considered formulation of the GBP algorithm (parent-
to-child algorithm [39]) for minimizing the number of flipped
bits, the size of the regions is dictated by |P; ;|. The compu-
tational complexity associated with each edge in the in this
implementation is O (2/7+41) — the proof of this analysis for
the general parent-to-child GBP algorithm can be found in
[54, Lemma 1]. Since the number of beliefs for each region
depends on its size, it is practically not feasible to use this
formulation of the algorithm when |P; ;| is large.
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