

# Increased Transnational Sea Ice Transport Between Neighboring Arctic States in the 21<sup>st</sup> Century

Patricia DeRepentigny<sup>1,2</sup>, Alexandra Jahn<sup>1</sup>, L. Bruno Tremblay<sup>2,3</sup>, Robert Newton<sup>3</sup>, and Stephanie Pfirman<sup>4</sup>

<sup>1</sup>Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA.

<sup>2</sup>Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.

<sup>3</sup>Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA.

<sup>4</sup>School of Sustainability, Arizona State University, Tempe, Arizona, USA.

## Key Points:

- The CESM projects a large increase in transnational ice exchanged in the Arctic by mid-century with transit times reduced to under two years
- By mid-century the amount of transnational ice originating from Russia doubles and the Central Arctic emerges as the second dominant source
- Long-distance ice transport pathways disappear by 2100 in favor of regions directly downstream, especially under the high emissions scenario

An edited version of this paper was published by AGU. Copyright (2020) American Geophysical Union. Citation: DeRepentigny, P., Jahn, A., Tremblay, L. B., Newton, R., and Pfirman, S. (2020). Increased Transnational Sea Ice Transport Between Neighboring Arctic States in the 21<sup>st</sup> Century. *Earth's Future*, 8, e2019EF001284. <https://doi.org/10.1029/2019EF001284>

22 **Abstract**

23 The Arctic is undergoing a rapid transition toward a seasonal ice regime, with widespread  
24 implications for the polar ecosystem, human activities, as well as the global climate. Here  
25 we focus on how the changing ice cover impacts trans-border exchange of sea ice between the  
26 exclusive economic zones of the Arctic states. We use the Sea Ice Tracking Utility (SITU),  
27 which follows ice floes from formation to melt, in conjunction with output diagnostics from  
28 two ensembles of the Community Earth System Model (CESM) that follow different future  
29 emissions scenarios. The CESM projects that by mid-century, transnational ice exchange  
30 will more than triple, with the largest increase in the amount of transnational ice originating  
31 from Russia and the Central Arctic. However, long-distance ice transport pathways are  
32 predicted to diminish in favor of ice exchanged between neighboring countries. By the end  
33 of the 21<sup>st</sup> century, we see a large difference between the two future emissions scenarios  
34 considered: consistent nearly ice-free summers under the high emissions scenario act to  
35 reduce the total fraction of transnational ice exchange compared to mid-century, whereas  
36 the low emissions scenario continues to see an increase in the proportion of transnational  
37 ice. Under both scenarios, transit times are predicted to decrease to less than two years  
38 by 2100, compared to a maximum of six years under present-day conditions and two and a  
39 half years by mid-century. These significant changes in ice exchange and transit time raise  
40 important concerns regarding risks associated with ice-rafted contaminants.

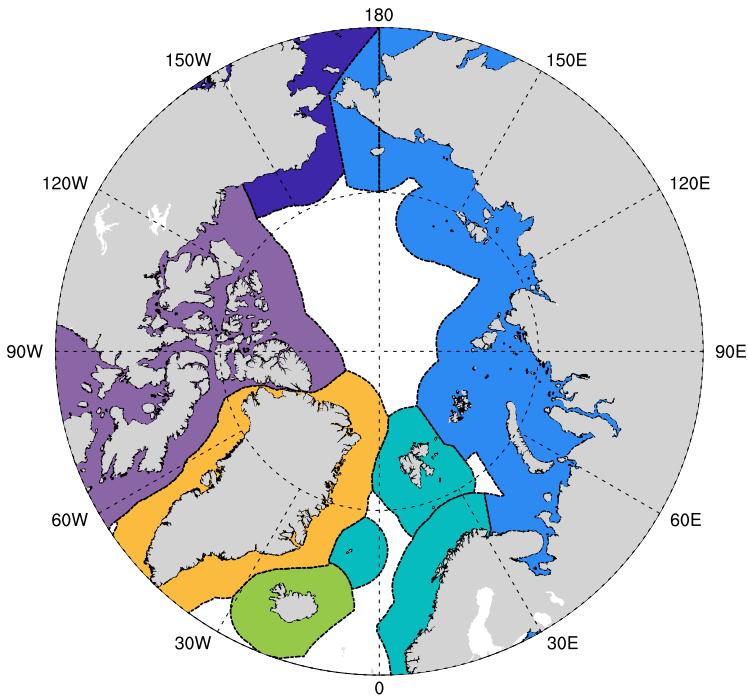
41 **Plain Language Summary**

42 The Arctic is undergoing a rapid transition toward a thinner, less extensive, more  
43 mobile sea ice cover. This affects the amount of sea ice exchanged between the exclusive  
44 economic zones of Arctic states. Here we use an Earth System Model, the Community Earth  
45 System Model (CESM), to track sea ice from where it forms to where it ultimately melts.  
46 By mid-century, the area of sea ice exchanged between the different regions of the Arctic  
47 is predicted to more than triple compared to the end of the 20<sup>th</sup> century, with the Central  
48 Arctic joining Russia as a major ice “exporter”. At the same time, the exchange of sea ice  
49 over long distances is predicted to diminish in favor of ice exchanged between neighboring  
50 Arctic states. By mid-century, the average time required for ice to travel from one region  
51 to another is more than halved; by 2100, nearly all transports take less than a year, with  
52 little multi-year ice left in the Arctic. Sea ice provides a transport mechanism for a variety  
53 of material, including algae, dust and a range of pollutants. The acceleration, and then

54 disappearance, of sea ice has important implications for managing contamination in Arctic  
55 waters.

## 56 1 Introduction

57 The Arctic sea ice cover has been retreating over the past four decades and is predicted  
58 to continue to decline throughout the 21<sup>st</sup> century (e.g., SIMIP Community, 2020; Stroeve,  
59 Kattsov, et al., 2012; Stroeve & Notz, 2018). Sea ice loss provides easier marine access to the  
60 Arctic and great opportunities for economic activities (Aksenov et al., 2017; Ng et al., 2018;  
61 Schøyen & Bråthen, 2011; Stephenson et al., 2013), but is also associated with growing risks  
62 and emerging political tensions (Arctic Council, 2009; Emmerson & Lahn, 2012; Newton et  
63 al., 2016). When ice concentrations are high, sea ice can raft various materials, including  
64 pollutants, and transport them much farther than ocean currents across the Arctic basin  
65 (Blanken et al., 2017). Newton et al. (2017) have shown that the total area of sea ice  
66 exchanged across the Arctic Ocean has been increasing over the historical period as a result  
67 of sea ice retreat and thinning, with higher ice drift speeds and associated shorter transit  
68 times between different regions. However, long-range transport of sea ice and ice-rafted  
69 material has started to decrease in recent years due to intensified melt in the marginal ice  
70 zones of the Arctic Ocean (Krumpen et al., 2019; Newton et al., 2017). It is currently  
71 unclear how transnational ice exchange will evolve in the future as the Arctic continues to  
72 transition toward a seasonally ice-free state, in particular when considering the competing  
73 effects of increased drift speeds versus shorter periods for sea ice to transit the Arctic as  
74 the melt season lengthens. In this study, we investigate how transnational sea ice exchange  
75 between the different Arctic states is predicted to change during the 21<sup>st</sup> century using the  
76 Community Earth System Model (CESM1; Hurrell et al., 2013).

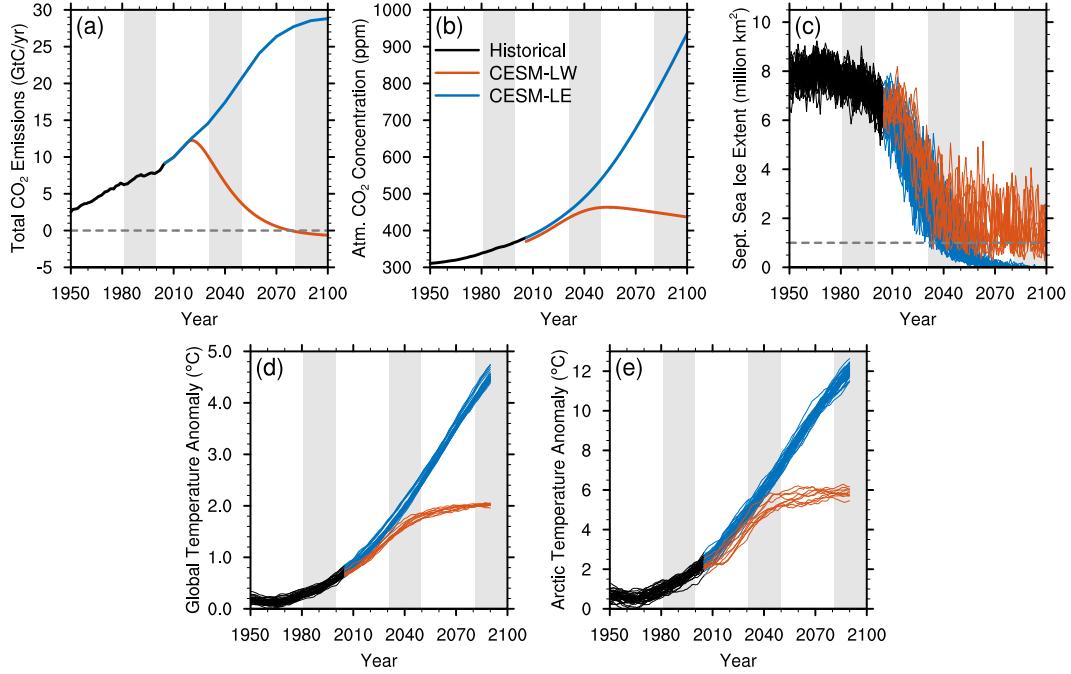

77 September sea ice extent has been declining at a rate of roughly 11% per decade since  
78 the start of the satellite era in 1979 (Comiso et al., 2017; Stroeve & Notz, 2018) and there  
79 is evidence that the rate of decline has accelerated since the beginning of the 21<sup>st</sup> century  
80 (Comiso et al., 2008; Ogi & Rigor, 2013; Stroeve, Serreze, et al., 2012). In addition, there  
81 has been an increase in the length of the open-water season in the Arctic over recent decades  
82 (Barnhart et al., 2016; Smith & Jahn, 2019; Stroeve, Markus, et al., 2014) and the sea ice  
83 cover has undergone substantial thinning with a considerable decline in the amount of multi-  
84 year ice (Comiso, 2012; Kwok, 2018; Stroeve, Barrett, et al., 2014; Stroeve & Notz, 2018).  
85 The retreat of Arctic sea ice combined with more extensive open-water periods have modified

86 interactions between the different stakeholders of the High North, raising new political issues  
87 and heightening potential conflicts among Arctic states (Emmerson & Lahn, 2012; Newton  
88 et al., 2016; Wilhelmsen & Gjerde, 2018). Current model projections suggest that nearly  
89 ice-free summers, defined as ice extent that falls below one million km<sup>2</sup>, are very likely unless  
90 warming is limited to 1.5°C (Jahn, 2018; Niederdrenk & Notz, 2018; Screen & Williamson,  
91 2017; Sigmond et al., 2018). It has been shown that if emissions of anthropogenic CO<sub>2</sub>  
92 continue on the current trajectory, nearly ice-free conditions will likely occur by the middle  
93 of the century (Jahn et al., 2016; Wang & Overland, 2009, 2012). Trends described in  
94 Newton et al. (2017) suggest that transnational ice exchange could continue to expand  
95 in the near future, increasing political tensions associated with cross-border contaminant  
96 transport (Newton et al., 2016). Here we assess how transnational ice exchange will evolve  
97 over the 21<sup>st</sup> century, and what impact different future emissions scenarios may have on  
98 these projections.

99 Sea ice acts as a transport medium for materials such as dust, aerosol deposits, sedi-  
100 ments, organic matter, macro-nutrients, freshwater, and biological communities growing at  
101 the bottom of the ice (Eicken et al., 2000; Eicken, 2004; Melnikov et al., 2002; Newton et  
102 al., 2013; Nürnberg et al., 1994). Transport of ice algae and sediments by sea ice has been  
103 shown to favor ice-associated phytoplankton blooms when the ice melts in the summer,  
104 critically impacting the food web structure (Boetius et al., 2013; Fernández-Méndez et al.,  
105 2015; Gradinger et al., 2009; Jin et al., 2007; Olsen et al., 2017). As industrialization of  
106 the Arctic continues to expand due to easier marine access, anthropogenic pollutants (e.g.,  
107 mercury, lead, black carbon, oil, microplastics) may also be transported by sea ice over long  
108 distances from where they first enter the ocean (AMAP, 2011, 2015; Blanken et al., 2017;  
109 Obbard et al., 2014; Peeken et al., 2018; Pfirman et al., 1995, 1997; Shevchenko et al., 2016;  
110 Varotsos & Krapivin, 2018; Venkatesh et al., 1990). This makes assessment of risk, attribu-  
111 tion of responsibility for environmental and ecological consequences, as well as containment,  
112 recovery, and cleaning operations of contaminants very difficult if not impossible (Glickson  
113 et al., 2014; Newton et al., 2016; Peterson et al., 2003; Post et al., 2009; Sørstrøm et al.,  
114 2010; Wilkinson et al., 2017).

115 To explore the connections between future changes in Arctic sea ice and emerging  
116 political issues related to long-distance rafting of material, we frame our analysis in the  
117 context of exclusive economic zones (EEZs; Flanders Marine Institute, 2018) of the Arctic  
118 states (Figure 1). This builds on the work by Newton et al. (2017), who used satellite-

119 derived sea ice drifts and analyzed transnational ice transport and change from the years  
 120 pre to post-2000. An exclusive economic zone is a sea zone over which a state has special  
 121 rights regarding the exploration and use of marine resources, including energy production.  
 122 EEZs extend 200 nautical miles from the coastline, as prescribed by the United Nations  
 123 Convention on the Law of the Sea (Nordquist, 2011). There are five Arctic littoral states:  
 124 Canada, the United States, Russia, Norway (including the Svalbard archipelago and the Jan  
 125 Mayen island) and Denmark (Greenland). We also consider Iceland as part of our analysis  
 126 since it receives sea ice exported from the Arctic Ocean through Fram Strait. We define  
 127 the Central Arctic (CNT) as the region in the middle of the Arctic Ocean over which no  
 128 country has exclusive economic rights.




**Figure 1.** Map of the exclusive economic zones (EEZs) of the Arctic based on the definition from the United Nations Convention on the Law of the Sea (Nordquist, 2011): Canada [purple], the United States [dark blue], Russia [light blue], Norway [turquoise], Iceland [green] and Greenland [orange]. The region in the middle of the Arctic Ocean that is not included within an EEZ is referred to as the Central Arctic (CNT) for the context of this study.

129 **2 Methods**130 **2.1 Community Earth System Model (CESM)**

131 The CESM1 is a state-of-the-art global Earth System Model characterized by a nominal  
132  $1^{\circ}$  horizontal resolution in all components (Hurrell et al., 2013). This version of the CESM  
133 has been widely used for Arctic sea ice studies and generally performs well in capturing the  
134 Arctic mean sea ice state, trend and variability (e.g. Barnhart et al., 2016; DeRepentigny  
135 et al., 2016; England et al., 2019; Jahn et al., 2016; Labe et al., 2018; Smith & Jahn,  
136 2019; Swart et al., 2015). Although this study only uses a single Earth System Model,  
137 it uses two ensembles from that model, allowing for an assessment of scenario differences  
138 while considering internal variability uncertainties. Furthermore, a good representation of  
139 present-day sea ice properties has been shown to be critical for future projections of summer  
140 sea ice conditions (Massonnet et al., 2012), making the CESM an excellent choice for this  
141 type of analysis. Note however that results presented here are closely tied to the simulated  
142 atmospheric circulation response to future climate forcing in the Arctic, something that  
143 varies across climate models and is still an active area of research (Budikova, 2009; Zappa  
144 et al., 2018).

145 To investigate the impact of different future emissions scenarios on the projections of ice  
146 exchange between the different EEZs of the Arctic, we use two ensembles of the fully-coupled  
147 climate simulations from the CESM1. The CESM Large Ensemble (CESM-LE; Kay et al.,  
148 2015) includes 40 individual ensemble members that differ only by round-off level differences  
149 in the initial air temperature field (order of  $10^{-14}$  K). These large ensemble simulations  
150 follow the historical forcing from 1920 to 2005 and the business-as-usual Representative  
151 Concentration Pathway 8.5 (RCP8.5; Jones et al., 2013) emissions scenario from 2006 to  
152 2100 (Figure 2a,b). We also use the CESM ensemble simulations following the  $2^{\circ}\text{C}$  target  
153 low warming scenario (CESM-LW; Sanderson et al., 2017). These  $2^{\circ}\text{C}$  target low warming  
154 simulations, along with similar experiments using a target of  $1.5^{\circ}\text{C}$  and an overshoot scenario  
155 that temporarily exceeds  $1.5^{\circ}\text{C}$ , were designed to inform assessment of impacts at 1.5 and  
156  $2^{\circ}\text{C}$  above pre-industrial levels following the Paris Intergovernmental Panel on Climate  
157 Change (IPCC) Agreement of December 2015 (Sanderson et al., 2017; UNFCCC, 2015). The  
158 simulations are branched from the first 11 ensemble members (001-011) of the CESM-LE in  
159 2006, after which they follow an emissions scenario designed so that the multi-year global  
160 mean temperatures never exceed  $2^{\circ}\text{C}$  above pre-industrial levels (Figure 2d). Emissions



**Figure 2.** Time evolution of (a) the total  $\text{CO}_2$  emissions in  $\text{GtC/yr}$ , (b) the atmospheric  $\text{CO}_2$  concentration in ppm, (c) the September Arctic sea ice extent in  $\text{million km}^2$  for all ensemble members with the threshold for a nearly ice-free Arctic shown by the grey dashed line, (d) the 20-year running mean annual-mean global temperature anomalies for all ensemble members (relative to pre-industrial levels, taken as 1850–1920 here) and (e) the 20-year running mean annual-mean Arctic temperature anomalies for all ensemble members. All panels cover the historical period of the CESM-LE [black], the future RCP8.5 scenario of the CESM-LE [blue] and the future low warming scenario of the CESM-LW [orange]. Note the different range of the y-axis for (d) the global temperature anomalies and (e) the Arctic temperature anomalies. The grey shaded areas highlight the three different time periods our analysis focuses on. (Adapted from Figure S.1 of Jahn, 2018).

161 follow the RCP8.5 scenario from 2006 to 2017, after which they start declining rapidly  
 162 (Figure 2a), such that emissions in 2042 are half of the 2017 levels (Sanderson et al., 2017).  
 163 This low warming scenario requires a negative emissions phase in order to stay below the  
 164  $2^\circ\text{C}$  warming target, with combined fossil fuel and land use carbon emissions crossing net  
 165 zero in 2078 (Figure 2a). Note that we take the mean of each ensemble to represent the  
 166 model response to radiative forcing, and the spread about the mean to represent the internal  
 167 variability within each scenario ensemble.

168 From all ensemble simulations, we use the  $u$  and  $v$  components of the sea ice velocity  
169 field as well as sea ice concentration (*aice*), at a monthly time resolution. Each variable  
170 is interpolated onto the 25 km Equal-Area Scalable Earth Grid (EASE-Grid; Brodzik et  
171 al., 2012) in order to conserve sea ice area during the tracking process (see section 2.2  
172 for more details on the ice tracking system). While the CESM-LE also provides sea ice  
173 concentration at a daily time resolution for the entire length of the simulation, the  $u$  and  
174  $v$  components of the sea ice velocity field are only available at a 6-hourly time resolution  
175 for three periods varying from 10 to 15 years between 1920 and 2100. In addition, the  
176 CESM-LW only provides these variables available at a monthly resolution, which does not  
177 allow for an analysis at a higher temporal resolution for this scenario. The effect of the time  
178 resolution on our analysis has been tested by comparing weekly and monthly averages for  
179 the CESM-LE, and the results show no major change to the conclusions presented here (see  
180 Figures S1 and S2 in the supporting information for more details).


181 In this study, the CESM analysis is separated into three time periods of 20 years,  
182 separated equally from the end of the 20<sup>th</sup> century to the end of the 21<sup>st</sup> century: (1) 1981  
183 to 2000, (2) 2031 to 2050 and (3) 2081 to 2100. Each period captures a different regime of  
184 the transition toward a seasonally ice-free Arctic (see Figures 2c and 3 for context), allowing  
185 us to assess the projected evolution of sea ice exchange:

186 **1981–2000** Representative of the state of the Arctic at the end of the 20<sup>th</sup> century, before  
187 the start of the observed series of record low minima in September sea ice extent of  
188 under six million km<sup>2</sup> (can be compared to the pre-2000 period used in Newton et  
189 al., 2017);

190 **2031–2050** Representative of a thin and dynamic ice pack, mostly consisting of first-year  
191 ice except for the region north of Greenland and the Canadian Arctic Archipelago  
192 (Figure 3b,c);

193 **2081–2100** Representative of a fully seasonal ice cover for the CESM-LE, with a nearly  
194 ice-free Arctic over three to five months for all 40 ensemble members (Figure 2c),  
195 and nearly ice-free summers for a maximum of one month every few years for the  
196 CESM-LW due to less sea ice loss (Jahn, 2018).

197 In order to provide an assessment of the performance of the CESM in simulating sea  
198 ice transport between EEZs, we also analyze the CESM-LE over the 20-year period between  
199 1989 and 2008 and compare it with observational data (section S2 in the supporting infor-



**Figure 3.** Average September sea ice concentration for the CESM-LE over the period of (a) 1981–2000 as well as for (b,d) the CESM-LE and (c,e) the CESM-LW over the periods of (b,c) 2031–2050 and (d,e) 2081–2100. The borders of the EEZs are indicated by red lines. The cyan line shows the 15% sea ice concentration contour.

200 mation). This period is slightly shifted compared to the first period of the CESM analysis  
 201 due to a low bias in satellite-derived drift vectors prior to 1989 (section S1 in the supporting  
 202 information). We use data from the National Snow and Ice Data Center's (NSIDC) Polar  
 203 Pathfinder project (Tschudi et al., 2016) and the National Oceanic and Atmospheric Ad-  
 204 ministration (NOAA)/NSIDC Climate Data Record (Meier et al., 2017; Peng et al., 2013).  
 205 We find that the exchange of transnational ice between the different EEZs of the Arctic  
 206 simulated by the CESM-LE over the period of 1989–2008 is in good general agreement  
 207 with observations. The small differences between the CESM-LE and observations can be  
 208 attributed to a bias in the simulated atmospheric circulation over the Arctic during the  
 209 ice-covered season and the resulting sea ice circulation anomalies (see section S2 for more  
 210 details).

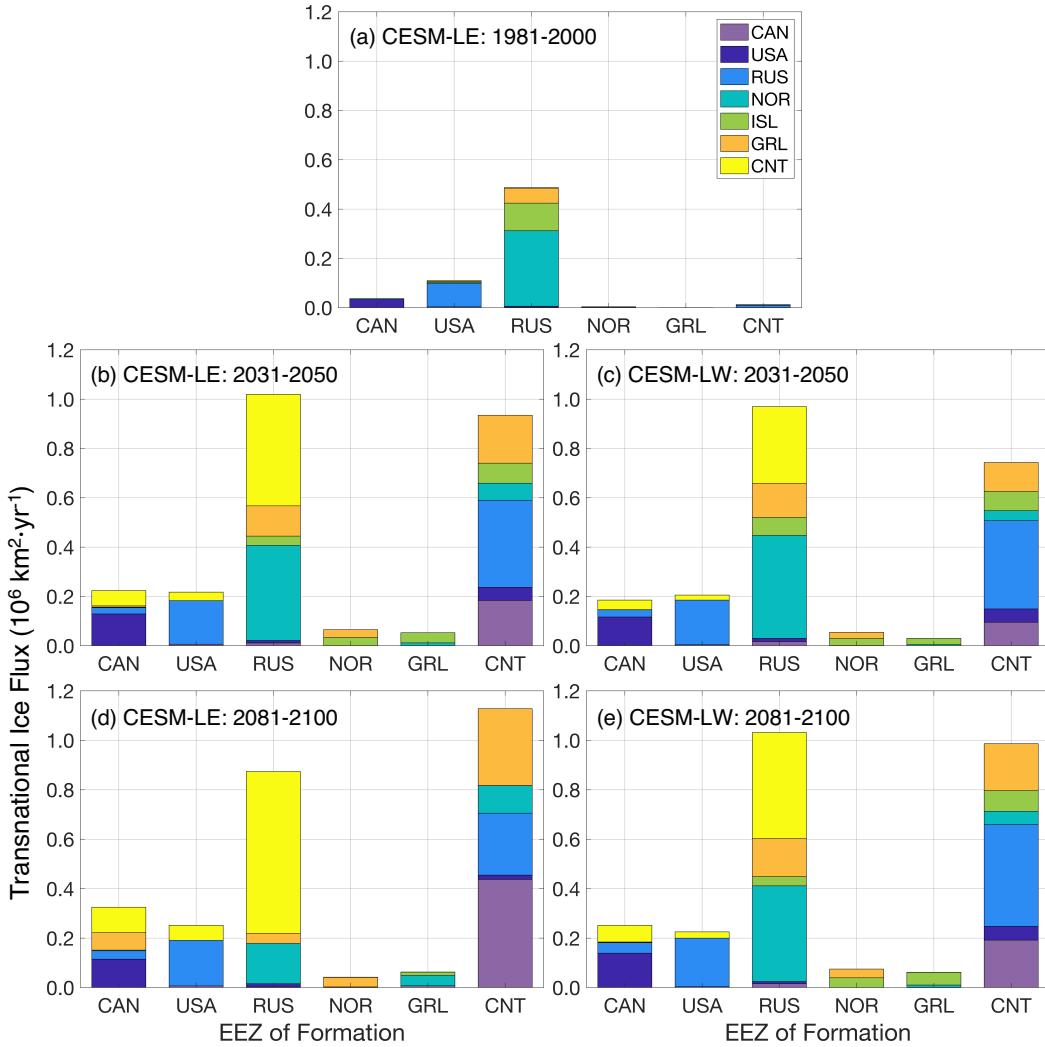
## 211 2.2 Sea Ice Tracking Utility (SITU)

212 We use a Lagrangian approach to better understand the potential connections between  
213 the Arctic states through the sea ice they exchange. To that end, we use a Lagrangian  
214 tracking software called the Sea Ice Tracking Utility (SITU, <http://icemotion.labs.nsidc.org/SITU/>), formerly known as the Lagrangian Ice Tracking System (LITS; DeRepentigny  
215 et al., 2016; Williams et al., 2016; Brunette et al., 2019), that tracks ice floes from their  
216 formation location to where they ultimately melt. This offline approach to Lagrangian  
217 modeling uses saved output from preexisting runs of the model and requires significantly  
218 less computational resources compared to the transport of online tracers. SITU allows us to  
219 obtain a quantitative assessment of the evolution of ice motion by looking at the exchange  
220 of sea ice between the EEZs of different Arctic states and how these patterns are predicted  
221 to change in the future. This software has been successfully used to track ice floes forward  
222 or backward in time (DeRepentigny et al., 2016; Newton et al., 2017; Williams et al., 2016)  
223 and is based on a similar approach that has been widely used to track ice age over several  
224 years (Fowler et al., 2004; Maslanik et al., 2007; Pfirman et al., 2004; Rigor & Wallace,  
225 2004).

227 In the present analysis, SITU is used to track ice area. This requires all of the output  
228 variables to be interpolated to an equal-area grid for the area to be conserved during the  
229 tracking process. Note that this method does not aim to fully capture sea ice physics,  
230 as it does not track ice volume and uses data at a 25 km resolution. Nonetheless, tracking  
231 independent parcels of ice area provides some information on the effect of sea ice convergence,  
232 as SITU allows for multiple tracked ice parcels to stack up in the case of convergent flow. This  
233 approximates a rise in ice thickness through ridging by increasing the number of tracked  
234 areal parcels of ice over a specific location. For this study, we analyze transnational ice  
235 exchange in terms of areal flux rather than the areal flux divided by the area covered by  
236 each EEZ, as this is more representative of the potential risk for ice-rafted contaminant  
237 transport.

238 First, for every month considered within the analysis, the location of newly formed ice  
239 floes is identified. A newly ice-covered grid cell can either be the product of ice formation  
240 (freezing) or advection of ice from a nearby location. In order to dissociate the thermody-  
241 namic signal from the dynamic signal, we select all grid points along the ice edge (defined  
242 as the 15% ice concentration contour), track them forward in time for one month using the

243 sea ice velocity at each grid point along the ice edge, and compare the result with the sea  
 244 ice edge of the following month. Every grid cell outside of the tracked ice edge that was not  
 245 covered by ice initially but is ice covered the following month is then considered a new ice  
 246 parcel (referred to hereafter as an ice formation event). Next, all ice formation events are  
 247 fed to SITU, which advects each newly formed ice parcel forward in time with a monthly  
 248 resolution until it ultimately melts, creating a record of ice tracks. An ice parcel is consid-  
 249 ered to have melted when it is advected to a location that is ice free when compared with  
 250 the ice concentration field of that month. Melt (and formation explained above) is defined  
 251 using a sea ice concentration threshold of 15%. The transition between ice and open water  
 252 is usually abrupt and our results show no sensitivity to the exact choice of cut-off value (not  
 253 shown).


254 Using time-averaged velocities (monthly averages in the case of the analysis presented  
 255 here) can result in floes being advected over land (either an island or the continent) by SITU  
 256 instead of piling up along the coast. To avoid unrealistic loss of ice floes over land within  
 257 SITU, we move the affected parcels back to the last ocean grid cell they crossed prior to  
 258 reaching land, following a linear trajectory between their initial position and their position  
 259 after one time step. These parcels continue to be tracked normally, subject to the dynamics  
 260 of their new location as if they had simply piled up along the coast.

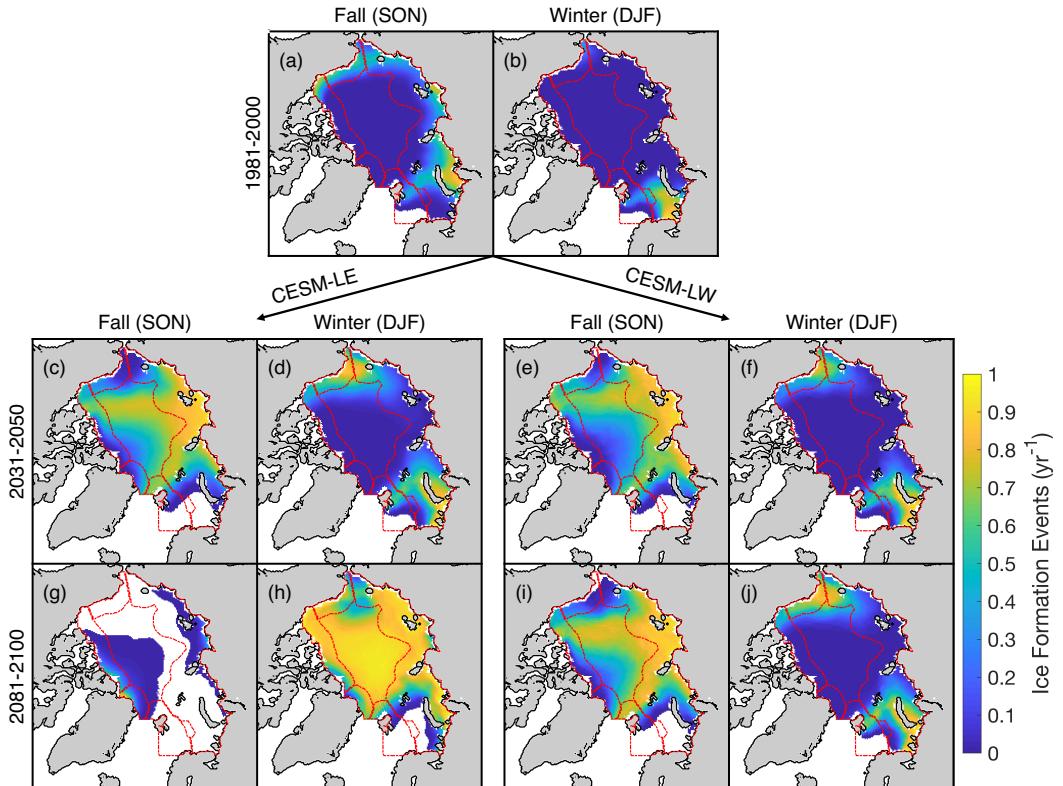
261 In what follows, we analyze what we refer to as “transnational” sea ice, ice that leaves  
 262 the EEZ in which it formed, as distinguished from “domestic” ice that melts in the same EEZ  
 263 where it formed. We also refer to the fraction of transnational ice exchange, defined as the  
 264 ratio of the areal flux of transnational sea ice to the total areal flux of sea ice, transnational  
 265 and domestic combined.

### 266 3 Results

#### 267 3.1 Increase in Transnational Ice Exchange

268 Over the last 20 years of the 20<sup>th</sup> century, Russia dominates in terms of formation of  
 269 transnational ice (74.8% of the total areal flux of transnational ice originates from Russia)  
 270 and the majority of transnational Russian ice gets exported to Norway (Figure 4a), in general  
 271 agreement with observations (see section S2 in the supporting information or Newton et al.,  
 272 2017). Using SITU, we find an increase in the area of ice formed each year from 1.4 million  
 273 km<sup>2</sup>/yr in 1981–2000 for the CESM-LE to between 4.6 and 5.3 million km<sup>2</sup>/yr in 2031–2050



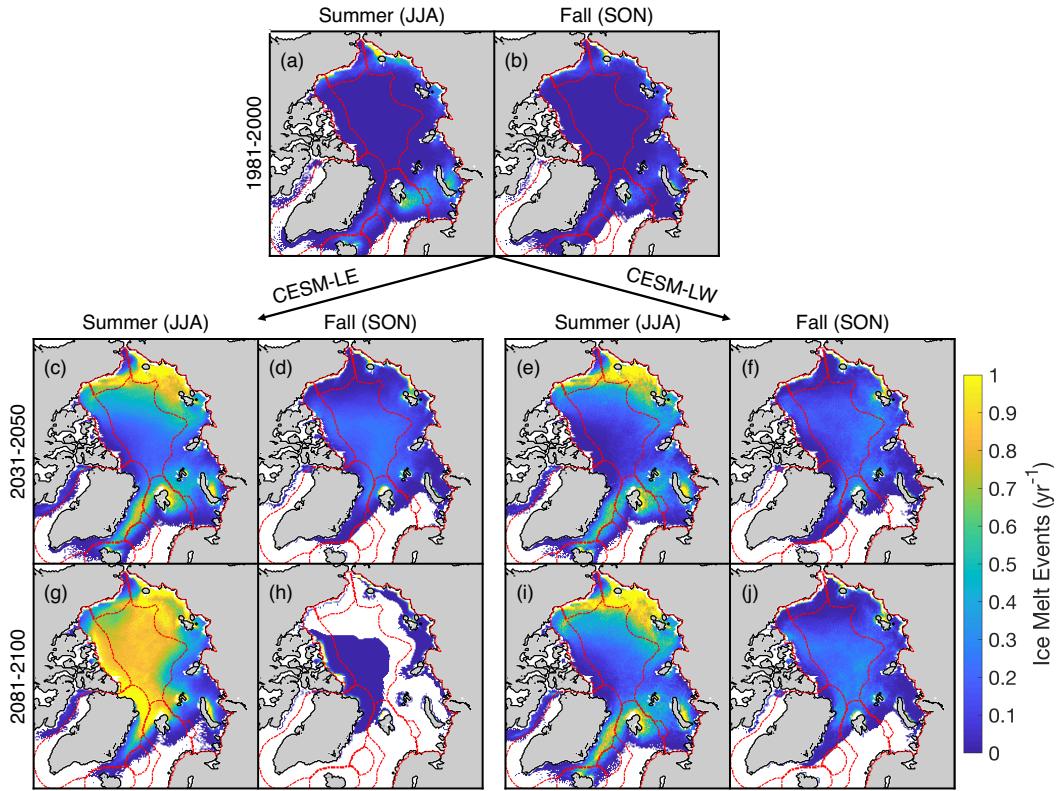

**Figure 4.** Annual mean average areal flux of transnational ice for the CESM-LE over the period of 1981–2000 [top - (a)] and for the CESM-LE [left - (b,d)] and the CESM-LW [right - (c,e)] over the periods of 2031–2050 [middle - (b,c)] and 2081–2100 [bottom - (d,e)]. The height of each colored portion within one bar represents the annual mean areal flux of ice between the EEZ of formation (x-axis) and the EEZ of melt (color). Note that domestic ice is not included in this figure in order to focus on the features of transnational ice exchange. The average amount of ice area exchanged between all EEZs, including domestic ice, for both experiments as well as a statistical assessment of the pathways that are significantly different between the CESM-LE and the CESM-LW can be found in Tables S1 and S2 in the supporting information.

274 for the CESM-LW and the CESM-LE, respectively. This large increase in ice formation  
 275 is accompanied by an increase in the amount of transnational ice exchanged between the

276 different EEZs by mid-century. In fact, the total average areal flux of transnational ice in  
277 the Arctic increases by 252% for the CESM-LE and 204% for the CESM-LW between the  
278 periods of 1981–2000 and 2031–2050 (Figure 4b,c).

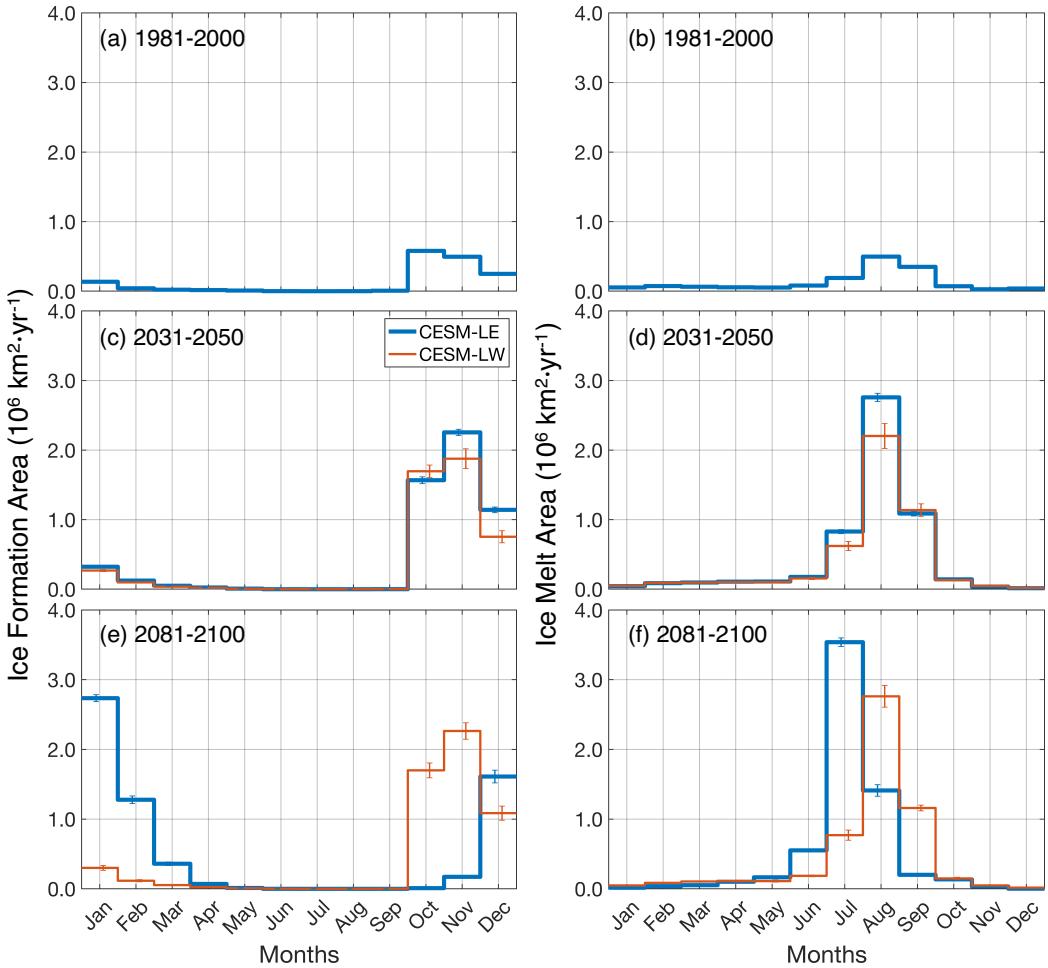
279 The main reason for this large increase in transnational ice flux from 1981–2000 to 2031–  
280 2050 is the poleward expansion of the seasonal ice zone (SIZ), defined as the area between  
281 the minimum and maximum sea ice extents, due to a continued rise in simulated Arctic  
282 temperatures (Figure 2e). By mid-century, under both scenarios, the area of annual sea ice  
283 formation expands from the peripheral seas to almost the entire Arctic Ocean (Figure 5a-f).  
284 Over the period of 2031–2050, the spatial differences in ice formation between the CESM-  
285 LE and the CESM-LW are small (Figure 5c-f), with slightly more extensive ice formation  
286 over the Central Arctic for the CESM-LE in the fall due to lower average September sea  
287 ice extent (Figures 2c and 3b,c). By mid-century, only the region north of Greenland and  
288 the Canadian Arctic Archipelago survives the summer melt (Figure 6c-f) and is reliably ice  
289 covered in September (Figure 3b,c). The increase in the area of the SIZ by 2031–2050 allows  
290 for more ice to be formed each year and to melt in a different EEZ than the one where it  
291 initially formed.

292 Another key feature of the future projections of sea ice transport is that by mid-century,  
293 Russia and the Central Arctic strongly dominate the exchange of transnational ice in the  
294 Arctic. The areal flux of transnational ice originating from Russia doubles by mid-century,  
295 and for the Central Arctic it increases from less than 13 thousand  $\text{km}^2/\text{yr}$  to just below one  
296 million  $\text{km}^2/\text{yr}$  for the CESM-LE (Figure 4a,b). The increase in Russian transnational ice is  
297 predicted to occur as the whole area of the Russian EEZ becomes a source and a sink of sea  
298 ice in 2031–2050 (Figures 5c,e and 6c,e), whereas formation and melt is limited to its coastal  
299 regions in 1981–2000 (Figures 5a and 6a). This larger area of sea ice loss in the summer  
300 months could potentially promote economic activities in the Russian EEZ and increase the  
301 risk of ice-rafted contaminant transport (Newton et al., 2016; Pfirman et al., 1995). As for  
302 the Central Arctic, it accounts for 37.2% of the total formation of transnational ice area  
303 in 2031–2050 for the CESM-LE (Figure 4b), up from less than 2% in 1981–2000 (Figure  
304 4a). In addition to becoming an important source region for transnational ice, the Central  
305 Arctic also becomes an important sink, with the percentage of transnational ice melting  
306 in this region increasing from 1.1% in 1981–2000 to 21.8% in 2031–2050 for the CESM-LE  
307 (Figure 4a,b). This can be partly explained by the fact that ice formation/melt is present  
308 over most of the Central Arctic by mid-century (Figures 5c,e and 6c,e), whereas there is




**Figure 5.** Average number of ice formation events per year in fall (SON) and winter (DJF) for the CESM-LE over the period of 1981–2000 [top - (a,b)] and for the CESM-LE [left - (c,d,g,h)] and the CESM-LW [right - (e,f,i,j)] over the periods of 2031–2050 [middle - (c-f)] and 2081–2100 [bottom - (g-j)]. Only grid cells that are ice covered for at least one month during the specified season and time period and for at least one ensemble member are colored. The borders of the EEZs are indicated by red lines. Only ice floes that formed and melted between the specified time periods are considered.

little to no ice formation/melt over that region in 1981–2000 (Figures 5a and 6a). The large contribution of Russia and the Central Arctic to the exchange of transnational ice is not surprising considering the surface area covered by these two EEZs. Note however that it is the total areal flux of transnational ice, not the flux per unit area, that best represent the extent of potential ice-rafted contaminant transport (Newton et al., 2017).


### 3.2 Impact of the Future Emissions Scenario

The difference in the response of sea ice transport to the two future emissions scenarios becomes more apparent toward the end of the 21<sup>st</sup> century. Over the last 20 years of

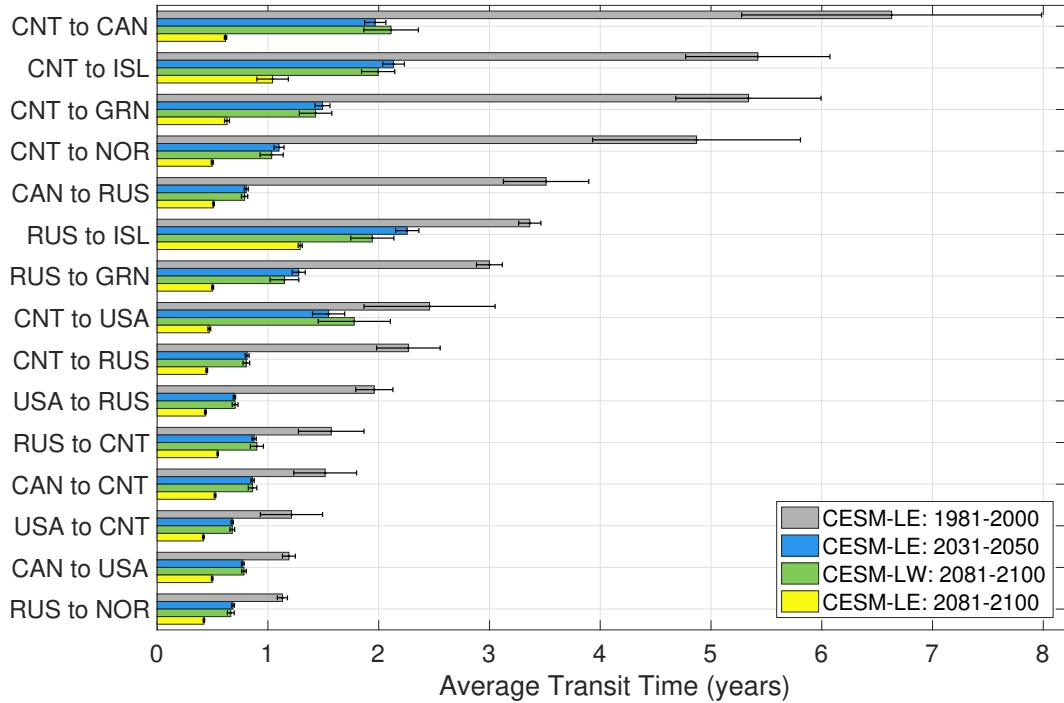


**Figure 6.** As in Figure 5, but for the average number of ice melt events per year in summer (JJA) and fall (SON).

317 the 20<sup>th</sup> century, ice formation and melt peak in October and August, respectively (Figure  
 318 7a,b). There is a large increase in the total annual amount of areal ice formation and melt by  
 319 2031–2050, with the peak in ice formation shifting from October to November for both future  
 320 emissions scenarios (Figure 7c,d). Large differences in the ensemble mean ice formation and  
 321 melt between the CESM-LE and the CESM-LW are projected by 2081–2100. The ensemble  
 322 mean represents the best estimate of the forced response to the future emissions scenario,  
 323 while the spread about the mean is used to assess the confidence of that forced response  
 324 based on the internal variability of the climate system. The ensemble mean of the CESM-  
 325 LE has ice formation and melt peak in January and July respectively by the end of the  
 326 century, compared to November and August for the CESM-LW (Figure 7e,f), much more  
 327 similar to present-day conditions. In addition, the annual cycles of ice formation and melt  
 328 for the CESM-LE and the CESM-LW are statistically different at the 95% confidence level  
 329 in 2081–2100 during all months of the growing and melting seasons, respectively. Compared  
 330 to the period of 1981–2000, the length of the ice-covered season (defined here as the number



**Figure 7.** Annual cycle of areal ice formation [left] and melt [right] for the periods of 1981–2000 (a,b), 2031–2050 (c,d) and 2081–2100 (e,f) in the CESM-LE [blue] and the CESM-LW [orange]. The error bars show the 95% confidence intervals of the 20-year averaged ice formation/melt area for each month across the 40 ensemble members of the CESM-LE and the 11 ensemble members of the CESM-LW. Only ice floes that formed and melted between the specified time periods are considered.


of months from the peak in ice formation to the peak in ice melt) is predicted to decrease by one month for the CESM-LW and four months for the CESM-LE by 2081–2100 when looking at the forced signal. By the end of the 21<sup>st</sup> century, earlier ice formation as well as later melt in the CESM-LW gives more time for ice floes to transit the Arctic before the start of the melt season compared to the CESM-LE, which has a shorter ice-covered season. In turn, longer travel times allow for larger traveled distances, promoting transnational ice exchange in the CESM-LW compared to the CESM-LE. Note that the annual formation

338 and melt cycles of the CESM-LW over the period of 2081–2100 are very similar to the ones  
 339 of the CESM-LE in 2031–2050, pointing to a stabilization of the sea ice response under the  
 340 low emissions scenario around mid-century climate when atmospheric CO<sub>2</sub> starts to slowly  
 341 decline (Figure 2b).

342 Spatial differences in ice formation and melt between the two future emissions scenarios  
 343 also manifest at the end of the 21<sup>st</sup> century. By 2081–2100, the ice formation season shifts  
 344 from fall (SON) to winter (DJF) everywhere in the Arctic for the CESM-LE, as freezing  
 345 starts and ends later in the year (Figures 5g,h and 7e; see also Smith & Jahn, 2019). For the  
 346 CESM-LW on the other hand, most of ice formation still occurs in the fall (Figures 5i and  
 347 7e), with the exception of parts of the Barents, Kara, Beaufort and Chukchi Seas (Figure  
 348 5j). Moreover, melt occurs over the whole Arctic basin in summer only for the CESM-LE  
 349 (Figure 6g,h), which simulates a nearly ice-free Arctic for several months each year by the  
 350 late 21<sup>st</sup> century (see also Jahn, 2018). For the CESM-LW, melt still occurs in the fall north  
 351 of Greenland and the Canadian Arctic Archipelago and into the Central Arctic in the late  
 352 21<sup>st</sup> century (Figure 6j), similar to mid-century conditions in the CESM-LE (Figure 6d).  
 353 As a result, there is a longer portion of the year when the Arctic is fully ice covered in the  
 354 CESM-LW, allowing more time for ice floes to move around and increasing the amount of  
 355 ice exchanged between the different EEZs.

356 The CESM also projects a large reduction in the average amount of time necessary  
 357 for sea ice to transit from one EEZ to another by 2031–2050, especially for long pathways  
 358 that are characterized by an average transit time of more than two years in 1981–2000  
 359 (Figure 8). This decrease in transit times is related to the poleward expansion of the SIZ,  
 360 which acts to melt a larger area of ice each summer and greatly reduce the number of  
 361 multi-year transit pathways, in combination with an increase in ice drift speed, especially  
 362 in the winter months (not shown; see also Tandon et al., 2018). The increase in ice drift  
 363 speed is mainly associated with a decrease in ice thickness as we find no significant change  
 364 in the average wind speed over the Arctic throughout the 21<sup>st</sup> century (not shown). By  
 365 2081–2100, all exchange pathways have average transit times of less than one year for the  
 366 CESM-LE (Figure 8). This is the result of a seasonal ice cover over the whole Arctic basin,  
 367 which prevents the formation of multi-year ice in all of the 40 ensemble members and does  
 368 not allow for transit times longer than one year. On the other hand, the CESM-LW shows  
 369 transit times in 2081–2100 that are similar to those of the CESM-LE in 2031–2050 (Figure  
 370 8), again pointing to a stabilization of the sea ice response to the reduced atmospheric CO<sub>2</sub>

371 concentration in the CESM-LW scenario toward the end of the century (Figure 2b). Note  
 372 that transit times for all exchange pathways for the CESM-LW by 2081–2100 are statistically  
 373 different from 1981–2000 transit times at the 95% confidence level, except for ice forming  
 374 in the Central Arctic and melting in the United States (Figure 8). Moreover, for the period  
 375 of 2081–2100, all transit time differences between the CESM-LE and the CESM-LW are  
 376 statistically significant.



**Figure 8.** Average transit time in years for the 15 pathways exchanging the largest areal flux of transnational ice throughout all three time periods and both experiments. The error bars show the 95% confidence bounds of the 20-year averaged transit time for the 40 ensemble members of the CESM-LE and the 11 ensemble members of the CESM-LW.

377 As the melt season is projected to get longer and average transit times shorten to less  
 378 than one year for the CESM-LE by the end of the 21<sup>st</sup> century, long-distance ice transport  
 379 pathways are predicted to diminish in favor of ice exchanged between neighboring EEZs,  
 380 specifically the ones downstream of each EEZ of formation following the general Arctic sea  
 381 ice circulation. As a result, the diversity of EEZs of melt for each EEZ of formation is  
 382 reduced for the CESM-LE compared to the CESM-LW in 2081–2100, especially for Russia  
 383 and the Central Arctic where the largest amount of transnational ice originates (Figure  
 384 4d,e). This implies a continuation in the future of the negative trend in Siberian shelf ice

385 reaching Fram Strait since the beginning of the 21<sup>st</sup> century recently found by Krumpen et  
386 al. (2019). Note that for all exchange pathways over the period of 2081–2100, only the flux of  
387 ice from Canada to Russia, from the United States to Russia and from Norway to Greenland  
388 (i.e., relatively short-distance downstream fluxes) are not statistically different between the  
389 CESM-LE and the CESM-LW at the 95% confidence level. By 2081–2100, consistent nearly  
390 ice-free summers in the CESM-LE act to reduce the fraction of transnational ice exchange  
391 (as defined in section 2.2), whereas the CESM-LW continues to see an increase. Indeed, the  
392 fraction of transnational ice exchange grows from 46% to 48% to 49% for the CESM-LW  
393 throughout the three time periods of interest, whereas it initially increases from 46% to 47%  
394 between the first two time periods for the CESM-LE, but then reduces to 44% by the end  
395 of the 21<sup>st</sup> century. Note that the fractions of transnational ice exchange are statistically  
396 different from each other at the 95% confidence level between the three time periods only  
397 for the CESM-LE. It is important to note that even though the fraction of transnational  
398 ice exchange decreases for the CESM-LE between 2031–2050 and 2081–2100, the total areal  
399 flux of transnational ice increases slightly over the same period. Nonetheless, this result  
400 points to the fact that when the Arctic reaches nearly ice-free conditions and the SIZ covers  
401 the full Arctic Ocean, increases in the melt season length associated with continuously  
402 warmer Arctic temperatures (Figure 2e) will eventually act to reduce the absolute amount  
403 of transnational ice exchange, reversing the trend predicted by the CESM-LE over the 21<sup>st</sup>  
404 century.

#### 405 4 Discussion

406 In this contribution, we show that as the SIZ expands the amount of sea ice formed  
407 each year increases greatly by mid-century, leading to an increase of more than 200% in  
408 the area of sea ice exchanged between the different regions of the Arctic. This increase  
409 in transnational ice exchange amplifies the potential for ice-rafted contaminant transport,  
410 raising environmental risks and accentuating emergent political tensions as the Arctic states  
411 are effectively brought into closer contact with each other (Arctic Council, 2009; Emmerson  
412 & Lahn, 2012; Newton et al., 2016; Pfirman et al., 1995). A prominent example is the  
413 export of ice from Russia to Norway. A heated debate persists in Norway about whether  
414 their regulations of offshore drilling, which are some of the most extensive in the world,  
415 are sufficient. However, our study indicates that the main risk for Norway in the next  
416 few years might be from Russian oil spills, since about 400,000 km<sup>2</sup> of ice transit from the

417 Russian to the Norwegian EEZ annually by mid-century. In addition, our results show that  
418 the trajectory of future greenhouse gases emissions will have a high impact on export of ice  
419 from Russia to Norway, as the low emissions scenario predicts a similar amount of ice transit  
420 by 2100 as mid-century conditions, compared to a reduction by more than half under the  
421 high emissions scenario.

422 Pollutants of primary concern in the Arctic are organochlorines, heavy metals, radionu-  
423 clides and oil (Pfirman et al., 1995), which can take years to biodegrade in the Arctic due  
424 to the cold Arctic waters (Fingas & Hollebone, 2003). While freezing ejects many dissolved  
425 contaminants found in sea water, ice formed in shallow regions (< 50 m) of the Siberian  
426 seas has been shown to entrain sediments and organic material (Smedsrød, 2001, 2002) and  
427 hence also incorporates associated contaminants. After several years of transport, due to  
428 annual surface melting and ablation, a concentrated lag deposit of sediment, organic mate-  
429 rial and/or contaminants can form on the surface of the ice (Pfirman et al., 1995; Tremblay  
430 et al., 2015). Although some contaminants are lost in meltwater runoff, other pollutants are  
431 also added from atmospheric deposition of Arctic haze (Octaviani et al., 2015). Further-  
432 more, potential oil spills or shipping accidents can also add contaminants on the ice surface  
433 (Fingas & Hollebone, 2003; Glickson et al., 2014; Izumiya et al., 2004; Venkatesh et al.,  
434 1990; Wilkinson et al., 2017). As a result, the majority of ice-rafted pollutants are released  
435 when the entire floe melts despite differences in their sources (Pfirman et al., 1995).

436 Based on our analysis of sea ice transport between the different EEZs of the Arctic,  
437 a little more than half of the ice melts in the same EEZ where it formed, meaning that  
438 a large part of the contaminants introduced into sea ice will be released within the same  
439 EEZ (Newton et al., 2017). However, we find that due to a large increase in the area of  
440 sea ice formed every year, the absolute amount of transnational ice exchanged between the  
441 different Arctic nations increases by a factor of three between the end of the 20<sup>th</sup> century  
442 and the middle of the 21<sup>st</sup> century. As such, the potential for sea ice to carry contaminants  
443 is greatly amplified. The doubling of transnational ice originating from the Russian EEZ  
444 by mid-century is of especially high relevance given that most of the Russian EEZ consists  
445 of shallow seas where contaminants can be easily incorporated during sea ice formation. In  
446 addition, the prospect of undiscovered oil and gas on the Siberian shelves (Bird et al., 2008)  
447 and the increase in shipping activities along the Northern Sea Route (Aksenov et al., 2017;  
448 Ostreng et al., 2013; Schøyen & Bråthen, 2011; Stephenson et al., 2013) will amplify the  
449 risk of pollutants being introduced in these shallow Arctic waters.

450 The opening of the Central Arctic is also of high significance given the prospect for  
451 commercial ships to use the Transpolar Sea Route in order to avoid crossing the EEZ of  
452 several Arctic states (Stephenson et al., 2013), increasing the risk of accidental release of  
453 contaminants onto sea ice. The lack of risk management policies regulating the release  
454 of pollutants in these international waters combined with a short operational season, large  
455 distances to ports and other infrastructure, and the generally challenging Arctic environment  
456 will likely make this region very vulnerable to long-term contamination. Compared to the  
457 Russian shelf seas, the Central Arctic covers mostly deep waters, so contamination of surface  
458 waters by oil spills and atmospheric deposition of black carbon and other emissions are likely  
459 the main concerns for this region.

## 460 5 Conclusions

461 In this study, we have addressed the question: “How will the exchange of transnational  
462 sea ice evolve in the future?”, using two ensemble experiments of the CESM that range  
463 from 2°C to over 4°C of global warming by 2100. We find a large increase in the area of  
464 transnational ice exchanged in the Arctic throughout the 21<sup>st</sup> century, continuing the trend  
465 reported by Newton et al. (2017) over the observational period. The CESM captures the  
466 exchange of transnational ice in the Arctic well when compared to satellite observations  
467 over the 1990s and 2000s, with a few disagreements that can be attributed to a bias in  
468 the simulated atmospheric circulation over the Arctic during the ice-covered season. When  
469 looking at future projections, we found that the CESM projects the largest increase in the  
470 amount of transnational ice exchange between the end of the 20<sup>th</sup> century and the middle of  
471 the 21<sup>st</sup> century, under both forcing scenarios. This increase is associated with the expansion  
472 of the SIZ from the peripheral seas toward the middle of the Arctic Ocean, as global and  
473 Arctic temperatures continue to rise. The expansion of the SIZ in 2031–2050 allows for more  
474 ice to be formed each year which, combined with a decrease in the average time it takes for  
475 an ice floe to go from one EEZ to another, acts to promote transnational ice exchange in  
476 the Arctic.

477 The increase in transnational ice exchange by mid-century and until 2100 is not uniform  
478 everywhere in the Arctic, but is dominated by Russia and the Central Arctic as they include  
479 a large fraction of the SIZ. We find that by 2031–2050, 78% of transnational ice originated  
480 from these two regions, while also accounting for 44% of the melt of transnational ice in  
481 the CESM-LE. Long exchange pathways that are characterized by an average transit time

482 of more than two years in 1981–2000 see a large reduction in travel time as less ice transits  
483 along these routes, with all pathways exchanging ice in two years or less by mid-century.  
484 We also find that differences in the forced sea ice response to a high versus low emissions  
485 scenario become most apparent toward the end of the 21<sup>st</sup> century. By 2081–2100, the  
486 CESM-LW has a longer ice-covered period than the CESM-LE, due to earlier ice formation  
487 and later ice melt. This gives ice floes more time to travel from one EEZ to another before  
488 the start of the melt season, promoting transnational ice exchange in the CESM-LW. Indeed,  
489 we find that all exchange pathways have average transit times of one to two years for the  
490 CESM-LW that persist through 2081–2100, similar to mid-century transit times for both  
491 scenarios. By comparison, average transit times are all less than one year for the CESM-LE  
492 by 2081–2100 due to consistent nearly ice-free summers of three to five months for all 40  
493 ensemble members (Jahn, 2018).

494 Ice transport along long-distance pathways are predicted to diminish in favor of ice  
495 exchange between neighboring EEZs by the end of the 21<sup>st</sup> century under the high emissions  
496 scenario, specifically shifting to the EEZs downstream of each EEZ of formation. This is  
497 the result of a projected lengthening of the melt season, which decreases average transit  
498 times to less than one year for the CESM-LE, continuing the trend recently reported by  
499 Krumpen et al. (2019) and Newton et al. (2017). In fact, the CESM-LE shows a decrease  
500 in the fraction of transnational ice exchange between the periods of 2031–2050 and 2081–  
501 2100, whereas the CESM-LW continues to see an increase. Even though the total areal  
502 flux of transnational ice continues to increase slightly for the CESM-LE over the same time  
503 window, the decline of the fraction of transnational ice exchange has important implications  
504 for transnational ice exchange after 2100. A previous version of the CESM, the Community  
505 Climate System Model Version 4 (CCSM4), RCP8.5 simulations and their extension to 2300  
506 show that September ice extent will not recover under this business-as-usual scenario, and  
507 March ice extent will continue to decrease and reach nearly ice-free conditions toward the  
508 middle of the 23<sup>rd</sup> century (Jahn & Holland, 2013). Our results suggest that the predicted  
509 increase in melt season length associated with continuously warmer Arctic temperatures  
510 would eventually act to reduce the total amount of transnational ice exchanged between the  
511 EEZs of the Arctic, reversing the trend predicted by the CESM over the 21<sup>st</sup> century for all  
512 scenarios.

513 To conclude, our study shows that the characteristics of transnational ice exchange  
514 will change dramatically over the 21<sup>st</sup> century, even under a low warming scenario. As a

515 result, the potential for ice-rafted contaminant transport across EEZs will increase greatly  
 516 in the next few decades. Given the associated societal risks, our results suggest that in order  
 517 to support risk management strategies for ice-rafted contaminants, more detailed modeling  
 518 should be undertaken in the future, to simulate specific pollutants. Such a model would have  
 519 to include exchange and transport of multiple tracers with a surface deposition source for  
 520 atmospheric aerosols and particulates, sedimentary inclusion for sea ice formed in shallow  
 521 waters, and a potential for ice-trapped oil from open-water spills.

522 **Acknowledgments**

523 P. DeRepentigny acknowledges the support of the Natural Sciences and Engineering Council  
 524 of Canada (NSERC), the Fond de recherche du Québec – Nature et Technologies (FRQNT)  
 525 and the Canadian Meteorological and Oceanographic Society (CMOS) through PhD schol-  
 526 arships. P. DeRepentigny is also supported by NSERC Discovery Program funds awarded  
 527 to L. B. Tremblay, NSF-OPP grant 1504348 (PI: A. Jahn, co-PIs: L. B. Tremblay and  
 528 M. M. Holland), and A. Jahn's start-up funds from the University of Colorado Boulder.  
 529 A. Jahn acknowledges support from NSF-OPP grant 1504348 and start-up funds from the  
 530 University of Colorado Boulder. L. B. Tremblay is grateful for the financial support of the  
 531 NSERC Discovery Program and the MEOPAR grant “Forecasting Regional Arctic Sea Ice  
 532 from a Month to Seasons”. This work is a contribution to the Canadian Sea Ice and Snow  
 533 Evolution (CanSISE) Network funded by the NSERC Climate Change and Atmospheric  
 534 Research program. R. Newton's effort on this project has been supported by the National  
 535 Science Foundation grants NSF-OCE 14-36666 (Arctic GEOTRACES) and NSF-PLR 15-  
 536 04404 (Dynamics of Freshwater Components). S. Pfirman's contribution has been supported  
 537 by the Arizona State University. This project is part of the grant “A Lagrangian approach  
 538 to emerging dynamics of the marginal ice zone”, lead PI: L. B. Tremblay, co-PIs: S. Pfirman  
 539 and R. Newton, ONR N00014-11-1-0977, 2011-2016.

540 We acknowledge the CESM Large Ensemble Community Project and the CESM Low  
 541 Warming Ensemble Project. The CESM project is supported primarily by the National Sci-  
 542 ence Foundation (NSF). Computing and data storage resources, including the Cheyenne su-  
 543 percomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Infor-  
 544 mation Systems Laboratory (CISL) at NCAR. Model output for the CESM-LE and the CESM-  
 545 LW is publicly available on the Earth System Grid website at [www.earthsystemgrid.org](http://www.earthsystemgrid.org).  
 546 The Polar Pathfinder data set is publicly available on the NSIDC website at <http://>

547 [nsidc.org/data/NSIDC-0116](http://nsidc.org/data/NSIDC-0116). The Climate Data Record product is publicly available on  
 548 the NSIDC website at <http://nsidc.org/data/G02202>. Shapefiles of maritime boundaries  
 549 and EEZs are publicly available at <http://www.marineregions.org/>.

550 L. B. Tremblay, S. Pfirman and R. Newton conceived the overall research question,  
 551 starting from the work of S. Pfirman and W. Haxby (deceased) on Lagrangian sea ice  
 552 tracking. A. Jahn suggested including the low warming scenario in the analysis. L. B.  
 553 Tremblay, R. Newton and P. DeRepentigny implemented the Sea Ice Tracking Utility (SITU)  
 554 and computational framework. P. DeRepentigny carried out the experiments and performed  
 555 the analysis under the supervision of L. B. Tremblay and A. Jahn. P. DeRepentigny took  
 556 the lead in writing the manuscript. All authors provided critical feedback and collaborated  
 557 in shaping the research, analysis and final version of the manuscript. We acknowledge  
 558 comments on an earlier draft by Dr. Clara Deser, Dr. Marika M. Holland, Dr. Jennifer E.  
 559 Kay and Dr. Walt N. Meier.

560 **References**

561 Aksenov, Y., Popova, E. E., Yool, A., Nurser, A. G., Williams, T. D., Bertino, L., & Bergh,  
 562 J. (2017). On the future navigability of Arctic sea routes: High-resolution projections  
 563 of the Arctic Ocean and sea ice. *Marine Policy*, 75, 300–317. doi: <https://doi.org/10.1016/j.marpol.2015.12.027>

564 AMAP. (2011). *AMAP Assessment 2011: Mercury in the Arctic* (Tech. Rep.). Oslo, Norway:  
 565 Arctic Monitoring and Assessment Programme (AMAP). (Available at: <https://www.apmap.no/documents/doc/amap-assessment-2011-mercury-in-the-arctic/90>)

566 AMAP. (2015). *AMAP Assessment 2015: Black carbon and ozone as Arctic climate  
 567 forcers* (Tech. Rep.). Oslo, Norway: Arctic Monitoring and Assessment Programme  
 568 (AMAP). (Available at: <https://www.apmap.no/documents/doc/amap-assessment-2015-black-carbon-and-ozone-as-arctic-climate-forcers/1299>)

569 Arctic Council. (2009). *Arctic Marine Shipping Assessment 2009 Report* (Tech. Rep.).  
 570 Oslo, Norway: Arctic Council Norwegian Chairmanship. (Available at: <https://oaarchive.arctic-council.org/handle/11374/54>)

571 Barnhart, K. R., Miller, C. R., Overeem, I., & Kay, J. E. (2016). Mapping the future  
 572 expansion of Arctic open water. *Nature Climate Change*, 6(3), 280. doi: <https://doi.org/10.1038/nclimate2848>

573 Bird, K. J., Charpentier, R. R., Gautier, D. L., Houseknecht, D. W., Klett, T. R., Pitman,  
 574

579 J. K., ... Wandrey, C. R. (2008). *Circum-Arctic resource appraisal: Estimates of*  
580 *undiscovered oil and gas north of the Arctic Circle* (Tech. Rep.). U.S. Geological  
581 Survey. doi: <https://doi.org/10.3133/fs20083049>

582 Blanken, H., Tremblay, L. B., Gaskin, S., & Slavin, A. (2017). Modelling the long-term  
583 evolution of worst-case Arctic oil spills. *Marine Pollution Bulletin*, 116(1-2), 315–331.  
584 doi: <https://doi.org/10.1016/j.marpolbul.2016.12.070>

585 Boetius, A., Albrecht, S., Bakker, K., Bienhold, C., Felden, J., Fernández-Méndez, M., ...  
586 others (2013). Export of algal biomass from the melting Arctic sea ice. *Science*,  
587 339(6126), 1430–1432. doi: <https://doi.org/10.1126/science.1231346>

588 Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., & Savoie, M. H. (2012). EASE-Grid  
589 2.0: Incremental but significant improvements for Earth-gridded data sets. *ISPRS  
590 International Journal of Geo-Information*, 1(1), 32–45. doi: [https://doi.org/10.3390/ijgi1010032](https://doi.org/10.3390/<br/>591 ijgi1010032)

592 Brunette, C., Tremblay, B., & Newton, R. (2019). Winter coastal divergence as a predictor  
593 for the minimum sea ice extent in the Laptev Sea. *Journal of Climate*, 32(4), 1063–  
594 1080. doi: <https://doi.org/10.1175/JCLI-D-18-0169.1>

595 Budikova, D. (2009). Role of Arctic sea ice in global atmospheric circulation: A re-  
596 view. *Global and Planetary Change*, 68(3), 149–163. doi: [https://doi.org/10.1016/j.gloplacha.2009.04.001](https://doi.org/10.1016/<br/>597 j.gloplacha.2009.04.001)

598 Comiso, J. C. (2012). Large decadal decline of the Arctic multiyear ice cover. *Journal of  
599 Climate*, 25, 1176–1193. doi: <https://doi.org/10.1175/JCLI-D-11-00113.1>

600 Comiso, J. C., Meier, W. N., & Gersten, R. (2017). Variability and trends in the Arctic sea  
601 ice cover: Results from different techniques. *Journal of Geophysical Research: Oceans*,  
602 122(8), 6883–6900. doi: <https://doi.org/10.1002/2017JC012768>

603 Comiso, J. C., Parkinson, C. L., Gersten, R., & Stock, L. (2008). Accelerated decline in  
604 the Arctic sea ice cover. *Geophysical Research Letters*, 35(1). doi: [https://doi.org/10.1029/2007GL031972](https://doi.org/<br/>605 10.1029/2007GL031972)

606 DeRepentigny, P., Tremblay, L. B., Newton, R., & Pfirman, S. (2016). Patterns of Sea Ice  
607 Retreat in the Transition to a Seasonally Ice-Free Arctic. *Journal of Climate*, 29(19),  
608 6993–7008. doi: <https://doi.org/10.1175/JCLI-D-15-0733.1>

609 Eicken, H. (2004). The role of Arctic sea ice in transporting and cycling terrigenous organic  
610 matter. In *The organic carbon cycle in the arctic ocean* (pp. 45–53). Springer Berlin.

611 Eicken, H., Kolatschek, J., Freitag, J., Lindemann, F., Kassens, H., & Dmitrenko, I. (2000).

612 A key source area and constraints on entrainment for basin-scale sediment transport  
613 by Arctic sea ice. *Geophysical Research Letters*, 27(13), 1919–1922. doi: <https://doi.org/10.1029/1999GL011132>

614

615 Emmerson, C., & Lahn, G. (2012). *Arctic Opening: Opportunity and Risk in the High North*  
616 (Tech. Rep.). London, United Kingdom: Chatham House. (Available at: <https://www.chathamhouse.org/publications/papers/view/182839>)

617

618 England, M., Jahn, A., & Polvani, L. (2019). Nonuniform Contribution of Internal Vari-  
619 ability to Recent Arctic Sea Ice Loss. *Journal of Climate*, 32(13), 4039–4053. doi:  
620 <https://doi.org/10.1175/JCLI-D-18-0864.1>

621 Fernández-Méndez, M., Katlein, C., Rabe, B., Nicolaus, M., Peeken, I., Bakker, K., ...  
622 Boetius, A. (2015). Photosynthetic production in the central Arctic Ocean during  
623 the record sea-ice minimum in 2012. *Biogeosciences*, 12(11), 3525–3549. doi: <https://doi.org/10.5194/bg-12-3525-2015>

624

625 Fingas, M., & Hollebone, B. (2003). Review of behaviour of oil in freezing environments.  
626 *Marine Pollution Bulletin*, 47(9-12), 333–340. doi: [https://doi.org/10.1016/S0025-326X\(03\)00210-8](https://doi.org/10.1016/S0025-326X(03)00210-8)

627

628 Flanders Marine Institute. (2018). *Maritime Boundaries Geodatabase: Maritime Boundaries*  
629 and *Exclusive Economic Zones (200NM)*, version 10. doi: <https://doi.org/10.14284/312>

630

631 Fowler, C., Emery, W., & Maslanik, J. (2004). Satellite-derived evolution of Arctic sea ice  
632 age: October 1978 to March 2003. *Geoscience and Remote Sensing Letters, IEEE*,  
633 1(2), 71–74. doi: <https://doi.org/10.1109/LGRS.2004.824741>

634

635 Glickson, D., Grabowski, M., Coolbaugh, T., Dickins, D., Glenn, R., Lee, K., ... others  
636 (2014). Responding to oil spills in the U.S. Arctic marine environment. In *International*  
637 *oil spill conference proceedings* (Vol. 2014, p. 283740). doi: <https://doi.org/10.7901/2169-3358-2014-1-283740.1>

638

639 Gradinger, R. R., Kaufman, M. R., & Bluhm, B. A. (2009). Pivotal role of sea ice sedi-  
640 ments in the seasonal development of near-shore Arctic fast ice biota. *Marine Ecology*  
*Progress Series*, 394, 49–63. doi: <https://doi.org/10.3354/meps08320>

641

642 Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., ...  
643 others (2013). The Community Earth System Model: a framework for collaborative  
644 research. *Bulletin of the American Meteorological Society*, 94(9), 1339–1360. doi:  
<https://doi.org/10.1175/BAMS-D-12-00121.1>

645 Izumiya, K., Uto, S., Sakai, S., et al. (2004). Prediction of oil-ice sandwich formation.  
646 *International Journal of Offshore and Polar Engineering*, 14(03).

647 Jahn, A. (2018). Reduced probability of ice-free summers for 1.5°C compared to 2°C  
648 warming. *Nature Climate Change*, 8(5), 409. doi: <https://doi.org/10.1038/s41558-018-0127-8>

650 Jahn, A., & Holland, M. M. (2013). Implications of Arctic sea ice changes for North  
651 Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5  
652 simulations. *Geophysical Research Letters*, 40(6), 1206–1211. doi: <https://doi.org/10.1002/grl.50183>

654 Jahn, A., Kay, J. E., Holland, M. M., & Hall, D. M. (2016). How predictable is the timing  
655 of a summer ice-free Arctic? *Geophysical Research Letters*, 43(17), 9113–9120. doi:  
656 <https://doi.org/10.1002/2016GL070067>

657 Jin, M., Deal, C., Wang, J., Alexander, V., Gradinger, R., Saitoh, S.-I., ... Stabeno, P. (2007).  
658 Ice-associated phytoplankton blooms in the southeastern Bering Sea. *Geophysical  
659 Research Letters*, 34(6). doi: <https://doi.org/10.1029/2006GL028849>

660 Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E., Bopp, L., ... oth-  
661 ers (2013). Twenty-first-century compatible CO<sub>2</sub> emissions and airborne fraction  
662 simulated by CMIP5 earth system models under four representative concentration  
663 pathways. *Journal of Climate*, 26(13), 4398–4413. doi: <https://doi.org/10.1175/JCLI-D-12-00554.1>

665 Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., ... Vertenstein, M.  
666 (2015). The Community Earth System Model (CESM) Large Ensemble Project: A  
667 Community Resource for Studying Climate Change in the Presence of Internal Climate  
668 Variability. *Bulletin of the American Meteorological Society*, 96(8), 1333-1349. doi:  
669 <https://doi.org/10.1175/BAMS-D-13-00255.1>

670 Krumpen, T., Belter, H. J., Boetius, A., Damm, E., Haas, C., Hendricks, S., ... Stein,  
671 R. (2019). Arctic warming interrupts the Transpolar Drift and affects long-range  
672 transport of sea ice and ice-rafted matter. *Scientific Reports*, 9(5459), 1–9. doi:  
673 <https://doi.org/10.1038/s41598-019-41456-y>

674 Kwok, R. (2018). Arctic sea ice thickness, volume, and multiyear ice coverage: losses and  
675 coupled variability (1958–2018). *Environmental Research Letters*, 13(10), 105005. doi:  
676 <https://doi.org/10.1088/1748-9326/aae3ec>

677 Labe, Z., Magnusdottir, G., & Stern, H. (2018). Variability of Arctic sea ice thickness using

678 PIOMAS and the CESM Large Ensemble. *Journal of Climate*, 31(8), 3233–3247. doi:  
679 <https://doi.org/10.1175/JCLI-D-17-0436.1>

680 Maslanik, J., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., & Emery, W. (2007). A  
681 younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss.  
682 *Geophysical Research Letters*, 34(24). doi: <https://doi.org/10.1029/2007GL032043>

683 Massonnet, F., Fichefet, T., Goosse, H., Bitz, C. M., Philippon-Berthier, G., Holland,  
684 M. M., & Barriat, P.-Y. (2012). Constraining projections of summer Arctic sea ice.  
685 *The Cryosphere*, 6(6), 1383–1394. doi: <https://doi.org/10.5194/tc-6-1383-2012>

686 Meier, W., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., & Stroeve, J. (2017).  
687 NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration,  
688 Version 3 Revision 1 [monthly averages from January 1989 to December 2008]. *National  
689 Snow and Ice Data Center, Boulder, Colorado, USA*, Accessed July 2018. doi:  
690 <https://doi.org/10.7265/N59P2ZTG>

691 Melnikov, I. A., Kolosova, E. G., Welch, H. E., & Zhitina, L. S. (2002). Sea ice biological  
692 communities and nutrient dynamics in the Canada Basin of the Arctic Ocean. *Deep  
693 Sea Research Part I: Oceanographic Research Papers*, 49(9), 1623–1649. doi: [https://doi.org/10.1016/S0967-0637\(02\)00042-0](https://doi.org/10.1016/S0967-0637(02)00042-0)

694 Newton, R., Pfirman, S., Schlosser, P., Tremblay, B., Murray, M., & Pomerance, R. (2016).  
695 White Arctic vs. Blue Arctic: A case study of diverging stakeholder responses to  
696 environmental change. *Earth's Future*, 4(8), 396–405. doi: <https://doi.org/10.1002/2016EF000356>

697 Newton, R., Pfirman, S., Tremblay, B., & DeRepentigny, P. (2017). Increasing transnational  
698 sea-ice exchange in a changing Arctic Ocean. *Earth's Future*, 5(6), 633–647. doi:  
699 <https://doi.org/10.1002/2016EF000500>

700 Newton, R., Schlosser, P., Mortlock, R., Swift, J., & MacDonald, R. (2013). Canadian  
701 Basin freshwater sources and changes: Results from the 2005 Arctic Ocean Section.  
702 *Journal of Geophysical Research: Oceans*, 118(4), 2133–2154. doi: <https://doi.org/10.1002/jgrc.20101>

703 Ng, A. K., Andrews, J., Babb, D., Lin, Y., & Becker, A. (2018). Implications of cli-  
704 mate change for shipping: Opening the Arctic seas. *Wiley Interdisciplinary Reviews:  
705 Climate Change*, 9(2), e507. doi: <https://doi.org/10.1002/wcc.507>

706 Niederdrenk, A. L., & Notz, D. (2018). Arctic sea ice in a 1.5 C warmer world. *Geophysical  
707 Research Letters*, 45(4), 1963–1971. doi: <https://doi.org/10.1002/2017GL076159>

708

709

710

711 Nordquist, M. (2011). *United Nations Convention on the Law of the Sea 1982, Volume VII: A Commentary*. Brill. doi: <https://doi.org/10.1163/ej.9789004191174.iii-488>

712 Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H., Letzig, T., ... Thiede, J. (1994). Sediments in Arctic sea ice: Implications for entrainment, transport and release. *Marine Geology*, 119(3-4), 185–214. doi: [https://doi.org/10.1016/0025-3227\(94\)90181-3](https://doi.org/10.1016/0025-3227(94)90181-3)

713 Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I., & Thompson, R. C. (2014). Global warming releases microplastic legacy frozen in Arctic Sea ice. *Earth's Future*, 2(6), 315–320. doi: <https://doi.org/10.1002/2014EF000240>

714 Octaviani, M., Stemmler, I., Lammel, G., & Graf, H. F. (2015). Atmospheric transport of persistent organic pollutants to and from the Arctic under present-day and future 715 climate. *Environmental science & technology*, 49(6), 3593–3602. doi: <https://doi.org/10.1021/es505636g>

716 Ogi, M., & Rigor, I. G. (2013). Trends in Arctic sea ice and the role of atmospheric 717 circulation. *Atmospheric Science Letters*, 14(2), 97–101. doi: <https://doi.org/10.1002/asl2.423>

718 Olsen, L. M., Laney, S. R., Duarte, P., Kauko, H. M., Fernández-Méndez, M., Mundy, C. J., 719 ... others (2017). The seeding of ice algal blooms in Arctic pack ice: the multiyear ice 720 seed repository hypothesis. *Journal of Geophysical Research: Biogeosciences*, 122(7), 721 1529–1548. doi: <https://doi.org/10.1002/2016JG003668>

722 Ostreng, W., Eger, K. M., Fløistad, B., Jørgensen-Dahl, A., Lothe, L., Mejlænder-Larsen, M., & Wergeland, T. (2013). *Shipping in arctic waters: a comparison of the northeast, northwest and trans polar passages*. Springer Science & Business Media. doi: 10.1007/978-3-642-16790-4

723 Peeken, I., Primpke, S., Beyer, B., Gütermann, J., Katlein, C., Krumpen, T., ... Gerdts, G. (2018). Arctic sea ice is an important temporal sink and means of transport 724 for microplastic. *Nature communications*, 9(1), 1505. doi: <https://doi.org/10.1038/s41467-018-03825-5>

725 Peng, G., Meier, W., Scott, D., & Savoie, M. (2013). A long-term and reproducible passive 726 microwave sea ice concentration data record for climate studies and monitoring. *Earth 727 System Science Data*, 5(2), 311–318. doi: <https://doi.org/10.5194/essd-5-311-2013>

728 Peterson, C. H., Rice, S. D., Short, J. W., Esler, D., Bodkin, J. L., Ballachey, B. E., & Irons, D. B. (2003). Long-term ecosystem response to the Exxon Valdez oil spill. *Science*, 729

744 302(5653), 2082–2086. doi: 10.1126/science.1084282

745 Pfirman, S., Eicken, H., Bauch, D., & Weeks, W. (1995). The potential transport of  
746 pollutants by Arctic sea ice. *Science of the Total Environment*, 159(2-3), 129–146.  
747 doi: [https://doi.org/10.1016/0048-9697\(95\)04174-Y](https://doi.org/10.1016/0048-9697(95)04174-Y)

748 Pfirman, S., Haxby, W. F., Colony, R., & Rigor, I. (2004). Variability in Arctic sea ice drift.  
749 *Geophysical Research Letters*, 31(16). doi: <https://doi.org/10.1029/2004GL020063>

750 Pfirman, S., Kögeler, J., & Rigor, I. (1997). Potential for rapid transport of contaminants  
751 from the Kara Sea. *Science of the Total Environment*, 202(1-3), 111–122. doi: [https://doi.org/10.1016/S0048-9697\(97\)00108-3](https://doi.org/10.1016/S0048-9697(97)00108-3)

752 Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R.,  
753 Elberling, B., ... others (2009). Ecological dynamics across the Arctic associated with  
754 recent climate change. *Science*, 325(5946), 1355–1358. doi: <https://doi.org/10.1126/science.1173113>

755 Rigor, I. G., & Wallace, J. M. (2004). Variations in the age of Arctic sea-ice and summer  
756 sea-ice extent. *Geophysical Research Letters*, 31(9). doi: <https://doi.org/10.1029/2004GL019492>

757 Sanderson, B. M., Xu, Y., Tebaldi, C., Wehner, M., O'Neill, B. C., Jahn, A., ... others (2017).  
758 Community climate simulations to assess avoided impacts in 1.5 and 2°C futures. *Earth  
759 System Dynamics*, 8(3), 827–847. doi: <https://doi.org/10.5194/esd-8-827-2017>

760 Schøyen, H., & Bråthen, S. (2011). The Northern Sea Route versus the Suez Canal:  
761 cases from bulk shipping. *Journal of Transport Geography*, 19(4), 977–983. doi:  
762 <https://doi.org/10.1016/j.jtrangeo.2011.03.003>

763 Screen, J. A., & Williamson, D. (2017). Ice-free Arctic at 1.5° C? *Nature Climate Change*,  
764 7(4), 230. doi: <https://doi.org/10.1038/nclimate3248>

765 Shevchenko, V. P., Vinogradova, A. A., Lisitzin, A. P., Novigatsky, A. N., Panchenko,  
766 M. V., & Pol'kin, V. V. (2016). Aeolian and Ice Transport of Matter (Including  
767 Pollutants) in the Arctic. In R. Kallenborn (Ed.), *Implications and consequences  
768 of anthropogenic pollution in polar environments* (pp. 59–73). Berlin, Heidelberg:  
769 Springer Berlin Heidelberg. doi: [https://doi.org/10.1007/978-3-642-12315-3\\_5](https://doi.org/10.1007/978-3-642-12315-3_5)

770 Sigmond, M., Fyfe, J. C., & Swart, N. C. (2018). Ice-free Arctic projections under the  
771 Paris Agreement. *Nature Climate Change*, 8(5), 404. doi: <https://doi.org/10.1038/s41558-018-0124-y>

772 SIMIP Community. (2020). Arctic Sea Ice in CMIP6. *Geophysical Research Letters*. (under  
773 review)

774

775

776

777 review)

778 Smedsrud, L. H. (2001). Frazil-ice entrainment of sediment: large-tank laboratory ex-  
779 periments. *Journal of Glaciology*, 47(158), 461–471. doi: <https://doi.org/10.3189/172756501781832142>

780 Smedsrud, L. H. (2002). A model for entrainment of sediment into sea ice by aggregation  
781 between frazil-ice crystals and sediment grains. *Journal of Glaciology*, 48(160), 51–61.  
782 doi: <https://doi.org/10.3189/172756502781831520>

783 Smith, A., & Jahn, A. (2019). Definition differences and internal variability affect the  
784 simulated Arctic sea ice melt season. *The Cryosphere*, 13(1), 1–20. doi: <https://doi.org/10.5194/tc-13-1-2019>

785 Sørstrøm, S. E., Brandvik, P. J., Buist, I., Daling, P., Dickins, D., Faksness, L.-G., ...  
786 Singsaas, I. (2010). *Joint industry program on oil spill contingency for Arctic and  
ice-covered waters: Summary report*. Trondheim, Norway: SINTEF.

787 Stephenson, S. R., Smith, L. C., Brigham, L. W., & Agnew, J. A. (2013). Projected 21st-  
788 century changes to Arctic marine access. *Climatic Change*, 118(3-4), 885–899. doi:  
789 <https://doi.org/10.1007/s10584-012-0685-0>

790 Stroeve, J., Barrett, A., Serreze, M., & Schweiger, A. (2014). Using records from submarine,  
791 aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness.  
792 *Cryosphere*, 8(5). doi: <https://doi.org/10.5194/tc-8-1839-2014>

793 Stroeve, J., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., & Meier,  
794 W. N. (2012). Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations.  
795 *Geophysical Research Letters*, 39(16). doi: <https://doi.org/10.1029/2012GL052676>

796 Stroeve, J., Markus, T., Boisvert, L., Miller, J., & Barrett, A. (2014). Changes in Arctic  
797 melt season and implications for sea ice loss. *Geophysical Research Letters*, 41(4),  
798 1216–1225. doi: <https://doi.org/10.1002/2013GL058951>

800 Stroeve, J., & Notz, D. (2018). Changing state of Arctic sea ice across all seasons. *Envi-  
801 ronmental Research Letters*, 13(10), 103001. doi: <https://doi.org/10.1088/1748-9326/aae56>

802 Stroeve, J., Serreze, M., Holland, M. M., Kay, J. E., Malanik, J., & Barrett, A. P. (2012).  
803 The Arctic's rapidly shrinking sea ice cover: a research synthesis. *Climatic Change*,  
804 110(3-4), 1005–1027. doi: <https://doi.org/10.1007/s10584-011-0101-1>

805 Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., & Jahn, A. (2015). Influence of internal  
806 variability on Arctic sea-ice trends. *Nature Climate Change*, 5(2), 86. doi: <https://doi.org/10.1038/nclimate2533>

doi.org/10.1038/nclimate2483

810 Tandon, N. F., Kushner, P. J., Docquier, D., Wettstein, J. J., & Li, C. (2018). Reassessing  
811 Sea Ice Drift and Its Relationship to Long-Term Arctic Sea Ice Loss in Coupled Climate  
812 Models. *Journal of Geophysical Research: Oceans*, 123(6), 4338–4359. doi: <https://doi.org/10.1029/2017JC013697>  
813  
814 Tremblay, L., Schmidt, G., Pfirman, S., Newton, R., & Derepontigny, P. (2015). Is ice-rafted  
815 sediment in a North Pole marine record evidence for perennial sea-ice cover? *Philosophical  
816 Transactions of the Royal Society A: Mathematical, Physical and Engineering  
817 Sciences*, 373(2052), 20140168. doi: <https://doi.org/10.1098/rsta.2014.0168>  
818  
819 Tschudi, M., Fowler, C., Maslanik, J., Stewart, J. S., & Meier, W. (2016). Polar Pathfinder  
820 Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 3 [monthly averages from  
821 January 1989 to December 2008]. *NASA National Snow and Ice Data Center Distributed Active  
822 Archive Center, Boulder, Colorado, USA*, Accessed March 2016. doi:  
823 <http://dx.doi.org/10.5067/O57VAIT2AYYY>  
824  
825 UNFCCC. (2015). *Adoption of the Paris Agreement, FCCC/CP/2015/10/Add.1*. (Available  
826 at: <https://unfccc.int/resource/docs/2015/cop21/eng/10a01.pdf>)  
827  
828 Varotsos, C. A., & Krapivin, V. F. (2018). Pollution of Arctic Waters Has Reached a  
829 Critical Point: an Innovative Approach to This Problem. *Water, Air, & Soil Pollution*,  
830 229(11), 343. doi: <https://doi.org/10.1007/s11270-018-4004-x>  
831  
832 Venkatesh, S., El-Tahan, H., Comfort, G., & Abdelnour, R. (1990). Modelling the behaviour  
833 of oil spills in ice-infested waters. *Atmosphere-Ocean*, 28(3), 303–329. doi: <https://doi.org/10.1080/07055900.1990.9649380>  
834  
835 Wang, M., & Overland, J. E. (2009). A sea ice free summer Arctic within 30 years?  
836 *Geophysical Research Letters*, 36(7). doi: <https://doi.org/10.1029/2009GL037820>  
837  
838 Wang, M., & Overland, J. E. (2012). A sea ice free summer Arctic within 30 years: An  
839 update from CMIP5 models. *Geophysical Research Letters*, 39(18). doi: <https://doi.org/10.1029/2012GL052868>  
840  
841 Wilhelmsen, J. M., & Gjerde, K. L. (2018). Norway and Russia in the Arctic: New  
842 Cold War Contamination? *Arctic Review on Law and Politics*, 9, 381–407. doi:  
843 <https://doi.org/10.23865/arctic.v9.1334>  
844  
845 Wilkinson, J., Beegle-Krause, C. J., Evers, K.-U., Hughes, N., Lewis, A., Reed, M., &  
846 Wadhams, P. (2017). Oil spill response capabilities and technologies for ice-covered  
847 Arctic marine waters: A review of recent developments and established practices.

843                   *Ambio*, 46(3), 423–441. doi: <https://doi.org/10.1007/s13280-017-0958-y>

844                   Williams, J., Tremblay, B., Newton, R., & Allard, R. (2016). Dynamic preconditioning of  
845                   the minimum September sea-ice extent. *Journal of Climate*, 29(16), 5879–5891. doi:  
846                   <https://doi.org/10.1175/JCLI-D-15-0515.1>

847                   Zappa, G., Pithan, F., & Shepherd, T. G. (2018). Multimodel evidence for an atmospheric  
848                   circulation response to Arctic sea ice loss in the CMIP5 future projections. *Geophysical  
849                   research letters*, 45(2), 1011–1019. doi: <https://doi.org/10.1002/2017GL076096>

# Supporting Information for “Increased Transnational Sea Ice Transport Between Neighboring Arctic States in the 21<sup>st</sup> Century”

Patricia DeRepentigny<sup>1,2</sup>, Alexandra Jahn<sup>1</sup>, L. Bruno Tremblay<sup>2,3</sup>, Robert Newton<sup>3</sup>, and Stephanie Pfirman<sup>4</sup>

<sup>1</sup>Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA.

<sup>2</sup>Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.

<sup>3</sup>Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA.

<sup>4</sup>School of Sustainability, Arizona State University, Tempe, Arizona, USA.

Corresponding author: P. DeRepentigny, Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, 311 UCB, Boulder, CO 80309, USA. (patricia.derepentigny@colorado.edu)

## Contents of this file

1. Text S1 to S2
2. Figures S1 to S7
3. Tables S1 to S2

## Text S1. Observational Datasets

The National Snow and Ice Data Center’s (NSIDC) Polar Pathfinder project provides sea ice motion vectors on the 25 km EASE-Grid from the beginning of polar-orbiting satellite observations in November 1978 to 2017 (Tschudi et al., 2016). This gridded product is derived through optimal interpolation of observations from the International Arctic Buoy Program (IABP), as well as the Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), the Special Sensor Microwave Imager Sounder (SSMIS), the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and the Advanced Very High Resolution Radiometer (AVHRR) sensors. It is complemented with free drift estimates derived from 10 m winds provided by the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset where no observations were available. We also use sea ice concentration data derived from passive microwave brightness temperature from the National Oceanic and Atmospheric Administration (NOAA)/NSIDC Climate Data Record (Meier et al., 2017; Peng et al., 2013). It is a product of different algorithms used to combine observations made by the SMMR, SSM/I and SSMIS sensors, available from late 1978 to 2017.

The Polar Pathfinder and Climate Data Record datasets were previously used in Newton, Pfirman, Tremblay, and DeRepentigny (2017), where a similar analysis of transnational ice exchange over the observational period was performed. Newton et al. (2017) used a weekly time resolution while we here use a monthly resolution to allow for a direct comparison with model data, which is only available at a monthly resolution for one of the two forcing scenarios analyzed here (see section 2.1). The reduction of temporal resolution from weekly to monthly has been shown to lead to an increase of the error in drift distance when compared to buoy data by approximately 45 km (less than two grid cells) after a year of tracking when using the ice tracking system (DeRepentigny et al., 2016). In the context of this study, we find that the flux of transnational ice is reduced slightly towards the end of the 21<sup>st</sup> century for most pathways when

going from a monthly to a weekly resolution (Figure S2). However, none of the conclusions from this study are affected by the change in time resolution from monthly to weekly.

All observational analyses presented here use satellite-derived sea ice velocity and concentration between January 1989 and December 2008. We begin the analysis in 1989 to avoid earlier satellite-based drift vectors, based on retrievals from the relatively low-resolution SMMR sensor, that exhibit a low bias in sea ice velocity compared to co-located buoy data (Bruno Tremblay, Robert Newton and Charles Brunette, personal communication, May 16, 2019). Comparison between observations and model data presented in section S2 is therefore done over the 20-year period of 1989–2008.

## Text S2. Comparison of the CESM with Observations

To provide an assessment of the performance of the CESM in simulating sea ice transport between the different EEZs of the Arctic, we compare CESM results to results from SITU using satellite observations from the period of 1989 to 2008. We find that the annual cycle of areal ice formation and melt in the CESM-LE compares well with the observations (Figure S3). Ice formation peaks in October and ice melt peaks in August (peak of ice formation/melt here refers to the month with the largest area of simulated ice formation/melt using SITU). Note, however, that the average amount of formation and melt area obtained from the observations does not fall within the spread of internal variability of the CESM-LE during the months of peak ice formation and melt (i.e., October and August, respectively), with the CESM-LE simulating too little ice formation and melt (Figure S3). The spatial distributions of areal ice formation and melt are also well represented in the CESM-LE (Figures S4 and S5) despite slightly larger frequencies of detected fall formation and summer melt over the peripheral seas for the observations (in agreement with results presented in Figure S3).

The exchange of transnational ice between the different EEZs of the Arctic simulated by the CESM-LE over the period of 1989–2008 is in good general agreement with observations (Figure S6). Both the observations and the CESM-LE show that most of the transnational ice formed in Canada melts in the US EEZ, most of the transnational ice formed in the United States melts in Russia, and most of the Russian transnational ice melts in Norway (Figure S6; see also Newton et al., 2017). However, the observed transnational ice transport is slightly outside the range of internal variability of the CESM-LE for two pathways: (1) ice forming in the United States and melting in Russia is underestimated

in the CESM, and (2) ice forming in Russia and melting in Norway and Iceland is overestimated in the CESM (Figure S6).

The small inconsistencies in areal flux of US ice towards Russia and Russian ice towards Norway and Iceland between observations and the CESM-LE do not extend throughout the full area of the EEZ of formation, but are present only in the region directly upstream of the EEZ of melt, following the general Arctic sea ice circulation (Figure S7). For the slightly lower simulated flux of US ice towards Russia by the CESM compared to observations (Figure S6), there is a smaller area of high transnational ice promotion probability within the US EEZ close to the Russian border for the CESM-LE compared to the observations (Figures S7a, S7b, and S7d). The slightly higher flux of Russian ice towards Norway and Iceland in the CESM-LE (Figure S6) is mainly driven by higher simulated probabilities of transnational ice promotion in the Kara and Barents Seas than what is observed (Figures S7a–S7c).

Differences in transnational ice exchange between the CESM-LE and observations for US ice melting in Russia and Russian ice melting in Norway and Iceland can be attributed to a bias in the simulated atmospheric circulation over the Arctic during the ice-covered season and the resulting sea ice circulation anomalies. DeRepentigny et al. (2016) showed that the variability in winter sea-level pressure in the CESM-LE results in higher sea ice velocities off the coast of Russia in the Kara and Barents Seas compared to observations, transporting more ice away from the coast and into the Transpolar Drift Stream (see their Figures 6c and 6d). Moreover, the observations are characterized by a strong current along the coast of Alaska, which is not simulated in the years of low winter sea-level pressure in the CESM-LE (see their Figures 6a and 6b). As one would expect, sea ice motion, and consequently transnational ice exchange, is intimately linked to the atmospheric circulation over the Arctic that drives the sea ice.

## References

DeRepentigny, P., Tremblay, L. B., Newton, R., & Pfirman, S. (2016). Patterns of Sea Ice Retreat in the Transition to a Seasonally Ice-Free Arctic. *Journal of Climate*, 29(19), 6993–7008. doi: <https://doi.org/10.1175/JCLI-D-15-0733.1>

Meier, W., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., & Stroeve, J. (2017). NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3 Revision 1 [monthly averages from January 1989 to December 2008]. *National Snow and Ice Data Center, Boulder, Colorado, USA*, Accessed July 2018. doi: <https://doi.org/10.7265/N59P2ZTG>

Newton, R., Pfirman, S., Tremblay, B., & DeRepentigny, P. (2017). Increasing transnational sea-ice exchange in a changing Arctic Ocean. *Earth's Future*, 5(6), 633–647. doi: <https://doi.org/10.1002/2016EF000500>

Peng, G., Meier, W., Scott, D., & Savoie, M. (2013). A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. *Earth System Science Data*, 5(2), 311–318. doi: <https://doi.org/10.5194/essd-5-311-2013>

Tschudi, M., Fowler, C., Maslanik, J., Stewart, J. S., & Meier, W. (2016). Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 3 [monthly averages from January 1989 to December 2008]. *NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA*, Accessed March 2016. doi: <http://dx.doi.org/10.5067/O57VAIT2AYYY>

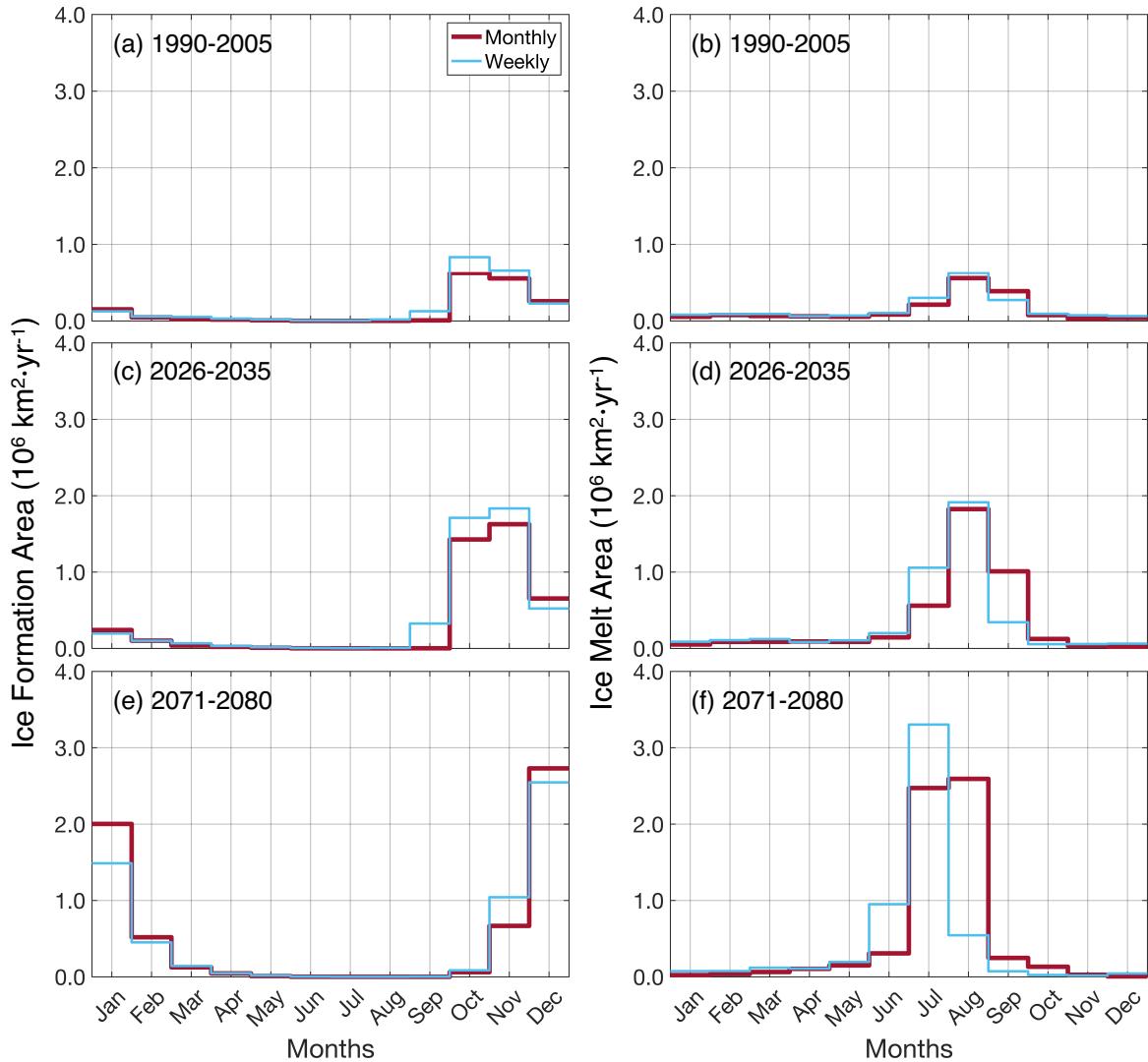



Figure S1: Annual cycle of ice formation (a, c, e) and melt (b, d, f) over the periods of 1990–2005 (a, b), 2026–2035 (c, d) and 2071–2080 (e, f) for the first 35 members of the CESM-LE using a monthly (burgundy) and weekly (light blue) time resolutions. Only ice floes that formed and melted between the specified time periods are considered. Note that some of the differences between the weekly and monthly time resolution can be attributed to the way weeks are distributed into months as every month contains either 29, 30 or 31 days and thus always includes part of a week.

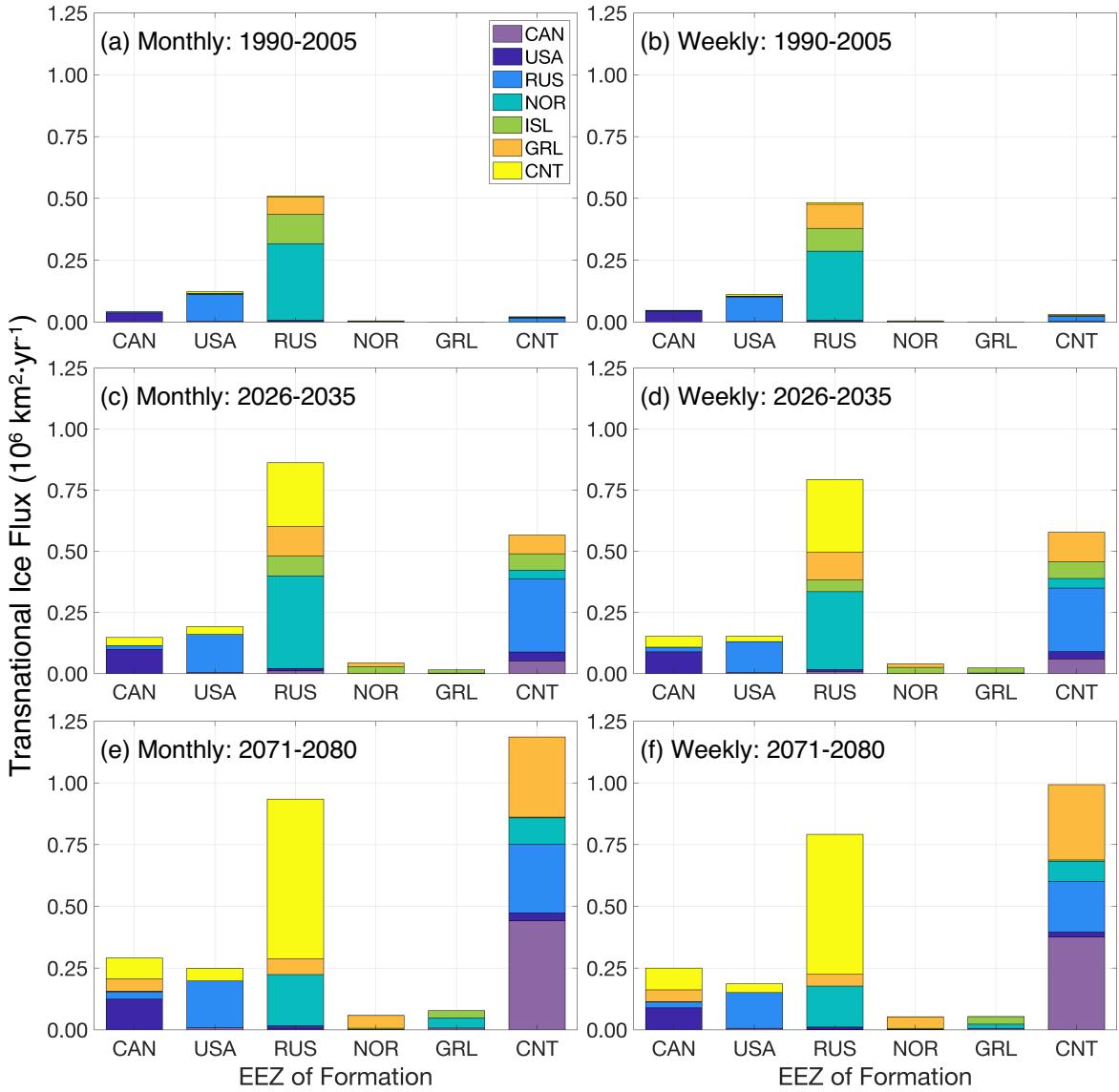



Figure S2: Annual mean average areal flux of transnational ice for the CESM-LE over the periods of 1990–2005 (a, b), 2026–2035 (c, d) and 2071–2080 (e, f) using a monthly (a, c, e) and weekly (b, d, f) time resolutions. The height of each colored portion within one bar represents the annual mean areal flux of ice between the EEZ of formation ( $x$  axis) and the EEZ of melt (color). Note that domestic ice is not included in this figure in order to focus on the features of transnational ice exchange.

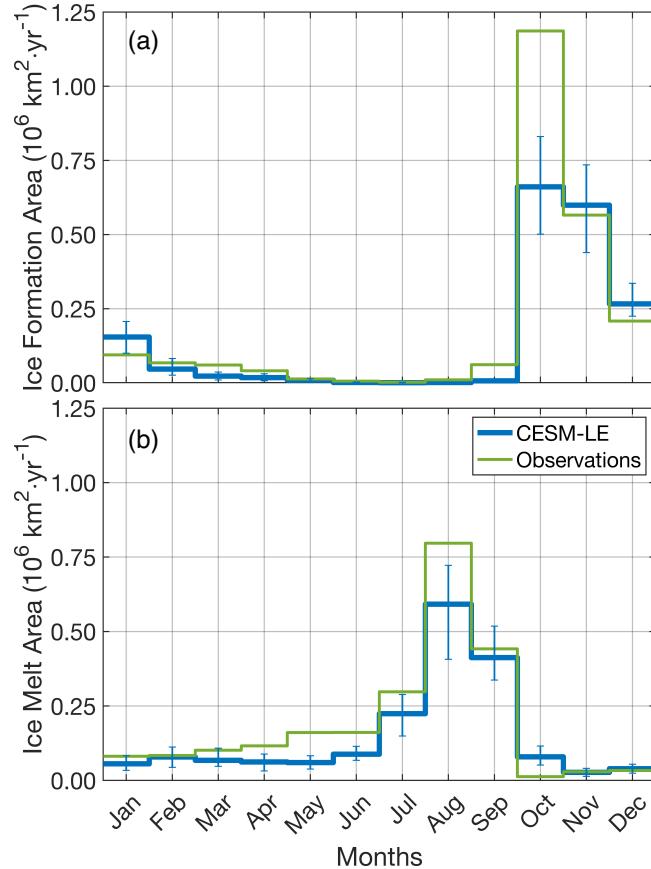



Figure S3: Annual cycle of mean areal ice formation (a) and melt (b) in the observations (green) and the CESM-LE (blue) for the period of 1989–2008. The error bars show the maximum and minimum 20-year averaged formation/melt area for each month across the 40 ensemble members of the CESM-LE, showing the range of internal variability for this ensemble. Only ice floes that formed and melted between 1989–2008 are considered. Note that the values shown here are not meant to represent the actual amount of ice that forms and melts in the Arctic every year, but rather the area of ice formation and melt we obtain from SITU (see section 2.2).

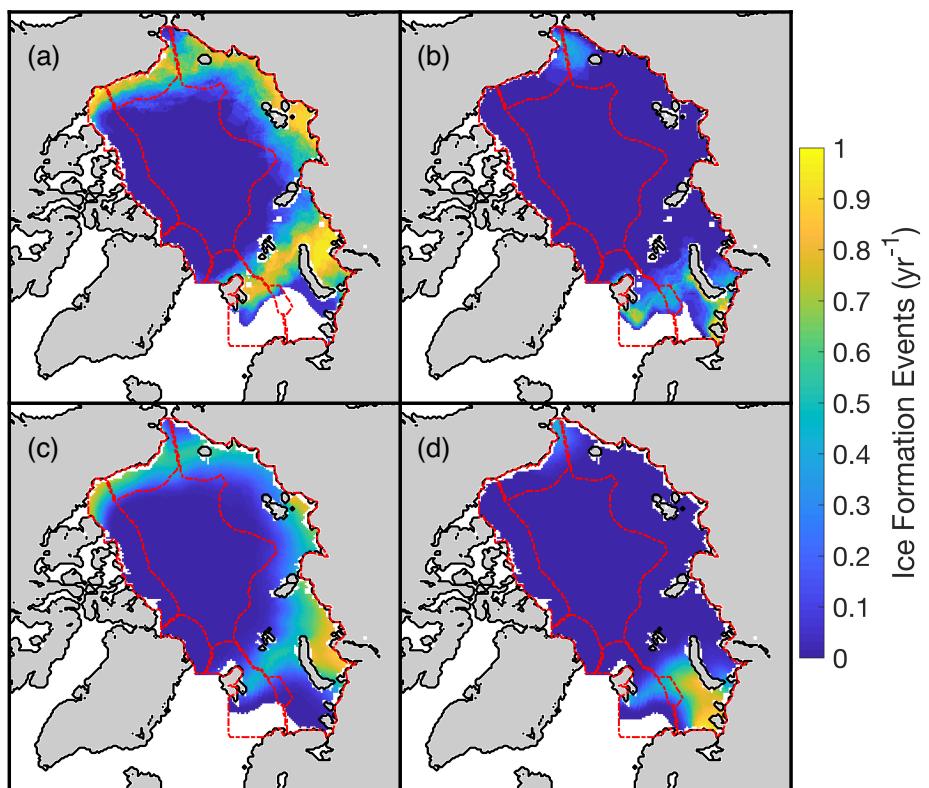



Figure S4: Average number of ice formation events per year in fall (SON) (a, c) and winter (DJF) (b, d) over the period of 1989–2008 for both observations (a, b) and the CESM-LE (c, d). The borders of the EEZs are indicated by red lines. Only ice floes that formed and melted between 1989–2008 are considered.

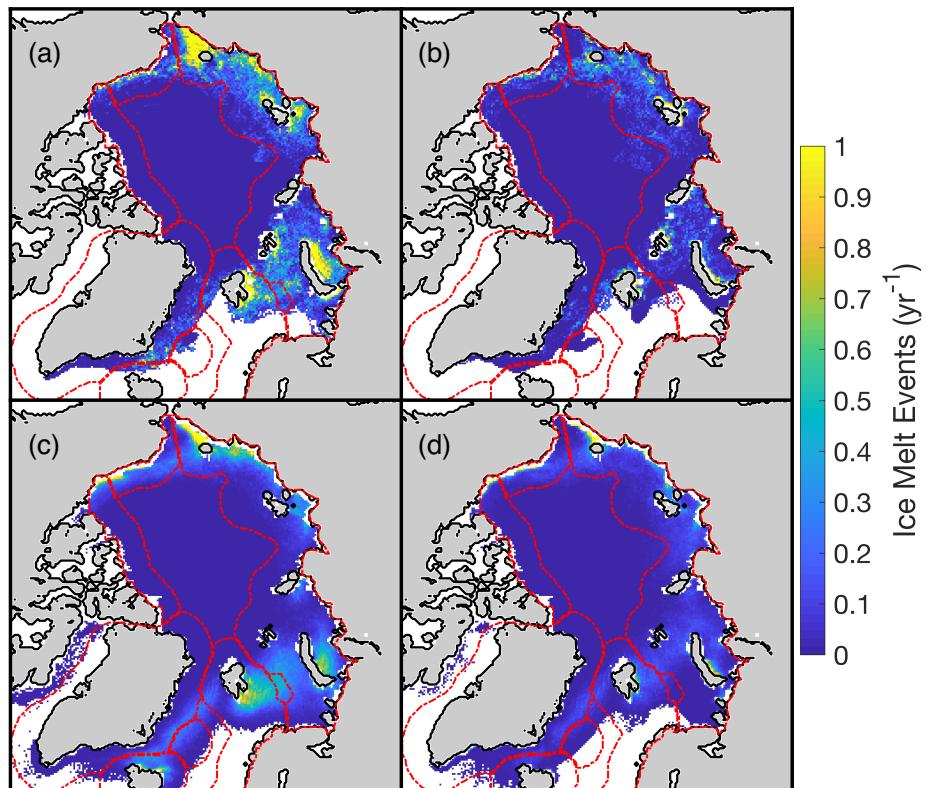



Figure S5: As in Figure S4, but for the average number of ice melt events per year in summer (JJA) (a, c) and fall (SON) (b, d).

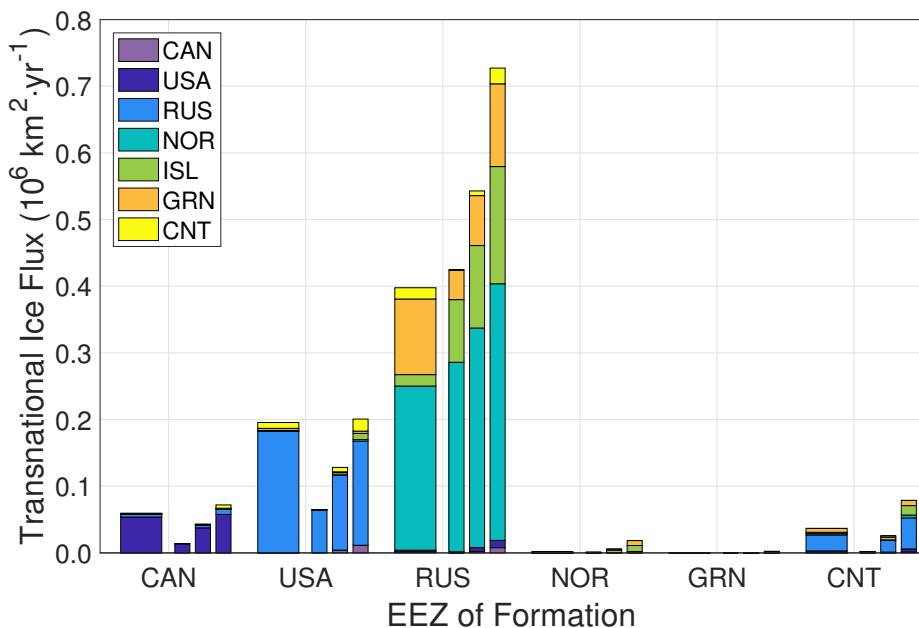



Figure S6: Annual mean areal transnational ice flux for the observations (wide bar) and annual mean minimum (left narrow bar), average (middle narrow bar) and maximum (right narrow bar) areal transnational ice flux for the 40 members of the CESM-LE for the period of 1989–2008. The height of each colored portion within one bar represents the annual mean areal flux of ice between the EEZ of formation ( $x$  axis) and the EEZ of melt (color). The CESM-LE is consistent with the observations when the observed value for each pathway lies between the range of the CESM-LE (minimum to maximum). Note that domestic ice is not included in this figure in order to focus on the features of transnational ice exchange.

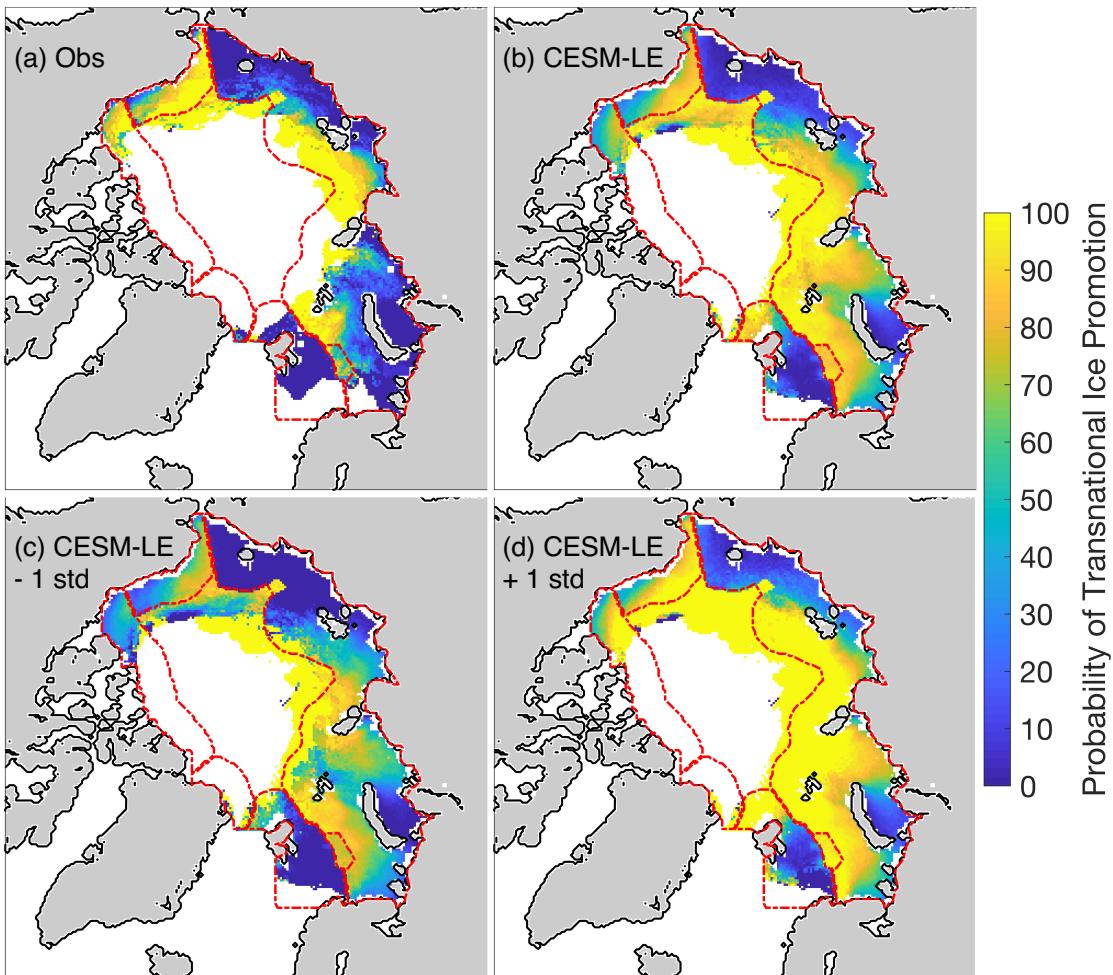



Figure S7: Probability of transnational ice promotion for observations (a), the ensemble mean of the CESM-LE (b) as well as the ensemble mean  $\pm$  one standard deviation for the CESM-LE (c, d) over the period of 1989–2008. The color represents the probability that an ice parcel forming at each grid cell gets promoted from domestic ice to transnational ice. The borders of the EEZs are indicated by red lines. Note that the probability is calculated for each grid cell in which at least one ice parcel forms and thus gives no indication of how many ice parcels are considered in the calculation.

Table S1: Annual mean average areal flux of ice exchanged between all EEZs for the CESM-LE over the three time periods. The EEZ of formation is indicated in the first column and the EEZ of melt in the first row. All numbers are in  $\text{km}^2/\text{year}$ . The last column contains the total annual mean average areal flux of ice formed in each EEZ, only considering ice floes that melted before the end of the time period. The numbers in bold highlight the pathways that are statistically different between the CESM-LE and the CESM-LW over a same time period at the 95% confidence level using a t-test.

| From/To          | Canada         | USA            | Russia         | Norway         | Iceland       | Greenland      | Central        | Total     |
|------------------|----------------|----------------|----------------|----------------|---------------|----------------|----------------|-----------|
| <b>1981–2000</b> |                |                |                |                |               |                |                |           |
| Canada           | 39,426         | 32,741         | 3,177          | 32             | 218           | 96             | 631            | 76,321    |
| USA              | 3,616          | 49,083         | 96,402         | 546            | 4,232         | 1,444          | 4,184          | 159,507   |
| Russia           | 1,635          | 4,900          | 563,494        | 305,730        | 112,159       | 60,825         | 2,217          | 1,050,960 |
| Norway           | 0              | 0              | 677            | 108,733        | 2,331         | 1,223          | 0              | 112,964   |
| Greenland        | 0              | 0              | 0              | 4              | 113           | 31             | 0              | 148       |
| Central          | 163            | 802            | 9,026          | 292            | 1,585         | 581            | 934            | 13,383    |
| <b>2031–2050</b> |                |                |                |                |               |                |                |           |
| Canada           | 107,566        | 128,998        | 25,926         | 441            | <b>1,563</b>  | <b>4,855</b>   | <b>62,049</b>  | 331,398   |
| USA              | 6,297          | 105,809        | 176,848        | 0              | <b>0</b>      | 0              | <b>34,613</b>  | 323,567   |
| Russia           | <b>11,480</b>  | 10,188         | 1,597,911      | <b>385,601</b> | <b>37,521</b> | <b>122,715</b> | <b>452,339</b> | 2,617,755 |
| Norway           | 10             | 0              | 737            | 135,196        | 33,191        | <b>31,475</b>  | 18             | 200,627   |
| Greenland        | <b>789</b>     | 11             | 8              | <b>10,823</b>  | <b>41,205</b> | 27,128         | 51             | 80,015    |
| Central          | <b>184,175</b> | 52,953         | 352,701        | <b>69,168</b>  | 81,513        | <b>194,498</b> | 833,752        | 1,768,760 |
| <b>2081–2100</b> |                |                |                |                |               |                |                |           |
| Canada           | 327,395        | <b>114,877</b> | 33,716         | <b>3,209</b>   | <b>175</b>    | <b>70,427</b>  | <b>102,810</b> | 652,609   |
| USA              | 6,742          | 66,614         | 184,671        | 0              | 0             | 0              | <b>60,638</b>  | 318,665   |
| Russia           | <b>2,495</b>   | <b>13,346</b>  | 1,429,691      | <b>162,929</b> | 4             | <b>40,631</b>  | <b>654,681</b> | 2,303,777 |
| Norway           | 9              | 0              | <b>1,692</b>   | 91,323         | <b>1,331</b>  | 38,416         | <b>821</b>     | 133,592   |
| Greenland        | <b>7,436</b>   | 0              | 64             | <b>41,848</b>  | <b>13,268</b> | 177,128        | 603            | 240,347   |
| Central          | <b>437,773</b> | 17,441         | <b>250,289</b> | <b>111,080</b> | 410           | <b>310,993</b> | 1,360,152      | 2,488,138 |

Table S2: As in Table S1, but for the CESM-LW and for the time periods of 2031–2050 and 2081–2100 only.

| From/To          | Canada         | USA            | Russia         | Norway         | Iceland       | Greenland      | Central        | Total     |
|------------------|----------------|----------------|----------------|----------------|---------------|----------------|----------------|-----------|
| <b>2031–2050</b> |                |                |                |                |               |                |                |           |
| Canada           | 67,835         | 116,784        | 28,938         | 9              | 401           | 423            | 38,568         | 252,958   |
| USA              | 4,134          | 102,824        | 181,077        | 3              | 28            | 20             | 20,594         | 308,680   |
| Russia           | <b>17,224</b>  | 13,310         | 1,529,744      | <b>416,960</b> | <b>73,301</b> | <b>137,656</b> | <b>311,557</b> | 2,499,752 |
| Norway           | 0              | 0              | 918            | 137,622        | 29,449        | <b>24,446</b>  | 0              | 192,435   |
| Greenland        | <b>97</b>      | 0              | 0              | <b>4,560</b>   | <b>25,810</b> | 9,903          | 0              | 40,370    |
| Central          | <b>95,631</b>  | 53,653         | 357,849        | <b>40,909</b>  | 78,207        | <b>117,193</b> | 540,412        | 1,283,854 |
| <b>2081–2100</b> |                |                |                |                |               |                |                |           |
| Canada           | 84,594         | <b>139,616</b> | 41,702         | <b>85</b>      | <b>1,153</b>  | <b>2,207</b>   | <b>67,080</b>  | 336,437   |
| USA              | 3,884          | 95,500         | 196,153        | 0              | 0             | 0              | <b>25,227</b>  | 320,764   |
| Russia           | <b>16,006</b>  | <b>8,551</b>   | 1,600,756      | <b>386,994</b> | <b>38,009</b> | <b>153,526</b> | <b>428,526</b> | 2,632,368 |
| Norway           | 51             | 0              | <b>739</b>     | 130,358        | <b>38,855</b> | 35,565         | 0              | 205,568   |
| Greenland        | <b>1,307</b>   | <b>125</b>     | 6              | <b>8,969</b>   | <b>51,634</b> | 24,952         | 57             | 87,050    |
| Central          | <b>192,349</b> | <b>55,827</b>  | <b>411,670</b> | <b>53,332</b>  | <b>84,082</b> | <b>189,324</b> | 813,423        | 1,800,007 |

# Supporting Information for “Increased Transnational Sea Ice Transport Between Neighboring Arctic States in the 21<sup>st</sup> Century”

Patricia DeRepentigny<sup>1,2</sup>, Alexandra Jahn<sup>1</sup>, L. Bruno Tremblay<sup>2,3</sup>, Robert Newton<sup>3</sup>, and Stephanie Pfirman<sup>4</sup>

<sup>1</sup>Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA.

<sup>2</sup>Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.

<sup>3</sup>Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA.

<sup>4</sup>School of Sustainability, Arizona State University, Tempe, Arizona, USA.

Corresponding author: P. DeRepentigny, Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, 311 UCB, Boulder, CO 80309, USA. (patricia.derepentigny@colorado.edu)

## Contents of this file

1. Text S1 to S2
2. Figures S1 to S7
3. Tables S1 to S2

## Text S1. Observational Datasets

The National Snow and Ice Data Center’s (NSIDC) Polar Pathfinder project provides sea ice motion vectors on the 25 km EASE-Grid from the beginning of polar-orbiting satellite observations in November 1978 to 2017 (Tschudi et al., 2016). This gridded product is derived through optimal interpolation of observations from the International Arctic Buoy Program (IABP), as well as the Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), the Special Sensor Microwave Imager Sounder (SSMIS), the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and the Advanced Very High Resolution Radiometer (AVHRR) sensors. It is complemented with free drift estimates derived from 10 m winds provided by the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset where no observations were available. We also use sea ice concentration data derived from passive microwave brightness temperature from the National Oceanic and Atmospheric Administration (NOAA)/NSIDC Climate Data Record (Meier et al., 2017; Peng et al., 2013). It is a product of different algorithms used to combine observations made by the SMMR, SSM/I and SSMIS sensors, available from late 1978 to 2017.

The Polar Pathfinder and Climate Data Record datasets were previously used in Newton, Pfirman, Tremblay, and DeRepentigny (2017), where a similar analysis of transnational ice exchange over the observational period was performed. Newton et al. (2017) used a weekly time resolution while we here use a monthly resolution to allow for a direct comparison with model data, which is only available at a monthly resolution for one of the two forcing scenarios analyzed here (see section 2.1). The reduction of temporal resolution from weekly to monthly has been shown to lead to an increase of the error in drift distance when compared to buoy data by approximately 45 km (less than two grid cells) after a year of tracking when using the ice tracking system (DeRepentigny et al., 2016). In the context of this study, we find that the flux of transnational ice is reduced slightly towards the end of the 21<sup>st</sup> century for most pathways when

going from a monthly to a weekly resolution (Figure S2). However, none of the conclusions from this study are affected by the change in time resolution from monthly to weekly.

All observational analyses presented here use satellite-derived sea ice velocity and concentration between January 1989 and December 2008. We begin the analysis in 1989 to avoid earlier satellite-based drift vectors, based on retrievals from the relatively low-resolution SMMR sensor, that exhibit a low bias in sea ice velocity compared to co-located buoy data (Bruno Tremblay, Robert Newton and Charles Brunette, personal communication, May 16, 2019). Comparison between observations and model data presented in section S2 is therefore done over the 20-year period of 1989–2008.

## Text S2. Comparison of the CESM with Observations

To provide an assessment of the performance of the CESM in simulating sea ice transport between the different EEZs of the Arctic, we compare CESM results to results from SITU using satellite observations from the period of 1989 to 2008. We find that the annual cycle of areal ice formation and melt in the CESM-LE compares well with the observations (Figure S3). Ice formation peaks in October and ice melt peaks in August (peak of ice formation/melt here refers to the month with the largest area of simulated ice formation/melt using SITU). Note, however, that the average amount of formation and melt area obtained from the observations does not fall within the spread of internal variability of the CESM-LE during the months of peak ice formation and melt (i.e., October and August, respectively), with the CESM-LE simulating too little ice formation and melt (Figure S3). The spatial distributions of areal ice formation and melt are also well represented in the CESM-LE (Figures S4 and S5) despite slightly larger frequencies of detected fall formation and summer melt over the peripheral seas for the observations (in agreement with results presented in Figure S3).

The exchange of transnational ice between the different EEZs of the Arctic simulated by the CESM-LE over the period of 1989–2008 is in good general agreement with observations (Figure S6). Both the observations and the CESM-LE show that most of the transnational ice formed in Canada melts in the US EEZ, most of the transnational ice formed in the United States melts in Russia, and most of the Russian transnational ice melts in Norway (Figure S6; see also Newton et al., 2017). However, the observed transnational ice transport is slightly outside the range of internal variability of the CESM-LE for two pathways: (1) ice forming in the United States and melting in Russia is underestimated

in the CESM, and (2) ice forming in Russia and melting in Norway and Iceland is overestimated in the CESM (Figure S6).

The small inconsistencies in areal flux of US ice towards Russia and Russian ice towards Norway and Iceland between observations and the CESM-LE do not extend throughout the full area of the EEZ of formation, but are present only in the region directly upstream of the EEZ of melt, following the general Arctic sea ice circulation (Figure S7). For the slightly lower simulated flux of US ice towards Russia by the CESM compared to observations (Figure S6), there is a smaller area of high transnational ice promotion probability within the US EEZ close to the Russian border for the CESM-LE compared to the observations (Figures S7a, S7b, and S7d). The slightly higher flux of Russian ice towards Norway and Iceland in the CESM-LE (Figure S6) is mainly driven by higher simulated probabilities of transnational ice promotion in the Kara and Barents Seas than what is observed (Figures S7a–S7c).

Differences in transnational ice exchange between the CESM-LE and observations for US ice melting in Russia and Russian ice melting in Norway and Iceland can be attributed to a bias in the simulated atmospheric circulation over the Arctic during the ice-covered season and the resulting sea ice circulation anomalies. DeRepentigny et al. (2016) showed that the variability in winter sea-level pressure in the CESM-LE results in higher sea ice velocities off the coast of Russia in the Kara and Barents Seas compared to observations, transporting more ice away from the coast and into the Transpolar Drift Stream (see their Figures 6c and 6d). Moreover, the observations are characterized by a strong current along the coast of Alaska, which is not simulated in the years of low winter sea-level pressure in the CESM-LE (see their Figures 6a and 6b). As one would expect, sea ice motion, and consequently transnational ice exchange, is intimately linked to the atmospheric circulation over the Arctic that drives the sea ice.

## References

DeRepentigny, P., Tremblay, L. B., Newton, R., & Pfirman, S. (2016). Patterns of Sea Ice Retreat in the Transition to a Seasonally Ice-Free Arctic. *Journal of Climate*, 29(19), 6993–7008. doi: <https://doi.org/10.1175/JCLI-D-15-0733.1>

Meier, W., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., & Stroeve, J. (2017). NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3 Revision 1 [monthly averages from January 1989 to December 2008]. *National Snow and Ice Data Center, Boulder, Colorado, USA*, Accessed July 2018. doi: <https://doi.org/10.7265/N59P2ZTG>

Newton, R., Pfirman, S., Tremblay, B., & DeRepentigny, P. (2017). Increasing transnational sea-ice exchange in a changing Arctic Ocean. *Earth's Future*, 5(6), 633–647. doi: <https://doi.org/10.1002/2016EF000500>

Peng, G., Meier, W., Scott, D., & Savoie, M. (2013). A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. *Earth System Science Data*, 5(2), 311–318. doi: <https://doi.org/10.5194/essd-5-311-2013>

Tschudi, M., Fowler, C., Maslanik, J., Stewart, J. S., & Meier, W. (2016). Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 3 [monthly averages from January 1989 to December 2008]. *NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA*, Accessed March 2016. doi: <http://dx.doi.org/10.5067/O57VAIT2AYYY>

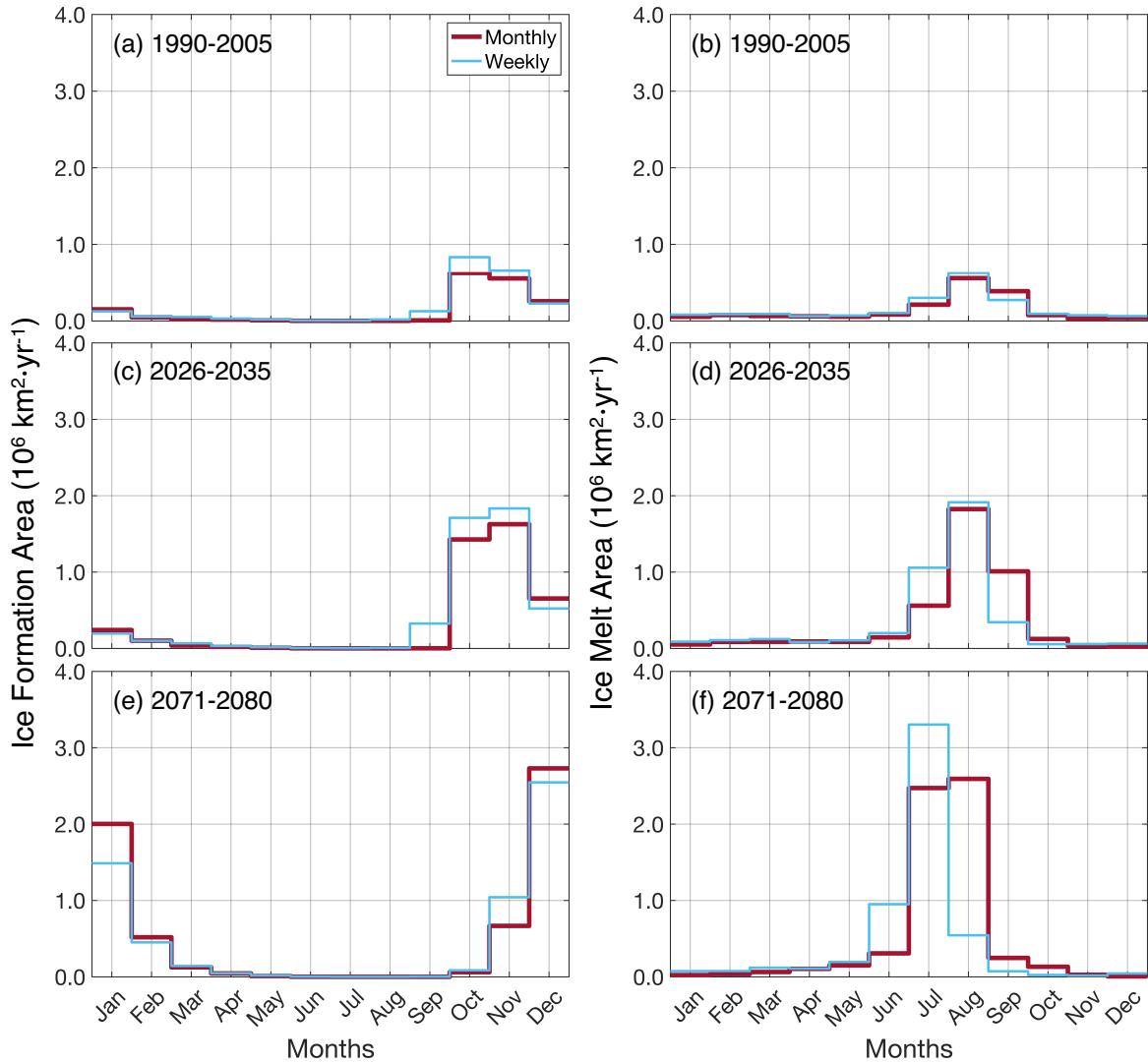



Figure S1: Annual cycle of ice formation (a, c, e) and melt (b, d, f) over the periods of 1990–2005 (a, b), 2026–2035 (c, d) and 2071–2080 (e, f) for the first 35 members of the CESM-LE using a monthly (burgundy) and weekly (light blue) time resolutions. Only ice floes that formed and melted between the specified time periods are considered. Note that some of the differences between the weekly and monthly time resolution can be attributed to the way weeks are distributed into months as every month contains either 29, 30 or 31 days and thus always includes part of a week.

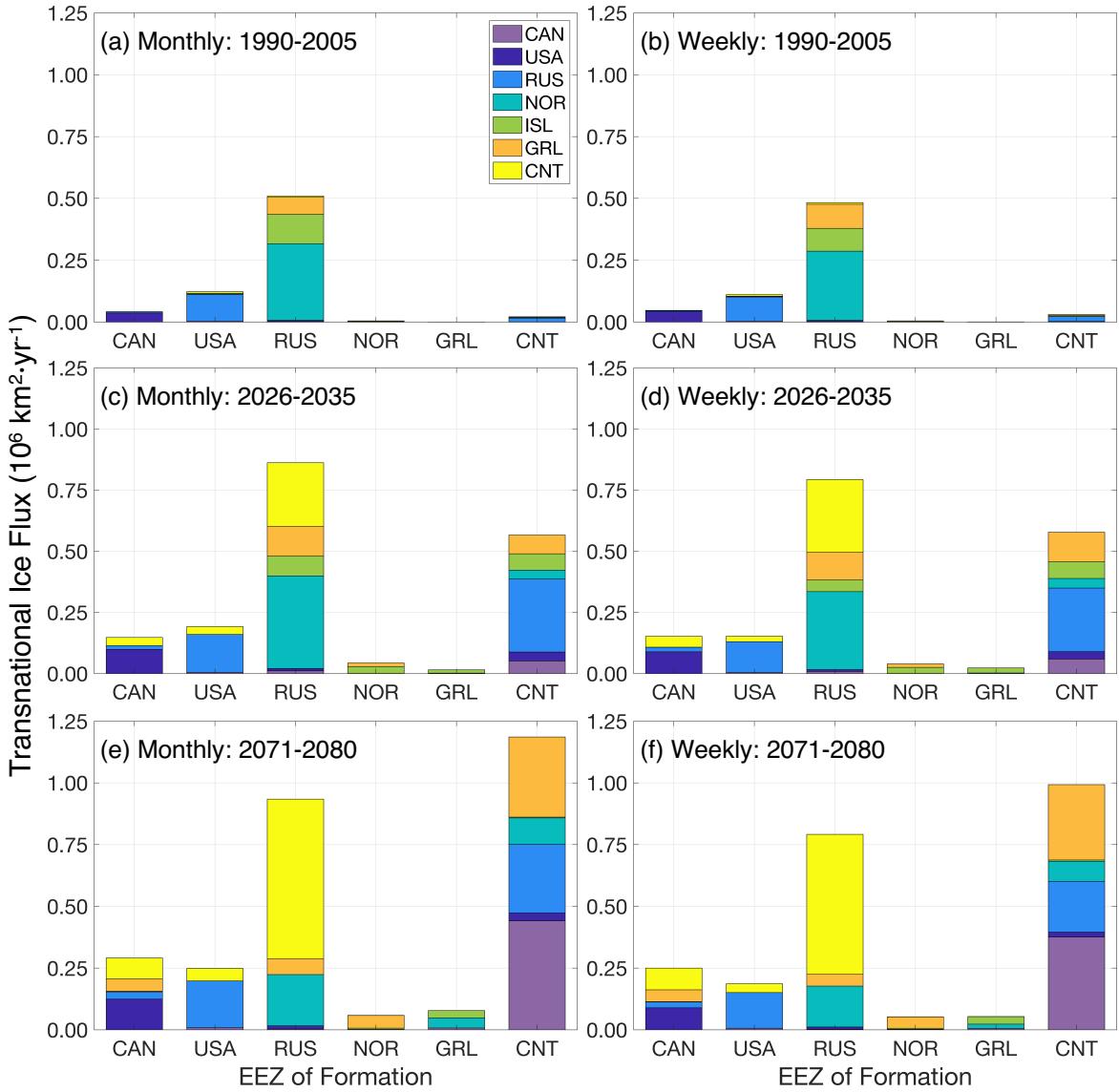



Figure S2: Annual mean average areal flux of transnational ice for the CESM-LE over the periods of 1990–2005 (a, b), 2026–2035 (c, d) and 2071–2080 (e, f) using a monthly (a, c, e) and weekly (b, d, f) time resolutions. The height of each colored portion within one bar represents the annual mean areal flux of ice between the EEZ of formation ( $x$  axis) and the EEZ of melt (color). Note that domestic ice is not included in this figure in order to focus on the features of transnational ice exchange.

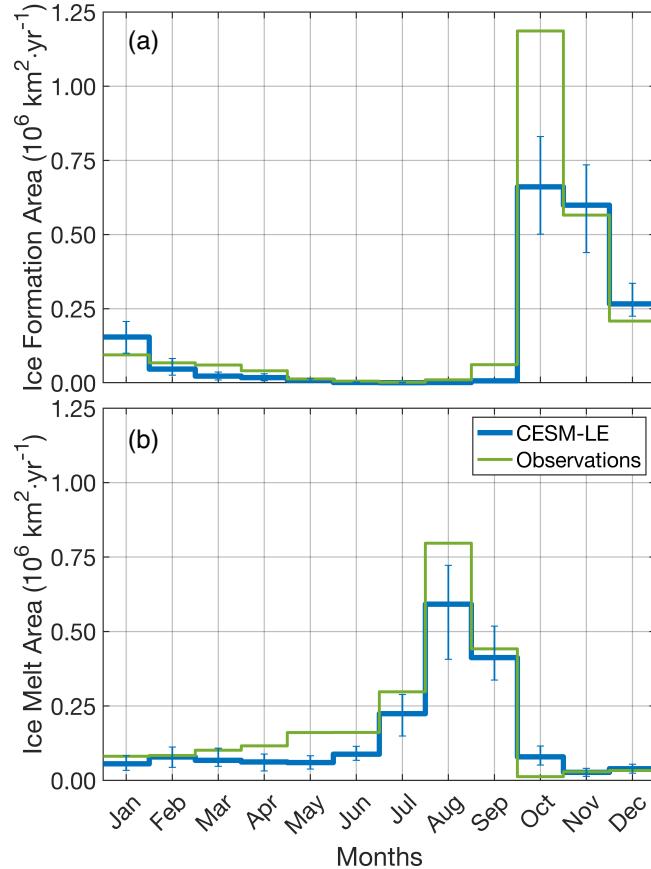



Figure S3: Annual cycle of mean areal ice formation (a) and melt (b) in the observations (green) and the CESM-LE (blue) for the period of 1989–2008. The error bars show the maximum and minimum 20-year averaged formation/melt area for each month across the 40 ensemble members of the CESM-LE, showing the range of internal variability for this ensemble. Only ice floes that formed and melted between 1989–2008 are considered. Note that the values shown here are not meant to represent the actual amount of ice that forms and melts in the Arctic every year, but rather the area of ice formation and melt we obtain from SITU (see section 2.2).

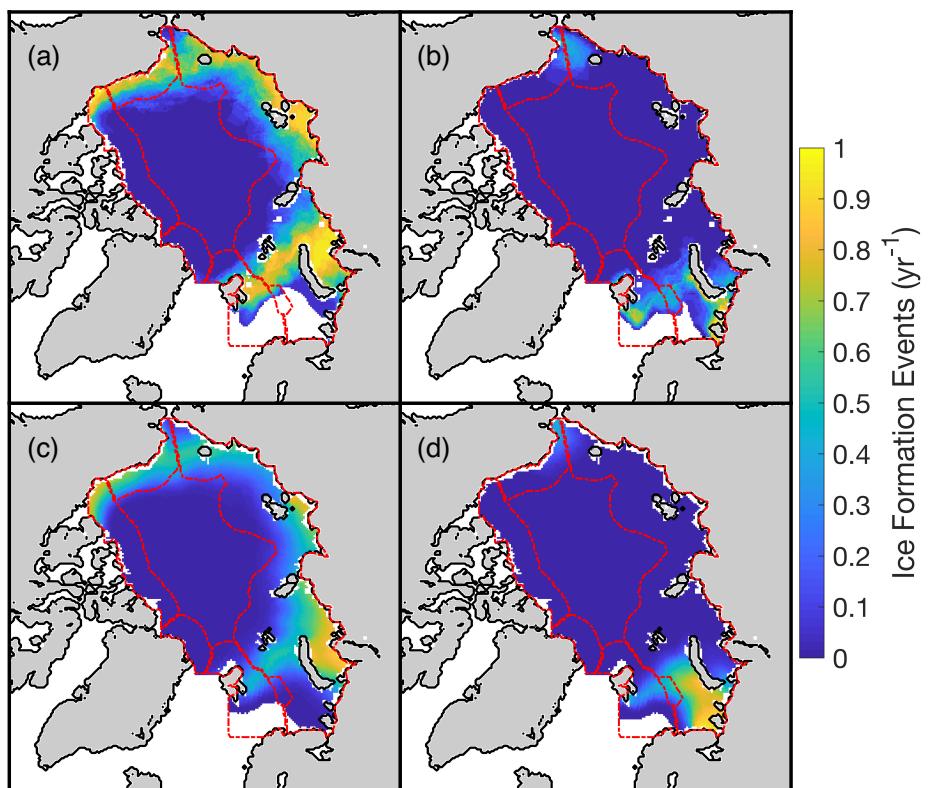



Figure S4: Average number of ice formation events per year in fall (SON) (a, c) and winter (DJF) (b, d) over the period of 1989–2008 for both observations (a, b) and the CESM-LE (c, d). The borders of the EEZs are indicated by red lines. Only ice floes that formed and melted between 1989–2008 are considered.

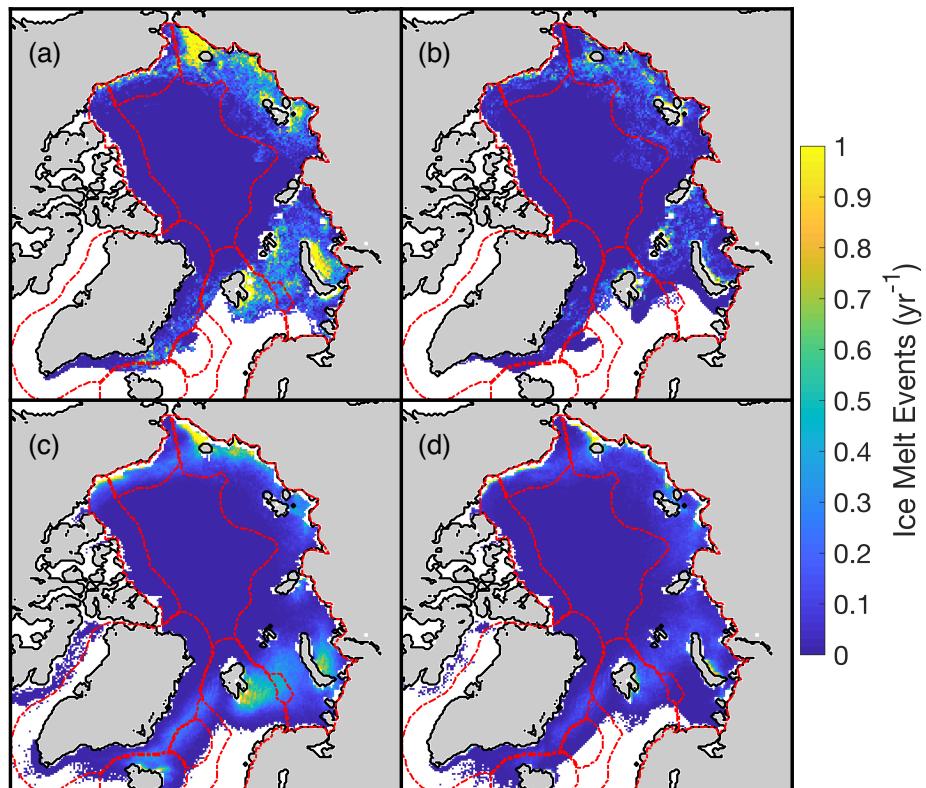



Figure S5: As in Figure S4, but for the average number of ice melt events per year in summer (JJA) (a, c) and fall (SON) (b, d).

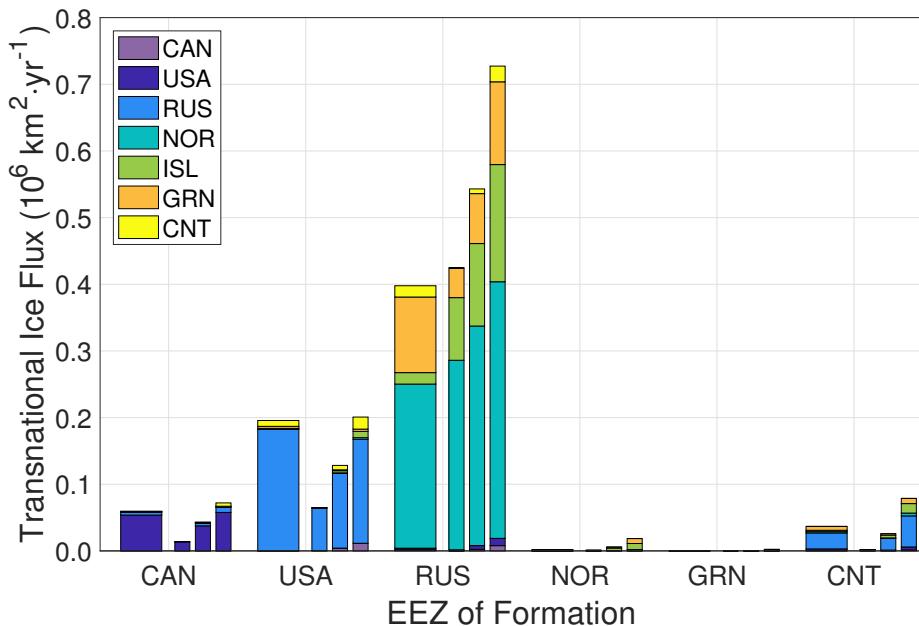



Figure S6: Annual mean areal transnational ice flux for the observations (wide bar) and annual mean minimum (left narrow bar), average (middle narrow bar) and maximum (right narrow bar) areal transnational ice flux for the 40 members of the CESM-LE for the period of 1989–2008. The height of each colored portion within one bar represents the annual mean areal flux of ice between the EEZ of formation ( $x$  axis) and the EEZ of melt (color). The CESM-LE is consistent with the observations when the observed value for each pathway lies between the range of the CESM-LE (minimum to maximum). Note that domestic ice is not included in this figure in order to focus on the features of transnational ice exchange.

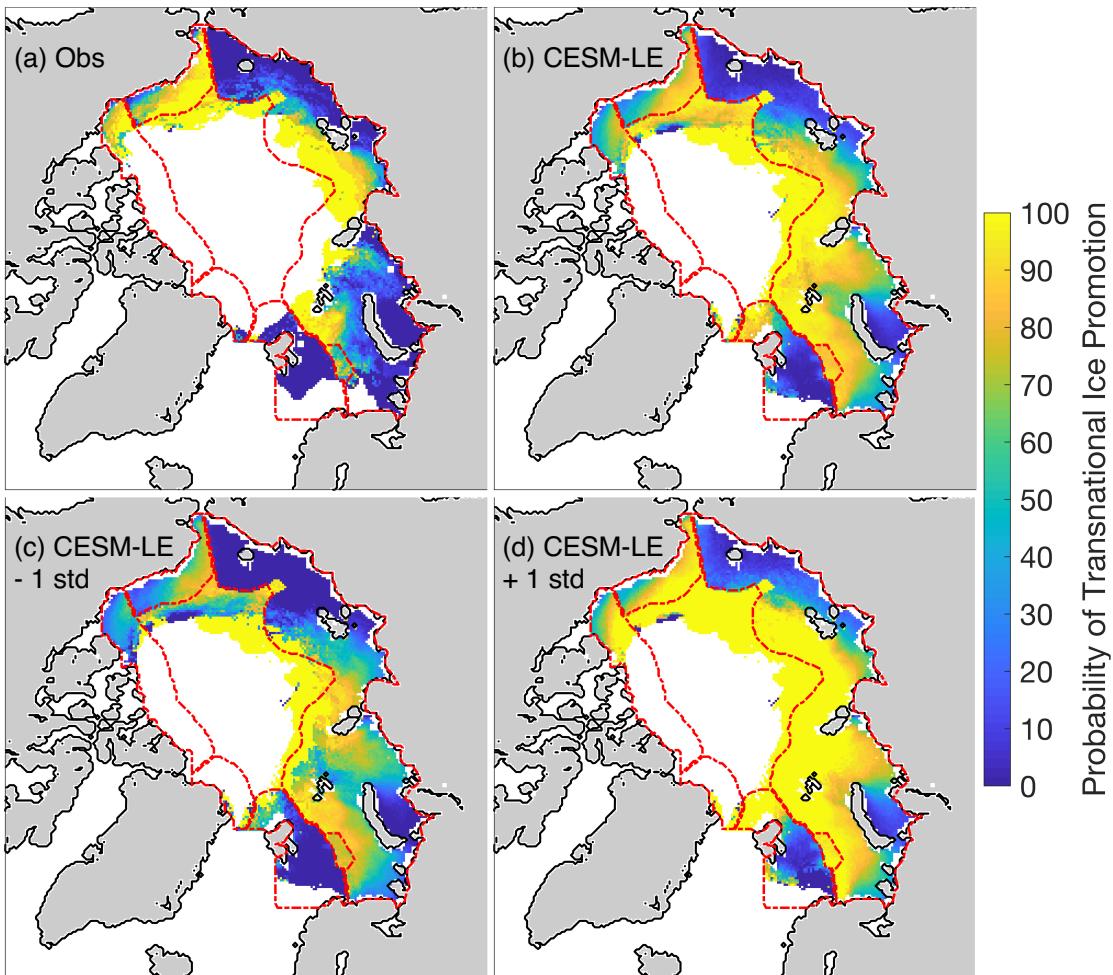



Figure S7: Probability of transnational ice promotion for observations (a), the ensemble mean of the CESM-LE (b) as well as the ensemble mean  $\pm$  one standard deviation for the CESM-LE (c, d) over the period of 1989–2008. The color represents the probability that an ice parcel forming at each grid cell gets promoted from domestic ice to transnational ice. The borders of the EEZs are indicated by red lines. Note that the probability is calculated for each grid cell in which at least one ice parcel forms and thus gives no indication of how many ice parcels are considered in the calculation.

Table S1: Annual mean average areal flux of ice exchanged between all EEZs for the CESM-LE over the three time periods. The EEZ of formation is indicated in the first column and the EEZ of melt in the first row. All numbers are in  $\text{km}^2/\text{year}$ . The last column contains the total annual mean average areal flux of ice formed in each EEZ, only considering ice floes that melted before the end of the time period. The numbers in bold highlight the pathways that are statistically different between the CESM-LE and the CESM-LW over a same time period at the 95% confidence level using a t-test.

| From/To          | Canada         | USA            | Russia         | Norway         | Iceland       | Greenland      | Central        | Total     |
|------------------|----------------|----------------|----------------|----------------|---------------|----------------|----------------|-----------|
| <b>1981–2000</b> |                |                |                |                |               |                |                |           |
| Canada           | 39,426         | 32,741         | 3,177          | 32             | 218           | 96             | 631            | 76,321    |
| USA              | 3,616          | 49,083         | 96,402         | 546            | 4,232         | 1,444          | 4,184          | 159,507   |
| Russia           | 1,635          | 4,900          | 563,494        | 305,730        | 112,159       | 60,825         | 2,217          | 1,050,960 |
| Norway           | 0              | 0              | 677            | 108,733        | 2,331         | 1,223          | 0              | 112,964   |
| Greenland        | 0              | 0              | 0              | 4              | 113           | 31             | 0              | 148       |
| Central          | 163            | 802            | 9,026          | 292            | 1,585         | 581            | 934            | 13,383    |
| <b>2031–2050</b> |                |                |                |                |               |                |                |           |
| Canada           | 107,566        | 128,998        | 25,926         | 441            | <b>1,563</b>  | <b>4,855</b>   | <b>62,049</b>  | 331,398   |
| USA              | 6,297          | 105,809        | 176,848        | 0              | <b>0</b>      | 0              | <b>34,613</b>  | 323,567   |
| Russia           | <b>11,480</b>  | 10,188         | 1,597,911      | <b>385,601</b> | <b>37,521</b> | <b>122,715</b> | <b>452,339</b> | 2,617,755 |
| Norway           | 10             | 0              | 737            | 135,196        | 33,191        | <b>31,475</b>  | 18             | 200,627   |
| Greenland        | <b>789</b>     | 11             | 8              | <b>10,823</b>  | <b>41,205</b> | 27,128         | 51             | 80,015    |
| Central          | <b>184,175</b> | 52,953         | 352,701        | <b>69,168</b>  | 81,513        | <b>194,498</b> | 833,752        | 1,768,760 |
| <b>2081–2100</b> |                |                |                |                |               |                |                |           |
| Canada           | 327,395        | <b>114,877</b> | 33,716         | <b>3,209</b>   | <b>175</b>    | <b>70,427</b>  | <b>102,810</b> | 652,609   |
| USA              | 6,742          | 66,614         | 184,671        | 0              | 0             | 0              | <b>60,638</b>  | 318,665   |
| Russia           | <b>2,495</b>   | <b>13,346</b>  | 1,429,691      | <b>162,929</b> | 4             | <b>40,631</b>  | <b>654,681</b> | 2,303,777 |
| Norway           | 9              | 0              | <b>1,692</b>   | 91,323         | <b>1,331</b>  | 38,416         | <b>821</b>     | 133,592   |
| Greenland        | <b>7,436</b>   | 0              | 64             | <b>41,848</b>  | <b>13,268</b> | 177,128        | 603            | 240,347   |
| Central          | <b>437,773</b> | 17,441         | <b>250,289</b> | <b>111,080</b> | 410           | <b>310,993</b> | 1,360,152      | 2,488,138 |

Table S2: As in Table S1, but for the CESM-LW and for the time periods of 2031–2050 and 2081–2100 only.

| From/To          | Canada         | USA            | Russia         | Norway         | Iceland       | Greenland      | Central        | Total     |
|------------------|----------------|----------------|----------------|----------------|---------------|----------------|----------------|-----------|
| <b>2031–2050</b> |                |                |                |                |               |                |                |           |
| Canada           | 67,835         | 116,784        | 28,938         | 9              | 401           | 423            | 38,568         | 252,958   |
| USA              | 4,134          | 102,824        | 181,077        | 3              | 28            | 20             | 20,594         | 308,680   |
| Russia           | <b>17,224</b>  | 13,310         | 1,529,744      | <b>416,960</b> | <b>73,301</b> | <b>137,656</b> | <b>311,557</b> | 2,499,752 |
| Norway           | 0              | 0              | 918            | 137,622        | 29,449        | <b>24,446</b>  | 0              | 192,435   |
| Greenland        | <b>97</b>      | 0              | 0              | <b>4,560</b>   | <b>25,810</b> | 9,903          | 0              | 40,370    |
| Central          | <b>95,631</b>  | 53,653         | 357,849        | <b>40,909</b>  | 78,207        | <b>117,193</b> | 540,412        | 1,283,854 |
| <b>2081–2100</b> |                |                |                |                |               |                |                |           |
| Canada           | 84,594         | <b>139,616</b> | 41,702         | <b>85</b>      | <b>1,153</b>  | <b>2,207</b>   | <b>67,080</b>  | 336,437   |
| USA              | 3,884          | 95,500         | 196,153        | 0              | 0             | 0              | <b>25,227</b>  | 320,764   |
| Russia           | <b>16,006</b>  | <b>8,551</b>   | 1,600,756      | <b>386,994</b> | <b>38,009</b> | <b>153,526</b> | <b>428,526</b> | 2,632,368 |
| Norway           | 51             | 0              | <b>739</b>     | 130,358        | <b>38,855</b> | 35,565         | 0              | 205,568   |
| Greenland        | <b>1,307</b>   | <b>125</b>     | 6              | <b>8,969</b>   | <b>51,634</b> | 24,952         | 57             | 87,050    |
| Central          | <b>192,349</b> | <b>55,827</b>  | <b>411,670</b> | <b>53,332</b>  | <b>84,082</b> | <b>189,324</b> | 813,423        | 1,800,007 |