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ABSTRACT

Runtime nondeterminism is a fact of life in modern data-
base applications. Previous research has shown that non-
determinism can cause applications to intermittently crash,
become unresponsive, or experience data corruption. We
propose Adaptive Interventional Debugging (AID) for de-
bugging such intermittent failures.

AID combines existing statistical debugging, causal anal-
ysis, fault injection, and group testing techniques in a novel
way to (1) pinpoint the root cause of an application’s intermit-
tent failure and (2) generate an explanation of how the root
cause triggers the failure. AID works by first identifying a
set of runtime behaviors (called predicates) that are strongly
correlated to the failure. It then utilizes temporal properties
of the predicates to (over)-approximate their causal relation-
ships. Finally, it uses fault injection to execute a sequence of
interventions on the predicates and discover their true causal
relationships. This enables AID to identify the true root cause
and its causal relationship to the failure. We theoretically
analyze how fast AID can converge to the identification. We
evaluate AID with six real-world applications that intermit-
tently fail under specific inputs. In each case, AID was able to
identify the root cause and explain how the root cause trig-
gered the failure, much faster than group testing and more
precisely than statistical debugging. We also evaluate AID
with many synthetically generated applications with known
root causes and confirm that the benefits also hold for them.
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1 INTRODUCTION

Modern data management systems and database-backed ap-
plications run on commodity hardware and heavily rely on
asynchronous and concurrent processing [16, 25, 52, 61]. As
a result, they commonly experience runtime nondetermin-
ism such as transient faults and variability in timing and
thread scheduling. Unfortunately, software bugs related to
handling nondeterminism are also common to these systems.
Previous studies reported such bugs in MySQL [11, 46], Post-
greSQL [45], NoSQL systems [40, 71], and database-backed
applications [8], and showed that they can cause intermittent
crashes, unresponsiveness, and data corruptions. It is, there-
fore, crucial to identify and fix these bugs as early as possible.
Unfortunately, localizing root causes of intermittent fail-
ures is extremely challenging [43, 47, 72]. For example, con-
currency bugs such as deadlocks, order and atomicity vi-
olation, race conditions, etc. may appear only under very
specific thread interleavings. Even when an application exe-
cutes with the same input in the same environment, these
bugs may appear only rarely (e.g., in flaky unit tests [47]).
When a concurrency bug is confirmed to exist, the debugging
process is further complicated by the fact that the bug can-
not be consistently reproduced. Heavy-weight techniques
based on record-replay [3] and fine-grained tracing with lin-
eage [2, 55] can provide insights on root causes after a bug
manifests; but their runtime overheads often interfere with
thread timing and scheduling, making it even harder for the
intermittent bugs to manifest in the first place [38].
Statistical Debugging (SD) [30, 32, 42, 44] is a data-driven
technique that partly addresses the above challenge. SD uses
lightweight logging to capture an application’s runtime (mis)-
behaviors, called predicates. An example predicate indicates
whether a method returns null in a particular execution or
not. Given an application that intermittently fails, SD logs
predicates from many successful and failed executions. SD
then uses statistical analyses of the logs to identify discrimi-
native predicates that are highly correlated with the failure.
SD has two key limitations. First, SD can produce many
discriminative predicates that are correlated to, but not a true
cause of, a failure. Second, SD does not provide enough in-
sights that can explain how a predicate may eventually lead
to the failure. Lack of such insights and the presence of many
non-causal predicates make it hard for a developer to identify
the true root cause of a failure. SD expects that a developer
has sufficient domain knowledge about if/how a predicate
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can eventually cause a failure, even when the predicate is ex-
amined in isolation without additional context. This is often
hard in practice, as is reported by real-world surveys [56].

Example 1.1. To motivate our work, we consider a recently
reported issue in Npgsql [53], an open-source ADO.NET data
provider for PostgreSQL. On its GitHub repository, a user re-
ported that a database application intermittently crashes when
it tries to create a new PostgreSQL connection (GitHub issue
#2485 [54]). The underlying root cause is a data race on an
array index variable. The data race, which happens only when
racing threads interleave in a specific way, causes one of the
threads to access beyond the size of the array. This causes an
exception that crashes the application.

We used SD to localize the root cause of this nondeterministic
bug (more details are in Section 7). SD identified 14 predicates,
only 3 of which were causally related to the error. Other pred-
icates were just symptoms of the root cause or happened to
co-occur with the root cause.

In Section 7, we describe five other case studies that show
the same general problem: SD produces too many predicates,
only a small subset of which are causally related to the failure.
Thus, SD is not specific enough, and it leaves the developer
with the task of identifying the root causes from a large
number of candidates. This task is particularly challenging,
since SD does not provide explanations of how a potential
predicate can eventually lead to the failure.

In this paper, we address these limitations with a new data-
driven technique called Adaptive Interventional Debugging
(AID). Given predicate logs from successful and failed execu-
tions of an application, AID can pinpoint why the application
failed, by identifying one (or a small number of) predicate
that indicates the real root cause (instead of producing a
large number of potentially unrelated predicates). Moreover,
AID can explain how the root cause leads to the failure, by
automatically generating a causal chain of predicates linking
the root cause, subsequent effects, and the failure. By doing
so, AID enables a developer to quickly localize (and fix) the
bug, even without deep knowledge about the application.

AID achieves the above by combining SD with causal anal-
ysis [49-51], fault injection [2, 24, 35], and group testing [27]
in a novel way. Like SD, it starts by identifying discriminative
predicates from successful and failed executions. In addition,
AID uses temporal properties of the predicates to build an
approximate causal DAG (Directed Acyclic Graph), which
contains a superset of all true causal relationships among
predicates. AID then progressively refines the DAG. In each
round of refinement, AID uses ideas from adaptive group
testing to carefully select a subset of predicates. Then, AID
re-executes the application during which it intervenes (i.e.,
modifies application’s behavior by e.g., injecting faults) to
forcefully alter values of the selected predicates. Depending

on whether the intervention still causes the application to
fail or not, AID confirms or discards causal relationships
in the approximate causal DAG, assuming counterfactual
causality (C is a counterfactual cause of F iff F would not
occur unless C occurs) and a single root cause. A sequence
of interventions enables AID to identify the root cause and
generate a causal explanation path, a sequence of causally-
related predicates that connect the root cause to the failure.

A key benefit of AID is its efficiency—it can identify root-
cause and explanation predicates with significantly fewer
rounds of interventions than adaptive group testing. In group
testing, predicates are considered independent and hence
each round selects a random subset of predicates to intervene
on and makes causality decisions about only those inter-
vened predicates. In contrast, AID uses potential causality
among predicates (in the approximate causal DAG). This en-
ables AID to (1) make decisions not only about the intervened
predicates, but also about other predicates; and (2) carefully
select predicates whose intervention would maximize the
effect of (1). Through theoretical and empirical analyses we
show that this can significantly reduce the number of re-
quired interventions. This is an important benefit in practice
since each round of intervention involves executing the ap-
plication with fault injection and hence is time-consuming.

We evaluated AID on 3 open-source applications: Npgsq],
Apache Kaftka, Microsoft Azure Cosmos DB, and on 3 propri-
etary applications in Microsoft. We used known issues that
cause these applications to intermittently fail even for same
inputs. In each case, AID was able to identify the root cause
of failure and generate an explanation that is consistent with
the explanation provided by respective developers. Moreover,
AID achieved this with significantly fewer interventions than
traditional adaptive group testing. We also performed sensi-
tivity analysis of AID with a set of synthetic workloads. The
results show that AID requires fewer interventions than tra-
ditional adaptive group testing, and has significantly better
worst-case performance than other variants.

Contributions. We make the following contributions:

e We propose Adaptive Interventional Debugging (AID), a
data-driven technique that localizes the root cause of an
intermittent failure through a novel combination of statis-
tical debugging, causal analysis, fault injection, and group
testing (Section 2). AID provides significant benefits over
the state-of-the-art SD techniques by (1) pinpointing the
root cause of an application’s failure and (2) generating
an explanation of how the root cause triggers the failure
(Sections 3-5).

o We use information theoretic analysis to show that AID,
by utilizing causal relationship among predicates, can con-
verge to the true root cause and explanation significantly
faster than traditional adaptive group testing (Section 6).



o We evaluate AID with six real-world applications that in-
termittently fail under specific inputs (Section 7). AID was
able to identify the root causes and explain how the root
causes triggered the failure, much faster than adaptive
group testing and more precisely than SD. We also eval-
uate AID with many synthetically generated applications
with known root causes and confirm that the benefits hold
for them as well.

2 BACKGROUND AND PRELIMINARIES

AID combines several existing techniques in a novel way:.
We now briefly review the techniques.

Statistical Debugging. Statistical debugging (SD) aims to
automatically pinpoint likely causes for an application’s fail-
ure by statistically analyzing its execution logs from many
successful and failed executions. It works by instrument-
ing an application to capture runtime predicates about the
application’s behavior. Examples of predicates include “the
program takes the false branch at Line 317, “the method
foo() returns null”, etc. Executing the instrumented ap-
plication generates a sequence of predicate values, which
we refer to as predicate logs. Without loss of generality, we
assume that all predicates are Boolean.

Intuitively, the true root cause of the failure will cause cer-
tain predicates to be true only in the failed logs (or, only in the
successful logs). Given logs from many successful executions
and many failed executions of an application, SD aims to
identify those discriminative predicates. Discriminative pred-
icates encode program behaviors of failed executions that
deviate from the ideal behaviors of the successful executions.
Without loss of generality, we assume that discriminative
predicates are true during failed executions. The predicates
can further be ranked based on their precision and recall, two
well-known metrics that capture their discriminatory power.

#failed executions where P is true

recision(P) =
P (P) #executions where P is true

#failed executions where P is true

(P =
recall(P) #failed executions

Causality. Informally, causality characterizes the relation-
ship between an event and an outcome: the event is a cause if
the outcome is a consequence of the event. There are several
definitions of causality [23, 58]. In this work, we focus on
counterfactual causes. According to counterfactual causality,
C causes E iff E would not occur unless C occurs. Reasoning
about causality frequently relies on a mechanism for inter-
ventions [26, 57, 62, 69], where one or more variables are
forced to particular values, while the mechanisms control-
ling other variables remain unperturbed. Such interventions
uncover counterfactual dependencies between variables.
Trivially, executing a program is a cause of its failure: if
the program was not executed at the first place, the failure

would not have occurred. However, our analysis targets fully-
discriminative predicates (with 100% precision and recall),
eliminating trivial predicates that are program invariants.

Fault Injection. In software testing, fault injection 2, 24, 35,
48] is a technique to force an application, by instrumenting
it or by manipulating the runtime environment, to execute
a different code path than usual. We use the technique to
intervene on (i.e., repair) discriminative predicates. Consider
a method ExecQuery () that returns a result object in all suc-
cessful executions and null in all failed executions. Then,
the predicate “ExecQuery () returns null” is discriminative.
The predicate can be intervened by forcing ExecQuery ()
to return the correct result object. Similarly, the predicate
“there is a data race on X” can be intervened by delaying one
access to X or by putting a lock around the code segments
that access X to avoid simultaneous accesses to X.

Group Testing. Given a set of discriminative predicates, a
naive approach to identify which predicates cause the failure
is to intervene on one predicate at a time and observe if the
intervention causes an execution to succeed. However, the
number of required interventions is linear in number of pred-
icates. Group testing reduces the number of interventions.

Group testing refers to the procedure that identifies certain
items (e.g., defective) among a set of items while minimizing
the number of group tests required. Formally, given a set
of N elements where D of them are defective, group testing
performs k group tests, each on group $; € P. Result of
test on group P; is positive if 3P € P; s.t. P is defective, and
negative otherwise. The objective is to minimize k, i.e., the
number of group tests required. In our context, a group test
is simultaneous intervention on a group of predicates, and
the goal is to identify the predicates that cause the failure.

Two variations of group testing are studied in the litera-
ture: adaptive and non-adaptive. Our approach is based on
adaptive group testing where the i-th group to test is decided
after we observe the results of all 1 < j < i previous group
tests. A trivial upper bound for adaptive group testing [27] is
O(Dlog N). A simple binary search algorithm can find each
of the D defective items in at most log N group tests and
hence a total of Dlog N group tests are sufficient to identify
all defective items. Note that if D > %, then a linear strat-
egy is preferable over any group testing scheme. Hence, we
assume that D < %.

3 AID OVERVIEW

Adaptive Interventional Debugging (AID) targets applica-
tions (e.g., flaky tests [47]) that, even with the same inputs,
intermittently fail due to various runtime nondeterminism
such as thread scheduling and timing. Given predicate logs of
successful and failed executions of an application, the goals
of AID are to (1) identify what predicate actually causes



the failure, and (2) generate an explanation of how the root
cause leads to the failure (via a sequence of intermediate
predicates). This is in contrast with traditional statistical
debugging, which generates a set of potential root-cause
predicates (often a large number), without any explanation
of how each potential root cause may lead to the failure.

Figure 1 shows an overview of AID. First, the framework
employs standard SD techniques on predicate logs to identify
a set of fully-discriminative predicates, i.e., predicates that al-
ways appear in the failed executions and never appear in the
successful executions. Then, AID uses the temporal relation-
ships of predicates to infer approximate causality: if P; tem-
porally precedes P, in all logs where they both appear, then
P, may cause P,. AID represents this approximate causality
in a DAG called Approximate Causal DAG (AC-DAG), where
predicates are nodes and edges indicate these possible causal
relationships. We describe the AC-DAG in Section 4.

Based on its construction, the AC-DAG is guaranteed to
contain all the true root-cause predicates and causal rela-
tionships among predicates. However, it may also contain
additional predicates and edges that are not truly causal. The
key insight of AID is that we can refine the AC-DAG and
prune the non-causal nodes and edges through a sequence
of interventions. To intervene on a predicate, AID changes
the application’s behavior through fault injection so that the
predicate’s value matches its value in successful executions.
If the failure does not occur under the intervention, then,
based on counterfactual causality, the predicate is guaranteed
to be a root cause of the failure. Over several iterations, AID
intervenes on a set of carefully chosen predicates, refines
the set of discriminative predicates, and prunes the AC-DAG,
until it discovers the true root cause and the path that leads
to the failure. We describe the intervention mechanism of
AID in Section 5.

We now describe how AID adapts existing approaches in
SD and fault injection for two of its core ideas: predicates
and interventions. We refer to our technical report [18] for
additional details and discussion.

3.1 AID Predicates

Predicate design. Similar to traditional SD techniques, AID
is effective only if the initial set of predicates (in the predicate
logs) contains a root-cause predicate that causes the failure.
Predicate design is orthogonal to AID. We use predicates
used by existing SD techniques, especially the ones used for
finding root causes of concurrency bugs [30], a key reason
behind intermittent failures [47]. Figure 2 shows examples
of predicates in AID (column 1).

Predicate extraction. AID automatically instruments a tar-
get application to generate its execution trace [18]. The trace
contains each executed method’s start and end time, its
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Figure 1: Adaptive Interventional Debugging workflow.

thread id, ids of objects it accesses, return values, whether
it throws exception or not, and so on. This trace is then ana-
lyzed offline to evaluate a set of predicates at each execution
point. This results in a sequence of predicates, called predicate
log. The instrumented application is executed multiple times
with the same input, to generate a set of predicate logs, each
labeled as a successful or failed execution. Figure 2 shows
the runtime conditions used to extract predicates (column 2).

Modeling nondeterminism. In practice, some predicates
may cause a failure nondeterministically: predicates A and
B in conjunction cause a failure. AID does not consider such
predicates as they are not fully discriminative (recall < 100%).
However, AID can still model these cases with compound
predicates, adapted from state-of-the-art SD techniques [30],
which model conjunctions. These compound predicates (“A
and B”) would deterministically cause the failure and hence be
fully discriminative. Note that AID focuses on counterfactual
causality and thus does not support disjunctive root causes
(as they are not counterfactual). In Section 5, we discuss
AID’s assumptions and their impact in practice.

3.2 AID Interventions

Intervention mechanism. AID uses an existing fault injec-
tion tool (similar to LFI [48]) to intervene on fully-discrimina-
tive predicates; interventions change a predicate to match
its value in a successful execution. In a way, AID’s interven-
tions try to locally “repair” a failed execution. Figure 2 shows
examples of AID’s interventions (column 3). Most of the in-
terventions rely on changing timing and thread scheduling
that can occur naturally by the underlying execution envi-
ronment and runtime. More specifically, AID can slow down
the execution of a method (by injecting delays), force or pre-
vent concurrent method executions in different threads (by
using synchronization primitives such as locks), change the
execution order of concurrent threads (by injecting delays),
etc. Such interventions can repair many concurrency bugs.

Validity of intervention. AID supports two additional in-
tervention types, return-value alteration and exception han-
dling, which, in theory, can have undesirable runtime side-
effects. Consider two predicates: (1) method QueryAvgSalary



[ (1) Predicate [

(2) Extraction condition

(3) Intervention mechanism

There is a data race involving methods
M1 and M2

M, and M, temporally overlap accessing some
object X while one of them is awrite

Put locks around the code segments within M;
and M, that access X

Method M fails

M throws an exception

Put M in a try-catch block

Method M runs too fast

M’s duration is less than the minimum duration
for M among all successful executions

Insert delay before M’s return statement

Method M runs too slow

M’s duration is greater than the maximum du-
ration for M among all successful executions

Prematurely return from M the correct value
that M returns in all successful executions

Method M returns incorrect value

M'’s return value # x, where x is the correct
value returned by M in all successful executions

Alter M’s return statement to force it to return
the correct value x

Figure 2: Few example predicates, conditions used to extract them, and the corresponding interventions using fault injection.

fails returning null and (2) method UpdateSalary fails re-
turning error. AID can intervene to match their return val-
ues in successful executions, e.g., 50 and OK, respectively.
The intervention on the first predicate does not modify any
program state and, as the successful execution shows, the re-
turn value 50 can be safely used by the application. However,
altering the return value of UpdateSalary, but not updating
the salary, may not be sufficient intervention: other parts
of the application that rely on the updated salary may fail.
Inferring such side-effects is hard, if not impossible.

AID is restricted to safe interventions. It relies on devel-
opers to indicate which methods do not change (internal
or external) application states and limits return-value inter-
ventions to only those methods (e.g., to QueryAvgSalary,
but not to UpdateSalary). The same holds for exception-
handling interventions. AID removes from predicate logs
any predicates that cannot be safely intervened without un-
desirable side-effects. This ensures that the rest of the AID
pipeline can safely intervene on any subset of predicates.
Excluding some interventions may limit AID’s precision, as
it may eliminate a root-cause predicate. In such cases, AID
may find another intervenable predicate that is causally re-
lated to the root cause, and is still useful for debugging. In
our experiments (Section 7) we did not observe this issue,
since the root-cause predicates were safe to intervene.

4 APPROXIMATING CAUSALITY

AID relies on traditional SD to derive a set of fully-discrimi-
native predicates. Using the logs of successful and failed ex-
ecutions, AID extracts temporal relationships among these
predicates, and uses temporal precedence to approximate
causality. It is clear that in the absence of feedback loops, a
cause temporally precedes an effect [59]. To handle loops,
AID considers multiple executions of the same program state-
ment (e.g., within a loop, recursion, or multiple method calls)
as separate instances, identified by their relative order of ap-
pearances during program execution, and maps them to sep-
arate predicates [18]. This ensures that temporal precedence
among predicates correctly over-approximates causality.

Approximate causal DAG. AID represents the approxima-
tion of causality in a DAG: each node represents a predicate,

and an edge P; — P, indicates that P; temporally precedes P,
in alllogs where both predicates appear. Figure 4(a) shows an
example of the approximate causal DAG (AC-DAG). We use
circles to explicitly depict junctions in the AC-DAG; junctions
are not themselves predicates, but denote splits or merges in
the precedence ordering of predicates. Therefore, each pred-
icate has in- and out-degrees of at most 1, while junctions
have in- or out-degrees greater than 1. For clarity of visuals,
in our depictions of the AC-DAG, we omit edges implied by
transitive closure. For example, there exists an edge P; — Ps,
implied by P; — P, and Py — Ps, but it is not depicted. AID
enforces an assumption of counterfactual causality by exclud-
ing from the AC-DAG any predicates that were not observed
in all failed executions: if some executions failed without
manifesting P, then P cannot be a cause of the failure.

Completeness of AC-DAG. The AC-DAG is complete with
respect to the available, and safely-intervenable, predicates:
it contains all fully-discriminative predicates that are safe to
intervene, and if P; causes P, it includes the edge P; — P;.
However, it may not be complete with respect to all possible
true root causes, as a root cause may not always be repre-
sented by the available predicates (e.g., if the true root cause
is a data race and no predicate is used to capture it). In such
cases, AID will identify the (intervenable) predicate that is
closest to the root cause and is causally related to the failure.

Since temporal precedence among predicates is a neces-
sary condition for causality, the AC-DAG is guaranteed to
contain the true causal relationships. However, temporal
precedence is not sufficient for causality, and thus some
edges in the AC-DAG may not be truly causal.

Temporal precedence. Capturing temporal precedence is
not always straightforward. For simplicity of implementa-
tion, AID relies on computer clocks, which works reasonably
well in practice. Relying on computer clocks is not always
precise as the time gap between two events may be too small
for the granularity of the clock; moreover, events may occur
on different cores or machines whose clocks are not perfectly
synchronized. These issues can be addressed with the use of
logical clocks such as Lamport’s Clock [39].

Another challenge is that some predicates are associated
with time windows, rather than time points. The correct



policy to resolve temporal precedence of two temporally

overlapping predicates often depends on their semantics.

However, the predicate types give important clues regarding

the correct policy. In AID, predicate design involves speci-

fying a set of rules that dictates the temporal precedence of
two predicates. In constructing the AC-DAG, AID uses those
rules.

For example, suppose that foo() calls bar () and waits for
bar () to end—so, foo() starts before but ends after bar ().
e (Case 1): Consider two predicates P;: “foo() is running

slow” and P,: “bar () is running slow”. Here, P, can cause

P, but not the other way around. In this case, AID uses

the policy that end-time implies temporal precedence.

e (Case 2): Now consider P;: “foo() starts later than ex-
pected” and P, : “bar () starts later than expected”. Here,
P; can cause P, but not the other way around. Therefore,
in this case, start-time implies temporal precedence.

AID works with any policy of deciding precedence, as long

as it does not create cycles in the AC-DAG. Since temporal

precedence is a necessary condition for causality, any con-
servative heuristic for deriving temporal precedence would
work. A conservative heuristic may introduce more false
positives (edges that are not truly causal), but those will be
pruned by interventions (Section 5).

5 CAUSAL INTERVENTION

In this section, we describe AID’s core component, which re-
fines the AC-DAG through a series of causal interventions. An
intervention on a predicate forces the predicate to a particu-
lar state; the execution of the application under the interven-
tion asserts or contradicts the causal connection of the pred-
icate with the failure, and AID prunes the AC-DAG accord-
ingly. Interventions can be costly, as they require the applica-
tion to be re-executed. AID minimizes this cost by (1) smartly
selecting the proper predicates to intervene, (2) grouping
interventions that can be applied in a single application exe-
cution, and (3) aggressively pruning predicates even without
direct intervention, but based on outcomes of other interven-
tions. Figure 3 summarizes the notations used in this section.
We start by formalizing the problem of causal path discov-
ery and state our assumptions (Section 5.1). Then we provide
an illustrative example to show how AID works (Section 5.2).
We proceed to describe interventional pruning that AID ap-
plies to aggressively prune predicates during group interven-
tion rounds (Section 5.3). Then we present AID’s causality-
guided group intervention algorithm (Section 5.4) which
administers group interventions to derive the causal path.

5.1 Problem Definition and Assumptions

Given an application that intermittently fails, our goal is to
provide an informative explanation for the failure. To that

Notation Description

G Approximate causal DAG (AC-DAG)
P Causal path
F Failure indicating predicate
P Set of predicates
P(r) Predicate P is observed in execution r
-P(r) Predicate P is not observed in execution r
Py ~ P, There is a path from P; to P2 in G

Figure 3: Summary of notations used in Section 5.

end, given a set of fully-discriminative predicates #, we want
to find an ordered subset of P that defines the causal path
from the root-cause predicate to the predicate indicating the
failure. Informally, AID finds a chain of predicates that starts
from the root-cause predicate, ends at the failure predicate,
and contains the maximal number of explanation predicates
such that each is caused by the previous one in the chain.
We address the problem in a similar setting as SD, and make
the following two assumptions:

Assumption 1 (Single Root-cause Predicate). The root
cause of a failure is the predicate whose absence (i.e., a value
of false) certainly avoids the failure, and there is no other
predicate that causes the root cause. We assume that in all the
failed executions, there is exactly one root-cause predicate.

This assumption is prevalent in the SD literature [30, 42,
44], and is supported by several studies on real-world con-
currency bug characteristics [46, 65, 68], which show that
a vast majority of root causes can be captured with reason-
ably simple single predicates [18]. In practice, even with
specific inputs, a program may fail in multiple ways. How-
ever, failures by the same root cause generate a unique failure
signature and hence can be grouped together using metadata
(e.g., stack trace of the failure, location of the failure in the
program binary, etc.) collected by failure trackers [21]. AID
can then treat each group separately, targeting a single root
cause for a specific failure. Moreover, the single-root-cause
assumption is reasonable in many simpler settings such as
unit tests that exercise small parts of an application.

Note that this assumption does not imply that the root
cause consists of a single event; a predicate can be arbitrarily
complex to capture multiple events. For example, the pred-
icate “there is a data race on X” is true when two threads
access the same shared memory X at the same time, the ac-
cesses are not lock-protected, and one of the accesses is a
write operation. Whether a single predicate is sufficient to
capture the root cause depends on predicate design, which
is orthogonal to AID. AID adapts the state-of-the art predi-
cate design, tailored to capture root causes of concurrency
bugs [30], which is sophisticated enough to capture all com-
mon root causes using single predicates. If no single predi-
cate captures the true root cause, AID still finds the predicate
closest to the true root cause in the true causal path.



B3 \
P7 \
P11
B10
F
(R B

(b)

()

Figure 4: (a) The AC-DAG includes all edges implied by transitive closure, but we omit them for clarity of the visuals. We
indicate the predicates in the causal path with the dashed red outline. (b) The actual causal DAG is a subgraph of the AC-DAG.
(c) Step by step illustration to discover the causal path (shown at bottom right). Steps @ and @ perform branch pruning, steps
(®-® perform group intervention with pruning on the predicate chain, steps ® and @ apply interventional pruning.

Assumption 2 (Deterministic Effect). A root-cause pred-
icate, if triggered, causes a fixed sequence of intermediate
predicates (i.e., effects) before eventually causing the failure.
We call this sequence causal path, and we assume that there
is a unique one for each root-cause-failure pair.

Prior work has considered, and shown evidence of, a
unique causal path between a root cause and the failure
in sequential applications [31, 63]. The unique causal path
assumption is likely to hold in concurrent applications as
well for two key reasons. First, the predicates in AID’s causal
path may remain unchanged, despite nondeterminism in the
underlying instruction sequence. For example, the predicate
“there is a data race between methods X and Y” is not affected
by which method starts first, as long as they temporally over-
lap. Second, AID only considers fully-discriminative predi-
cates. If such predicates exist to capture the root cause and its
effects, by the definition of being fully discriminative, there
will be a unique causal path (of predicates) from the root
cause to the failure. In all six of our real-world case studies
(Section 7), such predicates existed and there were unique
causal paths from the root causes to the failures.

Note that it is possible to observe some degree of dis-
jointness within the true causal paths. For example, con-
sider a case where the root cause C triggers the failure F
in two ways: in some failed executions, the causal path is
C — A; — B — F and, for others, C — A, — B — F. This

implies that neither A; nor A, is fully discriminative. Since
AID only considers fully-discriminative predicates, both of
them are excluded from the AC-DAG. In this case, AID re-
ports C — B — F as the causal path; this is the shared part of
the two causal paths, which includes all counterfactual pred-
icates and omits any disjunctive predicates. One could poten-
tially relax this assumption by encoding the interaction of
such predicates through a fully-discriminative predicate (e.g.,
A = A; V A; encodes disjunction and is fully discriminative).

Based on these assumptions, we define the causal path
discovery problem formally as follows.

Definition 5.1 (Causal Path Discovery). Given an approx-
imate causal DAG G = (V, E) and a predicate F € V indi-
cating a specific failure, the causal path discovery problem
seeks a path P = (Cy, Cy, . .., Cp,) such that the following con-
ditions hold:

o Cy is the root cause of the failure and C,, = F.

e V0<i<nC(C; E(VandV0§i<n,(Ci,Ci+1)€8.

e V0 <i<j<n,GC;isa counterfactual cause of C;.

o |P| is maximized.

5.2 Illustrative Example

AID performs causal path discovery through an intervention
algorithm (Section 5.4). Here, we illustrate the main steps
and intuitions through an example. Figure 4(a) shows an



AC-DAG derived by AID (Section 4). The true causal path for
the failure F is P1 — P2 — P11 — F, depicted with dashed
red outline. The AC-DAG is a superset of the actual causal
graph, which is shown in Figure 4(b).

AID follows an intervention-centric approach for discov-
ering the causal path. Intervening on a predicate forces it to
behave the way it does in the successful executions, which
is by definition, the opposite of the failed executions. (Recall
that, without loss of generality, we assume that all predicates
are boolean.) Following the adaptive group testing paradigm,
AID performs group intervention, which is simultaneous in-
tervention on a set of predicates, to reduce the total number
of interventions. Figure 4(c) shows the steps of the interven-
tion algorithm, numbered M-®.

AID first aims to reduce the AC-DAG by pruning entire
chains that are not associated with the failure, through a
process called branch pruning (Section 5.4). Starting from
the root of the AC-DAG, AID discovers the first junction,
after predicate P3. For each child of a junction, AID creates a
compound predicate, called an independent branch, or simply
branch, that is a disjunction over the child and all its descen-
dants that are not descendants of the other children. So, for
the junction after P3, we get branches B1 = P4V P5V P6
and B2 = P7V P8 V P9 Vv P11. AID intervenes on one of the
branches chosen at random—in this case Bl—at step (D; this
requires an intervention on all of its disjunctive predicates
(P4, P5, and P6) in order to make the branch predicate False.
Despite the intervention, the program continues to fail, and
AID prunes the entire branch of B1, resolving the junction
after P3. For a junction of B branches, AID would need log B
interventions to resolve it using a divide-and-conquer ap-
proach. At step (), AID similarly prunes a branch at the junc-
tion after P7. At this point, AID is done with branch pruning
since it is left with just a chain of predicates (step 3).

What is left for AID is to prune any non-causal predi-
cate from the remaining chain. AID achieves that through
a divide-and-conquer strategy that intervenes on groups of
predicates at a time (Algorithm 1). It intervenes on the top
half of the chain—{P1, P2, P3}—which stops the failure and
confirms that the root cause is in this group (step 3®). With
two more steps that narrow down the interventions (steps (@
and (), AID discovers that P1 is the root cause. Note that
we cannot simply assume that the root of the AC-DAG is a
cause, because the edges are not all necessarily causal.

AID now needs to derive the causal path. Continuing the
divide-and-conquer steps, it intervenes on P2 (step (©). This
stops the failure, confirming that P2 is in the causal path.
In addition, since P7 is not causally dependent on P2, the
intervention on P2 does not stop P7 from occurring. This
observation allows AID to prune P7 without intervening
on it directly. At step (7), AID intervenes on P3. Under this
intervention, the failure is still observed, but P10 no longer

occurs, indicating that P10 is causally connected to P3, but
not to the failure; this allows AID to prune both P3 and
P10. Finally, at step (®), AID intervenes on P11 and confirms
that it is causal, completing the causal path derivation. AID
discovered the causal path in 8 interventions, while naively
we would have needed 11—one for each predicate.

5.3 Predicate Pruning

In the initial construction of the AC-DAG, AID excludes
predicates based on a simple rule: a predicate P is excluded if
there exists a program execution r, where P occurs and the
failure does not (P(r) A =F(r)), or P does not occur and the
failure does (—P(r) A F(r)). Intervening executions follow the
same basic intuition for pruning the intervened predicate
C: By definition C does not occur in an execution r¢ that
intervenes on predicate C (=C(r¢)); thus, if the failure still
occurs on r¢ (F(r¢)), then C is pruned from the AC-DAG.

As we saw in the illustrative example, intervention on
a predicate C may also lead to the pruning of additional
predicates. However, the same basic pruning logic needs to
be applied more carefully in this case. In particular, we can
never prune predicates that precede C in the AC-DAG, as
their potential causal effect on the failure may be muted by
the intervention on C. Thus, we can only apply the pruning
rule to any predicate X that is not an ancestor of C in the AC-
DAG (X 74 C). We formalize the predicate pruning strategy
over G(V, &) in the following definition.

Definition 5.2 (Interventional Pruning). Let R¢c be a set
of program executions' intervening on a group of predicates
C € V. EveryC € C is pruned from G iff Ir € R¢ such that
F(r). Any other predicate P ¢ C is pruned from G iff BC € C
such that P ~ C and Ar € R¢ such that (P(r) A =F(r)) V
(=P(r) A E(r)).

5.4 Causality-guided Intervention

AID’s core intervention method is described in Algorithm 1:
Group Intervention With Pruning (GIWP). GIWP applies
adaptive group testing to derive causal and spurious (non-
causal) nodes in the AC-DAG. The algorithm applies a divide-
and-conquer approach that groups predicates based on their
topological order (a linear ordering of its nodes such that
for every directed edge P; — P2, P; comes before P, in the
ordering). In every iteration, GIWP selects the predicates
in the lowest half of the topological order, resolving ties
randomly, and intervenes by setting all of them to False
(lines 4-5). The intervention returns a set of predicate logs.

If the failure is not observed in any of the intervening
executions (line 6), based on counterfactual causality, GIWP
Because of nondeterminism issues in concurrent applications, we execute a program

multiple times with the same intervention. However, it is sufficient to identify a single
counter-example execution to invoke the pruning rule.



Algorithm 1: GIWP (P, G, F)

Algorithm 2: Branch-Prune (G, F)

: A set of candidate predicates, P,

AC-DAG, G

Failure indicating predicate, F

Output :The set of counterfactual causes of F, C
The set of spurious predicates, X

1C=0 /* causal predicate set */
2 X=0
3 while # # 0 do
4 P = first half of # in topological order
5 Rp, = Intervene (P1)

6 if Ar € Rp, s.t. F(r) then

Input

/* spurious predicate set */

/* failure stopped */

7 if P contains a single predicate then

8 ‘ C=CUP; /* a cause is confirmed */

9 else /* need to confirm causes */

10 C’,X’ = GIWP(P1, G, F)

11 c=cuc’ /* confirmed causes */

12 X=X UX/ /* spurious predicates */
/* interventional pruning */

13 if 3r e Rpl s.t. F(r) then /* failure didn’t stop */

14 ‘ X=XUP; /* pruning */

15 foreachP € P - P; s.t. VP € P1 P4 P’ do

16 if Ir € Rp, s.t. (P(r) A =F(r)) V (=P(r) A F(r))

then
17 ‘ X=XU{P} /% pruning */

/* remove confirmed and spurious

8 | P=P-(CUX)

predicates from candidate predicate pool */

19 return C, X

concludes that the intervened group contains at least one
predicate that causes the failure. If the group contains a single
predicate, it is marked as causal (line 8). Otherwise, GIWP re-
curses to trace the causal predicates within the group (line 10).
During each intervention round, GIWP applies Definition 5.2
to prune predicates that are determined to be non-causal
(lines 13-17). First, if the algorithm discovers an intervening
execution that still exhibits the failure, then it labels all in-
tervened predicates as spurious and marks them for removal
(line 14). Second, GIWP examines each other predicate that
does not precede any intervened predicate and observes if
any of the intervened executions demonstrate a counter-
factual violation between the predicate and the failure. If a
violation is found, that predicate is pruned (line 17).

At completion of each intervention round, GIWP refines
the predicate pool by eliminating all confirmed causes and
spurious predicates (Line 18) and enters the next interven-
tion round . It continues the interventions until all predicates
are either marked as causal or spurious and the remaining
predicate pool is empty. Finally, GIWP returns two disjoint
predicate sets—the causal predicates and the spurious predi-
cates (Line 19).

Branch Pruning. GIWP is sufficient for most practical ap-
plications and can work directly on the AC-DAG. However,

:AC-DAG, G = (V, &)
Failure indicating predicate, F
Output :Reduces G to an approximate causal chain
1C=0
2 X=0
3 while V - C # 0 do
4 P = predicates at the lowest topological level in V — C

Input

/* potential causal predicate set */

/* spurious predicate set */

5 if P contains a single predicate then

6 ‘ c=c¢C UP /* add to potential causal set */
7 else /* this is a junction */
8 B=0

9 foreach P € # do

10 Bp = \V{Q:P~ QAVP' € P—{P} P’ 4 Q)
11 Bp =PV Bp

12 B=8BU {BP} /* set of branches */
13 C’, X’ =GIWP (8,G.F)

14 cC=C UC’ /* add to potential causal set */
15 X=XUX’ /*add to spurious set */

16 U={U:C+0AVCeCC+ U}
17 V=V-X
18 V=vV-Uu

/*unreachable */

/* remove spurious predicates */

/* remove unreachable predicates */

when the AC-DAG satisfies certain conditions (analyzed in
Section 6.2.2), we can reduce the number of required interven-
tions through a process called branch pruning. The intuition
is that since there is a single causal path that explains the
failure, junctions (where multiple paths exist) can be used
to quickly identify independent branches to be pruned or
confirmed as causal as a group. The branches can be used to
more effectively identify groups for intervention, reducing
the overall number of required interventions. AID option-
ally invokes branch pruning before the divide-and-conquer
group intervention through GIWP.

Branch pruning iteratively prunes branches at junctions
(steps D and @ in the illustrative example) to reduce the
AC-DAG to a chain of predicates. The process is detailed
in Algorithm 2. The algorithm traverses the DAG based on
its topological order, and does not intervene while it en-
counters a single node at a time, which means it is still in
a chain (line 5). When it encounters multiple nodes at the
same topological level, it means it encountered a junction
(line 7). A junction means that the true causal path can only
continue in one direction, and AID can perform group in-
tervention to discover it. The algorithm invokes GIWP to
perform this intervention over a set of special predicates
constructed from the branches at the encountered junction
(lines 10-12). A branch at predicate P is defined as a disjunc-
tive predicate over P and all descendants of P that are not
descendants of any other predicate at the same topological
level as P. An example branch from our illustrative example
is B1 = P4 Vv P5 V P6. To intervene on a branch, one has to



intervene on all of its disjunctive predicates. The algorithm
defines B as the union of all branches, which corresponds
to a completely disconnected graph (no edges between the
nodes), thus all branch predicates are at the same topolog-
ical level. GIWP is then invoked (line 13) to identify the
causal branch. The algorithm removes any predicate that is
not causally connected to the failure (line 17) or is no longer
reachable from the correct causal chain (line 18), and updates
the AC-DAG accordingly. At the completion of branch prun-
ing, AID reduces the AC-DAG to simple chain of predicates.

6 THEORETICAL ANALYSIS

In this section, we theoretically analyze the performance of
AID in terms of the number of interventions required to iden-
tify all causal predicates, which are the predicates causally
related to the failure.? Similar to the analysis of group test-
ing algorithms, we study the information-theoretic lower
bound, which specifies the minimum number of bits of infor-
mation that an algorithm must extract to identify all causal
predicates for any instance of a problem. We also study the
lower and the upper bounds that quantify the minimum and
the maximum number of group interventions required to
identify all causal predicates, respectively, for AID versus a
Traditional Adaptive Group Testing (TAGT) algorithm.

Any group testing algorithm takes N items (predicates),
D of which are faulty (causal), and aims to identify all faulty
items using as few group interventions as possible. Since
there are (g) possible outcomes, the information-theoretic
lower bound for this problem is log (g) The upper bound
on the number of interventions using TAGT is O(Dlog N),
since log N group interventions are sufficient to reveal each
causal predicate. Here, we assume D < %; otherwise, a
linear approach that intervenes on one predicate at a time
is preferable.

We now show that the Causal Path Discovery (CPD) prob-
lem (Definition 5.1) can reduce the lower bound on the num-
ber of required interventions compared to Group Testing
(GT). We also show that the upper bound on the number of
interventions is lower for AID than TAGT, because of the
two assumptions of CPD (Section 5.1). In TAGT, predicates
are assumed to be independent of each other, and hence, after
each intervention, decisions (about whether predicates are
causal) can be made only about the intervened predicates.
In contrast, AID uses the precedence relationships among
predicates in the AC-DAG to (1) aggressively prune, by mak-
ing decisions not only about the intervened predicates but
also about other predicates, and to (2) select predicates based
on the topological order, which enables effective pruning
during each intervention.

2Causal predicates correspond to faulty predicates in group testing. This distinction in
terminology is because group testing does not meaningfully reason about causality.
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Figure 5: (a) An AC-DAG. (b) Horizontal and vertical expan-
sion. (c) A symmetric AC-DAG with ] junctions; each junc-
tion has B branches and each branch has n predicates.

Example 6.1. Consider the AC-DAG of Figure 5(a), consisting
of N = 6 predicates and the failure predicate F. If AID inter-
venes on all predicates in one branch (e.g., {A1, B1,C1}) and
finds causal connection to the failure, it can avoid intervening
on predicates in the other branch according to the determin-
istic effect assumption. AID can also use the structure of the
AC-DAG to intervene on Ay (or Az) before other predicates
since the intervention can prune a large set of predicates. Since
GT algorithms do not assume relationships among predicates,
they can only intervene on predicates in random order and can
make decisions about only the intervened predicates.

6.1 Search Space

The temporal precedence and potential causality encoded
in the AC-DAG restrict the possible causal paths and signifi-
cantly reduce the search space of CPD compared to GT.

Example 6.2. In the example of Figure 5(a), GT considers all
subsets of the 6 predicates as possible solutions, and thus its
search space includes 2° = 64 candidates. CPD leverages the
AC-DAG and the deterministic effect assumption (Section 5.1)
to identify invalid candidates and reduce the search space
considerably. For example, the candidate solution {A1, B, C1}
is not possible under CPD, because it involves predicates in
separate paths on the AC-DAG. In fact, based on the AC-DAG,
CPD does not need to explore any solutions with more than
3 predicates. The complete search space of CPD includes all
subsets of predicates along each branch of length 3, thus a total
of 2 (2% = 1) + 1 = 15 possible solutions.

We proceed to characterize the search space of CPD com-
pared to GT more generally. We use |G| to denote the number
of predicates in an AC-DAG represented by G, and Wg T and
ng D to denote the size of the search space for GT and
CPD, respectively. We start from the simplest case of DAG, a
chain, and then using the notions of horizontal and vertical
expansion, we can derive the search space for any DAG.



If G is a simple chain of predicates, then GT and CPD have
the same search space: 2/C|. CPD reduces the search space
drastically when junctions split the predicates into separate
branches, like in Example 6.2. We call this case a horizon-
tal expansion: a DAG G is a horizontal expansion of two
subgraphs G; and G, if it connects them in parallel through
two junctions, at the roots (lowest topological level) and
leaves (highest topological level). In contrast, Gy is a vertical
expansion, if it connects them sequentially via a junction.
Horizontal and vertical expansion are depicted in Figure 5(b).
In horizontal expansion, the search space of CPD is additive
over the combined DAGs, while in vertical expansion it is
multiplicative.

Lemma 6.1 (DAG expansion). Let WCP D and WCP D be the
numbers of valid solutions for CPD over DAGs G1 and G,
respectively. Let Gy and Gy represent their horizontal and
vertical expansion, respectively. Then:

WSPP = 1+ (WEPP - 1) + (WEPP - 1)

C PD
WQV

In contrast, in both cases, the search space of GT is 2161

WCPDWCPD

+1G2|

Intuitively, in horizontal expansion, the valid solutions for
Gy are those of G; and those from G,, but no combinations
between the two are possible. Note that both WGClP D and
Wgzp D have the empty set as a common solution, so in the
computation of Wgcg D one solution is subtracted from each
ngp D _1) and then added to the overall result.

Symmetric AC-DAG. Lemma 6.1 allows us to derive the
size of the search space for CPD over any AC-DAG. To further
highlight the difference between GT and CPD, we analyze
their search space over a special type of AC-DAG, a symmet-
ric AC-DAG, depicted in Figure 5(c). A symmetric AC-DAG
has J junctions, and B branches at each junction, where each
branch is a simple chain of n predicates. Therefore, the total
number of predicates in the symmetric AC-DAG is N = JBn,
and the search space of GT is WOT = 2JBn Eor CPD, based
on horizontal expansion, the subgraph in-between two sub-
sequent junctions has a total of 1+ Z?(Z" —-1)=1+4+B(2"-1)
candidate solutions. Then, based on vertical expansion, the
overall search space of CPD is W<FP = (B(2" — 1) + 1)/.

search space (

6.2 Bound on Number of Interventions

6.2.1 Lower bound. We now show that, due to the predicate
pruning mechanisms, and the strategy of picking predicates
according to topological order, the lower bound® on the re-
quired number of interventions in CPD is significantly re-
duced. For the sake of simplicity, we drop the deterministic
3Lower bound is a theoretical bound which states that, it might be possible to design

an algorithm that can solve the problem which requires number of steps equal to the
lower bound. Note that, this does not imply that there exists one such algorithm.

Search #Interventions
space Lower bound ‘ Upper bound (AID/TAGT)
S,
CPD | (B(2"-1)+1) | 75225 log (/B") | J1og B+Dlog (Jn) - M
GT 2JBn log (/B") Dlog B+Dlog (Jn) — D;ﬁgnl)

Figure 6: Theoretical comparison between CPD and GT for
the symmetric AC-DAG of Figure 5(c).

effect assumption in this analysis. In GT, after each group
test, we get at least 1 bit of information. Since after retriev-
ing all information, the remaining information should be
< 0, therefore, the number of required interventions in GT is
bounded below by log (V). In contrast, for CPD, we have the
following theorem. (Proofs are in our technical report [18].)

Theorem 1. The number of required group interventions in
CPD is bounded below by N+LD51 log (g) where at least S
predicates are discarded (either pruned using the pruning rule
or marked as causal) during each group intervention.

Since % > 0, we obtain a reduced lower bound for the
number of required interventions in CPD than GT. In general,
as S; increases, the lower bound in CPD decreases. Note that
we are not claiming that AID achieves this lower bound for
CPD; but this sets the possibility that improved algorithms

can be designed in the setting of CPD than GT.

Symmetric AC-DAG. Figure 6 shows the lower bound on
the number of required interventions in CPD and GT for
the symmetric AC-DAG of Figure 5(c), assuming that each
intervention discards at least S; predicates in CPD.

6.2.2 Upper bound. We now analyze the upper bound on
the number of interventions for AID under (1) branch prun-
ing, which exploits the deterministic effect assumption, and
(2) predicate pruning.

Branch Pruning. Whenever AID encounters a junction, it
has the option to apply branch pruning. In CPD, at most one
branch can be causal at each junction; hence, we can find
the causal branch using log B interventions at each junction,
where B is the number of branches at that junction. Also, B is
upper-bounded by the number of threads T in the program.
This holds since we assume that the program inputs are
fixed and there is no different conditional branching due to
input variation in different failed executions within the same
thread. If there are J junctions and at most T branches at each
junction, the number of interventions required to reduce the
AC-DAG to a chain is at most Jlog T. Now let us assume that
the maximum number of predicates in any path in the AC-
DAG is Njs. Therefore, the chain found after branch pruning
can contain at most Ny, predicates. If D of them are causal
predicates, we need at most D log Ny interventions to find
them. Therefore, the total number of required interventions
for AID is < JlogT + Dlog Ny. In contrast, the number



of required interventions for TAGT, which does not prune
branches, is < Dlog(TNuy) = Dlog T + Dlog Ny. Therefore,
whenever J < D, the upper bound on the number of inter-
ventions for AID is smaller than the upper bound for TAGT.
Predicate Pruning. For an AC-DAG with N predicates, D
of which are causal, we now focus on the upper bound on
the number of interventions in AID using only predicate
pruning. In the worst case, when no pruning is possible, the
number of required interventions would be the same as that
of TAGT without pruning, i.e., O(Dlog N).

Theorem 2. If at least S, predicates are discarded (pruned or
marked as causal) from the candidate predicate pool during
each causal predicate discovery, then the number of required

. . . D(D-1)S:
interventions for AID is < Dlog N — =52,

Hence, the reduction depends on S;. When S; = 1, we
are referring to TAGT, in absence of pruning, because once
TAGT finds a causal predicate, it removes that predicate from
the candidate predicate pool.

Symmetric AC-DAG. Figure 6 shows the upper bound on
the number of required interventions using AID and TAGT
for the symmetric AC-DAG of Figure 5(c), assuming that at
least S, predicates are discarded during each causal predicate
discovery by AID.

7 EXPERIMENTAL EVALUATION

We now empirically evaluate AID. We first use AID on six
real-world applications to demonstrate its effectiveness in
identifying root cause and generating explanation on how
the root cause causes the failure. Then we use a synthetic
benchmark to compare AID and its variants against tradi-
tional adaptive group testing approach to do a sensitivity
analysis of AID on various parameters of the benchmark.

7.1 Real-world Case Studies

We now use 3 real-world open-source applications and 3
proprietary applications to demonstrate AID’s effectiveness
in identifying root causes of transient failures. Figure 7 sum-
marizes the results and highlights the key benefits of AID:
e AID is able to identify the true root cause and generate
an explanation that is consistent with the explanation pro-
vided by the developers in corresponding GitHub issues.
e AID requires significantly fewer interventions than tra-
ditional adaptive group testing (TAGT), which does not
utilize causality among predicates (columns 5 and 6).
e In contrast, SD generates a large number of discriminative
predicates (column 3), only a small number of which is
actually causally related to the failures (column 4).

7.1.1 Datarace in Npgsql. As a case study, we first consider a
recently discovered concurrency bug in Npgsql [53], an open-
source ADO.NET Data Provider for PostgreSQL. The bug

(1) (2) (3) (4) #Interventions
Application GitHub || #Discrim. | #Predsin | (5) | (6)

Issue # ||preds (SD)|causal path|| AID | TAGT
Npgsql [53] 2485 [54] 14 3 5 11
Kafka [33] 279 [34] 72 5 17 33
Azure Cosmos DB [14]|713 [15] 64 7 15 42
Network N/A 24 1 2 5
BuildAndTest N/A 25 3 10 15
HealthTelemetry N/A 93 10 40 70

Figure 7: Results from real-world case studies. SD produces
way too many spurious predicates beyond the correct causal
predicates (columns 3 & 4). SD actually produces even more
predicates, but here we only report the number of fully-
discriminative predicates. AID and TAGT both pin-point the
correct causal predicates using interventions, but AID does
so with significantly fewer interventions (columns 5 & 6).

(GitHub issue #2485) causes an Npgsql-baked application to
intermittently crash when it tries to create a new PostgreSQL
connection. We use AID to check if it can identify the root
cause and generate an explanation of how the root cause
triggers the failure.

We used one of the existing unit tests in Npgsql that causes
the issue, and generated logs from 50 successful executions
and 50 failed executions of the test. By applying SD, we found
a total of 14 discriminative predicates. However, SD did not
pinpoint the root cause or generate any explanation.

We then applied AID on the discriminative predicates. In
the branch pruning step, it used 3 rounds of interventions
to prune 8 of the 14 predicates. In the next step, it required 2
more rounds of interventions. Overall, AID required a total
of 5 intervention rounds; in contrast, TAGT would require 11
interventions in the worst case. After all the interventions,
AID identified a data race as the root cause of the failure and
produced the following explanation: (1) two threads race on
an index variable: one increments it while the other reads it
(2) The second thread accesses an array at the incremented
index location, which is outside the array size. (3) This access
throws IndexOutOfRange exception (4) Application fails to
handle the exception and crashes. This explanation matches
the root cause provided by the developer who reported the
bug to Npgsql GitHub repository.

7.1.2  Use-after-free in Kafka. Next, we use AID on an appli-
cation built on Kafka [33], a distributed message queue. On
Kafka’s GitHub repository, a user reported an issue [34] that
causes a Kafka application to intermittently crash or hang.
The user also provided a sample code to reproduce the issue;
we use a similar code for this case study.

As before, we collected predicate logs from 50 successful
and 50 failed executions. Using SD, we identified 72 discrimi-
native predicates. The AC-DAG identified 30 predicates with
no causal path to the failure indicating predicate, and hence
were discarded. AID then used the intervention algorithm on



the remaining 42 predicates. After a sequence of 7 interven-
tions, AID could identify the root-cause predicate. It took an
additional 10 rounds (total 17) of interventions to discover a
causal path of 5 predicates that connects the root cause and
the failure. The causal path gives the following explanation:
(1) The main thread that creates a Kafka consumer C starts a
child thread (2) the child thread runs too slow before calling
a method on C (3) main thread disposes C (4) child thread
calls a commit method on C (5) since C has already been
disposed by the main thread, the previous step causes an
exception, causing the failure. The explanation matches well
with the description provided in GitHub.

Overall, AID required 17 interventions to discover the root
cause and explanation. In contrast, SD generates 72 predi-
cates, without pinpointing the true root cause or explanation.
TAGT could identify all predicates in the explanation, but it
takes 33 interventions in the worst case.

7.1.3  Timing bug in Azure Cosmos DB application. Next, we
use AID on an application built on Azure Cosmos DB [14], Mi-
crosoft’s globally distributed database service for operational
and analytics workloads. The application has an intermittent
timing bug similar to the one mentioned in a Cosmos DB’s
pull request on GitHub [15]. In summary, the application
populates a cache with several entries that would expire after
1 second, performs a few tasks, and then accesses one of the
cached entries. During successful executions, the tasks run
fast and end before the cached entries expire. However, a
transient fault triggers expensive fault handling code that
makes a task run longer than the cache expiry time. This
makes the application fail as it cannot find the entry in the
cache (i.e., it has already expired).

Using SD, we identified 64 discriminative predicates from
successful and failed executions of the application. Applying
AID on them required 15 interventions and it generated an
explanation consisting of 7 predicates that are consistent
with the aforementioned informal explanation. In contrast,
SD would generate 64 predicates and TAGT would take 42
interventions in the worst case.

7.1.4  Bugs in proprietary software. We applied AID for find-
ing root causes of intermittent failures of several proprietary
applications inside Microsoft. We here report our experi-
ence with three of the applications that we name as follows
(Figure 7): (1) Network: the control plane of a data center
network, (2) BuildAndTest: a large-scale software build and
test platform, and (3) HealthTelemetry: a module used by
various services to report their runtime health. Parts of these
applications (and associated tests) had been intermittently
failing for several months and their developers could not
identify the exact root causes. This highlights that the root
causes of these failures were non-trivial. AID identified the
root causes and generated explanations for how they lead to

+  TAGT AID-P-B o AID-P e AID

Average Worst-case

s
[}
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Figure 8: Number of interventions required in the average
and worst case by TAGT and different variations of AID with
varying MAX;. For average case analysis, total number of
predicates is shown using a grey dotted line. Total number of
predicates is not shown for the worst-case analysis, because
the worst cases vary across approaches.

failures: for Network, the root cause was a random number
collision, for BuildAndTest, it was an order violation of two
events, and for HealthTelemetry, it was a race condition.
Developers of the applications confirmed that the root causes
identified by AID are indeed the correct ones and that the
explanations given by AID correctly showed how the root
causes lead to the (intermittent) failures. Figure 7 shows the
performance of AID with these applications. As before, SD
produces many discriminative predicates, only a subset of
which are causally related to the failures. Moreover, for all
applications, AID requires significantly fewer interventions
than what TAGT would require in the worse case.

7.2 Sensitivity Analysis

We further evaluate AID on a benchmark of synthetically-
generated applications, designed to fail intermittently and
with known root causes. We generate multi-threaded ap-
plications ranging the maximum number of threads MAX,
from 2 to 40. For each parameter setting, we generate 500
applications. In these applications, the total number of pred-
icates N ranges from 4 to 284, and we randomly choose the
number of causal predicates in the range [1, %]

In this experiment, we compare TAGT, AID, AID without
predicate pruning (AID-P), and AID without predicate or
branch pruning (AID-P-B). All four approaches derive the
correct causal paths but differ in the number of required inter-
ventions. Figure 8 shows the average (left) and the maximum
(right) number of interventions required by each approach.
The grey dotted line in the average case shows the average
number of predicates over the 500 instances for that setting.
This experiment provides two key observations:

Interventions in topological order converge faster.
Causally-related predicates are likely to be topologically
close to each other in the AC-DAG. AID discards all predi-
cates in an intervened group only when none are causal. This
is unlikely to occur when predicates are grouped randomly.



For this reason, AID-P-B, which uses topological ordering,
requires fewer interventions than TAGT.

Pruning reduces the required number of interven-
tions. We observe that both predicate and branch pruning
reduce the number of interventions. Pruning is a key differ-
entiating factor of AID from TAGT. In the worst-case setting
in particular, the margin between AID and TAGT is signif-
icant: TAGT requires up to 217 interventions in one case,
while the highest number of interventions for AID is 52.

8 RELATED WORK

Causal inference has been long applied for root-cause anal-
ysis of program failures. Attariyan et al. [3, 4] observe causal-
ity within application components through runtime control
and data flow; but only report a list of root causes ordered
by the likelihood of being faulty, without providing further
causal connection between root causes and performance
anomalies. Beyond statistical association (e.g., correlation)
between root cause and failure, few techniques [5, 6, 19, 60]
apply statistical causal inference on observational data to-
wards software fault localization. However, observational
data collected from program execution logs is often limited in
capturing certain scenarios, and hence, observational study
is ill-equipped to identify the intermediate explanation pred-
icates. This is because observational data is not generated
by randomized controlled experiments, and therefore, may
not satisfy conditional exchangeability (data can be treated
as if they came from a randomized experiment [28]) and
positivity (all possible combinations of values for the vari-
ables are observed in the data)—two key requirements for
applying causal inference on observational data [60]. While
observational studies are extremely useful in many settings,
AID’s problem setting permits interventional studies, which
offer increased reliability and accuracy.

Explanation-centric approaches are relevant to AID as
they also aim at generating informative, yet minimal, expla-
nations of certain incidents, such as data errors [66] and bi-
nary outcomes [20]; however they do not intervene. Viska [22]
allows the users to perform intervention on system param-
eters to understand the underlying causes for performance
differences across different systems. None of these systems
are applicable for finding causally connected paths that ex-
plain intermittent failures due to concurrency bugs.

Statistical debugging approaches [13, 30, 37, 42, 44, 64,
72] employ statistical diagnosis to rank program predicates,
extracted from execution traces of the program [10], based on
their likelihood of being the root causes of program failures.
However, all statistical debugging approaches suffer from the
issue of not separating correlated predicates from the causal
ones, and fail to provide contextual information regarding
how the root causes lead to program failures.

Fault injection techniques [2, 24, 35, 48] intervene appli-
cation runtime behavior with the goal to test if an application
can handle the injected faults. In fault injection techniques,
faults to be injected are chosen based on whether they can
occur in practice. In contrast, AID intervenes with the goal of
verifying (presence or absence of) causal relationship among
runtime predicates, and faults are chosen based on if they
can alter selected predicates.

Group testing [1, 7, 9, 17, 27, 36, 41] has been applied
for fault diagnosis in prior literature [73]. Specifically, adap-
tive group testing is related to AID’s intervention algorithm.
However, none of the existing works considers the scenario
where a group test might reveal additional information and
thus offers an inefficient solution for causal path discovery.

Control flow graph-based techniques [12, 29] aim at
identifying bug signature for sequential programs using dis-
criminative subgraphs within the program’s control flow
graph; or generating faulty control flow paths that link many
bug predictors. But these approaches do not consider causal
connection among these bug predictors and program failure.

Differential slicing [31] aims towards discovering causal
path of execution differences but requires complete program
execution trace generated by execution indexing [70]. Dual
slicing [67] discovers statement level causal paths for con-
current program failures. However, this approach does not
consider compound predicates that capture certain runtime
conditions observed in concurrent programs. Moreover, pro-
gram slicing-based approaches cannot deal with a set of
executions, instead they only consider two executions—one
successful and one failed.

9 CONCLUSIONS

In this work, we defined the problem of causal path discov-
ery for explaining failure of concurrent programs. Our key
contribution is the novel Adaptive Interventional Debug-
ging (AID) framework, which combines existing statistical
debugging, causal analysis, fault injection, and group testing
techniques in a novel way to discover root cause of program
failure and generate the causal path that explains how the
root cause triggers the failure. Such explanation provides bet-
ter interpretability for understanding and analyzing the root
causes of program failures. We showed both theoretically and
empirically that AID is both efficient and effective to solve
the causal path discovery problem. As a future direction, we
plan to incorporate additional information regarding the pro-
gram behavior to better approximate the causal relationship
among predicates, and address the cases of multiple root
causes and multiple causal paths. Furthermore, we plan to
address the challenge of explaining multiple types of failures.
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