
FAST FACTORIZATION UPDATE FOR GENERAL ELLIPTIC1

EQUATIONS UNDER MULTIPLE COEFFICIENT UPDATES2

XIAO LIU∗, JIANLIN XIA† , AND MAARTEN V. DE HOOP‡3

Abstract. For discretized elliptic equations, we develop a new factorization update algorithm4
that is suitable for incorporating coefficient updates with large support and large magnitude in5
subdomains. When a large number of local updates are involved, in addition to the standard factors in6
various (interior) subdomains, we precompute some factors in the corresponding exterior subdomains.7
Exterior boundary maps are constructed hierarchically. The data dependencies among tree-based8
interior and exterior factors are exploited to enable extensive information reuse. For coefficient9
updates in a subdomain, only the interior problem in that subdomain needs to be re-factorized and10
there is no need to propagate updates to other tree nodes. The combination of the new interior11
factors with a chain of existing factors quickly provides the new global factor and thus an effective12
solution algorithm. The introduction of exterior factors avoids updating higher-level subdomains with13
large system sizes, and makes the idea suitable for handling multiple occurrences of updates. The14
method can also accommodate the case when the support of updates changes to different subdomains.15
Numerical tests demonstrate the efficiency and especially the advantage in complexity over a standard16
factorization update algorithm.17

Key words. elliptic equations, coefficient update, fast factorization update, exterior boundary18
map, exterior factor, Schur complement domain decomposition19

AMS subject classifications. 15A23, 65F05, 65N22, 65Y2020

1. Introduction. In the solution of elliptic partial differential equations (PDEs)21

in practical fields such as inverse problems and computational biology, one often needs22

to update the coefficients associated with subdomains. For example, one key appli-23

cation in inverse problems is the iterative reconstruction of the wavespeed governed24

by the Helmholtz equation [21], which needs to incorporate modified coefficients into25

the following reference problem:26

(1.1) Lu = f in D, L = −∇ · p2(x)∇+ p1(x) · ∇+ p0(x),27

where D is the domain of interest, L is the partial differential operator, and p0(x),28

p1(x), and p2(x) are coefficient functions of L with the variable x representing a point29

in D. Standard boundary conditions can be imposed on ∂D (the boundary of D),30

including:31

• Dirichlet boundary conditions such as u = 0 on ∂D.32

• Neumann boundary conditions such as ν · p2(x)∇u = 0 on ∂D, where ν de-33

notes the outward unit normal vector. This boundary condition corresponds34

to the leading-order term of L, as can be seen from integration by parts35

(1.2) −

∫

D

(∇·p2(x)∇u)vdx =

∫

D

(p2(x)∇u) ·∇vdx−

∫

∂D

(ν ·p2(x)∇u)vdσ,36

∗Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005
(xiao.liu@rice.edu)

†Department of Mathematics and Department of Computer Science, Purdue University, West
Lafayette, IN 47907 (xiaj@purdue.edu). The research of Jianlin Xia was supported in part by NSF
CAREER Award DMS-1255416 and NSF Grant DMS-1819166.

‡Department of Computational and Applied mathematics, Rice University, Houston, TX 77005
(mdehoop@rice.edu). Maarten V. de Hoop gratefully acknowledges support from the Simons Foun-
dation under the MATH + X program, NSF under grant DMS-1559587, and the corporate members
of the Geo-Mathematical Group at Rice University and Total.

1

This manuscript is for review purposes only.

2 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

where v is a test function used for deriving the corresponding weak formu-37

lation and σ is the surface measure on ∂D. Clearly, p2 shows up in this38

boundary condition due to integration by parts, but lower-order terms of L39

are not involved in this boundary condition.40

• Robin boundary conditions such as αu+ ν · p2(x)∇u = 0 on ∂D, where α is41

some scalar constant.42

If inhomogeneous boundary conditions are involved, then we assume that the43

nonzero functions are absorbed into the right-hand side function f . After discretiza-44

tions with continuous Galerkin [7] or finite difference approaches, we get a system45

of linear equations with a sparse coefficient matrix. The right-hand side may also46

be sparse when the function f has local support, but we do not rely on this type of47

sparsity here.48

1.1. Coefficient update problem. Given the reference problem (1.1), the co-49

efficient update problem is written as50

(1.3) L̃ũ = f in D, L̃ = −∇ · p̃2(x)∇+ p̃1(x) · ∇+ p̃0(x),51

where p̃0(x), p̃1(x), and p̃2(x) are the modified coefficients and ũ is the new solution.52

The modification is localized if the coefficient update (L̃− L) has small support.53

Assume that the function f is the same for both (1.1) and (1.3) and that we know54

the reference solution u of (1.1). Then (1.3) is equivalent to55

(1.4) L̃(ũ− u) = f − L̃u = (L− L̃)u.56

In order to update the solution from u to ũ, one can either solve (1.3) for ũ directly or57

solve (1.4) for the difference ũ−u. Regarding the support of the right-hand side, f in58

(1.3) is not guaranteed to be locally supported, but the support of (L− L̃)u used in59

(1.4) is always contained in the support of the coefficient update L̃ − L. The reason60

is that the right-hand side (L− L̃)u is zero at locations where L equals L̃. Hence, we61

choose to solve (1.4) for the update term ũ− u.62

There are several strategies for solving either (1.3) or (1.4). For iterative solution,63

one can either reuse the preconditioner for L or perform additional changes for better64

convergence. For direct solution, if there is only a small amount of local updates,65

then the Sherman-Morrison-Woodbury (SMW) formula may be used [39]. However,66

if there are many local updates (or a sequence of local updates), then a factorization67

update from L to L̃ is preferred. Standard factorization update methods follow the68

data dependencies in the factorization processes, and recompute those factors that69

are changed. Here, we propose a different approach that significantly reduces the cost70

by changing the data dependencies according to the locations of the updates.71

1.2. Existing work. Sparse direct solvers provide robust solutions to the fixed72

reference problem (1.1). After nested dissection reordering [12], the factorization of73

an n × n sparse discretized matrix generally costs O(n3/2) in 2D, and O(n2) in 3D.74

Recent software packages provide the option of solving sparse right-hand sides, for75

example, MUMPS [28, 31] and PARDISO [32, 29]. A similar factorization process can76

be derived from Schur-complement domain decomposition strategies [5, 15, 18, 26, 30].77

In recent years, rank-structured representations were developed to effectively com-78

press fill-in and obtain fast factorizations of elliptic problems. Several such representa-79

tions areHmatrices [16], H2 matrices[17], and hierarchically semiseparable (HSS) ma-80

trices [3, 37]. Sparse factorization with HSS operations is proposed in [14, 34, 35, 36].81

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 3

Updating LU factorizations of general matrices has been studied in [2, 4, 8, 13].82

For sparse factorizations, these methods propagate updates from child nodes to an-83

cestors in elimination trees. For dense discretized integral operators, updates to local84

geometries and kernels are studied in [9, 27, 40]. In [9], the update of the structures85

and the values of hierarchical matrices under adaptive refinement is discussed. In [27],86

the changes are propagated bottom-up in a quadtree. The SMW formula is used in87

[40] to compute the action of the inverse. For all of these methods, the updates are88

typically restricted to a few entries or low-rank updates. If the updates have large89

support or move locations, these methods may become inefficient.90

For updating the coefficients in the PDE problem (1.3), the amount of modifica-91

tions can be large due to the volumetric change in the support of (L̃ − L). For such92

a situation, it is beneficial to decompose the problem into a modified interior prob-93

lem and a fixed exterior problem. This idea traces back to [21, 22], where boundary94

integral equations are formulated for piecewise constant media. For inhomogeneous95

reference problems, related formulations are developed in [20, 33], where the funda-96

mental solution is replaced by the inverse matrix of some finite difference stencil.97

In order to efficiently precompute selected parts of the inverse, the location of the98

updates usually needs to be fixed.99

1.3. Overview of the proposed method. We propose a new direct update100

method to solve (1.4) that does not need to propagate computational information101

globally like in standard factorization update approaches. The method is suitable for102

coefficient updates with different locations and volumes. The method has a precom-103

putation step that factorizes the reference problem in various interior and exterior104

subdomains. When the problem changes in some subdomains, re-factorizations in105

those subdomains are not avoidable for direct methods. In our proposed method, the106

factorization update is only restricted to those subdomains with updates and is thus107

highly efficient. The solution is updated by solving (1.4) using the locality of the new108

right-hand side.109

The method starts from a domain partitioning governed by a binary tree (denoted110

by T), similarly to related direct solvers [18, 26, 15], and the binary tree is an analogue111

of the assembly tree [11]. In the factorization of the reference problem, interior112

boundary value problems for adjacent subdomains are combined by eliminating their113

shared interface. The work flow is bottom-up in T . That is, child nodes pass data to114

parents.115

For solving coefficient update problems with a relatively large amount of updates,116

we precompute additional factors following a top-down traversal of T before knowing117

the specific region or value of perturbations. As a major novelty of this work, the top-118

down process constructs factors for exterior boundary value problems, which helps119

to bypass existing data dependencies. Then for the solution of (1.4), we only re-120

factorize the smallest subdomain containing the updates, and select existing factors121

of exterior problems which remain unchanged. For each subtree T̃ ⊂ T corresponding122

to the updates, the solution update algorithm treats the nodes inside and outside T̃123

separately. Inside T̃ , the solution algorithm is similar to the traditional one, but124

requires the factors of the updated system. Outside T̃ , a boundary value problem is125

solved using the factorization of the exterior problems.126

The advantages of our method include:127

• For the factorization update, the use of tree-based interior and exterior factors128

enables us to change only the factors inside the region of coefficient updates,129

namely, only the nodes in T̃ . There is no propagation of updates to other130

This manuscript is for review purposes only.

4 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

nodes. Thus, the factorization update cost only depends on the size of the131

updates instead of the total number of unknowns.132

• The method is suitable for incorporating coefficient updates with large support133

and large magnitude in subdomains.134

• Because the precomputation prepares for coefficient updates in any subtree135

of T , the supports of updates are allowed to change to different subdomains.136

The method is tested on the transmission problem for the Helmholtz equation137

[22]. The precomputation has the same scaling as related direct factorizations. The138

method is especially suitable for large number of changes (e.g., 105 points), because139

the re-factorization cost is independent of the total number of unknowns.140

The remaining sections are organized as follows. We formulate the interior and141

exterior problems in Section 2. Hierarchical factorization algorithms are developed in142

Section 3 for the coefficient update problems. The algorithm complexity is estimated143

in Section 4 and is supported by the performance tests in Section 5. In Section 6,144

some conclusions are drawn and future work is discussed.145

2. Interior and exterior problems and basic solution update methods.146

Factorization update problems can be complicated in general because there are many147

different scenarios regarding the locations and sizes of the updates. We first present148

the method for the simplest case and then generalize it to more advanced forms. In149

Section 2.1, updates in fixed locations are solved by a one-level relation between an150

interior and an exterior problem. In Section 2.2, a two-level method gives additional151

flexibility to change the locations and sizes of the updates.152

The problem of changing the coefficient in the interior of a subdomain is originally153

formulated and solved using potential theory, see for example [22, Theorem 4.1]. Note154

that the fundamental solution is challenging to compute or to store in inhomogeneous155

media. We choose instead a Schur-complement domain decomposition formulation,156

which focuses on solving sub-problems on the boundaries of subdomains.157

Let Ωi be an open subdomain ofD indexed by an integer i, we start by introducing158

unknowns in the interior of Ωi and on the non-physical boundary ∂Ωi−∂D, where the159

minus sign denotes the set theoretical difference. (Later, all subdomains like Ωi are160

assumed to be open.) If we want to restrict the PDE (1.1) in Ωi, a boundary condition161

is needed on the non-physical boundary to obtain a uniquely solvable problem. We162

choose to impose a Robin boundary condition, which has historically been used in163

domain decomposition formulations (see, e.g., [10]). For direct methods, it is shown164

in [15, 30] that the set of linear equations derived from the Robin boundary condition165

has some unique block structures like in [30, Equation (2.9)] and (2.9) to be derived166

in Section 2.2. Those block structures are convenient for solving factorization update167

problems in Section 2.2. Therefore, we consider an auxiliary local PDE problem in168

the following form:169

(2.1)







Lu(i) = f (i) in Ωi,

αu(i) + ν ·
(

p2∇u
(i)
)

= g(i) on ∂Ωi − ∂D,
170

where L is defined in (1.1) with leading-order coefficient function p2(x), f
(i) is called171

the interior source, g(i) is called the boundary source, ν is the outward unit normal172

vector, and α is a nonzero scalar coefficient in the Robin-type boundary condition.173

The problem (2.1) focuses on the part of L restricted to the subdomain Ωi. Again,174

p2 appears in the boundary condition because of integration by parts (1.2). The free175

parameter α is chosen for well-posedness in the sense of Hadamard. A positive α is176

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 5

suitable for the Poisson problem (L = −∆) as in [10], and an imaginary α is often177

used for the Helmholtz problem as in [15, 30].178

Suppose there is a way to solve the problem (2.1) for given f (i) and g(i). In order179

for the solution of (2.1) to be the same as that of (1.1) in Ωi, f
(i) in Ωi needs to be180

the same as f in (1.1), and an interface problem needs to be formulated and solved to181

get the correct g(i). To prepare for the interface problem, we introduce the boundary182

data ĝ(i) on ∂Ωi − ∂D defined as183

(2.2) ĝ(i) = −αu(i) + ν ·
(

p2∇u
(i)
)

, on ∂Ωi − ∂D.184

ĝ(i) differs from g(i) by a minus sign in the term −αu(i). Observe that ĝ(i) has a linear185

relation with f (i) and g(i), which can be written formally as186

(2.3) ĝ(i) = T (i)g(i) + S(i)f (i) =
(

T (i) S(i)
)

(

g(i)

f (i)

)

,187

where T (i) is the boundary map from the boundary source g(i) to the boundary data188

ĝ(i), and S(i) is the interior-to-boundary map from the interior source f (i) to the189

boundary data. After discretizations, the problem (2.1) can be solved using a direct190

factorization. The goal of introducing T (i) and S(i) is to reduce the PDE problem191

(1.1) to a subproblem on the artificial interface ∂Ωi − ∂D, which is important for192

reducing the cost of the factorization update. Note that if there is no minus sign in193

−αu(i) in (2.2) (i.e., ĝ(i) = g(i)), then T (i) is an identity operator, S(i) = 0, and they194

lose all the information about the PDE.195

T (i) is a square dense matrix, and the size equals the number of unknowns on the196

artificial ∂Ωi−∂D which is usually much smaller than the number of unknowns in the197

subdomain Ωi. S
(i) has the same number of rows as T (i), but the number of columns198

is the number of unknowns in Ωi. Explicit construction of S(i) should be avoided199

because the column size can be large. Although T (i) and S(i) are dense matrices and200

may not have explicit expressions for the entries, the matrix-vector product in (2.3)201

can be conveniently computed as follows:202

ĝ(i) = g(i) − 2αu(i), on ∂Ωi − ∂D,203

which is directly from (2.2) and the second equation of (2.1). This matrix-vector204

product is described in Algorithm 2.1 (TSMV) that will be frequently referenced later.205

One direct solution of (2.1) is needed to compute the product. For the rest of the206

paper, we use matrix notation for ease of exposition.207

Algorithm 2.1 Matrix-vector product of
(

T (i) S(i)
)

for the ith subdomain Ωi

1: procedure TSMV(i, g(i), f (i)) ▷ Compute T (i)g(i) + S(i)f (i)

2: Solve (2.1) to get the solution u(i) in Ωi

3: Compute ĝ(i) = g(i) − 2αu(i) on ∂Ωi − ∂D based on (2.1)–(2.2)
4: return ĝ(i)

5: end procedure

2.1. One-level method and interior and exterior problems. For solving208

the problem (1.4) with coefficient updates in Ωi, we consider a one-level partitioning209

of D into the interior subdomain Ωi and the exterior subdomain Ω−i defined as the210

This manuscript is for review purposes only.

6 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

relative complement of Ωi’s closure in D. That is, Ω−i = D − Ωi. Ωi and Ω−i share211

the artificial boundary212

∂Ωi − ∂D = ∂Ω−i − ∂D.213

See the left panel of Figure 2.1 for an example. The index of the exterior subdomain214

is set as the negative of the index of the corresponding interior subdomain, and we215

assume that all interior subdomains have positive indices to avoid confusion. We call216

Ωi and Ω−i level-one subdomains of (the level-zero subdomain) D.217

Ωi

Ω
−i

∂Ωi − ∂D

Ω
−4

Ω1 Ω2

Ω3

Ωc1

Ω
−i

Γ0

Ωc2

Γ1 Γ2

Fig. 2.1. Illustrations of different types of domain partitioning in Section 2. Left panel: par-
titioning of D into Ωi and Ω−i; Middle panel: partitioning of D into Ω1,Ω2,Ω3 and Ω−4; Right
panel: partitioning of D into Ωi and Ω−i where Ωi is further partitioned into Ωc1 and Ωc2 .

Similar to (2.3), for the exterior subdomain Ω−i, we have218

(2.4) ĝ(−i) = T (−i)g(−i) + S(−i)f (−i),219

where T (−i) (S(−i)) is the boundary map (interior-to-boundary map) for Ω−i. Fol-220

lowing [10, Equation (1.3)], the transmission condition on ∂Ωi − ∂D is221

(2.5) g(i) = −ĝ(−i), ĝ(i) = −g(−i),222

since the outward normal changes sign across the interface. By eliminating the bound-223

ary data ĝ(±i) in (2.3)–(2.4), we get the following interface problem:224

(2.6)

(

T (i) I

I T (−i)

)(

g(i)

g(−i)

)

=

(

−S(i)f (i)

−S(−i)f (−i)

)

.225

We can define and factorize the coupled matrix as226

(2.7) M (i,−i) :=

(

T (i) I

I T (−i)

)

=

(

I T (i)

I

)(

I − T (i)T (−i)

I T (−i)

)

.227

Based on the current formulation, we propose an algorithm for directly solving the228

simplest coefficient update problem in which the region of modifications Ωi is known229

and fixed. Here, we assume that L is discretized in Ω±i using, say, a finite element230

method. The factorization operations related to the reference operator L include the231

following steps.232

1. Factorize the discretized operator L in Ω±i by a sparse LU factorization.233

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 7

2. Construct T (±i). The jth column of T (±i) can be computed by calling234

TSMV(±i, ej , 0) in Algorithm 2.1, where ej is the jth column of the iden-235

tity matrix. To improve the efficiency, this multiplication is computed with236

multiple right-hand sides.237

Then for each coefficient update problem (1.3), the solution process has three238

steps.239

1. Solve the reference problem Lu = f :240

(a) Set f (±i) as f restricted to Ω±i.241

(b) Solve the interface problem (2.6) for g(±i), where S(±i)f (±i) is computed242

by calling TSMV(±i, 0, f (±i)).243

(c) Solve the local PDE (2.1) in Ω±i to get u(±i), which is the solution u in244

Ω±i.245

2. Factorize the discretized operator L̃ in Ωi, and construct the new boundary246

map T̃ (i) using TSMV.247

3. Solve the coefficient update problem L̃(ũ − u) = (L − L̃)u by applying Step248

1(a)–(c) to the new right-hand side (L− L̃)u, where the new factors are used249

in Ωi.250

The factorization cost of the reference operator depends on the size and shape251

of Ω±i, and the factorization update cost depends on the size of Ωi. If the interior252

subdomain Ωi is much smaller than the exterior one Ω−i, the method is very effec-253

tive because the factorization in Ωi is much cheaper than that in Ω−i. Solving the254

coefficient update problem does not involve S(−i) because L = L̃ in Ω−i.255

Remark 2.1. Before describing more sophisticated generalizations, we show that256

this method can already be beneficial for coefficient updates in disjoint locations. If257

the problem can be modified in at most i − 1 subdomains denoted by {Ωj : j =258

1, 2, . . . , i − 1} with disjoint closure, then we choose Ωi =
∪i−1

j=1 Ωj as their union.259

The middle panel of Figure 2.1 gives an example for i = 4. The factorization and260

solution update method is the same as before, and we only highlight one additional261

property. For the factorization (solution) in Ωi, we factorize (solve) the problems in262

the subdomains Ω1,Ω2, . . . ,Ωi−1 independently. Each operator for Ωi is decoupled263

here, that is264

T (i) = diag(T (1), T (2), . . . , T (i−1)),265

S(i) = diag(S(1), S(2), . . . , S(i−1)),266267

where diag() is used to denote a block diagonal matrix. Because of the decoupled268

forms, the method is essentially still a one-level method and the level-one subdomains269

are Ω1,Ω2, . . . ,Ωi−1, and Ω−i. The factorization update cost contains the sum of270

the re-factorization costs in Ω1,Ω2, . . . ,Ωi−1, and the re-factorization cost of M (i,−i)271

which depends cubically on the total number of points on those boundaries ∂Ω1−∂D,272

∂Ω2−∂D, . . . , ∂Ωi−1−∂D. This is better than a complete re-factorization when the273

subdomains Ωj ’s have small sizes.274

2.2. Two-level method. If a level-one subdomain Ωi is partitioned further275

into two non-overlapping subdomains Ωc1 ,Ωc2 as in the right panel of Figure 2.1,276

and coefficient updates may be restricted to one of the subdomains, then the domain277

decomposition framework (2.1) and (2.6) applies to Ωc1 and Ωc2 as well by changing278

the interior subdomain. The method in Section 2.1 is not optimal here because it279

either recomputes everything when the interior subdomain changes, or updates the280

This manuscript is for review purposes only.

8 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

factorization in the large subdomain Ωi for all the cases. Here, we discuss a two-level281

direct method that improves the effectiveness by exploiting shared information for282

different cases.283

The method is based on the inherent dependencies among different subdomains.284

The set of subdomains has a partial order governed by the subset relation “⊆”. The285

graph in Figure 2.2 visualizes the partial order, each edge of which starts from a subset286

and points to a superset. Three tree structures can be extracted from the graph in287

Figure 2.2, which are illustrated separately in Figure 2.3. According to the support288

of coefficient modifications, one of the three tree structures can be selected to solve289

the problem:290

- For modifications in the large subdomain Ωi, the interior subdomain is Ωi291

which contains Ωc1 and Ωc2 , and the exterior subdomain is Ω−i;292

- For modifications in Ωc1 , the interior subdomain is Ωc1 , and the exterior293

subdomain is Ω−c1 which contains Ωc2 and Ω−i;294

- For modifications in Ωc2 , the interior subdomain is Ωc2 , and the exterior295

subdomain is Ω−c2 which contains Ωc1 and Ω−i.296

For Ωi, Ω−c1 , and Ω−c2 , each one contains two subdomains. Here, it is important to297

effectively combine the results from smaller subdomains.298

DΩ
−c2

Ωc1
Ωi Ωc2

Ω
−i

Ω
−c1

Fig. 2.2. Graph structures of the two-level method in Section 2.2. The solid, dashed, and
dotted edges give the three trees in Figure 2.3. Each arrow points from a subset to a superset.
The geometric relations are based on the right panel of Figure 2.1. Each shaded area represents a
subdomain.

The factorization of the related interior and exterior problems have some similari-299

ties with the simplest case (2.6), but the formulas become more sophisticated because300

now Ωc1 , Ωc2 , and Ω−i have different shared boundaries. We define them as301

(2.8)
Γ0 = (∂Ωc1 ∩ ∂Ωc2)− ∂D, Γ1 = (∂Ωc1 ∩ ∂Ω−i)− ∂D, Γ2 = (∂Ωc2 ∩ ∂Ω−i)− ∂D.302

The right panel of Figure 2.1 illustrates their locations.303

Similar to the derivation from (2.5) to (2.6), solution operators for Ωi can be304

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 9

D

Ωi Ω
−i

Ωc1
Ωc2

D

Ωc1
Ω
−c1

Ωc2
Ω
−i

D

Ωc2
Ω
−c2

Ωc1
Ω
−i

Fig. 2.3. Tree structures extracted from Figure 2.2. The three trees have the same set of leaves:
Ωc1 ,Ωc2 ,Ω−i.

obtained from merging Ωc1 and Ωc2 . The same transmission condition (2.5) is imposed305

on Γ0, and we have306

(2.9)











T
(c1)
0,0 I T

(c1)
0,1 0

I T
(c2)
0,0 0 T

(c2)
0,2

T
(c1)
1,0 0 T

(c1)
1,1 0

0 T
(c2)
2,0 0 T

(c2)
2,2























g
(c1)
0

g
(c2)
0

g
(c1)
1

g
(c2)
2













=













−h
(c1)
0

−h
(c2)
0

ĝ
(c1)
1 − h

(c1)
1

ĝ
(c2)
2 − h

(c2)
2













,307

where g
(j)
k denotes the restriction of g(j) on Γk, T

(j)
0,1 denotes the restriction of T (j)308

on Γ0×Γ1, h
(c1)
0 denotes the restriction of h(c1) := S(c1)f (c1) on Γ0, h

(c2)
0 denotes the309

restriction of h(c2) := S(c2)f (c2) on Γ0, and the other notation can be similarly un-310

derstood. The equation is rewritten from (2.3) for Ωc1 and Ωc2 , and the transmission311

condition is substituted in the first two block rows to eliminate ĝ
(c1)
0 and ĝ

(c2)
0 . The312

coupling between subdomains lies in the leading 2× 2 block313

(2.10) M (c1,c2) =

(

T
(c1)
0,0 I

I T
(c2)
0,0

)

.314

Choose the boundary and interior sources for Ωi as g
(i) =

(

g
(c1)
1

g
(c2)
2

)

and f (i) =

(

f (c1)

f (c2)

)

,315

respectively. Similar to derivation in [30, Equations (2.9)–(2.14)], the Schur comple-316

ment system of M (c1,c2) in (2.9) is essentially317

T (i)g(i) =

(

ĝ
(c1)
1

ĝ
(c2)
2

)

− S(i)f (i),318

where319

T (i) =

(

T
(c1)
1,1

T
(c2)
2,2

)

−

(

T
(c1)
1,0

T
(c2)
2,0

)

(M (c1,c2))−1

(

T
(c1)
0,1

T
(c2)
0,2

)

,(2.11)320

S(i)f (i) =

(

h
(c1)
1

h
(c2)
2

)

−

(

T
(c1)
1,0

T
(c2)
2,0

)

(M (c1,c2))−1

(

h
(c1)
0

h
(c2)
0

)

.(2.12)321

322

We do not form S(i) explicitly because it can be much larger than the boundary map323

T (i). (2.12) can be used to compute fast matrix-vector products instead.324

For the exterior subdomain Ω−c1 , we merge Ωc2 and Ω−i with similar procedures.325

Using the transmission condition (2.5) on Γ2 and ignoring the interior sources for326

This manuscript is for review purposes only.

10 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

simplicity, we have327

(2.13)











T
(c2)
2,2 I T

(c2)
2,0 0

I T
(−i)
2,2 0 T

(−i)
2,1

T
(c2)
0,2 0 T

(c2)
0,0 0

0 T
(−i)
1,2 0 T

(−i)
1,1























g
(c2)
2

g
(−i)
2

g
(c2)
0

g
(−i)
1













=











0

0

ĝ
(c2)
0

ĝ
(−i)
1











.328

(2.13) is derived in the same way as (2.9), but is not equivalent to (2.9). Let the329

leading 2× 2 block be330

(2.14) M (c2,−i) =

(

T
(c2)
2,2 I

I T
(−i)
2,2

)

.331

By computing the Schur complement of M (c2,−i), we get332

(2.15) T (−c1) =

(

T
(c2)
0,0

T
(−i)
1,1

)

−

(

T
(c2)
0,2

T
(−i)
1,2

)

(M (c2,−i))−1

(

T
(c2)
2,0

T
(−i)
2,1

)

.333

Clearly, we can also merge Ωc1 and Ω−i by exchanging the role of c1 and c2 in (2.14)–334

(2.15).335

After the technical derivations, we would like to point out the key relationships336

among boundary maps that govern the factorization algorithm. According to (2.11)337

and previous derivations in [15, 30], the interior boundary maps have the following338

structure:339
(

T
(c1)
0,0 T

(c1)
0,1

T
(c1)
1,0 T

(c1)
1,1

)

,

(

T
(c2)
0,0 T

(c2)
0,2

T
(c2)
2,0 T

(c2)
2,2

)

factorize M(c1,c2)

===========⇒
eliminate Γ0

(

T
(i)
1,1 T

(i)
1,2

T
(i)
2,1 T

(i)
2,2

)

,340

where points on Γ0 need to be eliminated because they are inside Ωi. For the exterior341

ones, we similarly have342

(

T
(c2)
0,0 T

(c2)
0,2

T
(c2)
2,0 T

(c2)
2,2

)

,

(

T
(−i)
1,1 T

(−i)
1,2

T
(−i)
2,1 T

(−i)
2,2

)

factorize M(c2,−i)

===========⇒
eliminate Γ2

(

T
(−c1)
0,0 T

(−c1)
0,1

T
(−c1)
1,0 T

(−c1)
1,1

)

,343

344
(

T
(c1)
0,0 T

(c1)
0,1

T
(c1)
1,0 T

(c1)
1,1

)

,

(

T
(−i)
1,1 T

(−i)
1,2

T
(−i)
2,1 T

(−i)
2,2

)

factorize M(c1,−i)

===========⇒
eliminate Γ1

(

T
(−c2)
0,0 T

(−c2)
0,2

T
(−c2)
2,0 T

(−c2)
2,2

)

.345

Notice the following important points.346

• Instead of factorizing the exterior problems in Ω−c1 and Ω−c2 independently,347

we have reused the factorization results from the existing interior subdomains348

Ωc2 and Ωc1 , and also another exterior subdomain Ω−i which has a smaller349

size than Ω−c1 and Ω−c2 .350

• Assuming that one has the appropriate data structures for storing interior351

boundary maps [15, 30], then it is easy to see that each exterior boundary map352

T (−i) has the same format as the corresponding interior one T (i). The major353

difference is in the pivot blocks: M (c1,c2), M (c2,−i), and M (c1,−i) are not354

related to one another because they are for different parts of the boundaries.355

Finally, for computing the solution update, we develop tree-based algorithms built356

upon the leaf subdomains Ωc1 , Ωc2 , and Ω−i by using (2.10)–(2.15). For example, if357

the coefficient updates and the right-hand sides are supported in Ωc1 , the solution358

process is as follows.359

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 11

1. Factorize the updated operator L̃ in Ωc1 and form T̃ (c1).360

2. Solve the coupled system (2.6) for ∂Ωc1 :361

(

T̃ (c1) I

I T (−c1)

)(

g(c1)

g(−c1)

)

=

(

−S̃(c1)f (c1)

0

)

.362

3. Compute the solution in Ωc1 by solving (2.1) with the factors of L̃ and sources363

f (c1) and g(c1).364

4. Choose g
(c2)
0 = g

(−c1)
0 on Γ0 and g

(−i)
1 = g

(−c1)
1 on Γ1, and then solve the first365

two block rows of (2.13) rewritten as366

(2.16) M (c2,−i)

(

g
(c2)
2

g
(−i)
2

)

=

(

−T
(c2)
2,0 g

(c2)
0

−T
(−i)
2,1 g

(−i)
1

)

.367

5. Compute the solution in Ωc2 and Ω−i by solving (2.1) with the factors of L368

and boundary sources g(c2) and g(−i), respectively.369

For steps 1 to 3, we follow the existing strategy in Section 2.1 by finding the correct370

boundary sources between the interior subdomain Ωc1 and the exterior subdomain371

Ω−c1 . For steps 4 to 5, we compute the solution update in Ω−c1 by finding the372

boundary sources between the two subdomains Ωc2 and Ω−i. If we are only interested373

in having the solution near the coefficient updates, we can terminate the solution374

process at step 3 to save the solution cost.375

This two-level method does not need to fix the locations of coefficient updates.376

Updates in Ωi, Ωc1 , and Ωc2 are highly efficient since L̃ only needs to be factorized at377

the locations where it differs from L. This two-level process illustrates the capability378

of dealing with coefficient updates of different volumes. The results of this section379

provide key components of the hierarchical algorithms in Section 3.380

3. Hierarchical algorithms. In this section, we write the complete hierarchi-381

cal algorithm for solving coefficient update problems. In particular, we focus on382

generalizing the two-level method in Section 2.2 to a constructive multi-level method.383

The multi-level method involves the tree-based domain partitioning. Comparing with384

simpler alternatives in Section 2, the multi-level method is more flexible because it385

supports updates in any subdomain used in the domain partitioning, and is more386

efficient because the computational cost is minimized by isolating the smallest sub-387

domains containing the coefficient updates. Besides a factorization update in subdo-388

mains, the major steps include: introduction of exterior subdomains in the domain389

partitioning, factorization of interior and exterior problems, and solution update with390

localized right-hand sides.391

The computational domainD is partitioned hierarchically following a tree denoted392

by T . For notational simplicity, we restrict the discussion to binary trees. Each parent393

subdomain is the union of two child subdomains. Intuitive examples of the domain394

partitioning can be found in [15, Figure 2]. Here, we let every node in T have a395

positive index in order to introduce the indexing of exterior subdomains. As a tree-396

based solver, the basic design is as follows:397

• For each leaf node i, Section 2.1 has described the way to solve the local prob-398

lem (2.1) in the leaf subdomain Ωi based on boundary and interior sources.399

We keep all the relevant information about (2.1) at leaf nodes, such as local400

mesh and coefficient information used to generate and update the local linear401

system.402

This manuscript is for review purposes only.

12 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

• For each non-leaf node i, according to (2.8)–(2.9) in Section 2.2, we only need403

to keep track of the shared artificial boundaries with i’s children.404

i1 j1 −il

−il−1

il

jl

−i2

j1 j2

jl−1

j2i2

il−1

il jl

T

Fig. 3.1. Transformation between trees of subdomains. Left panel: the original tree T with the
associated subdomains; Right panel: the new tree for localized solution in Ωil . Each shaded triangle
associated with a node represents all the descendants of the node.

3.1. Transformation of binary domain partitioning. The domain parti-405

tioning needs to be updated when the coefficient changes. Suppose the problem406

is modified in Ωp for a level-l node p. Write the path from the root i0 to p as407

i0 → i1 → · · · → il = p, so Ωi0 ⊃ Ωi1 ⊃ · · · ⊃ Ωil = Ωp. Therefore, modifications in408

Ωp not only lead to changes in the subtree generated by p, but also propagate along409

the path to the root. The goal here is to reorganize the domain partitioning such410

that p is a child of the root, then changes in Ωp do not propagate to multiple larger411

subdomains.412

Denote ik’s sibling by jk for 1 ≤ k ≤ l. See the left panel of Figure 3.1 for the413

illustration of ik, jk in T . In short, the related subdomains have the following relation414

in T :415

D = Ωi0

∪Ωj1⇐=== Ωi1

∪Ωj2⇐=== Ωi2

∪Ωj3⇐=== · · ·
∪Ωjl⇐=== Ωil .416

For the exterior subdomains on the path from i1 to il, we have the following relation:417

Ωj1 = Ω−i1

∪Ωj2===⇒ Ω−i2

∪Ωj3===⇒ Ω−i3

∪Ωj4===⇒ · · ·
∪Ωjl===⇒ Ω−il .418

Motivated by this relation, we construct the new binary domain partitioning step by419

step as follows.420

1. For the root node i0, let il, −il be its children. The entire domainD = Ωi0 can421

be partitioned into the interior subdomain Ωil and the exterior subdomain422

Ω−il . We preserve the partitioning in Ωil , and continue with the new node423

−il.424

2. For the node −ik with k ∈ {l, l − 1, . . . , 2}, let jk, −ik−1 be −ik’s children.425

Since Ωik−1
contains Ωik and Ωjk in T , we can partition Ω−ik into Ωjk and426

Ω−ik−1
. We preserve the partitioning in Ωjk and continue with the new node427

−ik−1. Notice that Ωj1 = Ω−i1 , so we can use j1 to replace the new node428

−ik−1 for k = 2.429

The new binary tree is visualized in the right panel of Figure 3.1. The new tree430

can be constructed in O(l) operations, because l − 1 nodes are removed and l − 1431

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 13

nodes are introduced. From the construction process, we see that the new elements432

{−ik} are not leaf nodes. That is to say, every exterior subdomain introduced here433

is a union of existing interior subdomains. The key results are summarized into the434

following theorem.435

Theorem 3.1. Given a binary tree T , let {Ωi : i ∈ T } be a binary domain436

partitioning of D. For a level-l node p ∈ T with l > 1, there exists a well-defined437

binary domain partitioning such that438

1. Ωp is a child subdomain of D,439

2. the elements of {Ωi : i is an ancestor of p in T , 1 ≤ level(i) < l} are re-440

moved,441

3. the elements of {Ω−i : i is an ancestor of p in T , 1 < level(i) ≤ l} are in-442

serted,443

4. every new element cannot be a leaf in the new binary partitioning.444

The new domain partitioning is used to isolate the perturbations in Ωp, because445

the level-one subdomains are precisely Ωp and Ω−p. The interior problem in Ωp needs446

to be re-factorized, but the exterior problem in Ω−p remains the same.447

3.2. Hierarchical factorization and solution update. Inspired by the two-448

level example in Section 2.2, we describe the family of hierarchical algorithms needed449

for solving coefficient update problems, including the factorization and solution of450

interior and exterior problems. The major novelties are the hierarchical algorithms of451

exterior problems.452

The factorization of interior problems follows a bottom-up (postordered) traversal453

of the tree T . If the node i is a leaf, we factorize the discretized PDE (2.1) in Ωi454

and store the boundary map matrix T (i). If i has children, then the boundary map455

T (i) can be constructed from those at its children using (2.11). The construction of456

interior boundary maps has been developed in [15]. Since the process is the foundation457

of exterior problems and factorization update, we review this result in Algorithm 3.1,458

FACINT, using the notation in this paper. This algorithm can be understood as459

applying a sparse LU factorization method to a sparse matrix with special structures.460

Using the terminologies of the multifrontal method [11], (2.9) can be thought of as461

the frontal matrix at a non-leaf node i which is assembled using update matrices at462

child nodes c1, c2. At least for non-leaf nodes, the factorization of (2.9) has the same463

numerical stability as LU. The corresponding solution algorithm contains forward464

and backward substitutions, which are described in Algorithm 3.3. Notice that the465

factorization, factorization update, and solution algorithms are specialized for elliptic466

PDE problems and the methods rely heavily on the derivations in Section 2 due to the467

special discretization and domain decomposition setup. Thus, they do not work for468

general sparse matrices. In addition, no approximation is involved in our algorithms.469

The construction of exterior boundary maps follows a top-down (reverse pos-470

tordered) traversal of T . The major difference from computing interior boundary471

maps is that the data dependency is reversed. For the node i with children c1, c2, we472

have Ωc1 ,Ωc2 ⊂ Ωi for the interior problems, but Ω−c1 ,Ω−c2 ⊃ Ω−i for the exterior473

ones. Based on (2.15), we construct T (−c1) from T (−i), T (c2) and construct T (−c2)474

from T (−i), T (c1). This process is described in Algorithm 3.2, FACEXT. Each new475

T (−i) corresponds to the Schur complement from eliminating the points outside Ωi.476

The ordering of LU is changed repeatedly in Algorithm 3.2. Like in other sparse direct477

solvers, it becomes nontrivial to keep track of the numerical stability. For simplicity,478

we assume there is no stability issue in the algorithms.479

This manuscript is for review purposes only.

14 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

For the coefficient update problem (1.4), recall that the coefficient update and480

the right-hand side are supported in the same subdomain Ωp for some node p in T .481

According to the solution process at the end of Section 2.2, the major steps include: re-482

factorization in Ωp, computing boundary sources on the boundary ∂Ωp, and extracting483

the solution inside and outside Ωp. This is Algorithm 3.4, NEWUPD–SOLEXT.484

In NEWUPD, the modified operator L̃ in Ωp is factorized and the solution in485

Ωp is computed using Algorithm 3.3. Let T̃ be the subtree of T corresponding to486

p. The part of L̃ corresponding to T̃ is re-factorized. Inside Ωp, each subdomain487

is visited twice by a postordered traversal and a reverse postordered traversal of T̃ .488

SOLEXT extends the solution to the exterior subdomain Ω−p by solving a boundary489

value problem. It has a top-down traversal of the new domain partitioning inside490

Ω−p defined in Theorem 3.1. Note that the new domain partitioning is not stored491

explicitly. The while loop in SOLEXT deduces the new parent-child relation on the492

fly. At each step, we get the solution of a subdomain along the path from p to the493

root of T , and the cost increases for high-level problems. As mentioned near the end494

of Section 2.2, the algorithm can be terminated in the middle once the desired part495

of the solution is computed.496

In general, one does not need to know which subdomain is going to be changed497

in FACEXT, and its output can handle coefficient updates in any subdomain of the498

domain partitioning. If we have additional information about p, the cost and storage499

can be further reduced by only calculating the exterior factors related to p. As can500

be seen in Theorem 3.1 and SOLEXT, the related nodes correspond to the ancestors501

of p.502

To illustrate the benefits of our method, we compare it with a standard way of503

updating the factorization in FACINT, which is to recompute all those factors that are504

changed as in standard sparse factorizations. It not only recomputes the factorization505

in T̃ , but also propagates the changes to all the ancestors in T . The following set of506

nodes are visited in a postordered traversal.507

F̃ = {i ∈ T |i ∈ T̃ or is an ancestor of some node of T̃ }.508

We have implemented this type of factorization update and name the routine STDUPD509

to compare with our method. STDUPD changes the outermost loop of FACINT by510

replacing T with F̃ .511

Table 3.1

Major properties of the hierarchical factorization and solution algorithms. Let Ωp be the mod-
ified subdomain. The costs are estimated in Section 4 for two-dimensional PDEs, where n is the
matrix size, and nl ≪ n is the update size.

Name Output Tree traversal Cost

FACINT all interior factors postorder of T O(n3/2)

FACEXT all exterior factors reverse postorder of T O(n3/2)

NEWUPD solution in Ωp postorder and reverse postorder of the T̃ O(n
3/2
l)

SOLEXT solution in Ω−p reverse postorder of other subtrees of T O(n log n)

STDUPD new interior factors postorder of a larger subtree F̃ ⊃ T̃ O(n3/2)

In summary, Table 3.1 lists the roles and properties of the major routines, and512

for convenience, the complexity estimates in Section 4 are listed as well. We suggest513

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 15

Algorithm 3.1 Factorization of interior problems

1: procedure FACINT(T , L)
2: for each i ∈ T following the postordered traversal do
3: if i is a leaf then
4: Factorize the discretized L in Ωi by a sparse LU factorization
5: Construct T (i) in (2.3), the jth column of which is TSMV(i, ej , 0)
6: else

7: (c1, c2)← i’s children
8: Factorize M (c1,c2) defined in (2.10)
9: Compute T (i) from T (c1) and T (c2) using (2.11)

10: end if

11: end for

12: return T (∗), factors of M (∗,∗), and factors of L restricted in leaf subdomains
13: end procedure

Algorithm 3.2 Factorization of exterior problems

1: procedure FACEXT(T , T (∗))
2: for each i ∈ T following a reverse postordered traversal do
3: if i is not a leaf then
4: (c1, c2)← i’s children

5: Factorize M (c1,−i) =

(

T
(c1)
1,1 I

I T
(−i)
1,1

)

,M (c2,−i) =

(

T
(c2)
2,2 I

I T
(−i)
2,2

)

6: Based on (2.15), compute T (−c1) via

(

T
(c2)
0,0

T
(−i)
1,1

)

−

(

T
(c2)
0,2

T
(−i)
1,2

)

(M (c2,−i))−1

(

T
(c2)
2,0

T
(−i)
2,1

)

7: Compute T (−c2) via

(

T
(c1)
0,0

T
(−i)
2,2

)

−

(

T
(c1)
0,1

T
(−i)
2,1

)

(M (c1,−i))−1

(

T
(c1)
1,0

T
(−i)
1,2

)

8: end if

9: end for

10: return T (∗) and factors of M (∗,∗)

11: end procedure

the following calling sequence for solving coefficient update problems:514

1. NEWUPD(T , i0, L, f, . . .) for factorizing L and solving Lu = f , where i0 is515

the root of T ;516

2. FACEXT(T , . . .) for factorizing exterior problems;517

3. NEWUPD(T , p, L̃, (L− L̃)u, . . .) for the solution update ũ− u in Ωp and the518

exterior boundary source g(−p);519

4. SOLEXT(T , p, g(−p), . . .) for the solution update ũ− u in Ω−p.520

Note that the solution steps (1, 3, and 4) can be trivially extended for solving521

multiple right-hand sides. There are several qualitative arguments about the cost522

effectiveness of this family of algorithms. The factorization of exterior problems does523

This manuscript is for review purposes only.

16 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

Algorithm 3.3 Forward and backward substitutions for the solution algorithms

1: procedure SOLF(T , f, T (∗),M (∗,∗)) ▷ Compute s(i) = S(i)f (i) for i ∈ T
2: for each i ∈ T following the postordered traversal do
3: if i is a leaf then
4: s(i) ←TSMV(i, 0, f |Ωi

) ▷ Compute S(i)f |Ωi

5: else

6: (c1, c2)← i’s children
7: Based on (2.12), compute

s(i) ←

(

s
(c1)
1

s
(c2)
2

)

−

(

T
(c1)
1,0

T
(c2)
2,0

)

(M (c1,c2))−1

(

s
(c1)
0

s
(c2)
0

)

8: end if

9: end for

10: return s(∗)

11: end procedure

1: procedure SOLB(T , f, s(∗), g(i0), T (∗),M (∗,∗))
▷ Compute g(i) for i ∈ T and the true solution u, i0 is the root of T

2: for each i ∈ T following a reverse postordered traversal do
3: if i is a leaf then
4: Compute u|Ωi

by solving (2.1) with f (i) = f |Ωi
and newly obtained g(i)

5: else

6: (c1, c2)← i’s children

7: g
(c1)
1 ← g

(i)
1 , g

(c2)
2 ← g

(i)
2

8: Solve the first two block rows of (2.9) as

(

g
(c1)
0

g
(c2)
0

)

← −(M (c1,c2))−1

(

s
(c1)
0 + T

(c1)
0,1 g

(i)
1

s
(c2)
0 + T

(c2)
0,2 g

(i)
2

)

9: end if

10: end for

11: return u

12: end procedure

not increase the order of factorization complexity, because the cost depends on the524

sizes of boundaries {∂Ωi} in the same way as existing factorization of interior prob-525

lems. The cost of the re-factorization step is low because it only depends on the local526

problem size in Ωp. The cost of solution is low if terminated early because Algorithm527

3.4 visits smaller subdomains first. Similar to existing sparse direct solvers, Algo-528

rithm 3.1–3.4 have two levels of parallelism: parallel traversals of tree structures and529

parallel dense matrix operations. In addition, T (−c1) and T (−c2) in Algorithm 3.2 can530

be computed in parallel.531

4. Algorithm complexity. In this section, we estimate the complexity of the532

algorithms presented in Section 3. The major components of our method include533

a precomputation step that constructs interior and exterior boundary maps of the534

reference problem, a factorization update step that modifies the factors of an interior535

problem, and a solution update step to get the final solution.536

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 17

Algorithm 3.4 Factorization and solution update with modified coefficients in Ωp

1: procedure NEWUPD(T , p, L̃, f, T (−p)) ▷ Factorization and Solution in Ωp

2: T̃ ← subtree(p) ▷ Subtree of T with root p

3: FACINT(T̃ , L̃) for T̃ (∗), M̃ (∗,∗) in Ωp

4: s(∗) ← SOLF(T̃ , f, T̃ (∗), M̃ (∗,∗)) ▷ Forward sweep in T̃ via Algorithm 3.3
5: Based on (2.6), solve

(

T̃ (p) I

I T (−p)

)(

g(p)

g(−p)

)

=

(

−s(p)

0

)

6: u(p) ← SOLB(T̃ , f, s(∗), g(p), T̃ (∗), M̃ (∗,∗)) ▷ Backward sweep in T̃
7: return u(p), g(−p)

8: end procedure

1: procedure SOLEXT(T , p, g(−p), T (∗),M (∗,∗)) ▷ Solution in Ω−p

2: c1 ← p

3: while c1 is not the root do
4: c2 ← c1’s sibling, i← c1’s parent

5: g
(c2)
0 ← g

(−c1)
0 , g

(−i)
1 ← g

(−c1)
1

6: Based on the first two rows of (2.13) or (2.16), compute

(

g
(c2)
2

g
(−i)
2

)

← −(M (c2,−i))−1

(

T
(c2)
2,0 g

(−c1)
0

T
(−i)
2,1 g

(−c1)
1

)

7: u(−p)|Ωc2
← SOLB(subtree(c2), 0, 0, g

(c2), T (∗),M (∗,∗)) ▷ Solution in Ωc2

8: c1 ← i ▷ Continue with Ω−i

9: end while

10: return u(−p)

11: end procedure

For an n×n discretized linear system from a d-dimensional elliptic problem (d = 2537

or 3), for convenience, the following assumption is used to estimate the complexity.538

Assumption 4.1. Let T be a complete binary tree containing l levels. Each539

level-k subdomain of the domain partitioning {Ωi : i ∈ T } contains O(nk) interior540

unknowns and O(mk) boundary unknowns, where541

nk = 2−kn, mk = n
(d−1)/d
k .542

Furthermore, let nl = O(1). Here, the constants in the big O notation are assumed543

to be uniformly bounded.544

Remark 4.1. The condition on nk and mk requires that the domain partitioning545

is balanced. The fractional power in mk comes from the dimension reduction from a546

d-dimensional domain to a (d− 1)-dimensional boundary.547

If boundary maps are stored as dense matrices, then according to (2.11) and548

(2.15), the precomputation of interior and exterior boundary maps has dense factor-549

izations and multiplications at every node. The complexity Cpre and the storage Spre550

This manuscript is for review purposes only.

18 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

are respectively551

Cpre =
l
∑

k=0

2kO
(

m3
k

)

=

{

O(n3/2) in 2D,

O(n2) in 3D,

Spre =
l
∑

k=0

2kO
(

m2
k

)

=

{

O(n log n) in 2D,

O(n4/3) in 3D.

(4.1)552

This is the cost of both FACINT in Algorithm 3.1 and FACEXT in Algorithm 3.2. The553

results are in the same orders as those in the direct factorization of sparse matrices554

with nested dissection reordering.555

Consider modifying the problem in some level-l subdomain Ωp containing O(nl)556

interior unknowns. The subtree corresponding to Ωp has (l− l) levels. The complexity557

Cupd and storage Supd of local factorization update are respectively558

Cupd =

l−l
∑

k=0

2kO
(

m3
k+l

)

=

{

O(n
3/2
l) in 2D,

O(n2
l) in 3D,

Supd =

l−l
∑

k=0

2kO
(

m2
k+l

)

=

{

O(nl log nl) in 2D,

O(n
4/3
l) in 3D.

(4.2)559

Observe that Cupd and Supd only depend on the number of interior unknowns in Ωp.560

This is the cost of the factorization update, which is the call of FACINT at Line 3 of561

Algorithm 3.4.562

In comparison, we consider the naive factorization update method which changes563

the factors following the original data dependencies in T . In addition to the re-564

factorization in Ωp that has complexity Cupd in (4.2), the naive method has an addi-565

tional step which updates every ancestor of p. This additional step costs566

(4.3)

Canc =

l−1
∑

k=0

O
(

m3
k

)

=

{

O(n3/2) in 2D,

O(n2) in 3D,

Sanc =

l−1
∑

k=0

O
(

m2
k

)

=

{

O(n) in 2D,

O(n4/3) in 3D.

567

This additional cost, on the contrary, is primarily determined by n because the568

ancestors of p have larger and larger matrix sizes. The factorization update cost is569

reduced from Canc + Cupd in STDUPD to Cupd in the proposed method. If nl ≪ n,570

then the new method avoided the dominant cost (4.3) that is comparable to the cost571

(4.1) for re-factorizing the entire problem.572

The solution update in Algorithm 3.4 has the solution in Ωp and Ω−p, and the573

computational cost is proportional to the memory access. The solution complexity574

is Supd in Ωp, and is Spre in Ω−p. This is the cost of Algorithm 3.4, excluding the575

factorization update step. If the exterior solution is terminated early, then the total576

cost can be as low as Supd.577

The following theorem summarizes the complexity of the proposed algorithms.578

Theorem 4.1. Let the domain partitioning satisfy Assumption 4.1. The cost of579

precomputation in Algorithm 3.1 (FACINT) and Algorithm 3.2 (FACEXT) is governed580

by the matrix size via (4.1). For the proposed method, the cost of factorization update581

is (4.2), which only depends on the size of the updated subdomain.582

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 19

FACINT and FACEXT have the same order of complexity as in (4.1). To get an idea583

of when the proposed factorization update algorithm has advantages over STDUPD,584

we compare the constant factors in the complexities of FACINT and FACEXT. We start585

by comparing the cost of (2.11) in FACINT and that of (2.15) in FACEXT.586

Lemma 4.2. Let A1, C
T
1 ∈ C

r1s×s, B1, B2 ∈ C
s×s, and A2, C

T
2 ∈ C

r2s×s. The587

following matrix can be computed in 2[(r1+r2)
2+r1r2+(r1+r2)+

4
3]s

3 floating-point588

operations (plus some lower-order terms):589

U =

(

A1

A2

)(

B1 I

I B2

)−1(
C1

C2

)

.590

Proof. Note591

(

B1 I

I B2

)

=

(

I B1

I

)(

I −B1B2

I

)(

I

I B2

)

.592

The cost of the multiplication B1B2 is approximately 2s3, and the LU factorization593

of I − B1B2 costs approximately 2
3s

3. (Some lower-order terms are dropped in the594

estimates.) Also,595

(

A1

A2

)(

I

I B2

)−1

=

(

−A1B2 A1

A2

)

,596

(

I B1

I

)−1(
C1

C2

)

=

(

C1 −B1C2

C2

)

.597
598

The multiplications A1B2 and B1C2 take approximately 2(r1 + r2)s
3 flops. Then599

U =

(

−A1B2 A1

A2

)(

(I −B1B2)
−1

I

)(

C1 −B1C2

C2

)

,600

where the LU solution with (r1 + r2)s right-hand sides takes approximately 2(r1 +601

r2)s
3 operations, and the five matrix multiplications afterwards take approximately602

2((r1+r2)
2+r1r2)s

3 operations. Summing up the costs of all the steps gives the final603

answer.604

The formula of U in Lemma 4.2 clearly gives the shared pattern of (2.11) and605

(2.15). Recall the definition of Γ0,Γ1,Γ2 in (2.8). For computing (2.11), s is the size606

of Γ0, and r1 (r2) is the ratio between the size of Γ1 (Γ2) and s. For computing (2.15),607

s is the size of Γ2, r1 is the ratio between the size of Γ0 and s, and r2 is the ratio608

between the size of Γ1 and s. The precise cost depends on the shapes of subdomains,609

and we give some 2D examples as follows.610

Take an example of merging two square subdomains into a rectangle. Assume611

that each side length has m sampling points. Γ1 (Γ2) is three times as long as Γ0.612

Let r1 = r2 = 3, s = m in Lemma 4.2, and we get the cost of computing (2.11)613

as 2(52 + 1
3)m

3. Let r1 = 1
3 , r2 = 1, s = 3m in Lemma 4.2, and then the cost of614

computing (2.15) is 2 · 129m3. Since (2.15) is used twice, FACEXT is approximately615

4.93 times as expensive as FACINT for this case.616

Take another example of partitioning a square subdomain into two rectangles that617

are equal in size. Assume that each side length of the square has 2m sampling points.618

Γ1 (Γ2) is twice as long as Γ0. Let r1 = r2 = 2, s = 2m in Lemma 4.2, and then the619

cost of computing (2.11) is 32(12 + 2
3)m

3. Let r1 = 1
2 , r2 = 1, s = 4m in Lemma 4.2,620

This manuscript is for review purposes only.

20 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

and then the cost of computing (2.15) is 32(22 + 1
3)m

3. Since (2.15) is used twice,621

FACEXT is approximately 3.53 times as expensive as FACINT for this case.622

The two examples are essential for generalizing the comparison to a recursive623

partitioning of a square domain. The second example is applied to partition each624

square into two rectangles, and the first example is useful at the next level during the625

partitioning of each rectangle into two squares. Due to the recursive structure, we626

only need to compare the constant factors in two adjacent levels, and the same ratio627

holds for any even number of levels. Consider partitioning a square with 2m points628

on each side length into four squares with m points on each side length, by combining629

the results of the two examples, the ratio between the cost of FACEXT and that of630

FACINT is631

2
32(22 + 1

3) + 4 · 129

32(12 + 2
3) + 4(52 + 1

3)
≈ 4.00,632

where the factor of 2 in the front comes from using (2.15) twice, and the numbers in the633

first example are doubled because there are two rectangles involved. Since FACEXT is634

done only once to the reference problem, this approach becomes suitable for multiple635

updated problems. In this case, comparing with a naive factorization update like636

STDUPD, the new method has advantages with more than four local updates for637

sufficiently large problem sizes. When there are many updates, the benefit of the638

factorization update is significant.639

The cost of FACEXT can be reduced by excluding some subtrees of T , which640

requires some knowledge on where the problem is never updated. As mentioned near641

the end of Section 3, FACEXT has an additional parallelism comparing with FACINT.642

Line 6–7 of Algorithm 3.2 can be computed in parallel, which could ideally reduce the643

run time of FACEXT by two.644

5. Numerical tests. In this section, we check how the cost of our direct method645

scales with respect to the size of the computational domain and the support of the646

coefficient update. The method is able to solve general elliptic problems with coeffi-647

cient updates. A particular problem of interest is the variable-coefficient Helmholtz648

equation649

−∆u(x)− k2(x)u(x) = f(x),650

where k(x) is the wavenumber that may be updated in various applications.651

The domain of interest is chosen asD = (0, 1)×(0, 1). We discretize the Helmholtz652

equation by a continuous Galerkin method with fourth-order nodal Lagrange bases in653

a regular triangular mesh. We refer to [19] for the method and code for determining654

nodal points and computing partial derivatives. The performance of the direct method655

is mostly determined by the matrix size and sparsity pattern. The matrix size equals656

the number of nodal points in the domain, and high-order schemes usually lead to657

more nonzeros. The reference wavenumber function is plotted in Figure 5.1, but658

similar performance can be reproduced for other choices of wavenumber functions.659

The performance is not sensitive to the choice of boundary conditions either, and we660

use the impedance boundary condition ∂n+iku = 0 on ∂D, where the wavenumber is661

location independent on the boundary. For the coefficient updates, the wavenumber662

is reduced by 1/2 in different subdomains.663

The algorithms are implemented in MATLAB (available at https://github.com664

/xiaoliurice/FACUPD) and are run in serial on a Linux workstation with 3.5GHz665

CPU and 64GB RAM. We check the complexity of the proposed method (Algorithms666

3.1–3.4), and compare with the standard factorization update approach (STDUPD)667

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 21

Fig. 5.1. Wavenumber function of the Helmholtz equation. The wavenumber is normalized by
its smallest value.

described in Section 3.2. We report the runtime, the number of floating-point opera-668

tions (flops), and the storage in terms of the number of nonzeros in the factors. For669

counting the flops, we sum up the number of addition, subtraction, multiplication,670

and division operations of all the actual linear algebra operations.671

First, we check the dependence of the factorization and solution costs on the672

matrix size n. We increase n by refining the mesh and doubling the wavenumber673

simultaneously. This choice fixes the sampling rate of the discrete Helmholtz problem.674

The test results are listed in Table 5.1. As estimated by (4.1) and visualized in Figure675

5.2(a), the factorizations of the interior problems (Algorithm 3.1) and the exterior676

problems (Algorithm 3.2) have the total complexity O(n3/2).677

Then for the same setup as in Table 5.1, Table 5.2 lists the costs of solving678

coefficient update problems when the number of points in the modified subdomain is679

kept fixed as nl = 1602. Similar results are obtained for three types of locations: near a680

corner, near the center of an edge, and near the center ofD. Algorithm 3.4 (NEWUPD)681

contains the re-factorization and solution in the modified subdomain, and the cost682

(mainly for the factorization) does not depend on the matrix size n. In comparison,683

the factorization update cost of STDUPD is O(n3/2), The test results are consistent684

with the complexity estimates. The significant advantage of the new factorization685

update NEWUPD over the standard one STDUPD is apparent from Figure 5.2(b).686

For the matrix size n = 25612, the cost of NEWUPD is about 78 times lower than687

STDUPD.688

The solution update costs for both methods are O(n log n). The new method uses689

Algorithm 3.4 (SOLEXT) for the solution in the exterior subdomain. The standard690

method solves (1.3). Table 5.2(a) shows that SOLEXT in the new method needs only691

about half of the cost of the standard solution update. SOLEXT is faster because it692

does not need to visit every subdomain twice, although the standard update method693

can solve (1.3) directly and does not need the solution of the reference problem (1.1).694

For both methods, the solution updates have reasonable costs.695

For the largest computational domain with n fixed, we also vary the size nl of the696

This manuscript is for review purposes only.

22 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

modified subdomain. The results are listed in Table 5.3 and plotted in Figure 5.3. The697

cost of NEWUPD is dominated by the direct factorization in the modified subdomain.698

The dependence on nl as illustrated in Figure 5.3 is a little better than the estimate699

in (4.2). The cost of SOLEXT does not increase because n is fixed. As expected, if nl700

gets closer to n, the cost of NEWUPD becomes closer to that of STDUPD. (Note that701

the benefit of our method is when there are multiple sets of local updates.)702

Table 5.1

Test of direct factorization and solution costs for the reference problem (1.1).

(a) Problem setup

Matrix size 3212 6412 12812 25612

#nonzeros 2,437,184 9,748,736 38,994,944 155,979,776

(b) Factorization of interior problems

Time 1.77s 7.70s 33.10s 156.30s

Flops 3.11× 109 1.58× 1010 8.93× 1010 5.62× 1011

Factor storage 9.03× 106 4.65× 107 2.31× 108 1.11× 109

(c) Factorization of exterior problems

Time 0.52s 3.75s 25.02s 170.29s

Flops 1.66× 109 1.75× 1010 1.62× 1011 1.35× 1012

Factor storage 3.87× 106 2.56× 107 1.46× 108 7.66× 108

(d) Solution of the reference problem

Time 0.08s 0.32s 1.39s 7.08s

Flops 2.52× 107 1.11× 108 4.83× 108 2.10× 109

(a) Flops in Table 5.1 (b) Flops of STDUPD and NEWUPD in Table 5.2(a)

Fig. 5.2. Scaling plots for fixed update size.

These test results demonstrate that the proposed algorithms are capable of solving703

the challenging cases where the coefficient updates have large magnitude and support.704

The algorithms can accommodate large amounts of modifications fairly easily. In705

addition, the solutions of the new update method are as accurate as results from more706

expensive standard update methods. We have not encountered a test case where the707

accuracy has a noticeable loss. We anticipate that accuracy losses may occur when708

some interior or exterior subproblems become nearly singular. We plan to study the709

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 23

Table 5.2

Solution update for modifying k(x) at 1602 points. l is the total number of levels in the domain
partitioning (see Assumption 4.1). l is the level of the modified subdomain. The accuracy of the
updated solution u is measured as ∥u−v∥∞/∥v∥∞, where v is computed via the standard factorization
update method STDUPD described in Section 3.

Matrix size 3212 6412 12812 25612

(l, l) (6, 2) (8, 4) (10, 6) (12, 8)

(a) Updates near the corner x1 = 0, x2 = 0

Subdomain (0, 1
2)

2 (0, 1
4)

2 (0, 1
8)

2 (0, 1
16)

2

NEWUPD time 0.45s 0.44s 0.44s 0.46s

NEWUPD flops 7.90× 108 7.90× 108 7.90× 108 7.90× 108

SOLEXT time 0.03s 0.14s 0.61s 2.62s

SOLEXT flops 9.34× 106 5.31× 107 2.49× 108 1.12× 109

Accuracy 8.38× 10−16 1.56× 10−16 1.38× 10−16 9.08× 10−17

STDUPD time 0.43s 0.51s 1.10s 5.70s

STDUPD flops 8.19× 108 1.66× 109 8.38× 109 6.21× 1010

Solution time 0.07s 0.28s 1.16s 7.30s

Solution flops 2.52× 107 1.11× 108 4.83× 108 2.10× 109

(b) Updates near the center of an edge x1 = 0, x2 = 1

2

Subdomain (0, 1
2)× (12 , 1) (0, 1

4)× (12 ,
3
4) (0, 1

8)× (12 ,
5
8) (0, 1

16)× (12 ,
9
16)

NEWUPD time 0.44s 0.48s 0.50s 0.58s

NEWUPD flops 7.91× 108 9.43× 108 9.43× 108 9.43× 108

SOLEXT time 0.03s 0.14s 0.71s 2.95s

SOLEXT flops 9.32× 106 5.28× 107 2.49× 108 1.13× 109

Accuracy 7.60× 10−16 4.69× 10−16 4.02× 10−16 4.97× 10−16

STDUPD time 0.43s 0.59s 1.16s 5.83s

STDUPD flops 8.20× 108 1.73× 109 8.71× 109 6.46× 1010

(c) Updates near the center x1 = 1

2
, x2 = 1

2

Subdomain (12 , 1)
2 (12 ,

3
4)

2 (12 ,
5
8)

2 (12 ,
9
16)

2

NEWUPD time 0.44s 0.54s 0.56s 0.63s

NEWUPD flops 7.95× 108 1.19× 109 1.19× 109 1.19× 109

SOLEXT time 0.03s 0.14s 0.71s 2.89s

SOLEXT flops 9.25× 106 5.20× 107 2.47× 108 1.11× 109

Accuracy 9.34× 10−16 1.47× 10−15 1.46× 10−15 2.07× 10−15

STDUPD time 0.43s 0.59s 1.31s 6.72s

STDUPD flops 8.25× 108 1.90× 109 9.95× 109 7.43× 1010

accuracy in detail in future work.710

We would also like to mention that, the large magnitude and support of the up-711

dates make the modified problems no longer close to the reference problem. This712

This manuscript is for review purposes only.

24 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

Table 5.3

Test for a fixed matrix size (25612) and increasing modified subdomain sizes. l is the level of
the modified subdomain.

Update size 1602 3202 6402 12802

l 8 6 4 2

Subdomain (12 ,
9
16)

2 (12 ,
5
8)

2 (12 ,
3
4)

2 (12 , 1)
2

NEWUPD time 0.65s 2.71s 12.21s 44.56s

NEWUPD flops 1.19× 109 7.06× 109 4.66× 1010 1.47× 1011

SOLEXT time 4.17s 4.73s 4.16s 1.95s

SOLEXT flops 1.12× 109 1.10× 109 1.03× 109 8.09× 108

Accuracy 2.07× 10−15 2.22× 10−15 5.27× 10−15 2.69× 10−15

STDUPD time 6.82s 8.18s 14.57s 40.11s

STDUPD flops 7.43× 1010 7.72× 1010 9.26× 1010 1.65× 1011

Fig. 5.3. Scaling plot for Table 5.3.

situation is handled efficiently with our algorithms, but causes troubles to methods713

such as iterative solvers using the factorization of the reference problem as a pre-714

conditioner. To verify this, we reuse the factorization of the reference problem as a715

preconditioner. For the problems considered in Table 5.2, Table 5.4 shows the results716

of the preconditioned iterative method. Limited by the large runtime, we can only717

check the first two cases in Table 5.3 using the setup in Table 5.4, which need 54 and718

1048 iterations that take 746.98s and 9261.66s, respectively. The computation time719

is much longer than in our factorization update algorithm due to the large number720

of iterations. This is because that the reference problem and the modified problem721

are not close to each other in the tests. In addition, our direct update algorithm can722

handle large amounts of modifications fairly easily.723

6. Conclusions and future work. We developed a new framework for up-724

dating the factorization of discretized elliptic operators. A major significance is the725

hierarchical construction of exterior boundary maps. For each modified operator, we726

only need to update the factorization for locations where the coefficients are updated,727

and the locations of coefficient update are allowed to change to different subdomains.728

Tree-based algorithms were given for solving the interior and exterior problems. The729

complexity estimates show that the cost of factorization update only depends on the730

size of the modified subdomain. Numerical tests show that the new method is consid-731

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 25

Table 5.4

Preconditioned iterative solution of the problems in Table 5.2. The preconditioner is the fac-
torization of the reference problem. GMRES restarts every 60 iterations and stops when the relative
residual error is below 10−4.

Matrix size 3212 6412 12812 25612

(a) Updates near the corner x1 = 0, x2 = 0

Subdomain (0, 1
2)

2 (0, 1
4)

2 (0, 1
8)

2 (0, 1
16)

2

#iterations 51 47 43 43

Iteration time 9.05s 29.25s 101.11s 541.53s

(b) Updates near the center of an edge x1 = 0, x2 = 1

2

Subdomain (0, 1
2)× (12 , 1) (0, 1

4)× (12 ,
3
4) (0, 1

8)× (12 ,
5
8) (0, 1

16)× (12 ,
9
16)

#iterations 51 158 154 133

Iteration time 8.89s 80.84s 303.72s 1225.82s

(c) Updates near the center x1 = 1

2
, x2 = 1

2

Subdomain (12 , 1)
2 (12 ,

3
4)

2 (12 ,
5
8)

2 (12 ,
9
16)

2

#iterations 51 56 55 54

Iteration time 8.93s 37.91s 148.49s 645.18s

erably less expensive than the standard factorization update method. The solution732

update algorithms produce high accuracies as in standard factorization update al-733

gorithms. The method is suitable for solving the challenging cases where there are734

multiple updates with large magnitude.735

The current method has expensive factorization steps as with standard sparse736

direct solvers. It is feasible to introduce rank-structured matrices so that the pre-737

computation step can have nearly linear complexity and storage for elliptic problems.738

Rank-structured methods can accelerate both the factorization of exterior problems739

and the factorization update. Recent work on interconnected hierarchical structures740

[25] may be used for the acceleration of our algorithms. It is also interesting to study741

whether this fast factorization update approach can be extended to general sparse742

matrices. There seems to be some resemblance between the factorization of exterior743

problems and the method in selected inversion [23]. Technical challenges such as744

changes in the symbolic factorization need to be studied in depth in order to get a745

general algebraic method.746

Acknowledgement. We would like to thank Yuanzhe Xi and Christopher Wong747

for some discussions and comments. We are also very grateful for the valuable sug-748

gestions from the editor and the three anonymous referees.749

REFERENCES750

[1] P. Amestoy, I. Duff, J. L’Excellent, Y. Robert, F. Rouet and B. Uçar, On computing751
inverse entries of a sparse matrix in an out-of-core environment, SIAM J. Sci. Comput.,752
34 (2012), pp. 1975–1999.753

[2] J. M. Bennett, Triangular factors of modified matrices, Numer. Math., 7 (1965), pp. 217–221.754
[3] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically755

semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.756

This manuscript is for review purposes only.

26 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

[4] S. M. Chan, and V. Brandwajn, Partial matrix refactorization, IEEE trans. Power Systems,757
PWRS-1 (1986), pp. 193–200.758

[5] T. F. Chan, and D. Goovaerts, Schur complement domain decomposition algorithms for759
spectral methods, Appl. Numer. Math., 6 (1989), pp. 53–64.760

[6] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: CHOLMOD,761
supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Soft-762
ware, 35 (2008), p. 22.763

[7] ,B. Cockburn, J. Gopalakrishnan, and R. Lazarov Unified hybridization of discontinuous764
Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems,765
SIAM J. Numer. Anal., 47 (2007), pp. 1319–1365.766

[8] T. A. Davis, and W. W. Hager, Modifying a sparse Cholesky factorization, SIAM J. Matrix767
Anal. Appl., 20 (1999), pp. 606–627.768

[9] J. Djokić, Efficient update of hierarchical matrices in the case of adaptive discretization769
schemes, Ph.D. thesis, Leipzig University, Leipzig, Germany, 2006.770

[10] J. Douglas, and C. Huang, An accelerated domain decomposition procedure based on Robin771
transmission conditions, BIT Numer. Math, 37 (1997), pp. 678–686.772

[11] I. S. Duff, and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear773
equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.774

[12] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10775
(1973), pp. 345–363.776

[13] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, Maintaining LU factors of a777
general sparse matrix, Linear Algebra Appl., 88 (1987), pp. 239–270.778

[14] A. Gillman and P. G. Martinsson, A direct solver with O(n) complexity for variable co-779
efficient elliptic PDEs discretized via a high-order composite spectral collocation method,780
SIAM J. Sci. Comput., 36 (2014), pp. A2023–A2046.781

[15] A. Gillman, A. H. Barnett, and P. G. Martinsson, A spectrally accurate direct solu-782
tion technique for frequency-domain scattering problems with variable media, BIT Numer.783
Math., 55 (2015), pp. 141–170.784

[16] W. Hackbusch, L. Grasedyck, and S. Börm, An introduction to hierarchical matrices, Math.785
Bohem., 127 (2002), pp. 229–241.786

[17] W. Hackbusch, and S. Börm, Data-sparse approximation by adaptive H2-matrics, Comput-787
ing, 69 (2002), pp. 1–35.788

[18] W. Hackbusch, B. N. Khoromskij, and R. Kriemann Direct Schur complement method by789
domain decomposition based on H-matrix approximation, Comput. Vis. Sci., 8 (2005), pp.790
179–188.791

[19] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods: algorithms,792
analysis, and applications, Springer Science & Business Media, 2007.793

[20] M. Jakobsen and B. Ursin, Full waveform inversion in the frequency domain using direct794
iterative T-matrix methods, J. Geophys. Eng., 12 (2015), p. 400.795

[21] R. Kittappa, and R. E. Kleinman, Acoustic scattering by penetrable homogeneous objects, J.796
Math. Phys., 16 (1975), pp. 421–432.797

[22] R. Kress, and G. F. Roach, Transmission problems for the Helmholtz equation, J. Math.798
Phys., 19 (1977), pp. 1433–1437.799

[23] L. Lin, C. Yang, J. C. Meza, J. Lu, and L. Ying, SelInv–An algorithm for selected inversion800
of a sparse symmetric matrix, ACM Trans. Math. Software, 37 (2011), p. 40.801

[24] X. Liu, J. Xia, and M. V. de Hoop, Parallel randomized and matrix-free direct solvers for802
large structured dense linear systems, SIAM J. Sci. Comput., 38 (2016), pp. S508–S538.803

[25] X. Liu, J. Xia, and M. V. de Hoop, A fast direct elliptic solver via interconnected hierarchical804
structures, Purdue CCAM Report CCAM-2019-2.805

[26] P. G. Martinsson, A direct solver for variable coefficient elliptic PDEs discretized via a806
composite spectral collocation method, J. Comput. Phys., 242 (2013), pp. 460–479.807

[27] V. Minden, A. Damle, K. L. Ho, and L. Ying, A technique for updating hierarchical808
skeletonization-based factorizations of integral operators, Multiscale Model. Simul., 14809
(2016), pp. 42–64.810

[28] MUMPS, A multifrontal massively parallel sparse direct solver, http://mumps.enseeiht.fr.811
[29] PARDISO, Parallel sparse direct solver PARDISO, http://www.pardiso-project.org.812
[30] M. Pedneault, C. Turc, and Y. Boubendir, Schur complement domain decomposition meth-813

ods for the solution of multiple scattering problems, IMA J. Appl. Math., 82 (2017), pp.814
1104–1134.815

[31] F. H. Rouet, Memory and performance issues in parallel multifrontal factorizations and trian-816
gular solutions with sparse right-hand sides, Ph.D. thesis, University of Toulouse, Toulouse,817
France, 2012.818

This manuscript is for review purposes only.

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 27

[32] O. Schenk, and K. Gärtner Solving unsymmetric sparse systems of linear equations with819
PARDISO, Future Gener. Comput. Syst., 20 (2004), pp. 475–487.820

[33] B. Willemsen, A. Malcolm, and W. Lewis, A numerically exact local solver applied to salt821
boundary inversion in seismic full-waveform inversion., Geophys. J. Int, 204 (2016), pp.822
1703–1720.823

[34] J. Xia, Randomized sparse direct solvers, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 197–227.824
[35] J. Xia, Efficient structured multifrontal factorization for general large sparse matrices, SIAM825

J. Sci. Comput., 35 (2013), pp. A832-A860.826
[36] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large827

structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382–828
1411.829

[37] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-830
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.831

[38] Z. Xin, J. Xia, M. V. de Hoop, S. Cauley, and V. Balakrishnan, A distributed-memory832
randomized structured multifrontal method for sparse direct solutions, SIAM J. Sci. Com-833
put., 39 (2017), pp. C292–C318.834

[39] E. L. Yip, A note on the stability of solving a rank-p modification of a linear system by the835
Sherman-Morrison-Woodbury formula, SIAM J. Sci. and Stat. Comput., 7 (1984), pp.836
507–513.837

[40] Y. Zhang and A. Gillman, A fast direct solver for boundary value problems on locally per-838
turbed geometries, J. Comput. Phys., 356 (2018), pp. 356–371.839

This manuscript is for review purposes only.

