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Abstract—In this paper, we present a computationally efficient
method for estimating error floors of low-density parity-check
(LDPC) codes over the binary symmetric channel (BSC) without
any prior knowledge of its trapping sets (TSs). Given the Tanner
graph G of a code, and the decoding algorithm D, the method
starts from a list of short cycles in G, and expands each cycle by
including its sufficiently large neighborhood in G. Variable nodes
of the expanded sub-graphs Ggexp are then corrupted exhaustively
by all possible error patterns, and decoded by D operating on
Gexp. Union of support of the error patterns for which D fails
on each Ggxp defines a subset of variable nodes that is a TS. The
knowledge of the minimal error patterns and their strengths in
each TSs is used to compute an estimation of the frame error
rate. This estimation represents the contribution of error events
localized on TSs, and therefore serves as an accurate estimation
of the error floor performance of D at low BSC cross-over
probabilities. We also discuss trade-offs between accuracy and
computational complexity. Our analysis shows that in some cases
the proposed method provides a million-fold improvement in
computational complexity over standard Monte-Carlo simulation.

Index Terms—Iterative decoding, LDPC codes, Trapping set,
Iterative decoding failures, Error floor computation.

I. INTRODUCTION

HARACTERIZING the error performance of low-density
Cparity check (LDPC) codes [2], [3] under iterative
decoding algorithms has been of active research focus in
the error correction coding community for almost twenty
years (see [4] for a survey). In the asymptotic limit of the
code length, the error performance over various channels
is well studied, and methods for its characterization exists
for a large class of iterative decoders. For example, belief
propagation (BP) and similar message passing algorithms are
analyzed using density evolution [3], [5], bounds on error
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correction capability of bit flipping (BF) and message passing
algorithms under adversarial model can be obtained using
expander-based arguments [6], [7], and the performance of
linear programming (LP) decoder [8], [9] depends on the low-
weight pseudo-codewords. It is also known that when used
on finite length LDPC codes, iterative decoding algorithms
fail on specific sub-graphs of a Tanner graph, generically
known as trapping sets (TSs) [10], [11]. Trapping sets give
rise to an error floor (EF) which is seen a degradation in
the error performance of the decoder at low channel noise
levels. The experimental evidence of error floors of LDPC
decoders was shown in a pioneering work [10], wherein impor-
tance sampling method was used to estimate EF attributed
to TSs. Since then, numerous importance sampling variants
have been proposed for estimating error floors of LDPC codes
for additive white Gaussian noise (AWGN) channel (see [12]
for a detailed survey). A notable analytical method in [13]
is based on linear state-space model of decoder dynamics on
elementary trapping sets. A prior knowledge of all harmful
TSs is key to the correctness of these importance sampling
methods, which depends on both the LDPC code as well
as the iterative decoder used. However, well designed long
codes (e.g., [14], [15]) decoded by powerful iterative decoders
(e.g., [16]) have error floors that occurs at very low Frame-
Error-Rates (FERs), and are not reachable by Monte-Carlo
(MC) simulations or importance sampling techniques that
require all harmful configurations a-priori. Hence, analytical or
semi-analytical methods without prior assumptions of harmful
TSs are necessary to estimate the FER in the EF regime
correctly. This is crucial for practical high-throughput, power-
efficient applications such as optical communication and flash
memory data storage, where the requirements on data reliabil-
ity are often under FER = 102,

The decoders used for these applications are low-precision
message passing decoders, and their channel is often modeled
as the binary symmetric channel (BSC), which is the primary
focus in this paper. To characterize error floors of LDPC
codes decoded by hard-decision decoding algorithms over the
BSC, the method in [17] attempts direct enumeration of all
smallest-weight uncorrectable error patterns after performing
iterative decoding using the entire Tanner graph, followed
by an estimate identifying contribution of error patterns of
larger weights to the FER. Although this approach does not
assume any harmful configurations a-priori unlike methods
discussed in [10], [18], [19], the computational complexity is
not amenable with long codes combined with better decoders.
In [20], the complexity is significantly reduced by enumerating
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and decoding short cycles only, relying on the assumption
that low-weight error patterns are subsets of short cycles for
hard-decision iterative decoders. However, extension of this
method to (quantized) soft-decision decoders over AWGN
channel [21] is not easily generalizable and particularly not
effective for long LDPC codes with variable degree greater
than 3. In comparison to these approaches, our generic method
computes EFs of LDPC codes without any prior assumption
of harmful TSs with significantly lower computational com-
plexity compared to MC simulation and direct enumeration
techniques and is applicable for arbitrary iterative decoding
algorithms.

Analytical estimation of EF exists for simpler algorithms
such as the binary message passing (Gallager-B decoder) and
bit-flipping algorithms, as well as regular LDPC codes of
variable nodes degree equal to three for which there exists
a theoretical characterization of uncorrectable error patterns
and thus EF [22]. However, for stronger decoders such as
min-sum algorithm or finite alphabet iterative decoding (FAID)
algorithms [16], and codes with variable degree equal to four
and irregular variable degrees, estimating EF by importance
sampling is not the best approach. It is because the importance
sampling method [10] to estimate FER relies on the existence
of a database of trapping sets for the decoding algorithm
of interest. Such an enumeration of all possible trapping
sets as combinatorial objects may not a feasible task, for
example, in the case of codes with variable degree equal to
four and higher. Even if it was feasible, running a decoding
algorithm (a step in importance sampling) for random error
patterns corrupting all trapping sets on entire Tanner graph
is computationally prohibitive for long codes. On the other
hand, analyzing decoding errors based on an isolated trapping
set, while accurate for Gallager B and bit flipping algorithms,
is inaccurate for stronger decoders as it ignores the effect of
messages from the trapping set neighborhood passed towards
the trapping set. As we will show, the messages coming from
outside the TS, called external messages, play an important
role in the characterization of the TS harmfulness [1]. Indeed,
the values of the external messages strongly depend on the
location of the TS in the Tanner graph. The exact location
which is also critical for the accuracy of the EF prediction is
correctly captured in our method described next.

In this paper, we introduce a general procedure for TS
characterization, which starts with a list of cycles of length g
and g+ 2, where g is the girth of the Tanner graph G, together
with their locations in the Tanner graph, and then finds their
sufficiently large neighborhoods to ensure that the messages
in the interior of such sub-graph accurately represent actual
messages in a decoding algorithm operating on an entire graph.
An exhaustive decoding of error patterns on this expanded sub-
graph results in a list of all error patterns up to some weight,
located on variable nodes of this sub-graph, which lead to
a decoding failure. The union of the support of these error
patterns gives the location of the variable nodes in the Tanner
graph G that is exactly a trapping set of the decoder. The size
of the induced graph of the TS, referred to as the contracted
sub-graph, compared to that of the expanded sub-graph is a
measure of a message approximation accuracy and thus the
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accuracy of contribution of this trapping set to the overall
FER. We refer to this procedure as an expansion-contraction,
and by repeating it on each and every short cycle in the initial
list allows us to find contributions of all error patterns up to
given weight to the FER in the EF. Computational saving from
expansion-contraction procedure compared to FER estimation
using MC simulation as well as enumeration techniques [20]
which run on the entire graph G is huge and comes from
the fact that the expanded sub-graph has much less nodes
and edges than G. Also, the contraction step is generic and
applicable to any iterative decoding algorithm as long as it
can be described by local message update rules. Moreover,
unlike importance sampling approaches, in the contraction
step, we perform exhaustive decoding of error patterns on the
expanded sub-graph to find harmful error patterns and obtain
a trapping set’s true critical number and multiplicity.

Also, note that unlike previous approaches, our method
does not make any a-priori assumptions about what graph
topologies makes a trapping set dominant or harmful. On the
contrary, these topologies are identified by the procedure.
Moreover, some of these topologies may be harmful only in a
given neighborhood, while some of them are universally harm-
ful, i.e., harmful irrespective of their location in the Tanner
graph of a code. As an important side benefit, the expansion-
contraction procedure produces a list of dominant trapping
sets, i.e., trapping sets that are most harmful to a decoder in
the EF.

The remainder of the paper is organized as follows.
In Section II, the preliminaries on LDPC codes, followed by
basic notations and definitions are discussed. In Section III,
we develop the proposed expansion-contraction procedure.
We semi-analytically estimate the FER in EF regime for differ-
ent decoders making use of the expansion-contraction proce-
dure, and compare with Monte-Carlo simulations and direct
enumeration of lowest-weight error patterns in Section IV.
In Section V, we conclude the paper along with future research
directions.

II. PRELIMINARIES

Consider an LDPC code with code rate R defined by a
sparse parity check matrix H of dimension M x N, N > M.
The parity check matrix can be represented graphically by a
bipartite graph called Tanner graph G = (V U C, E), where
V = {v1,...,un} is the set of N variable nodes (VNs)
corresponding to the N columns of H, C' = {c1,...,cm}
is the set of M check nodes (CNs) corresponding to the
M rows of H, and E is the set of edges: {(vj,¢;) : vj €
V, ¢, € C}. A VN w;,1 < j < N is connected to a CN
¢, 1 <13 < M by an edge in the Tanner graph if the entry
H(i,j) = 1 in the corresponding parity check matrix. The
nodes v; and c; are then referred to as neighbors. Let us
denote the set of CNs connected to a VN v; by N (v;), and
N (v;)|, where | - | denotes cardinality, is referred to as the
degree of VN v;. Similarly, we can define the neighbor set
and the degree of a CN ¢; as N (¢;) and |N(¢;)], respectively.
For a subset of variable nodes, say K C V, N(K) denotes
the set of CN neighbors. The induced sub-graph G(K) is the
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graph containing the nodes K U N(K) along with the edges
{(z,y) € E : z € K,y € N(K)}. For a regular LDPC
code, |N(v;)| = dy and [N (¢;)| = de, Vi, j. The girth, g,
of the Tanner graph G is the length of the shortest cycle in
G. If G has x4, Xg+2,- .- cycles of length g,¢g + 2, ..., then

the cycle enumerator series CYC(z) = Y x,z" defines the
r>0
cycle profile of GG. We use the cycle profile and location of

short cycles to determine the initial list of expansion in the
expansion-contraction procedure.

Let x = (z1,x2,...,zy) denote a codeword of length N
such that HxT = 0. When x is transmitted over the BSC,
an error vector e = (el, €2,. .., eN) is superimposed to the
codeword, and the received word r = (71,72, ...,7rN) is xDe,
where @ is component-wise XOR. Each bit z; € x is flipped
with a probability «a, called the BSC cross-over probability.
For linear codes transmitted over output symmetric channel
(such as the BSC) and decoded using symmetric decoding
algorithms [5], we typically assume, without loss of generality,
that the all-zero-codeword is transmitted. An iterative message
passing decoder D attempts to recover the transmitted code-
word by passing messages over the edges of the Tanner graph
iteratively and in practice, the maximum number of iterations
is pre-determined, denoted by ¢,,,,... The output of the decoder
at ¢-th iteration is denoted by ¢ = (2{,#%,...,2%), wherein
the superscript indicates the iteration. The decoder is said
to converge correctly to the codeword if % = x for any
¢ < lynqe and fail to converge correctly otherwise.! A VN vj
is eventually correct if there exists a positive integer [ such
that for all iterations ¢ > [, j:é’ = x;. Then, trapping sets are
defined as follows:

Definition 1 ( [4]): A trapping set 7 for an iterative
decoder D is a non-empty set of variable nodes in a Tanner
graph G that are not eventually correct. If the sub-graph G(7')
induced by such a set of variable nodes has ¢ VNs and b odd
degree CNis, then the trapping set 7 is conventionally labeled
as an (a,b) trapping set.

When the b odd degree CNs have all degree-1 in G(7), and
the remaining even degree CNs all have degree-2, then the
TS is called elementary. For an elementary TS, if each and
every VN has more even degree CNs than odd degree CNs,
it is called an elementary absorbing set. Note that Definition 1
rely on the iterative decoder D and the Tanner graph G, and
does not specify which property of a set of variable nodes
results in a decoding failure.

A. FER Estimation

Suppose a decoder D is able to correct all error patterns of
Hamming weight ¢ for a code of length /N. Then

N
FER = Y mnia'(1—a)V 7, (1)

i=t+1
where n; represents number of error patterns of Hamming
weight ¢ that are uncorrectable, and « is the BSC cross-over
probability. Obtaining values for all n; in Eq. (1) is compu-
tationally infeasible for large /N. However, to estimate the EF

'We mean by converge, to ‘correctly’ converge to the transmitted codeword,
throughout this paper.
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part of the FER curve, we need to find all the uncorrectable
error patterns only up to some weight. Hence, determining the
weight and the number of smallest uncorrectable error patterns
are the key steps for estimating the EF. This observation brings
us to the definition of critical number ;1 and strength s of a
trapping set.

Definition 2: Critical number p of a trapping set 7 is the
minimal number of variable nodes that have to be initially in
error for the decoder to fail to converge.

Definition 3: Failure inducing set is a set of variable nodes
that have to be initially in error for the decoder to fail to
converge.

Definition 4: Strength s of a trapping set 7 is the number
of failure inducing sets of cardinality .

In other words, the cardinality of the minimal failure induc-
ing set for a TS gives its critical number and the number of
weight-p error patterns gives its strength. If T, ¢ is the number
of all TSs with the critical number y and strength s across all
trapping sets, then for low values of «,

FER = Z Z s sal (1 —a)V=m), )
n s

The behavior of the FER curve for low values of « [4] is
dominated by log(FER) ~ fiipn log(a) +log (Zg Cuins )
The log(FER) vs log(a) graph is close to a straight line with
slope equal to the minimum critical number, fiyin. Eq. (2)
shows how the critical number p and strength s of TSs
determine the FER in EF regime. We refer to the TSs with
the smallest critical number that determines the FER slope as
the dominant TSs. Even though Eq. (2) is straightforward to
evaluate, finding the exact critical number and strength for all
trapping sets, specific to a given decoder and a given Tanner
graph, is non trivial.

III. EXPANSION-CONTRACTION PROCEDURE

In this section, we describe our method to identify the
dominant trapping sets together with their critical numbers and
strengths for any given decoder and Tanner graph. The general
theme observed in trapping set research is that dominant
trapping sets are composed of short cycles [11]. Therefore,
each short cycle and its neighboring cycles is a potential failure
inducing subset. Note that not all these subsets would cause
convergence failure of a decoder. Decoding failure depends
on the sparseness, the neighborhood, and the exact location
of the induced sub-graph in the Tanner graph, in addition
to the decoding rule itself. Nevertheless, we include all the
short cycles of length g and g + 2 present in the Tanner
graph to obtain an initial list. Such short cycles can be located
efficiently [20], and from this initial list of cycles, we first
expand to bigger and denser neighboring sub-graphs present
in the Tanner graph. From each of the resulting expanded sub-
graphs, we contract to a failure inducing sub-graph (if any)
and obtain the list of dominant TSs of a decoder.

A. Expansion Procedure

From the initial list of short cycles, say of length 2k, let
us consider the expansion from a single cycle. We label the
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(c) Depth 1: vs is added

(d) Depth 1: ve is added.

Fig. 1. An illustration of expansion steps from an initial short cycle shown
in Fig. 1(a) to depth 1 sub-graph as shown in Fig. 1(d). In Fig. 1(a), we have
p0) — {v1,v2,v3} and Cfo) = {ci1,...c6}. From the neighbors of c1,
we selected vy for expansion as it has another CN neighbor c3 € C (0) a5
shown in Fig. 1(b). Similarly, we added vs in Fig. 1(c) and ve in Fig. 1(d)
in V(). The set of VNs V(1) = {vi,v2,...,v6} and the induced graph
G(V(D) as shown in Fig. 1(d) is obtained when there are no more variable
nodes that satisfies the condition for expansion in depth 1.

k variable nodes present in the cycle as vy, ..., v, with slight
abuse of notation from Section II. Denote this initial set of
variable nodes {v1, ..., v} as V(9 and its induced sub-graph
as G(V(). An example of a cycle of length six is shown
in Fig. 1(a). An external VN with respect to V(%) refers to
any VN in V excluding the set V(9), denoted by v € V' \ V(©),
Let C(9) the set of check nodes in Q(V(O)), be partitioned into
the disjoint union: C(*) = C§0) U Céo) U.. 'C((i(z) based on their
CN degrees, where C, represents the set of degree-z CNs. For
example, Cfo) is a set of all degree-1 CNs in the induced sub-
graph. The superscript zero in the notation denotes the initial
list for expansion, and in general shows the depth of expansion
in the recursive step as follows.

We begin by initializing V(1) with the initial set of variable
nodes, i.e., V() = V() An external VN w that is a neighbor
of a degree-1 CN i.e., w € N(c), where ¢ € C§O), is selected
for expansion if w has a CN neighbor in the set C(9) \ c.
We repeat this selection step for the VN neighbors of all the
CNs in C§O). The resulting selected VNs are added into the
set V1), Note that V() D V() where equality holds when
no new VNs are added in the expansion step. Fig. 1 gives
an illustration of expansion from depth O to 1. Similar to
the expansion step shown in Fig. 1, we recursively expand to
depth 2 and higher. After § recursions, we have the sub-graph
Q(V(‘s)), induced by the set V() defined as

VO =wuypl, 3)

where W is the set of VNs selected such that every w € W
is a neighbor of ¢ € ™" and N'(w) \ ¢ € C¥~. In other
words, the expansion condition above is met if the intersection
of N(w) \ ¢ and C~Y is non-empty. Fig. 2 shows the
expansion procedure to depth 2 starting from a short cycle.
We stop the expansion process if no external VN is added at
expansion depth § i.e., [V | = [VO~1|, or if the cardinality
of the expanded set of VNs [V(9)| exceeds a threshold, . The
threshold « is chosen to stop the recursive expansion process,
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Depth 0 Depth 1

Fig. 2. Expansion procedure steps from a short cycle of length six up to
depth 2. The resulting expanded graph is used in the contraction step.

limiting the number of VNs in the expanded sub-graph and
thereby, the complexity in the next step of contraction. The
size of the resulting expanded graph could be either close to
K or even two or three times larger than x depending on the
neighborhood of the initial cycle. Note that in the expansion
step, we do not make any assumptions or restrictions on the
topology of a potential TS. In other words, the procedure
will give both elementary and non-elementary trapping sets.
Expansion procedure starting from all degree-1 CNs is a
computationally effective and sufficient strategy, however this
is not comprehensive compared to exhaustively expanding
from all the CNs in every step of the expansion. We note
that since the expansion procedure and the initial list are
chosen based on finding the densest sub-graphs, some sparser
sub-graph configurations might be missed. For completeness,
we will briefly discuss on some of those sub-graphs and on
trade-offs between accuracy and computational complexity
later in the Section IV-B.

The expansion procedure is formally described in Algo-
rithm 1. After expansion step, the graph G(V(?)) is the input
to the contraction step explained in the next subsection whose
goal is to find the dominant TSs of the decoder as well as to
compute their critical number and strength.

B. Contraction Procedure

As explained in Section III-A, when applied to a given
cycle in the initial list, the expansion procedure produces a
set of variable nodes Vexp = V9, and its induced graph
Gexp = G(Vexp). Since Gexp is by construction composed of
many short cycles, Vexp is potentially a trapping set for a given
decoder. The purpose of the contraction step in a nutshell is
to identify failure inducing sets in Vgxp and to reduce Vgxp to
a TS for a given decoder D. This is achieved by exhaustively
decoding error patterns running D on Ggxp ensuring that the
messages accurately represent the actual messages operating
on the entire Tanner graph (. After obtaining a list of
all minimum-weight failure inducing error patterns, Vgxp is
contracted to the union of support of such error patterns under
the assumption that if a variable node is not in any of the
failure inducing sets obtained through exhaustive decoding
process, it could be removed from the TS.

Before we explain how this is precisely done, we note
that the contraction step is also generic and is applicable
to any iterative decoding algorithm as long as it can be
described by local message update rules. Consider such an
iterative message passing decoder D, defined as a 6-tuple
D = (/\/l,y,@,\ll,ci),\il), where ) and M are the channel
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Algorithm 1 Expansion of Short Cycles to Larger Sub-Graphs

1: Inputs: Tanner graph G, Expansion threshold x

2: Compute cycle profile of G, and obtain list LN, where
elements of LNy are variable node sets inducing all g- and
(g + 2)-cycles in G.

3: Initialization: Lexp «— 0

4: Repeat

5: for all elements € £;,, do

6: Initial set of variable nodes = V(0.

7:  Expansion depth ¢ = 0.

8: do

9. Initialization: W «— ()

10:  Induced sub-graph: G(V(®)) and set of check nodes: C(%)

11:  for all c € Cfé) do

122 forall w e N(c), w¢ VO do

13: if NV(w)\ ceCY then
14: W —w

15: end if

16: end for

17:  end for

188 0=0+1

19: VO =wuyupl-b

20 while [V©®| > [VO-D| and [VO)| < &

21:  Expanded set of variable nodes = V(%)

22: ﬁExp — V(é)

23: end for

24: Output: Lpxp = List of expanded variable node sets in
the Tanner graph G.

(output) and message alphabets, respectively, ® and U are the
update functions used in variable and check nodes, respec-
tively, and ® is the decision function, and U is the check
estimate function. The function W : {M}%~1 — M updates
the outgoing message 1 of a CN ¢ with degree d. computed
with d. — 1 extrinsic incoming messages, and the function
O : Y x {M}¥~1 — M is used for updating outgoing
message v of a VN v with degree d,,. At iteration ¢, we have
vl = By, {0l 14 1) and ni, = Wy},
where v and 7 represents the VN and CN update messages,
respectively. For completeness of our discussion, we describe
a generic iterative decoder in Appendix A (See [16] and
references within for more details).

We ensure that the messages in the interior of the sub-
graph Ggxp accurately represent actual messages in a decoding
algorithm operating on an entire graph by extending Ggxp to
external variable nodes as shown in Fig. 3 and then, carefully
modeling the behavior of correct messages coming from these
external variable nodes to CfXP, the degree-1 check nodes in
Gexp as we explain next.

a) Modeling Outside Messages: In trapping set analysis
of iterative decoders that propagate binary messages such
as Gallager-B and BF, the messages from external variables
are modeled as “correct”, i.e., they are set to zero in every
iteration. For larger cardinalities of message alphabets M,
it would be inaccurate to simply saturate all such “outside”
messages to max(M) as the magnitudes of messages sent

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 7, JULY 2020

Fig. 3. The extended graph of the depth 2 sub-graph shown in Fig. 1(d),
is the sub-graph Ggxp along with all the external variable nodes connected
to the degree-1 check nodes C]fXP. The enclosed sub-graph is Ggxp with W
representing the degree-1 check nodes. The external variable nodes connected
to all the check nodes ¢ € C]fXP are also shown.

e = @ (+Y, {0} 1)
b7 ({Vﬁ?lm}d"_l)

Vihe = @ <+Y, {\IJ ({l/,(l{)_),c}d'-—l> }""’1)
v ({1/1(“11),,}"«—1)

Fig. 4. Figure shows how messages are updated on a computation tree 7 (c)
towards the degree-1 CN c. All external variable nodes in J(c) are correct
and send message updates according to the decoding rule D. Here we show
the messages in the first two iterations.

from external variable nodes towards their neighbors in CFXP

affect the correctability of the error patterns that corrupt the
variables in Vgxp.

Note that the check nodes in Ggxp of degree greater than
one also receive correct messages from outside the sub-
graph. However, these correct external VN messages of large
magnitude will not affect the magnitude of CN update passed
within the sub-graph Vgxp. For example, in the standard min-
sum decoder on regular LDPC codes, wherein a CN update
computes the minimum among extrinsic messages, for a CN of
degree two or more in Ggxp, the minimum magnitude among
its incoming messages will always be from the erroneous
variable nodes within the sub-graph. Hence, such messages do
not affect the correctability of the error patterns. Thus, we only
focus on modeling the behavior of correct messages coming
from external variable nodes to CEXP, the degree-1 check nodes
in Ggxp. Fig. 3 shows the extended graph for the example
in Fig. 2 with external variable nodes added to all check nodes
c € CFXP. We assume that no two external variable nodes
share a common neighbor (isolation assumption beyond the
expanded sub-graph [16]). To model the messages passed in
decoding iterations, we further assume that each CN ¢ € C]fxp
is a root of an external computation tree 7(c) in which all
variable nodes are correct. An example of a computation tree
is shown in Fig. 4 along with the message updates.

While the above assumption oversimplifies the graph topol-
ogy beyond the expanded sub-graph, we are able to model
that in the beginning of decoding, lower degree external
variable nodes send smaller messages towards C-XF and thus,
contribute less to correctability of the error pattern. To simplify
the message analysis, let us assume that in J(w), all the
variable nodes have the same degree d, = |[N(w)]|. Since,
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all external variable nodes are correct, the messages sent from
each VN in the tree towards the CNs at a particular depth from
the root of the tree are equal. Also, under the all-zero codeword
assumption, the channel value of all external variable nodes
is y, = +Y, for every w € J(c) and ¢ € CFXP. The correct
VN message passed from w € J(c) to a CN ¢ € CEXP in (-th
iteration satisfy the following recursion:

b—1
. = <+Y, [w (we=nye)) > L@
with initialization as Vf,?LC = (+Y, {O}d“_l), where +Y is
the channel value corresponding to a correct bit and Y € ).
In Fig. 4, we show how the messages are recursively updated
in a computation tree J(c) directed towards the degree-1 CN
c. Based on Eq. (4), we have the following proposition.

Proposition 1: Under the isolation assumption for the exter-
nal variable nodes connected to a degree-1 CN ¢, the messages
sent to ¢ from a variable w € J(c) with degree |N (w)| = d.,
would approximately increase at the rate d,, — 1.

Let us denote these messages from external correct variable
nodes to ¢ by 0., ¢ € CFXP. The vector of 8 = (0.),
Ve € CEXP s referred to as an external message vector, com-
puted according to Eq. (4). & models the external messages
for the decoder D in the contraction step to find the trapping
set and uncorrectable error patterns as described next.

b) Finding  Trapping  Sets: ~As  discussed in
subsection III-A, since Ggxp is dense, it is potentially a
trapping set for a given decoder D. To determine failure
inducing sets located within Vgxp, we corrupt variable
nodes in Ggxp by all possible error patterns, and for each
error pattern run the decoding algorithm while assuming
that all external variable nodes are not corrupted by errors.
We exhaustively attempt decoding of all error patterns starting
from weight 1 to [Vgxp|. For every weight p € [1, [Vexp|],
we have (lvfz”)l) error patterns in the set E(®). If all error
patterns up to weight |Vexp| are successfully decoded to an
all-zero vector, we label that particular sub-graph as harmless
for the decoding algorithm. Instead, if any error pattern
of weight p fails to be decoded correctly, we record that
error pattern as e;. We continue the decoding attempt on all
of the remaining error patterns in the set IE(*) and record
those for which the decoder D fails. Let {e,...,es} be
the set of uncorrectable error patterns of weight p. Define
Vcontr as the union of the support of all error patterns:
Veontr(€1, - - -, €5) i= UZ:1 supp(ex). Vcontr i8S composed
of all variable nodes in Ggxp which participate in at least
one decoding failure, i.e., the failure inducing set. As we
know from Definition 2 and Definition 4, we have now
obtained the critical number and strength of the trapping set
Veontr as p and s, respectively. Let us also define Econtr
as a collection of the support sets of all error patterns:
Econtr (€1, - - -, €5) 1= {supp(e1), .. .,supp(es)}.

Fig. 5 shows an example of contraction step to find the trap-
ping set from the expanded graph. Ggxp is shown in Fig. 5 (a).
Let us suppose that the supports of error patterns are
supp(el)z{vl, V2, V3, V4, U5}, supp(eg)z{vl, V2,03, V4, Uﬁ},
supp(es)={vz2, v3,v4,v6, v}, supp(es)={va,v3,vs,v9,v10}.
Then VCONTR(ela €2, €3, 64) = {1)1; V2,03, V4, Us, Vg, V9, 1)10}-
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(a) @ denotes variables appearing (b) Contracted graph - the dom-
in at least one failure inducing set inant trapping set

Fig. 5. From the expanded graph shown in Fig. 1(d), we perform the
contraction step to find all minimal failure inducing sets. In Fig. 5(a), e denotes
variable node that belongs to at least one failure inducing set. Dominant
trapping set contains only those variable nodes and its induced sub-graph
is the contracted graph shown in Fig. 5(b).

Critical number of Vcontr i 5 and strength is 4. Econtr =
{supp(ei),...,supp(es)}. The graph induced by VconTr is
G(Vcontr) in the Fig. 5 (b).

We obtain Vcontr, U, S, and Econtr after the contraction
step from Vgxp if there exists at least one uncorrectable error
pattern of weight u. The contraction step is now applied to
each and every expanded variable node sets in our expanded
list Lgxp. From Veontr, (4, and s obtained from the contraction
steps, we create a list Lps which contains all topologically
unique harmful TSs present in the code along with their cor-
responding critical number and strength. We refer to Lrg as the
trapping set profile for the given LDPC code and decoder D.
The number of TSs present in the list Lrg is typically smaller
than the number of cycles present in Ly as some expanded
sub-graphs are harmless and also, two different expanded sub-
graphs can contract to the same TS. From Econtr Obtained
from the contraction steps, we have Lgrrors, @ list of unique
uncorrectable error patterns of the given LDPC code. Suppose
we have n; uncorrectable error patterns of weight ¢ in the list
Lerrors. We estimate FER at low values of a using Eq. (1).
For an accurate EF estimate, it is important to ensure that
the uncorrectable error patterns are not double-counted. Only
unique error patterns are included in Lgrrors and contribute
to FER in Eq. (1). As a simple example, suppose there are two
distinct TSs: VCONTR (el, €o, 83) and VCONTR (el, €9, ey, 85),
where e;, j € [1,5] is an uncorrectable error pattern of some
weight ¢. Then, we only count n; = 5 for FER calculation
in Eq. (1).

As a summary of this section, using the expansion-
contraction procedure, we obtained a list of harmful low-
weight error patterns, Lprrors, and the trapping set profile,
Lrs, for a given Tanner graph G and decoder D. The EF
FER estimate is computed using Eq. (1). Now, we present
simulation results obtained using the procedure in Section IV.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we present the results of our sub-graph
expansion-contraction method for EF computation applied to
different codes and decoders, focusing mainly on quasi-cyclic
LDPC (QC-LDPC) codes and quantized-message passing iter-
ative decoding algorithms (e.g., quantized min-sum (MS),
quantized offset min-sum (OMS)), which are widely used
in practical applications. Two QC-LDPC codes of regular
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TABLE I
LDPC CODE PARAMETERS
Code N M Z | g Xg Xg+2
QC 1KB 9216 896 32 | 6 | 5257 x 32 | 893535 x 32
QC 2KB 18432 | 1792 | 32 | 6 | 3093 x 32 | 899974 x 32
TABLE 11

NUMBER OF WEIGHT-k UNCORRECTABLE ERROR PATTERNS FOR
DIFFERENT OMS (Y, v) DECODERS PLOTTED

IN FIG. 6
[ OMS / k H 4 [ 5 [ 6 [ 7 [ 8 ]
10,1 19232 | 15712 | 12554400 32256 32
7,1 0 23360 169472 7997280 148384
5,1 0 864 20832 979136 1606880

VN degree d, = 4, code rate R = 0.903 and circulant size
7 = 32 of lengths N = 9216 (referred as QC 1KB) and
N = 18432 (referred as QC 2KB) are chosen. Note that both
codes have girth ¢ = 6 as given in Table I. The number of
g- and (g + 2)-cycles that are used to initialize the expansion-
contraction procedure are also given in Table I.

For all the MS and OMS decoders considered for simula-
tion, we select a quantization of 4-bits (preferred over 3-bits
and lower which suffer from message saturation and precision
issues resulting in a high EF, and over 5-bits and higher to
limit the decoder complexity) and use a flooding schedule
with maximum number of decoding iterations l,,,,, set to 100.
More details on the decoder are described in the Appendix A.
We choose OMS decoders with different channel values that
have good and similar waterfall performances to predict their
EF locations.

A. Error Floor FER Results

Consider first, the QC 2KB code. Quasi-cyclic property of
the chosen code can be made use of to reduce the com-
plexity of the expansion-contraction procedure considerably.
This reduction is proportional to the circulant size, Z by
enumerating only the non-isomorphic 6-cycles and 8-cycles
present in the QC 2KB code, and performing the expansion-
contraction procedure as discussed in Section III. Quantized
OMS decoders with different channel values Y =5, Y =7,
Y =10, with an offset v = 1 are used for the MC simulation
and the contraction step. Fig. 6 shows FER curves plotted
using MC simulation and the FER estimate in the EF regime
computed using Eq. (1). The EF estimate from the expansion-
contraction method accurately matches the corresponding MC
simulation FER curve of OMS decoders with channel value
Y = 7and Y = 10 at low values of a. For the OMS
decoder with Y = 5, = 1, the EF is estimated to be
below 10~Y by extrapolating from the MC simulation curve.
The OMS decoders chosen for simulation with different Y
values, even though they exhibit similar waterfall curves,
exhibit very different error floors. Fig. 6 highlights that the
expansion-contraction procedure is able to efficiently quan-
tify the difference in error floors of various decoders. This
difference in the slope and EF location can be attributed to
the weight and number of low-weight dominant error patterns
given in Table. II.

High EF estimation of the OMS Y = 10,7 = 1 decoder
results from the 19232 uncorrectable weight-4 error patterns
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N=2KB, R=0.903
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********** Exp-Contr, Y=5, 7=1

Frame Error Rate (FER)

10 107
Channel Error Probability: BSC («)

Fig. 6. FER plots comparing Monte-Carlo (MC) simulation and the
expansion-contraction method for QC 2KB code with different offset min-sum
(OMS) decoders with channel value Y = 5,7 and 10 and offset v = 1. In the
expansion-contraction method, we expand the 6- and 8-cycles present in the
Tanner graph with expansion parameter ~ = 10. The expansion-contraction
procedure computes a tight lower bound to the EF curves obtained from MC
simulation. For the OMS decoder with Y = 5,+v = 1, we obtain the EF
below the FER of 109 by extrapolating from the MC simulation curve to
the FER estimate.
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Fig. 7. Figure shows that the FERs estimated for the QC 1KB code, x = 10,
for the OMS decoder with Y = 5, v = 1 and the MS decoder with Y = 5
closely trace the corresponding MC simulation curves in the EF.

(Umin = 4) compared to the OMS decoders ¥ = 7,7 =1
and Y = 5,y = 1, which fail only for weight 5- and higher
error patterns (fimin = 9)-

For the QC 1KB code in Table. I, we obtained the error
floor FER estimate for an OMS decoder with Y =5,y =1
and a MS decoder with Y = 5. Fig. 7 shows that the estimated
FER curves using the expansion-contraction method match the
EF curves obtained from MC simulations.

In addition to the FER computation, the procedure can
also identify the contribution of error patterns to the FER
slope. In Fig. 8, we characterize the contribution of error
patterns of different weights to the FER estimate for the
OMS decoder with Y = 5,7 = 1. FER estimates from error
patterns obtained from the expansion-contraction procedure
starting from 8-cycles in the QC 1KB and QC 2KB code
are plotted in Fig. 8 (a) and Fig. 8 (b), respectively. The
FER obtained in Eq. (1) is computed by summing the error
probabilities over error patterns of different weight. Likewise,
each of the “Weight-k Error Patterns” lines in Fig. 8§ computes
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weight-7 error patterns (n;) is given in parenthesis. Identifying low-weight error patterns gives an exact estimation of FER in EF region. (a) The weight-4 error
patterns (dashed line) and weight-5 error patterns (dashed line with marker) determine the EF estimation. (b) The weight-5 error patterns contribute the most

to the EF estimation.
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Fig. 9. Figure shows the FER estimated for the IEEE 802.3an code along

with the MC simulated curve. The expansion procedure expands from the (8,8)
graphical structures present and contracts using the OMS decoder with Y = 5,
v = 2. The EF estimate closely traces the corresponding MC simulation
curve.

the FER contribution of weight-k error patterns obtained from
the expansion-contraction procedure and we add up all the
curves to obtain the FER “Error Floor Estimation” curve.
In Fig. 8 (a), the contribution from the weight-4 error patterns
(minimum critical number), shown as a dashed line, dominates
the error floor FER estimation curve, shown as a solid line,
as noted in [4]. Observe that the contribution from the weight-
5 error patterns, shown as a dashed line with marker, to the
FER is also not negligible as there are 9248 uncorrectable
weight-5 error patterns compared to only 64 uncorrectable
weight-4 error patterns as given in the Fig. 8 (a) legend. This
reinforces the importance of identifying all such error patterns
to get an accurate estimation of FER in the EF region.

In Fig. 9, the EF of the OMS (Y = 5,y = 2)
decoder is estimated accurately for the well-studied IEEE
802.3an (2048, 1723) regular LDPC code [13], [23] using the
expansion-contraction method. This code has a larger column
weight, d, = 6 and a shorter code length in comparison with
the QC codes considered before. The (8,8) TS present in this
code is well studied in the literature. This knowledge about
previously studied/standard LDPC codes can be made use of as
the starting structure for the expansion-contraction procedure.
The neighborhood of such structures and the decoder is taken

into account during the expansion-contraction procedure to
give the exact critical number and the multiplicity of the
uncorrectable error patterns. The OMS (Y = 5,7 = 2)
decoder fails to converge for error patterns of weight 6, not
just in the (8,8) TS, but also in its neighborhood. More
importantly, the algorithm identifies non-elementary TSs with
critical number 6 which affect the true EF estimation. These
newly identified non-elementary TSs require in-depth analysis
beyond the focus and scope of this paper.

B. Trade-Offs Between Error Floor Estimate Accuracy and
Computational Savings

Accuracy of FER estimation in the EF regime depends on
identifying low-weight error patterns resulting in decoding
failure as shown in Fig. 8. The expansion-contraction pro-
cedure is shown to accurately estimate the error floor FER
in Fig. 6 and Fig. 7. Now, we discuss various approximate
graph expansion methods employed to facilitate the trade-off
between the accuracy and computational saving obtained from
the method.

1) Expansion Details: In the expansion process given in
Section III-A, we expand a given sub-graph by finding a
single external variable node that adds a short cycle in the
neighborhood of the sub-graph. Extending this search to find
two or more external variable nodes in one recursion of the
expansion procedure significantly increases the computational
complexity. Moreover, expanding with many external variable
nodes results in much larger expanded sub-graphs. We choose
the expansion threshold parameter ~ to limit the expanded
sub-graph size (in terms of number of variable nodes) in order
to limit the number of error patterns used in our exhaustive
contraction step. To illustrate this effect, in Fig. 10, we show
how the number of variable nodes increases in the expanded
sub-graphs with respect to the expansion depth in the QC 1KB
code starting from all the 6-cycles in the Tanner graph with
K set to 10. All the sub-graphs at expansion depth 0 have
3 variable nodes and the lines emerging from the marker on the
Y axis shows their expansion to sub-graphs with the number
of variable nodes ranging from 3 to 9 in depth 1 and to subse-
quent depths. The resulting expanded list, Lgxp contains sub-
graphs with number of VNs ranging from 3 (isolated 6-cycles
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Fig. 10. Number of variable nodes in sub-graphs in each step of expansion
process starting from all 6-cycles in QC 1KB code. The marker size at each
expansion depth is proportional to the fraction of the total expanded graphs.
All the sub-graphs at expansion depth 0 have 3 variable nodes as we expanded
from 6-cycles, represented by the marker on Y-axis. Lines emerging from
this point show that in expansion depth 1, we have sub-graphs with number
of variable nodes ranging from 3 to 9, and their marker sizes show their
contribution in the expanded list. All sub-graphs complete the expansion
process by expansion depth 8 to form the final expanded list LCgxp.
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Fig. 11. Comparing the accuracy of FER estimate from expansion-contraction
procedure starting separately from two different initial list: 6-cycles and 8-
cycles list. For the QC 1KB code, and an OMS decoder with channel value
Y = 5 and offset v = 1, we show that the procedure starting from a 6-cycle
initial list gives only a lower bound on the FER estimate.

without short cycles in their neighborhood) to 29 (sub-graphs
with very dense neighborhood). The horizontal lines below the
number of variable nodes of 10 (as x = 10) represent the sub-
graphs that already completed their maximal expansion and
those above represent the sub-graphs that expanded beyond
x and are not expanded in subsequent steps. This ensures
that the expansion process obtains a sufficiently large enough
neighborhood of all the cycles taking into account the actual
location in the Tanner graph.

The initial list for expansion, Lyny in Algorithm 1, includes
all short cycles of length g and g + 2 present in the Tanner
graph, where ¢ is the girth. The cycle profiles of the QC
LDPC codes used for simulation show that xg12 > X4
(See Table I). This observation also holds true for most of
the practically used LDPC codes. Therefore, from a com-
putational standpoint, restricting LN to only the g-cycles
makes the expansion-contraction process efficient. However,
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this approach may adversely affect the accuracy of EF esti-
mation. For example, suppose the input to the expansion in
Algorithm 1 is a Tanner graph with girth ¢ = 6 and L
containing only the 6-cycles. The algorithm output Lgxp will
not contain any isolated 8-cycles, or sub-graphs composed of
only 8-cycles. These missed sub-graphs may contain TSs with
the minimum critical number. Consequently, the contraction
step will not be able to identify any failure-inducing sets (if
present) in such sub-graphs and we will estimate only a lower
bound to the FER. Fig. 11 depicts a lower bound estimate on
the error floor FER computed from the expansion-contraction
procedure from an initial list that includes only 6-cycles for the
OMS Y = 5,~v = 1. The gap to the accurate estimation of EF
depends exactly on the contribution to the FER by those failure
inducing sets missed in the expansion-contraction process.

2) Contraction Details: The contraction step described in
Section III-B is the computationally intensive step in the
expansion-contraction procedure. The creation of the initial
list followed by the expansion procedure is not factored into
the computational savings calculation presented next as they
represent a negligible portion of the overall computational
complexity. Also, for the task of comparing the EF locations of
several decoders for the same LDPC code, the cycle counting
and the expansion steps need to be performed only once, while
the contraction step needs to be reproduced for every decoder.

Let us first describe the computational complexity of a
classical MC simulation reaching an EF, which will serve as
reference. In order to obtain statistically confident data in the
EF regime with FER = 107!° and record at least 20 errors
at this FER, we need to decode at least 20 x 109 erroneous
codewords of length N. Each decoding requires approximately
log, N iterations on average to converge. Each decoding
iteration performs VN update and CN update along all edges
and has a complexity in the order of (N X d,) + (M x 2d.)
elementary operations, where N x d,, = M x d,. is the number
of edges in the Tanner graph. Therefore, FER estimation in
the EF at a single crossover probability requires roughly:
20 x 101% x log, N x ( (N x d,) + (M x 2d.) ) operations.

Compared to the MC simulation of the decoder D on
the entire Tanner graph G, the contraction step performs
exhaustive MC simulations only on comparatively very small
sub-graphs Ggxp present in the expansion output list Lgxp.
In order to evaluate the computational complexity on a fair
scale, we take into account the contribution of error patterns
to the FER value we are interested in. To estimate FER at
10719, we need only error patterns up to weight-7 (see Fig. 8).
Checking all error patterns up to weight-7 is sufficient to
estimate the EF at 10710 or above. In Lgxp, let us denote the
number of sub-graphs with |Vgxp| = p variable nodes by A,.
Total number of error patterns used in the contraction step

min(p,7
for a sub-graph with p variable nodes is B, = z(: : ®).
Each decoding attempt requires approximately logg ]% itera-
tions on average to converge. Each decoding iteration has a
reduced complexity in the order of (p X d,) + 2¢q elementary
operations, where ¢ denotes the number of check nodes in
the expanded sub-graph. The reduction in the computations
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Fig. 12.  Minimal critical number of OMS (Y = 5,4 = 1) decoder is
4 due to this particular failure configuration present in the QC 1KB code.
Two 4-error patterns {v1,v2,v3,v4} and {vs, ve, v7,vg} in the TS fail and
contribute the most to the EF.

involved at the check nodes, that results from modeling the
external “correct” messages as discussed in Section III-B,
contributes to computational savings especially for high rate
codes with large CN degrees. For densely connected sub-
graphs, ¢ is approximately equal to p. Therefore, the total
computational complexity required for contraction step is
calculated as > A, x B, x log, p X (p X dy + 2p).

For the QCp 2KB code with a code length of 18432,
d, = 4 and average d. = 41, MC simulation requires
in the order of 6 x 10'7 operations to obtain FER =
1070 at a single cross over probability. Considering all
expanded cycles from initial list of 8-cycles of the same
code, the total number of computations required for the
contraction step is only in the order of 8 x 10''. Compared
to the MC simulation, our method is nearly 1,000,000 times
faster in computing the EF. As expected, in comparison
to the highly complex method of direct enumeration and
testing of minimal weight error patterns [17] which requires

(E?:1 (]:])) x logy N x ((N X dy) + (M x 2dc)) compu-
tations, our method is nearly 10'* times faster in computing
the EF. Note that the minimal-weight of error patterns obtained
for the 2KB code is 5. In [20], wherein cycle enumeration
based EF estimate is obtained for hard-decision decoders,
to obtain just the critical weight-5 error pattern, we need to
at least enumerate all cycles of length 6, 8§ and 10 and test
for the decodability of all error patterns after decoding over
the complete graph. This complexity can be approximated as
(3072 Xeil2 = 1)) X logy N x (N x dy) + (M x 2d,) ),
where x2; denotes the number of cycles of length 2:. Using
the number of cycles in the 2KB code as given in Table I
(also, x10 = 2,540,767,232), total computations required is
in the order of 2 x 10'7. Thus, expansion-contraction method
is 3 x 10° faster, in addition to being more accurate especially
for stronger decoders whose harmful TSs are much larger
and may not be obtained by enumeration of small cycles
alone. Using different graph expansion techniques mentioned
here, varying expansion parameter x and choosing the ini-
tial list |Cini| carefully, we can efficiently and accurately
estimate FER in the EF regime with huge computational
savings.
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C. Identifying Dominant Trapping Sets

In addition to estimating the error floor FER efficiently,
the expansion-contraction method produces a list of dominant
TSs for the decoder as an important side benefit. Insights
obtained on dominant TSs are relevant and useful for improved
code design and decoder-specific improvements in future
research. Some of these topologies may be harmful only in
a given neighborhood while some of them are universally
harmful, i.e., harmful irrespective of their location in the
Tanner graph of a code. As a trivial example, for the OMS
decoder with Y = 10,y = 1, we observe that any error pattern
in a single isolated eight cycle is always corrected: (8,4) TS
is not a harmful configuration for the decoder. Also, a non-
elementary (5,9) TS, which has a six cycle and 2 eight cycles,
is also not a harmful configuration. However, this decoder fails
for all (4, 6) TS structures present, regardless of neighborhood,
and these failure significantly contributes to its EF slope.
Fig. 12 shows a TS present in the QC 1KB code for the offset
min-sum decoder with Y = 5, v = 1. Two 4-error patterns:
e = {v1,v2,v3,v4} and ey = {vs, v, v7,vs} in the TS fail
for the decoder. We also obtain that the critical number, p = 4
and strength, s = 2 for this TS. Being the lowest weight failure
inducing error patterns, they contribute the most to the EF as
shown in Fig. 8 (a). Interestingly, the two error patterns in the
TS do not overlap. The dense graph structure having numerous
overlapping 8 cycles and their symmetry contributes to the
decoder failure. Another interesting observation was finding
dominant non-elementary TSs in the IEEE 802.3an standard
code, for the OMS (Y = 5,7 = 2) decoder. These harmful
structures can be attributed to their neighborhood (8,8) TSs
along with the observation [24] that the BSC channel errors
with high error magnitudes can result in dominant TSs with
odd degree > 1 CNs.

V. CONCLUSION AND FUTURE WORK

We devised a computationally efficient method for estimat-
ing error floors of LDPC codes over the BSC channel with
or without a-priori knowledge of harmful TSs. Short cycles
in the Tanner graph are expanded and exhaustively contracted
to obtain a list of harmful trapping sets. TSs are identified
from sufficiently large neighborhood of short cycles in an
actual Tanner graph, i.e. not isolated from their neighborhood.
Also, TSs are identified by decoding error patterns using a
particular message passing decoder, i.e., the list of harm-
ful trapping sets differs from one decoder to another. The
method is applicable to regular and irregular codes and can be
readily extended to a more general binary-input, finite-level
output symmetric memoryless channels with arbitrary mes-
sage update rule with an expense of increased computational
complexity. Expansion-contraction method can be fine-tuned
further for improving the speed and accuracy of obtaining
the EF. As future extension, we would extend the method for
EF computation for the binary input-additive white Gaussian
noise (AWGN) channel [12] with quantized outputs. We plan
to utilize the trapping set profile to develop a new harmfulness
characterization that can help design LDPC codes with very
low EF.
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APPENDIX A
ITERATIVE DECODING ALGORITHM

An iterative decoder D, is a 6-tuple D = (M,),
[V i), \i/), where ) and M are the channel (output) and
message alphabets, respectively, ®, U are the update functions
used in variable nodes (VNs) and check nodes (CNs), and )
is the decision function, and U is the check estimate function.
Let the messages passed over the edges of the Tanner graph
be denoted as follows: m(¥) = nj(\l})(v)\cﬁv denote all incoming
messages to the VN v except a message from the CN ¢ at /-
th iteration. Similarly, n(¥) = V%)(C)\DHC denote all incoming
messages to the CN ¢ except from the VN v at ¢-th iteration.
We denote by 1) = U/(\Zf)(@)év» messages incoming to v, and

byi®) = nj(\l})(c)éc messages incoming to ¢ in the /-th iteration.

For a quantized decoder with K levels, the message alphabet
M consists of K = 2k + 1 levels to which the message
values are confined to. The message alphabet is defined as
follows: M = {—Ly,...,—L1,0,Lq,..., Ly}, where L; €
7+ (positive integers) and L; > L; for any ¢ > j. The sign
of a message m € M can be interpreted as the estimate of
the bit associated with the VN for which m is being passed
to or from (positive for zero and negative for one), and the
magnitude of a message as a measure of how reliable this
value is. The set ) which denotes the set of possible channel
values is defined for the case of BSC as Y = {+Y'}, and the
channel value y; € ) corresponding to node v; is determined
by yv; = (—=1)"Y, ie., we use the mapping 0 — Y and
1 — =Y. The message from VN wv; is initialized to ®(y;,0),
and in each iteration updated according to the rules ® and W.
The function ¥ : {M}4-~1 — M is used for update at a CN
¢ with degree d., so that ngi)v = \I/(n(z’l)). Note that U is
a symmetric function, i.e., any permutation of the function
variables leaves the function unchanged. The function & :
Y x {M}%~1 — M is used for updating outgoing message
of a VN v with degree d,,. v{”.. = ®(y,, m)). Note that ® is
partially symmetric in the variables m. The decision function
computes )\1(,6) = <i>(l(€)7 Yv ), which is used to decide the value
Z,. The decided bit value in /-th iteration is calculated based
on the sign as :zEf) = ]l)\;/,)<0. An estimate of the CN value ¢
in the (-th iteration is ol — ¥ (i) = sgn ([Ti®). A CN
is said to be satisfied if 0. = 1, unsatisfied if o. = —1, and
undecided if 0. = 0. A syndrome checking verifies that all
the CN estimates (39 = ()2%2 ) = sgn (H &5\% ) based on
the decoded word x) are satisfied. In this case, we say that
a codeword is found.

As examples of iterative decoder D, consider the standard
min-sum (MS) decoder and the offset min-sum (OMS)
decoder. The CN update function of a quantized MS decoder
U (M4l — M is the minimum of the extrinsic
incoming messages to the CN. ie., (mq,...,mgq, 1) =
(H?jll sgn(mj)) minepy q,—1)(Jm;|), where sgn(.) denotes
the sign function, and [z,y] denotes the set of integers
no smaller than = and not larger than y. The VN update
function ® : Y x {M}%~! — M is the sum of the
extrinsic incoming CN messages and the channel value:
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M, —1) = Q(yi + Z?“Ilmj), where the

(I)(yz, mq, .. =

function Q(.) is defined [16] as follows based on a threshold
set {t1,...,tg11} such that t; € R* and ¢t; > t; if i > j, and
bt = 00, Q(x) = sgn(x)L;, if t; §|x| <tip

0, otherwise

offset min-sum (OMS) decoder, an offset factor y is introduced
in the CN update function as ¥'(mq,...,mg,_1) =
(IT5" sen(my) ) max (minje,a. -y (mjl) = 7,0) . An
equivalent representation obtained by introducing the offset
factor at the VN keeps the CN update the same for both the
decoders.

. For the
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