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altered preferred phases to slow LFP
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SUMMARY

Loss-of-function mutations in CNTNAP2 cause a syn-
dromic form of autism spectrum disorder in humans
and produce social deficits, repetitive behaviors,
and seizures in mice. However, the functional effects
of these mutations at cellular and circuit levels re-
main elusive. Using laser-scanning photostimulation,
whole-cell recordings, and electron microscopy, we
found a dramatic decrease in excitatory and inhibitory
synaptic inputs onto L2/3 pyramidal neurons of the
medial prefrontal cortex (mPFC) of Cntnap2 knockout
(KO) mice, concurrent with reduced spines and syn-
apses, despite normal dendritic complexity and
intrinsic excitability. Moreover, recording of mPFC
local field potentials (LFPs) and unit spiking in vivo re-
vealed increased activity in inhibitory neurons,
reduced phase-locking to delta and theta oscillations,
and delayed phase preference during locomotion.
Excitatory neurons showed similar phase modulation
changes at delta frequencies. Finally, pairwise corre-
lations increased during immobility in KO mice. Thus,
reduced synaptic inputs can yield perturbed temporal
coordination of neuronal firing in cortical ensembles.

INTRODUCTION

Autism spectrum disorder (ASD) is characterized by deficits in
social communication and repetitive or restrictive behaviors

aaaaaaa

(American Psychiatric Association, 2013). Genetic studies have
revealed that the etiology of ASD is very heterogeneous,
involving hundreds of genes (O’Roak et al., 2012; Sanders
etal., 2012; Chen et al., 2015; Krishnan et al., 2016), a significant
proportion of which appear as rare recessive or de novo domi-
nant mutations (Geschwind, 2011; lossifov et al., 2014; Gilman
etal., 2011; Leppa et al., 2016). One highly penetrant syndromic
form of ASD is caused by loss-of-function mutations in the
CNTNAP2 gene (Strauss et al., 2006), and CNTNAP2 polymor-
phisms have been associated with increased risk of ASD and
other conditions (Poot et al., 2010; Scott-Van Zeeland et al.,
2010; Arking et al., 2008).

CNTNAP2 encodes for contactin-associated protein-like 2
(Caspr2), a protein of the neurexin superfamily that has diverse
cellular and circuit functions (Strauss et al., 2006; Poliak et al.,
1999, 2001, 2003; Gdalyahu et al., 2015; Varea et al., 2015;
Alarcon et al., 2008; Pefagarikano et al., 2011; Jurgensen and
Castillo, 2015). Mice lacking the Cntnap2 gene recapitulate
core behavioral deficits of ASD, including socialization and
communication impairments, repetitive behaviors, and seizures
(Pehagarikano et al., 2011). Recent in vivo evidence suggests
that CNTNAP2 has a putative role in synapse formation and sta-
bilization and that dendritic spine dynamics are affected in the
Cntnap2 knockout (KO) mice, with reduced stability in newly
formed spines (Gdalyahu et al., 2015). In addition, loss of
CNTNAP?2 leads to synaptic alterations in vitro, with decreased
inhibition and axonal excitability deficits in acute hippocampal
slices (Anderson et al., 2012; Jurgensen and Castillo, 2015; Scott
et al., 2019). These results suggest that CNTNAP2 mutations
may be linked to abnormal behavior by altering synaptic neuro-
transmission, functional connectivity, and neuronal network
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Figure 1. Reduced Excitatory and Inhibitory Synaptic Inputs to L2/3
Pyramidal Neurons in the mPFC of Cntnap2 KO Mice

(A) Schematic of laser-scanning photostimulation (LSPS) via glutamate un-
caging paradigm, combined with whole-cell patch-clamp recordings of L2/3
pyramidal (Pyr) neurons in acute slices of the medial prefrontal cortex (mPFC).
Patched neurons were clamped at —70 or +5 mV for the detection of local
excitatory or inhibitory synaptic connections arising from photostimulated
presynaptic glutamatergic (Excit.) and GABAergic (Inhib.) neurons.

(B) Example of an LSPS experiment in an mPFC slice, in which differential
interference contrast imaging was used for tissue visualization. Photo-
stimulation sites are superimposed (dots) and spaced within a 100-um X 60-
um grid. The red circle indicates the location of the recorded glutamatergic
neuron in L2/3, approached by the patch pipette.

(C and D) Group-averaged excitatory (C) and inhibitory (D) input maps of L2/3
excitatory neurons for WT (n = 20 cells from 3 mice in C; n = 11 cells from 3 mice
in D) and KO (n = 9 cells from 3 mice in C; n = 13 cells from 3 mice in D) mice.
Triangles indicate the location of individually recorded neurons.

(E) Average total synaptic excitatory and inhibitory input strength (log)
measured for L2/3 excitatory cells depicting a robust decrease in the KO
mice, compared to WT mice (WT: EPSC 2.51 + 0.17, n = 20 cells; KO:
EPSC 1.72 + 0.17, n = 9 cells; WT: IPSC 2.83 + 0.16, n = 11 cells; KO: IPSC
2.49+0.15,n =13 cells; EPSC: **p = 0.0051, IPSC: *p = 0.0218; Wilcoxon test).
(F) Average ratios of total EPSCs over IPSCs from individual cells (WT: n =17
cells; KO: n = 8 cells). There is no significant difference in E/I ratio between WT
and KO (p = 0.8873; unpaired t test). Scale bars: 200 um.

Al errors bars indicate the SEM.

activity. However, the specific cellular and circuit mechanisms
that lead to altered behavior in Cntnap2 KO mice remain unclear.

Here, we examined the neurophysiological consequences of
Cntnap2 deletion in the mouse medial prefrontal cortex
(mPFC), a brain region that is critically involved in social behavior
(Yizhar et al., 2011; Grossmann, 2013) and notably affected in
ASD (Voineagu et al., 2011; Redcay et al., 2013; Selimbeyoglu
et al.,, 2017). mPFC cells can modulate social behavior, are

2568 Cell Reports 27, 2567-2578, May 28, 2019

critical for cortico-cortical communication, and have been
considered a critical hub for autism-related gene expression
(Yizhar et al., 2011; de la Torre-Ubieta et al., 2016; Selimbeyoglu
et al., 2017; Parikshak et al., 2013). Using glutamate uncaging
via laser-scanning photostimulation (LSPS) on layer 2/3 (L2/3)
pyramidal neurons of the mPFC in combination with in vitro
whole-cell patch-clamp recordings, we observed a reduction
in both excitatory and inhibitory synaptic inputs onto excitatory
neurons and decreased excitatory neurotransmission. Anatom-
ical studies showed a concomitant decrease in dendritic spine
and synapse densities. Using multichannel silicon microprobes
to record in vivo local field potentials (LFPs) and activity from sin-
gle neurons in the mPFC, we observed robust alterations in the
phase locking of units to delta and theta oscillations during loco-
motion. These findings demonstrate that the loss of Cntnap2 re-
sults in decreased excitatory drive onto pyramidal cells, which
further leads to alterations in circuit-level synchronous activity
in the mPFC. Therefore, mutations in CNTNAP2 could be mech-
anistically linked to alterations in microcircuit connectivity and
lead to abnormal population activity, providing a potential sub-
strate for behavioral abnormalities in ASD.

RESULTS

Decreased Excitatory and Inhibitory Inputs in the mPFC
of Cntnap2 KO Mice

To test how the loss of CNTNAP2 alters mPFC microcircuits, we
used LSPS via glutamate uncaging to map and quantify local
excitatory and inhibitory cortical inputs onto L2/3 mPFC pyrami-
dal neurons. By voltage clamping patched pyramidal neurons at
—70 and +5 mV, we recorded excitatory and inhibitory synaptic
inputs, respectively, while uncaging glutamate and activating
small clusters of surrounding neurons (Figures 1A, 1B, and S1).
We observed that, similar to wild-type (WT), L2/3 pyramidal neu-
rons in KO mice received most of their excitatory and inhibitory
synaptic inputs from L2/3 and L5 in the mPFC (Figures 1C and
1D). However, L2/3 excitatory neurons in KO mice displayed a
dramatic reduction in both excitatory and inhibitory local synap-
tic inputs compared to WT (Figures 1C—1E), while the balance of
excitation to inhibition (E/I) in individual neurons was not signifi-
cantly altered (Figure 1F). This reduction was not due to lower
neuronal responsiveness to glutamate uncaging in KO mice,
since both mouse groups showed equivalent responses to un-
caging onto perisomatic regions (Figure S1).

Our input mapping findings could also be associated with al-
terations in the intrinsic excitability of cortical neurons. Caspr2
has a known role in the clustering of potassium channels in the
juxtaparanodes of axons, which are important for the propaga-
tion of action potentials (Poliak et al., 1999, 2001, 2003).
To examine whether the loss of Cntnap2 resulted in altered
excitability and intrinsic properties in mPFC, we performed
whole-cell current-clamp recordings on mPFC L2/3 pyramidal
and parvalbumin-positive (PV*) inhibitory neurons (recorded in
Cntnap2-PV-Cre x Ai9 animals) in KO and WT controls. We
focused on PV* interneurons, as these cells provide powerful
perisomatic inhibition to cortical pyramidal neurons, and
their dysfunction has been implicated in autism-associated def-
icits resulting from the loss of Cntnap2 (Scott et al., 2019;



Penagarikano et al., 2011). Input-output curves, showing the
average number of action potentials elicited by increasing cur-
rent injections in pyramidal and PV* neurons, revealed no signif-
icant alterations in the action potential firing rate between the two
groups (Figure S2). Action potential threshold, amplitude, half-
width, afterhyperpolarization (AHP) potential, or time from peak
to AHP were also not significantly different between WT and
KO. The same was observed for resting membrane potential,
input resistance, cell membrane capacitance, and membrane
time constant (Table S1).

These results indicate that the loss of Cntnap2 does not affect
the intrinsic excitability of L2/3 neurons of the mPFC, but leads to
a robust reduction of local excitatory and inhibitory inputs onto
these cells.

Decreased Excitatory Neurotransmission in Pyramidal
Neurons of Cntnap2 KO Mice

To investigate the specific cellular processes that lead to
reduced synaptic responses in KO mice, we performed whole-
cell patch-clamp recordings of miniature excitatory and inhibi-
tory postsynaptic currents (NEPSCs and mIPSCs, respectively)
in mPFC L2/3 neurons. We measured mEPSC and mIPSC ampli-
tude, frequency, and kinetics, as changes in amplitude are a reli-
able measure of the number of receptors at synapses (quantal
size), while frequency correlates with the number of contacts
or probability of release (Greer et al., 2010). In agreement with
our LSPS findings, we observed a 2-fold decrease in the fre-
quency of mEPSCs (Figures 2A and 2B) and a significant
decrease in the average amplitude of mMEPSCs in Cntnap2 KO
pyramidal neurons (Figure 2C). We observed no statistically sig-
nificant alterations in the frequency, amplitude, or kinetics of
mIPSCs (Figures 2D-2F), despite the marked reduction in inhibi-
tion found with LSPS cortical input mapping (Figures 1D and 1E).
This could reflect compensatory changes between synapse
number and release probability or altered distribution of proximal
and distal inhibitory inputs. In addition, we examined miniature
postsynaptic currents in PV* interneurons and found no signifi-
cant differences in mMEPSCs or mIPSCs (Figures S3A-S3F).

We then asked whether the observed decrease in mEPSC fre-
quency on pyramidal neurons could be caused by a disruption in
the probability of synaptic vesicle release (Toni et al., 1999; Sorra
et al., 1998; Calverley and Jones, 1990). We tested this by stim-
ulating long-range axonal projections to mPFC in slices and
measuring evoked excitatory currents elicited in L2/3 pyramidal
cells (Figure 2G). We observed reduced evoked EPSC ampli-
tudes (Figure 2H) and significantly increased EPSC latencies
(Figures S3G and S3H) in KO mice compared to controls, corrob-
orating our previous findings of reduced excitatory neurotrans-
mission. However, we found no significant differences in
paired-pulse ratios of evoked currents between WT and KO
mice (Figures 21 and 2J), indicating similar excitatory neurotrans-
mitter release probabilities.

Finally, we tested whether KO mice had altered, immature,
or silent synapses, characterized by the decreased ratio
of a-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate to N-
methyl-p-aspartate (AMPA/NMDA) receptors (Toni et al., 1999;
Calverley and Jones, 1990; Dani et al., 2005; Gibson et al.,
2008). We recorded evoked AMPA and NMDA currents in the

presence of the GABAA receptor blocker, picrotoxin, by holding
the cells at —70 and +40 mV, respectively, in voltage clamp. We
found no significant difference in the AMPA:NMDA ratios when
comparing WT and KO mice (Figures 2K and 2L), indicating
that KO mice do not have more immature or silent synapses.

These results indicate a reduction in the frequency and ampli-
tude of excitatory drive onto single pyramidal cells, which cannot
be explained by alterations in single synapse maturity or neuro-
transmitter vesicle release.

Decreased Dendritic Spine Density in Cntnap2 KO Mice
We next asked whether the decrease in excitatory neurotrans-
mission was caused by a reduction in the total number of synap-
tic inputs, either through decreased dendritic branching or
decreased spine density. We performed 3D anatomical recon-
structions of L2/3 pyramidal neurons by filling cells with biocytin
during in vitro slice recording experiments and imaged them with
confocal microscopy. Sholl analysis did not reveal significant
changes in total dendritic length, total number of dendritic
branches, or dendritic complexity (Figures 3A and 3B), suggest-
ing that L2/3 pyramidal neurons in Cntnap2 KO mice have
normal dendritic arborization. In addition, the density of neuronal
cell bodies in L2/3 and the density of immunolabeled PV* neu-
rons in the prelimbic cortex was similar in Cntnap2 KO mice
and controls (Figures S4A and S4B).

To determine whether Cntnap2 KO neurons display a
decrease in dendritic spine density, we crossed homozygous
Cntnap2 KO (or WT) mice with Thy1-GFP mice, which express
GFP in a subset of cortical pyramidal neurons, including sparsely
labeled L2/3 mPFC pyramidal cells. The quantification of den-
dritic spines in these cells revealed that L2/3 pyramidal neurons
in KO mice show a significant decrease in both basal and apical
dendritic spine density (Figures 3C and 3D), which may underlie
the reduction in functional synaptic inputs that we observed in
our electrophysiology experiments.

To further validate this hypothesis, we used electron micro-
scopy to examine L2/3 mPFC dendritic spines and synaptic
contacts in WT (n = 3) and Cntnap2 KO mice (n = 3) (Figure 3E).
Consistent with our previous findings, we observed a signifi-
cant (~25%) reduction in the number of both asymmetric
(excitatory) and symmetric (inhibitory) synapses in KO mice
(Figure 3F). Furthermore, we found no significant changes in
spine area or synapse length in the KO mice (Figure 3G). How-
ever, Cntnap2 KO mice had a markedly reduced density of
multisynapse boutons (MSBs) (Figure 3H), a marker of synap-
togenesis (Toni et al., 1999). We also found an increase in
perforated synapses in these mice (Figure 3l), which are asso-
ciated with increased synaptic turnover (Calverley and Jones,
1990; Sorra et al.,, 1998), supporting previous reports of
increased dendritic spine turnover in Cntnap2 KO mice (Gda-
lyahu et al., 2015).

To determine how the loss of CNTNAP2 alters synaptic inputs
to the distal apical tufts of excitatory neurons, we also counted
asymmetric (putative excitatory) and symmetric (putative inhibi-
tory) synapses in L1. Cntnap2 KO mice exhibited significantly
decreased asymmetric and symmetric synapse numbers in L1
compared to controls, suggesting impairments in distal dendritic
excitation and inhibition in these animals (Figures S4C and S4D).
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Figure 2. Reduced mEPSC Frequency and Long-Range Excitatory Inputs in Cntnap2 KO Pyramidal Neurons

(A) Representative traces from recorded mEPSCs in Cntnap2 WT and KO pyramidal cells, voltage clamped at —70 mV, with corresponding average unitary events.
(B) Frequency of MEPSCs (WT: 2.42 + 0.45 Hz, n = 24 cells, 6 mice; KO: 0.89 + 0.12 Hz, n = 24 cells, 5 mice; Wilcoxon test, *p = 0.0410) is decreased in KO mice.
(C) Amplitude of mEPSCs (WT: 15.73 + 0.63 pA, n = 24, 6 mice; KO: 13.88 + 0.45 pA, n = 24 cells, 5 mice; Wilcoxon test, *p = 0.0172) is decreased in KO mice.
(D-F) Same as (A)—~(C), but for mIPSCs. There is no significant decrease in frequency (WT: 5.76 + 0.83 Hz, n = 28 cells, 8 mice; KO: 3.87 + 0.45 Hz, n = 27 cells, 4
mice; p = 0.1327; Wilcoxon test) or amplitude of mIPSCs (WT: 24.43 + 1.30 pA, n = 28 cells, 8 mice; KO: 27.21 + 2.48 pA, n = 27 cells, 4 mice; p = 0.8740, Wilcoxon
test) in KO mice compared to WT mice.

(G) A monopolar tungsten electrode was used to stimulate long-range axons (purple), which extend from the anterior forceps of the corpus callosum and project
onto a patched excitatory neuron in L2/3 mPFC.

(H) Input-output curves of excitatory responses resulting from a range of increasing stimulus intensities in Cntnap2 WT and KO mice (WT: n = 7 cells, n = 6 mice;
KO: n =9 cells, n = 5 mice; *p < 0.0001, 2-way ANOVA).

(I) Representative current responses from paired pulses given at various interstimulus intervals (ISIs) in WT and KO mice.

(J) Ratio of second to first evoked synaptic response to paired-pulse stimulation at increasing ISIs suggests no significant deficits in the probability of synaptic
vesicle release in Cntnap2 KO mice (WT: n = 10 cells, n = 6 mice; KO: n = 8 cells, n = 5 mice; p = 0.8926, 2-way ANOVA).

(K) Evoked AMPA (cells voltage clamped at —70 mV) and NMDA (cells voltage clamped at +40 mV) currents in WT and KO mice. Stimulus artifact was blanked for
clarity. Dashed line indicates point where NMDA current amplitudes were measured, immediately after AMPA current decay.

(L) AMPA to NMDA ratios of Cntnap2 KO mice were not significantly altered, compared to WT mice, suggesting no significant changes in synaptic maturity (W T:
0.67 £ 0.10, n = 11 cells, 6 mice; KO: 0.53 + 0.08, n = 8 cells, 5 mice; p = 0.3471, unpaired t test).

All errors bars indicate the SEM.
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Figure 3. Decreased Dendritic Excitatory and Inhibitory Synapses in Cntnap2 KO Mice

(A) Representative z stack projection of biocytin-filled L2/3 neuron, visualized with a streptavidin-Alexa 488 antibody. Scale bar indicates 100-um length.

(B) Sholl analysis showing number of intersections (p = 0.0632, 2-way ANOVA) and length (p = 0.9315, 2-way ANOVA) of dendrites is comparable between
Cntnap2 WT (n = 8 cells) and KO (n = 9 cells).

(C) Confocal image of L2/3 Thy1-GFP* pyramidal neurons in mPFC, demonstrating representative apical and basal dendrites for WT (+/+) and Cntnap2 KO (—/-)
mice.

(D) Summary graphs showing the quantification of average spine density in apical (WT: 0.86 + 0.09 spines/um, n = 21 dendrites; KO: 0.57 + 0.07 spines/um,n=15
dendrites) and basal branches (WT: 0.70 + 0.03 spines/um, n = 34 dendrites; KO: 0.52 + 0.02, n = 24 dendrites). *p < 0.05, unpaired t test; ****p < 0.0001, Welch’s
t test.

(E) Representative electron micrographs showing neuropils of L2/3 mPFC in WT and Cntnap2 KO mice. Arrow indicates a multisynapse bouton (MSB).
Arrowheads indicate perforated asymmetrical synapses. Spine profiles are pseudo-colored in orange. Scale bar: 500 nm.

(F) Graphs showing the quantification of asymmetric (putative excitatory; WT: 11.53 + 0.35 synapses/100 um?, n = 80 fields; KO: 8.59 + 0.21 synapses/100 um?,
n = 90 fields; 3 mice per genotype; **p < 0.0001, Wilcoxon test) and symmetric synapses (putative inhibitory; WT: 9.30 + 0.46 synapses/100 um?, n = 80 fields;
KO: 5.87 + 0.38 synapses/100 um?, n = 90 fields; ***p < 0.0001, Wilcoxon test).

(G) Spine and postsynaptic density (PSD) area (WT: 0.1313 + 0.006 um?, n = 257 spines; KO: 0.1604 + 0.010 ym?, n = 187 spines; p = 0.1142, Wilcoxon test) and
length (WT: 281.10 + 8.89 nm, n = 257 spines; KO: 309.90 + 11.83 nm, n = 187 spines; p = 0.0709 Wilcoxon test).

(H) Density of MSBs for WT (1.33 + 0.23 MSBs/100 um?, n = 80 fields) and KO (0.41 + 0.13 MSBs/100 pm?, n = 90 fields) mice; ***p = 0.0002, Wilcoxon test.
(1) Perforated synapses (PSs) for WT (3.38 + 0.31 PS/100 pm?, n = 90 fields) and KO (4.52 + 0.31 PS/100 um?, n = 80 fields) mice; *p = 0.0122, Wilcoxon test.
Al errors bars indicate the SEM.
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These findings indicate that the loss of Cntnap?2 leads to signif-
icant defects in both inhibitory and excitatory synaptic density,
as well as alterations in markers of synapse plasticity and
stability.

Altered In Vivo Network Activity in mPFC of Cntnap2 KO
Mice

How does the observed decrease in cortical inputs onto L2/3 py-
ramidal neurons of Cntnap2 KO mice affect network activity
in vivo? Such a robust decrease in functional synapses could
affect the precise temporal coordination of neuronal firing during
cortical network oscillations, which is critically dependent on the
balance between excitation and inhibition (Sorra et al., 1998; Go-
lomb and Hansel, 2000; Dani et al., 2005; Gibson et al., 2008).

To test this hypothesis, we recorded in vivo LFPs and single
unit activity in the mPFC of KO and WT mice using multichannel
silicon microprobes (Shobe et al., 2015) (Figures 4A and 4B).
Head-fixed mice were free to rest or run on a spherical
treadmill during the recordings (Polack et al., 2013), and locomo-
tion was monitored. Both mouse groups exhibited similar
locomotion characteristics, with a small but non-significant ten-
dency for KO mice to have sparser but longer locomotion bouts
(Figures S5A-S5F), in support of previous observations of hyper-
activity in these animals (Penagarikano et al., 2011). Activity
during concatenated locomotion and immobility segments was
analyzed separately (Figure 4A).

We recorded 249 single units from 8 WT mice and 145 units
from 5 KO mice, which were clustered into wide-spiking (WS),
putative excitatory units and narrow-spiking (NS), putative inter-
neurons (Figures 4B and 4C). Firing rates of WS neurons had
similar distributions between the WT and KO groups (Figures
4D, S5G, and S5H), but NS units from KO mice fired at a signif-
icantly higher rate (and consequently with lower inter-spike inter-
vals), compared to the WT group, during both locomotion and
immobility states (Figures 4E, S5G, and S5H). No differences be-
tween the two groups were observed in spiking variability or
burst index in either unit type during either state (Figures S5G
and S5H), suggesting unaltered intrinsic spiking characteristics
in units of KO animals.

Since a decrease in synapse number could affect the coordi-
nated synaptic activity that is thought to shape the LFP signal,
particularly at low frequencies (Buzsaki et al., 2012), we first
tested whether the power of low-frequency oscillations was
altered in KO mice. We found no significant differences in the
average power of the LFP between KO and WT mice in delta
(1-4 Hz) or theta (5-11 Hz) oscillations, or even higher fre-
quencies (beta 12-30 Hz, slow gamma 30-55 Hz, or high gamma
80-110 Hz), during either locomotion or immobility (Figure 4F),
suggesting no major alterations in mPFC oscillatory activity on
a broad neuronal population level.

Different neuronal populations are typically recruited to fire
selectively at specific phases of ongoing oscillations, creating
a dynamic circuit pattern (Klausberger and Somogyi, 2008). To
assess how the observed synaptic alterations in KO mice reflect
on the spiking modulation of individual units during LFP oscilla-
tions, we examined the preferred firing phase of each unit and
its phase-locking strength to that phase, focusing again on delta
and theta LFP oscillations during locomotion (Figures 5A and 5B)
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and immobility separately. We found a significant decrease in the
strength of phase locking of WS units to delta oscillations and NS
units to delta and theta oscillations in KO animals during locomo-
tion, combined with significant shifts in both unit types to later
phases in the respective oscillatory cycles (Figure 5C). Extending
this analysis over the faster LFP oscillation rhythms mentioned
above yielded fewer units that were significantly locked to
such frequencies, particularly in KO animals (Figure S6). Notably,
we found a decrease in phase locking to beta oscillations in NS
units of KO mice, but over a small sample of phase-locked units.

The observed reduction in phase locking in KO animals
extended during immobility (Figure 5D), with significant reduc-
tions observed mainly for NS units in theta and gamma fre-
quency ranges (Figure S6). During theta oscillations, we found
a significant shift to later phases in WS units (Figure 5D). Finally,
the number of significantly phase-locked units per animal to
each frequency was on average comparable in both WT and
KO groups (Table S2).

Decreased phase locking of individual units to LFP oscillations
suggests a reduction in coordinated population activity during
both motion and immobility in Cntnap2 KO animals. To test this,
we compared correlations between the firing rates of all pairs of
units in WT versus KO mice, during either locomotion or immo-
bility, separately for WS-WS, NS-NS, and WS-NS pairs in each
mouse (Figures 5E and 5F). Only units with adequate spiking
(>200 spikes in each condition) were considered. Correlations be-
tween WS units exhibited a small but significant reduction in KO
mice during locomotion and immobility. NS units exhibited no sig-
nificant difference in locomotion, but they were significantly more
correlated in KO animals during immobility, leading to increased
WS-NS correlations as well. This finding was not affected by the
firing rate binning since it was reproduced with firing rate time
bins spanning from 500 (2 Hz, delta frequency; Figures 5E
and 5F) down to 25 ms (40 Hz, slow gamma; Figure S7). Again,
comparable numbers of units from each mouse group were
included in each case (Table S2). Therefore, despite their reduc-
tion in phase locking to particular LFP oscillations, NS unit pairs re-
mained more strongly correlated in immobile KO animals, despite
a prominent desynchronization of WS units in each condition.

These results indicate a disrupted mPFC network in Cntnap2
KO mice, in which both excitatory and inhibitory neurons have
less precise firing patterns that are also shifted relative to
network activity and vyield less coherent network dynamics.
These alterations may lead to severely altered mPFC processing
in Cntnap2 KO mice, potentially contributing to altered brain
function and the previously described behavioral deficits
observed in these mice.

DISCUSSION

Here, we find that the loss of Cntnap2, which causes a syn-
dromic form of autism in humans, leads to reduced synaptic in-
puts onto L2/3 pyramidal neurons in the mPFC. LSPS mapping
revealed a dramatic reduction of both excitatory and inhibitory
inputs in this region, and mEPSCs occurred at a lower frequency
in neurons. These findings suggest a decrease in the total num-
ber of excitatory synapses, which was confirmed with confocal
microscopy as a decrease in spine density and the decrease in
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Figure 4. Increased Activity in In Vivo-Recorded Narrow-Spiking Units of Cntnap2 KO Mice, but Normal LFP Oscillations

(A) Schematic of in vivo recordings and subsequent analysis of electrophysiological data. Mice were head fixed while free to run on a spherical treadmill.
Extracellular signals were recorded from all layers of the mPFC of both WT (n = 8) and KO mice (n = 5) using multi-electrode silicon microprobes. Spikes were
sorted into tentative single units (see Method Details). Motion on the treadmill was also recorded, and traces were separated into locomotion and immobility
segments.

(B) Distribution and corresponding histograms of mean waveform peak-to-trough ratios versus peak-to-trough time distances for the two unit clusters consisting
of WS and NS units. The inset depicts the average waveforms from all units in the two clusters.

(C) Unit spike waveforms averaged over all individual spikes (gray) from two example units from a WT mouse and a KO mouse.

(D and E) Distributions of average firing rates during locomotion (D) and immobility (E) for all WS and NS units in WT versus KO mice. Solid lines indicate the mean
rates over all cells in the two groups. No significant difference for WS units. **p < 0.01; two-sample t test; Bonferroni corrected.

(F) Mean LFP bandpower during motion (top) and immobility (bottom) in WT and Cntnap2 KO mice, calculated from a single representative channel per mouse,
located in the prelimbic mPFC. No significant differences were observed (p > 0.05, Wilcoxon test).

Al errors bars indicate the SEM.

both excitatory and inhibitory synapses seen with electron
microscopy. In vivo, these changes were associated with
decreased phase-locking strength and shifted phase preference
of putative excitatory neurons to delta oscillations and of inhibi-
tory neurons to delta and theta oscillations during locomotion.
We conclude that the loss of CNTNAP2 has a profound impact

on synaptic connectivity and population dynamics of excitatory
and inhibitory neurons in the mPFC.

The observed reduction in functional synaptic connectivity and
in the density of synapses in the mPFC of Cntnap2 KO animals is
consistent with recent studies showing reduced local and long-
range functional connectivity in the prefrontal cortex of these
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Figure 5. Altered Phase Locking to Low-Frequency LFP Oscillations in In Vivo-Recorded Single Units of Cntnap2 KO Mice

(A) Left: LFP delta frequency phase histograms of spikes (% over all spikes) of two WS units. Two cycles of the oscillation are shown together with a representation
of the LFP oscillation for clarity. Solid lines indicate the mean (preferred) phase of each unit. Right: Same as the left, but for two example NS units.

(B) Similar to (A) for theta frequency phase distributions.

(C) Distributions and corresponding histograms of phase-locking strength (mean vector length) versus preferred phases of pooled WS units (left) or NS units (right)
from WT and KO mice to delta (top) and theta (bottom) LFP oscillations during locomotion. Only significantly phase-locked units with sufficient spiking are
included (see Method Details). Filled rectangles and solid lines depict the mean + SE of the distributions and histograms, respectively (circular mean for phase
distributions), for the two mouse groups. All of the distributions were significantly non-uniform (p < 0.05; Rayleigh test for non-uniformity; Bonferroni corrected
over mouse groups), except for the theta frequency distribution of KO units (indicated by open rectangle and dashed lines accordingly). Asterisks indicate
significant differences either in mean vector length (p < 0.05; t test if both distributions are normally distributed according to the Lilliefors test of normality with 5%
significance level, or Wilcoxon test otherwise) or in mean preferred phase accordingly (p < 0.05; parametric Watson-Williams test).

(D) Same as (C) for immobility segments.

(E and F) Correlation coefficient distributions between pairs of wide-spiking units (left), narrow-spiking units (right), and wide-narrow spiking unit pairs (bottom),
over all corresponding WT (blue) and KO (red) unit pairs in each mouse. Firing rates were computed during locomotion (E) orimmobility segments (F) over 500-ms-

long time bins. Lines indicate the means of corresponding distributions. *p < 0.05, Wilcoxon test, Bonferroni corrected over the three unit-type combinations.
All errors bars indicate the SEM.

mice (Liska et al., 2018), as well as work in somatosensory cortex, showed decreased mEPSC and mIPSC frequency after RNAI
showing reductions in both excitatory and inhibitory input (Antoine  knockdown of CNTNAP2, which was linked to decreased dendritic
et al., 2019). Moreover, work in dissociated neuronal cultures arbor complexity and decreased spine head size (Anderson et al.,
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2012). While in general agreement with our findings, we found no
changes in dendritic arborizations in the intact mPFC, despite a
clear decrease in spine density. In addition, we found no significant
changes in spine size or synapse length as assessed by electron
microscopy in L2/3 of the mPFC. These inconsistencies between
our findings and previous reports, specifically regarding dendritic
morphology and spines, may arise from inherent differences
between cultured neurons and in vivo preparations.

Our observed decrease in multisynapse boutons (MSBs) and in-
crease in perforated postsynaptic densities (PSDs) further sup-
ports the notion that CNTNAP2 may have a complex role at the
synaptic cleft. Since both MSBs and perforated PSDs are markers
of well-developed synapses, this could also indicate that the loss
of Cntnap?2 disrupts synapse maturation dynamics via both pre-
and postsynaptic mechanisms (Toni et al., 1999; Fiala et al.,
2002; Nikonenko et al., 2002; Ganeshina et al., 2004; Geinisman,
1993). Accordingly, recent work in cultured cortical neurons from
KO mice reported a decrease in spine density and in localization of
the AMPA-subtype glutamate receptor GluA1 in the spines of
Cntnap2 KO neurons (Varea et al., 2015), which is consistent
with the small decrease in mMEPSC amplitude that we observed.
This is also concurrent with recent work, showing that Cntnap2
KO mice have reduced AMPA receptor expression and transmis-
sion in vivo (Kim et al., 2019). Our results are also in line with our
previous work, reporting increased spine elimination and
decreased spine density in apical dendrites of L5 neurons in the
somatosensory cortex of Cntnap2 KO mice (Gdalyahu et al.,
2015). Therefore, the effects of CNTNAP2 loss on spine density
may generalize as decreased spine stability throughout the cortex.

Our observed lack of changes in intrinsic excitability of L2/3
pyramidal neurons or PV* neurons appears surprising, given
that Cntnap2 is important for potassium channel localization in
axons (Poliak et al., 2003). Nonetheless, it is likely that Cntnap2
loss affects neurons in a cell type- and projection-specific
manner, as supported by recent reports of decreased input
resistance and intrinsic excitability of L5 subcortical projecting
neurons of the mPFC (Brumback et al., 2018).

Such alterations in synaptic physiology and neurotransmis-
sion seem to be a common theme among mouse models
of neurodevelopmental disorders. Loss-of-function mutations
in Shank3, MECP2, and Ube3a (modeling Phelan-McDermid,
Rett, and Angelman syndromes, respectively) result in
decreased spine density and excitatory neurotransmission in
the cortex (Dani et al., 2005; Belichenko et al., 2009; Wallace
et al., 2012; Zhou et al., 2016). Moreover, spine maturation is
impaired in fragile X model mice (Cruz-Martin et al., 2010), similar
to what we find in Cntnap2 KO, and cortical inhibitory neuro-
transmission is similarly compromised in a number of these dis-
orders (Gibson et al., 2008; Curia et al., 2009; Cea-Del Rio and
Huntsman, 2014; Banerjee et al., 2016). This posits the notion
that increasing or modulating excitatory and inhibitory synaptic
connectivity, especially in a cell type- and projection-specific
manner, may be therapeutically relevant.

Concurrently, we find that the loss of excitatory and inhibitory
synaptic connectivity in Cntnap2 KO mice is associated with a
decrease in the magnitude of phase-locked firing of inhibitory
and excitatory neurons to delta oscillations in vivo. Inhibitory
neurons were less phase locked to both theta oscillations, and

they tended to fire later in the oscillatory cycle. These findings
were more prominent during locomotion, suggesting that the ef-
fects from changes in connectivity can be more prominent during
specific conditions or arousal states. Dysfunctional oscillations
have often been reported in humans diagnosed with ASD and
have been proposed as biomarkers (Rojas and Wilson, 2014;
Simon and Wallace, 2016; Sidorov et al., 2017). Specifically,
delta (4 Hz) oscillations in mPFC can entrain other brain regions,
such as the amygdala during fear expression and the ventral
tegmental area and hippocampus during working memory (Fuji-
sawa and Buzsaki, 2011). Theta (4-8 Hz) oscillations in the mPFC
have been associated with signaling safety under conditions of
learned fear (Likhtik et al., 2014). Thus, the phase-locking alter-
ations observed in mPFC neurons of Cntnap2 KO mice could
be linked to some of the cognitive and affective behavioral dis-
ruptions displayed by this mouse model.

The mPFC electrophysiological alterations we observed in
Cntnap2 KO mice could underlie some of the autism-related
phenotypes in the model, such as deficits in social interactions
and communication, as supported by observations that
increasing the ratio of excitation to inhibition in the mPFC could
disrupt social interactions in WT mice (Yizhar et al., 2011). More-
over, an opsin-mediated increase in PV* cell excitability or a
decrease in pyramidal neuron activity within the prelimbic
mPFC can rescue social behavior and hyperactivity in Cntnap2
KO mice (Selimbeyoglu et al., 2017). Such disruptions in E/I bal-
ance could also reflect as broader-scale alterations in oscillatory
power and synchrony and could be mechanistically linked to the
altered representation of social stimuli in the mPFC of Cntnap2
KO mice (Levy et al., 2018).

Future studies need to dissect the inputs and outputs of the
prefrontal cortex in a cell type- and projection-specific manner
to uncover whether changes in excitatory and inhibitory connec-
tivity are generalized or selectively impaired in specific circuits.
This will require experiments in which Cntnap2 is conditionally
deleted in specific cell types using Cre-Lox techniques. Also, it
is not known whether the synaptic and population dynamic
changes we found can be reversed or ameliorated by restoring
Cntnap2 gene expression in adulthood or whether very early in-
terventions will be needed. Finally, it will be important to under-
stand how the delta and theta phase locking affects the recruit-
ment of other connected brain regions, especially in the context
of social engagement.
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alexa-555 conjugated Streptavidin Invitrogen/ ThermoFisher Cat# S21381; RRID: AB_2307336

Alexa 488 conjugated Streptavidin

Invitrogen/ ThermoFisher

Cat# S11223; RRID: AB_2336881

Anti-Parvalbumin Antibody Sigma Cat# P3088; RRID: AB_477329
Experimental Models: Organisms/Strains

CNTNAP2 KO Mice Elior Peles N/A

PV-Cre Mice JAX 008069

Ai9 Mice JAX 007909

Software and Algorithms

Ephus Janelia Research Campus N/A

WinWCP, WIinEDR Strathclyde N/A

MiniAnalysis Synaptosoft N/A

MATLAB code for analysis of phase-locking Golshani Lab https://github.com/jtaxidis/Lazaro-
and correlations et-al.-Cell-Reports-2019/tree/master
Prism Graphpad Prism 7

PyClust Mayank Mehta Lab N/A

Custom Silicon Probe Data Acquisition Sotiris Masmanidis Lab N/A

Software (Labview)

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Peyman
Golshani (pgolshani@mednet.ucla.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cntnap2 null mice were obtained from E. Peles and backcrossed to the C57BL/6J background for over 12 generations. For targeted
electrophysiological recordings of parvalbumin-positive interneurons, Cntnap2 heterozygous mice were backcrossed to PV-Cre
(Jackson labs number 008069) x Ai9 (Jackson labs number 007909) mice. For spine density analysis, Cntnap2 heterozygous mice
were backcrossed with Thy1GFP (Jackson labs x 007788) mice. Experimental mice were obtained from heterozygous crossings
and born with the expected Mendelian frequencies; both genders were used. The date of birth was designated at PO and the three
obtained genotypes (wild-type, heterozygous, homozygous knock-out) were housed together with three to four mice per same-sex
cage. Mice were kept in a 12-hour light/12-hour dark cycle and had ad libitum access to food and water. All procedures involving
animals were performed in accordance with the University of California, Los Angeles (UCLA) animal research committee, and the
National Institutes of Health Guide for the Use and Care of Laboratory Animals.

METHOD DETAILS

Slice preparation

Acute coronal slices (300 um thickness) containing the medial prefrontal cortex were prepared from 4 to 6-wk-old Cntnap2 knock-out
mice and wild-type littermates. Mice were anaesthetized with isoflurane gas and beheaded after disappearance of toe-pinch reflex.
The brain was removed and placed in ice-cold cutting solution consisting of (mM): 222 sucrose, 11 D-glucose, 26 NaHCO3, 1
NaH,PO,4, 3 KCI, 7 MgCl,, 0.5 CaCl,, aerated with 95% O,, 5% CO,. The brain was cut in a Leica VT1000S Vibratome. Slices
were allowed to recover for 30 minutes at 37°C in standard artificial cerebrospinal fluid (ACSF, in mM): 124 NaCl, 2.5 KCI, 26 NaHCOs,
1.25 NaH,PO4, 10 D-glucose, 4 sucrose, 2.5 CaCl,, 2 MgCl,, aerated with 95% O,, 5% CO,, and kept at room temperature for at least
40 min until time of recording.
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Electrophysiology

Whole-cell patch-clamp recordings of L2/3 neurons were obtained under visual guidance using infrared DIC video-microscopy
and water-immersion 40x objective, with patch pipettes (3-5 MOhms) pulled from borosilicate capillary glass (Sutter) with a Sutter
puller. TdTomato-expressing parvalbumin-positive inhibitory neurons were targeted under epifluorescence. All electrophysiological
recordings were performed using Multiclamp 700B (Molecular Devices) patch clamp amplifiers and ACSF was maintained at
33-35°C. Signals were filtered at 4 kHz using Bessel filter and digitized at 10 kHz with WinWCP and WInEDR electrophysiology soft-
ware interface for voltage-clamp recordings (Strathclyde). Current clamp recordings were digitized at 15 and Bessel filtered at 6 kHz.
Series/access resistance was monitored in all recordings and compensated in current clamp mode. Recordings were discarded if
series resistance changed significantly (> 20%) or exceeded 25 MOhms. Junction potential was not compensated.

Current-clamp recordings

For intrinsic excitability experiments, the internal pipette solution contained (in mM): 115 KGluc, 20 KClI, 10 HEPES, 10 phosphocre-
atine, 4 ATP-Mg?*, 0.3 GTP-Na* (pH 7.2, 270-290 mOsm); in some recordings, 0.2% biocytin was added to the solution. Patched
pyramidal excitatory neurons were identified and included in the analysis based on their action potential firing characteristics. Resting
membrane potential (V,,) was measured after breaking into the cell (rupturing the patch) and applying zero current. Input resistance
(Rin) was calculated as the slope of the linear fit of the voltage-current plot, generated from a family of negative and positive 500 ms
current injections (—60 pA to +60 pA at 20 pA intervals, for pyramidal cells; —150 pA to +150 pA at 50 pA intervals, for parvalbumin-
positive interneurons). The membrane decay constant () was calculated by fitting a single exponential curve to the current-voltage
plot that resulted from a —20 pA current injection. Cell membrane capacitance (C,,) was given by C,, = 7/R;,. For assessment of
intrinsic excitability, cells were clamped at —70 mV and injected a series of increasing current steps at 50 pA intervals. Action poten-
tial properties were determined from the first action potential elicited by minimum current injection. The spike adaptation ratio was
calculated by dividing the last inter-spike interval to the first inter-spike interval in an action potential train elicited by a 500 ms pulse of
200 pA. All data was analyzed using custom-written MATLAB software. Unless specified otherwise, sample size n was defined as cell
number and all statistical tests were performed based on the number of cells.

Voltage-clamp recordings

Miniature excitatory postsynaptic currents (MEPSCs) were isolated by applying (in mM): 0.5 tetrodotoxin (TTX) and 10 pictrotoxin to
ACSF (described above). Pipette internal solution contained (in mM): 20 KCI, 10 Na-phosphocreatinine, 100 cesium methyl sulfonate,
3 QX-314, 10 HEPES, 4 ATP-Mg?* and 0.3 GTP-Na* (pH 7.2, 270-290 mOsm). Recordings were performed with cells clamped at
—70 mV. Miniature inhibitory postsynaptic currents (mIPSCs) were isolated by applying (in mM): 0.5 tetrodotoxin (TTX), 10 CNQX,
and 50 APV to ACSF. A high-chloride pipette internal solution was used, which contained (in mM): 120 KCI, 10 HEPES, 4 ATP-
Mg?*, 0.3 GTP-Na* and 10 Na-phosphocreatinine (pH 7.2, 270-290 mOsm). Recordings were performed with cells clamped at
—50 mV. Miniature and spontaneous events were recorded for 2 min. MiniAnalysis software (Synaptosoft) was used to automatically
identify synaptic events, based on template parameters. Events were then manually examined to exclude false positives. For voltage
clamp recordings with a cesium-containing electrode, pyramidal cells were targeted based on soma shape and identity was manually
verified based on EPSC decay, where cells with mean ESPC decay time constant < 2 ms were considered to likely inhibitory and
excluded. Events were excluded if the 10%-90% rise time was > 2 ms, as these events were likely recorded from synapses
far from the soma and with poor space clamp. Inter-event intervals (event frequency), amplitude, decay time constant, area,
10%-90% rise time, and half-width, were analyzed and comparisons between groups were analyzed by Student’s t test. Grouped
data are expressed as mean + SEM. Unless specified otherwise, sample size n was defined as cell number and all statistical tests
were performed based on the number of cells.

Evoked Excitatory Postsynaptic Currents

A tungsten concentric bipolar stimulating electrode (WPI) was placed in the white matter to stimulate axon fibers emerging from the
anterior forceps of the corpus callosum, which project onto a whole-cell recorded L2/3 pyramidal neuron in PL-mPFC, voltage-
clamped at —70 mV. Input-output curves were derived by increasing the stimulus duration (0.1 ms increments) and recording current
responses in the recorded postsynaptic neurons. Short-term plasticity was assessed by measuring paired-pulse ratios, calculated as
the peak amplitudes of 10 averaged episodes at various inter-stimulus intervals (25, 50, 100, 500ms). AMPA/NMDA ratios were
measured by voltage-clamping the cells at a holding potential of —70 mV for AMPA currents and +40 mV for NMDA currents.
Peak amplitude current responses were averaged over 10 episodes. Peak NMDA currents were measured after the offset of
AMPA currents (25-30 ms post-stimulus) within the same cell. Data was analyzed manually using WinEDR software and plotted in
MATLAB. Unless specified otherwise, sample size n was defined as cell number and all statistical tests were performed based on
the number of cells.

Laser Scanning Photostimulation (LSPS)

Coronal sections of medial prefrontal cortex were cut 400 um thick with a vibratome (VT1200S, Leica Systems) in sucrose-containing
artificial cerebrospinal fluid (ACSF) (in mM: 85 NaCl, 75 sucrose, 2.5 KClI, 25 glucose, 1.25 NaH2PO4, 4 MgCl2, 0.5 CaCl2, and 24
NaHCQ3). Slices were first incubated in sucrose-containing ACSF for 30 min to 1 h at 32°C, and then transferred to recording
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ACSF (in mM: 126 NaCl, 2.5 KCI, 26 NaHCO3, 2 CaCl2, 2 MgCI2, 1.25 NaH2PO4, and 10 glucose) at room temperature. Throughout
incubation and recording, the slices were continuously bubbled with 95% 02%-5% CO2.

The design of our laser scanning photostimulation system has been described previously(Xu et al., 2010). A laser unit (model 3501,
DPSS Lasers, Santa Clara, CA) was used to generate a 355 nm UV laser for glutamate uncaging. Various laser stimulation positions
were achieved through galvanometer-driven X-Y scanning mirrors (Cambridge Technology, Cambridge, MA), as the mirrors and the
back aperture of the objective were in conjugate planes, thereby translating mirror positions into different scanning locations at the
objective lens focal plane. Data were acquired with a Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA), data acquisition
boards (models PCI MIO 16E-4 and 6713, National Instruments, Austin, TX), and custom-modified version of Ephus software (Ephus,
available at https://www.ephus.org/). Data were low-pass filtered at 2 kHz using a Bessel filter, digitized at 10 kHz, and stored on a
computer.

Cortical slices were visualized with an upright microscope (BW51X, Olympus) with infrared differential interference contrast optics.
Electrophysiological recordings, photostimulation, and imaging of the slice preparations were done in a slice perfusion chamber
mounted on a motorized stage of the microscope at room temperature. An aliquot of MNI-caged-L-glutamate (4-methoxy-7-nitro-
indolinyl-caged L-glutamate, Tocris Bioscience, Ellisville, MO) was added to 20-25 mL of circulating ACSF for a concentration of
0.2 mM caged glutamate. To perform whole cell recording, cells were visualized at high magnification (60 X objective, 0.9 NA;
LUMPIanFI/IR, Olympus). Excitatory neurons were selected based upon their pyramidal somata detected under differential interfer-
ence contrast (DIC) microscopy. For experiments to assess photo-stimulation evoked spiking profiles of excitatory in mPFC (similar
to our published studies(Shi et al., 2010; Xu et al., 2010)), the patch pipettes (4-6 MQ resistance) were filled with an K+ internal so-
lution containing (in mM) 126 K-gluconate, 4 KCI, 10 HEPES, 4 ATP-Mg, 0.3 GTP-Na, and 10 phosphocreatine (pH 7.2, 300 mOsm).
For the photostimulation experiments to map synaptic inputs, we used a Cs+ internal solution containing (in mM) 6 CsCl, 130 CsOH,
130 D-Gluconic acid, 2 MgCI2, 0.2 EGTA, 10 HEPES, 2.5 ATP-Na, 0.5 GTP-Na, and 10 phosphocreatine-Na2 (pH 7.2, 300 mOsm).
Because glutamate uncaging agnostically activates both excitatory and inhibitory neurons, we empirically determined the excitatory
and inhibitory reversal potentials in L2/3 pyramidal cells to properly isolate EPSCs and IPSCs. Whole-cell voltage-clamp recordings
were made from the recorded postsynaptic neurons with LSPS-evoked EPSCs and IPSCs measured at the holding potential of
—70 mV and +5 mV, respectively, across photostimulation sites. The internal solution also contained 0.1% biocytin for cell labeling
and morphological identification. The morphology of recorded pyramidal neuron was determined using post hoc staining with Cy3-
conjugated streptavidin (1:500 dilution; Jackson ImmunoResearch). Once stable whole cell recordings were achieved with good ac-
cess resistance (usually < 30 M(), the microscope objective was switched from 60 X to 4 X ; laser scanning photostimulation (LSPS)
was performed through the 4x objective lens. At low magnification (4 x objective lens, 0.16 NA; UplanApo, Olympus), the slice
images were acquired by a high-resolution digital CCD camera (Retiga 2000, Q-imaging, Austin, TX) and used for guiding and regis-
tering photostimulation sites in cortical slices.

Photostimulation (1.5 ms duration, 15 mW pulses) from a 350 nm UV laser generator (DPSS Lasers, Santa Clara, CA) was delivered
to the sample, controlled via an electro-optical modulator and a mechanical shutter. Focal laser spots approximated a Gaussian
profile with a diameter of ~50-100 um. Under our experimental conditions, LSPS evoked action potentials were recorded from stim-
ulation locations within 100 um of targeted somata of excitatory neurons and occurred within 150 ms post photostimulation. Our cali-
bration analysis indicates that LSPS allows for mapping direct synaptic inputs to recorded neurons. Synaptic currents in patched
neurons were detected under voltage clamp. By systematically surveying synaptic inputs from hundreds of different sites across
a large cortical region, aggregate synaptic input maps were generated for individual neurons. For our mapping experiments, a stan-
dard stimulus grid (16 x 16 stimulation sites, 100 x 60 pm? spacing) was used to tessellate mPFC from pia to white matter. The LSPS
site spacing was empirically determined to capture the smallest predicted distance in which photostimulation differentially activates
adjacent neurons. Glutamate uncaging was delivered sequentially in a nonraster, nonrandom sequence, following a “shifting-X”
pattern designed to avoid revisiting the vicinity of recently stimulated sites.

Photostimulation induces two forms of excitatory responses: (1) those that result from direct activation of the recorded neuron’s
glutamate receptors, and (2) synaptically mediated responses (EPSCs) resulting from the suprathreshold activation of presynaptic
excitatory neurons. Responses that occur within 10 ms of laser pulse onset were considered direct; these responses exhibited a
distinct waveform and occurred immediately after glutamate uncaging. Synaptic currents with such short latencies are not possible
because they would have to occur before the generation of action potentials in photostimulated neurons. Therefore, direct responses
were excluded from local synaptic input analysis, but they were used to assess glutamate mediated excitability/responsiveness of
recorded neurons. At some locations, synaptic responses were overriding on the relatively small direct responses, and these re-
sponses were identified and included in synaptic input analysis. The IPSC input was similarly analyzed as the EPSC input. For
data map analysis, we implemented the approach for detection and extraction of photostimulation-evoked postsynaptic current re-
sponses as previously described(Shi et al., 2010). LSPS evoked EPSCs/IPSCs were quantified across the 16x16 mapping grid for
each cell, and 1-2 individual maps were used per recorded cell. The PSC input from each stimulation site was the measurement
of the sum of individual PSCs within the analysis window (> 10 ms to 160 ms post photostimulation), with the baseline spontaneous
response subtracted from the photostimulation response of the same site. The value was normalized with the duration of the analysis
window (i.e., 150 ms) and expressed as average integrated amplitudes in picoamperes (pA). The analysis window was chosen
because photostimulated neurons fire most of their action potentials during this time. For the color-coded map display, data were
plotted as the average integrated PSCs amplitude per pixel location (stimulation site), with the color scale coding input strength.
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For the group maps obtained across multiple cells, the individual cell maps were first aligned by their slice images using laminar cy-
toarchitectonic landmarks. Then a new map grid was created to re-sample and average input strength at each site location across
cell maps; a smooth version of color-coded map was presented for overall assessments. To further quantitatively compare input
strength across cell groups, we measured the total PSC inputs (total synaptic currents) across all map sites (total synaptic input
strength) for individual cells. The total EPSC/IPSC input strength ratios were also measured for the cells when both EPSC and
IPSC data were available from the same cells.

As virtually all Layer 1 neurons are inhibitory cells, and pyramidal neurons with apical dendritic tufts in layer 1 could fire action po-
tentials when their tufts were stimulated in layer 1(Dantzker and Callaway, 2000), EPSCs detected after photostimulation in layer 1
were not included for analyses. However, because layer 1 neurons can provide inhibition to layer 2/3 neurons, we did analyze IPSCs
detected after photostimulation in layer 1. All data are reported as mean + standard error of the mean (SEM). When comparing two
independent groups, a Wilcoxon rank sum test was used. Unless specified otherwise, sample size n was defined as cell number. AP
value (<0.05) was considered statistically significant.

Immunohistochemistry

For assessment of dendritic morphology and complexity, cells were filled during electrophysiological recordings via passive diffusion
of internal pipette solution containing 0.2% biocytin. After recording for at least 10 min, slices were transferred to a 4% PFA solution
for overnight fixation, washed for 10 min (x3) in 0.1 M phosphate buffered saline (PBS), blocked with 10% normal goat serum (NGS)
containing 0.3% Triton-X in 0.1 M PBS for 1.5 hr, and incubated overnight with an Alexa 555 or Alexa 488-conjugated Streptavidin
antibody (1:500, Invitrogen) in 0.1M PBS. Sections were finally washed 3x 10 min in 0.1M PBS and mounted on slides using DAPI
Fluoromount-G (Invitrogen) for visualization. We assessed dendritic complexity of biocytin-filled cells by imaging at 20X magnifica-
tion in an LSM 520 confocal microscope. Z stacks of optical sections (1 um) were compiled and images were processed in Neuro-
lucida 10 (MFB Biosciences) for Sholl analysis.

For quantification of spine density, Cntnap2 WT and KO mice were crossed with a Thy1-GFP mouse line, which sparsely labels
pyramidal neurons, including their dendritic projections and spines. Mice were perfused intracardially with 25 mL 0.1 M PBS, followed
by 25 mL of 4% PFA in 0.1 M PBS (at 2 mL/min). The brains were dissected and fixed for at least 24 hr in the same solution. Brains
were then sectioned at a thickness of 100 um, using a Leica vibratome. Sections containing the mPFC were mounted in slides using
DAPI Fluoromount-G media. Apical and basal dendrites of GFP-expressing L2/3 mPFC neurons were imaged at high resolution using
a 63X oil magnification objective on an LSM 520 confocal microscope (Zeiss). Optical sections of 0.32 um were acquired and
maximum intensity projections of dendritic arbors were created in ImagedJ (NIH). Dendritic segments were chosen using consistent
criteria and spines were manually counted. Dendritic spine density was calculated by dividing the total number of spines over a given
length of dendrite (spines/um). Student’s t test was performed for statistical comparison between WT and KO mice.

For quantification of the density of parvalbumin-positive neurons in prelimbic cortex, wild-type and CNTNAP2 knockout mice were
deeply anesthetized with 4% isoflurane and intracardially perfused with 4% paraformaldehyde 0.1M phosphate-buffered saline
(freshly diluted from 32% stock, Electron Microscopy Sciences). Brains were subsequently removed and incubated in 0.1M phos-
phate-buffered solution containing 30% sucrose at 4°C for up to 2 days. Brains were then embedded in optimal cutting temperature
solution (TissueTech) at —80°C, and cryosectioned at 50 um thickness. Sections containing the prelimbic cortex were selected for
immunostaining with mouse monoclonal anti-parvalbumin antibody (1:200, Sigma, P3088) and goat anti-mouse Alexa 488 secondary
antibody (1:500). Confocal images were obtained at 10x magnification using a Zeiss 880 laser-scanning confocal microscope and
analyzed using ImageJ (NIH). To establish counts, outlines over the prelimbic cortex were drawn with references to The Allen Mouse
Brain Atlas (Allen Institute, http://mouse.brain-map.org/) then the number of parvalbumin-positive cells was quantified by hand by a
blinded experimenter. Counts for each section were normalized to the size of selected area. Statistical comparisons were performed
using Student’s t test with Prism 7 (Graphpad), where p values less than 0.05 were considered to be statistically significant.

Cell density measurements

The density of neurons in the prelimbic medial prefrontal cortex was quantified at the light microscopic level (Leica DM750) in tolu-
idine blue-stained semithin sections (~300nm thin). Unbiased counting frames of known area (40.000 pm?) were superimposed on
fields of these sections within the Layers 2/3 pyramidal cell layer using random sampling. The counting units were neuronal nuclei,
and they were counted only if these did not contact the two exclusion lines of the counting frame. Within the frame, neuronal nuclei
were counted. Cells with obvious glial characteristics were excluded from the analysis. Four sections were quantified per block in
order to determine neuronal density in each animal. Our aim was not to make stereologically-rigorous estimates of the absolute
values; instead we wanted to determine whether there are significant differences in neuronal density between WT and the CNTNAP2
KO animals.

Tissue preparation and electron microscopy

Animals from KO and WT groups (n = 3, respectively) were processed. Mice were deeply anesthetized with isoflurane were perfused
transcardially with a mixture of 2% paraformaldehyde (PFA) and 2% glutaraldehyde in 0.1 M phosphate buffer (PB, pH 7.4). Brains
were removed and post-fixed overnight at 4°C. 70 um thick sections were cut with a Leica vibratome. Free-floating sections for elec-
tron microscopy were post-fixed with 1% OsO,, dehydrated in ascending ethanol series and embedded in epoxy resin (Durcupan;
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Sigma, Germany) within Aclar sheets (EMS, Hatfield, PA, USA). Uniform rectangular samples were cut from the prelimbic medial pre-
frontal cortices (mMPFC, approx 1.98-1.94 AP, 3-3.75 DV, 0.25- 0.50 ML position) under a Leica S6E dissecting microscope, and
mounted on plastic blocks. 60 nm ultrathin sections were cut on a Reichert ultramicrotome, mounted on 300 mesh copper grids,
contrasted with lead citrate (Ultrostain Il, Leica) and examined with a JEM-1011 transmission electron microscope (JEOL, Tokyo,
Japan) equipped with a Mega-View-lll digital camera and a Soft Imaging System (SIS, Munster, Germany) for the acquisition of
the electron micrographs. Five to ten sections were analyzed per block, and two blocks per animal were used to collect micrographs.
Sample areas (at least 50 pm? per animal) were chosen in a pseudo-random fashion and photographed at a uniform magnification.
Postsynaptic dendritic spines, axonal boutons, multi-synaptic boutons (MSB; a single presynaptic bouton that forms separate syn-
apses with multiple spine heads) were identified on electron micrographs. Spine profile area were measured using the engine pro-
vided by NIH Imaged v1.51j8 (Schneider et al., 2012); data were compiled using Excel (Microsoft) and Kaleidagraph (Synergy Soft-
ware, Reading, PA, USA) software. The means and the effects of the loss of the Cntnap2 gene was determined by Wilcoxon rank sum
test, with a p < 0.05 considered statistically significant. Data collection and quantification was performed blindly, to eliminate bias. We
performed electron microscopy using random sampling from single sections to optimize sample size and to detect changes in syn-
aptic features associated with loss of Cntnap2 in KO mice, compared to WT.

Surgery, behavioral habituation, and in vivo electrophysiology

Adult male and female Cntnap2 mutant and wild-type mice (2-5 months old) underwent an initial surgery forimplantation of a stainless
steel head restraint bar on their skull in preparation for in vivo electrophysiological recordings. All surgical procedures were performed
under isoflurane anesthesia (3%-5% induction, 1.5% maintenance) in a stereotaxic apparatus. Mouse body temperature was moni-
tored and kept at 37°C during surgery using a Harvard Apparatus feedback-controlled heating pad and were administered an sub-
cutaneous injection of carprofen (5 mg/kg of body weight) for systemic analgesia. Mice were allowed to recover for 5 days, during
which they were given antibiotic treatment (amoxicillin, 0.25 mg/mL in drinking water). After the recovery period, mice were habitu-
ated for at least three days for each of the following stages: human handling (5 min), headbar attachment (10 min), and head fixation
on a spherical treadmill (10 min). The treadmill consisted of an 8-inch Styrofoam ball (Graham Sweet), tethered with a metal rod
through the middle allowing only one axis of rotation. Air was blown, allowing the ball to float and the mouse to spin the ball and
run in place and on top of it (Polack et al., 2013). After habituation, and one day prior to electrophysiological recordings, the mouse
received a craniotomy above the medial prefrontal cortex on the right hemisphere (anterior 1.8 mm, lateral 0.5 mm to Bregma). The
dura above the exposed brain area was carefully removed in order to facilitate electrode insertion. The exposed skull and brain were
covered and sealed with a silicone elastomer sealant (Kwik-Sil, WPI). An additional craniotomy was performed over the posterior cer-
ebellum for placement of a silver chloride electrical reference wire, which was glued into place with dental cement. The mouse was
allowed to recover overnight. Mice were given a dose of carprofen on day of recording, to ameliorate any pain associated with the
craniotomy surgery.

On the day of the recording, the mouse was head-fixed atop the spherical treadmill, the Kwik-Sil was removed and cortex buffer
(135 mM NaCl, 5 mM KCI, 5 mM HEPES, 1.8 mM CaCl, and 1 mM MgCl,) was immediately placed on top of the craniotomy in order to
keep the exposed brain moist. The mouse skull was then stereotaxically aligned and the silicon microprobe coated with a fluorescent
dye (Dil, Invitrogen), was stereotaxically lowered using a micromanipulator into the mPFC (relative to bregma: anterior 1.8 mm, lateral
0.5 mm, ventral 2.5 mm). This process was monitored using a surgical microscope (Zeiss STEMI 2000). The microprobes contained a
total of 128 electrode recording sites that were densely distributed (hexagonal array geometry with 25 mm vertical spacing and 16-
20 mm horizontal spacing) on two prongs (placed 0.4 mm apart), spanning L2/3 and L5 of the prelimbic (PL) and infralimbic (IL) medial
prefrontal cortex. Only data from L2/3 prelimbic cortex was used. Once inserted, the probe was allowed to settle among the brain
tissue for 1 hr. Recording of brain network activity was done for a total duration of 1 hr after that.

Data acquisition was performed using custom fabricated silicon probes and recorded with LabView Software (Du et al., 2011).
Readout was achieved via a custom-built 128-channel detachable head stage module. Head stages contained commercial inte-
grated electronic circuits (Intan Technologies RHA-2164B)(Harrison and Charles, 2003) providing signal multiplexing (32 electrodes
per multiplexed output wire), amplification (gain 200), and filtering (0.1- 6500 Hz) functions. The head stage contained two 64-pin
connectors (Molex, Slimstack 502426-6410) connecting to custom printed circuit boards wire bonded to the silicon microprobes.
Analog signals were transmitted through thin flexible cables and subsequently digitized on 16-bit analog-to-digital conversion
(ADC) cards (USB-6356, National Instruments). Multiplexed signals were recorded at 800 kHz and de-multiplexed with recording
software into a sampling rate of 25 kHz per channel. All ADC cards were synchronized via a shared internal clock. All data acquisition,
as well as control of stimulus timing, was performed with custom LabVIEW scripts. All data analysis was carried out with custom
MATLAB scripts (Shobe et al., 2015).

After the recording session, mice were anaesthetized with isoflurane and sacrificed. The brain was extracted, sectioned (100 um)
on a Vibratome (Leica) and mounted on slides with DAPI Fluoromount-G (SouthernBiotech) mounting media. Confocal tiled images
were taken to verify microprobe location (Zeiss LSM 800). Anatomical landmarks were used to determine anterior-posterior coordi-
nates relative to bregma. Each of the 128 recording sites was then assigned an approximate coordinate in 3D Cartesian space and
classified as belonging to prelimbic (PL) or infralimbic (IL) prefrontal cortex (Allen Brain Atlas).
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Motion detection

Mouse treadmill rotation was recorded as an analog signal, using a custom printed circuit board based on a high sensitivity gaming
mouse sensor (Avago ADNS-9500) connected to a microcontroller (Atmel Atmega328). The signal was initially recorded along with
electrophysiology at 25 kHz, then down-sampled to 1 kHz, its sample mode value was subtracted, it was turned to absolute values
and was smoothed by lowpass filtering < 1 Hz with a first order Butterworth filter. For one set of animals (n = 6) motion was detected
when the smoothed treadmill motion-signal exceeded 0.8 x mean of recording and immobility was assumed when it dropped below
0.005 (a.u). For a second set (n = 7) these thresholds were changed to 2 x mean and 0.016 respectively due to increased recording
noise. Motion segments shorter than 0.5 s long were discarded, and consecutive segments closer than 0.5 s were concatenated. This
processed signal was treated as a proxy of velocity. Distance traveled on the ball per motion segment (motion bout) was approxi-
mated as the velocity integral over each segment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Local Field Potential Analysis

To compare LFP bandpower, LFP recordings from the channel located closest to L2/3 were selected for each animal. LFPs were
down-sampled to 1 kHz and all data points corresponding to either motion or immobility segments were concatenated. Bandpower
over all frequency ranges (delta: 1-4 Hz, theta: 5-8 Hz, beta: 12-30 Hz, slow gamma: 30-55 Hz, fast gamma: 80-110 Hz) was
computed using a periodogram with a Hamming window.

In vivo Unit Clustering and Analysis

Single units were isolated using custom spike-detection scripts and PyClust software. Raw data was initially background subtracted,
bandpass filtered from 600-6500 Hz, and grouped into channel sets of neighboring electrodes for clustering. For each channel set,
putative spikes were detected as any deviation greater than 4 standard deviations from the mean. The features of each spike were
calculated (peak amplitude, valley, and trough, principle components) and individual clusters were isolated by outlining boundaries
on each projection. Each unit was visually inspected and units that drifted outside recorded channels or were lost during the
recording were eliminated. For each clustered unit, all peri-spike extracellular waveforms were collected from the channel that
yielded the largest spike amplitude and were bandpass filtered at 600 - 6000 Hz with a first order Butterworth filter. The amplitudes
and time-points of each unit’s mean waveform peak and trough were computed, together with the unit’s mean firing rate and burst
index (percentage of consecutive spikes closer than 20 ms). Waveforms from identified units were visually inspected and units with
low-quality individual and average waveforms were not included in the analysis (n = 25 rejected units).

To cluster units into broad and narrow spiking, the (i) peak-trough time distance, (ii) peak-trough amplitude ratio and (jii) burst index
of all units of all animals were pooled together and z-scored. Principal component analysis was performed on the three variables and
the scores from all three principal components were split into two clusters using k-means with squared Euclidean distance measure
and 100 clustering repeats. This method yielded two well separated clusters with one containing ~20% of all units with smaller peak-
trough distances and ratios and higher burst indexes compared to the other cluster. Units in that cluster are referred to as ‘narrow-
spiking’ whereas those in the opposite cluster as ‘wide-spiking’.

Motion-related firing rates and inter-spike intervals were computed by time-binning each motion bout separately. Their average
value and SD were computed after concatenating over all motion segments. Fano-factors were computed as mean/SD of firing rates
using 100 ms non-overlapping time bins. Burst indexes were computed by concatenating spike times during motion or immobility
accordingly and computing, for each unit, the percentage of consecutive spikes closer than 20 ms. Zero-lag Pearson correlations
between firing rates of WS, NS or WS-NS pairs of units were computed per animal. Units with less than 200 spikes were excluded
from correlation analysis.

Spike phases of each unit were computed using the LFP recording of the channel yielding the largest spike amplitude for that unit.
LFPs were down-sampled at 1 kHz and bandpass filtered over the corresponding oscillation frequency range using a Butterworth
bandpass filter matching the passband exactly. The phase of each spike was computed as the angle of the filtered LFP’s Hilbert
transform at the spike peak. For producing preferred phase distributions of wide or narrow spiking units, only units with > 200 spikes
over all motion, or immobility segments accordingly, and with significant phase locking at the corresponding frequency range
(Rayleigh test, p value < 0.05, Bonferroni corrected over all WS or NS units accordingly) were included. Unless specified otherwise,
sample size n was defined as cell number and all statistical tests were performed based on the number of cells.

DATA AND SOFTWARE AVAILABILITY
All data generated in the paper will be available upon request from the Lead Contact, Peyman Golshani, pgolshani@mednet.ucla.edu.

MATLAB code used for all in-vivo electrophysiology analysis have been deposited in Github at https://github.com/jtaxidis/
Lazaro-et-al.-Cell-Reports-2019/tree/master.
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Supplementary Fig. 1 | Example cortical input map data for Cntnap2 WT and KO L2/3
mPFC excitatory neurons. Related to Figure 1. a,h, Differential interference contrast (DIC)
image of mPFC, superimposed with photostimulation sites (cyan dots), spaced at 100 um x 60
um, for WT and KO mice. The tip of the patch pipette (recording electrode) and the cell body
location of a recorded L2/3 neuron is indicated by a red circle. b,¢,i,j, Photostimulation-evoked
response traces plotted according to their corresponding photostimulation sites, as shown in a,h.
Traces depict currents recorded 250 ms after stimulation (1.5 ms, 15 mW) onset. Cells were
voltage-clamped at —70 mV to detect inward excitatory postsynaptic currents (EPSCs), depicted
in b and i, and at +5 mV to detect inhibitory postsynaptic currents (IPSCs), depicted in ¢ and j.
Excitatory d,k and inhibitory f,m input maps of average integrated stimulation responses for
datasets shown in b,i and ¢,j, respectively. Somatic location of the recorded neuron is
represented by a white triangle. e,l and g,n show enlarged insets of selected responses in b,i and
¢,j, respectively. Green overlays mark over-riding synaptic responses. Average input amplitudes
were calculated as mean integrated amplitudes of EPSCs or IPSCs elicited within the 250 ms
post-stimulus onset time-frame. White scale bars represent 250 pum.



Supplementary Fig. 2
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Supplementary Fig. 2 | Intrinsic excitability of L2/3 pyramidal neurons and parvalbumin-
positive (PV+) inhibitory neurons in Cntnap2 WT and KO mice. Related to Figure 1. a,d,
Representative action potential traces from L2/3 WT and KO pyramidal and PV+ neurons,
showing responses to various current injections and b,e, corresponding average action potential
waveforms. ¢,f, Input-output curves showing average number of action potentials elicited by
increasing current injections for pyramidal neurons (WT n = 28 cells, KO n =21 cells; P =
0.7057, 2way ANOVA) and PV+ inhibitory neurons (WT n = 27 cells, KO n =42 cells; P =
0.2993). Data obtained from current-clamp recordings of neuronal spikes elicited by stimulating
with 50 pA step increments, cells clamped at -70mV.



Supplementary Table 1

Passive Membrane Properties

Pyramidal Neurons PV Inhibitory Neurons
Parameters WT KO WT KO
RMP (mV) -73.2+2.0 -68.7+£2.3 -80.6 +1.2 -78.0+0.8
Rin (mMOhms) 1741 £18.7 173.5+21.7 93.2+6.3 85.1+4.2
Cm (pF) 96.1 + 8.1 106.8 +12.3 69.8 +4.2 80.5+4.5
Tau (ms) 14.7+1.0 16.6 £ 0.9 6.2+0.2 6.4+0.2
Action Potential Features

Pyramidal Neurons PV Inhibitory Neurons
Parameters WT KO WT KO
Amplitude (mV) 849+17 82.1+£1.9 62.0+2.3 64.5+1.7
Half-width (ms) 1.0+ 0.1 1.1+£0.1 0.3+0.0 0.3+0.0
AHP Amplitude (mV) -45+£1.2 -4.0+£1.7 -24.0+0.7 -22.1+0.6
Peak to AHP (ms) 38105 3.1+£0.5 0.8+0.1 0.8+0.0
Threshold (mV) -39.3+1.0 -37.0+£0.9 -39.7+1.0 -41.0+£0.9

Table S1: Passive membrane properties and action potential features of WT and KO
pyramidal and PV inhibitory neurons. Related to Figure 1.
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Supplementary Fig. 3 | In Cntnap2 KO mice, no significant alterations in PV+ inhibitory
neuron mPSCs but increased stimulus response latency in L2/3 pyramidal neurons. Related
to Figure 2. a-c, Frequency (WT 4.5 + 0.8 Hz, KO 4.3 + 0.5 Hz; P = 0.9901, Unpaired t test) and
amplitude (WT, 24.5 + 0.9 pA, KO 24.6 pA + 1.0; P = 0.5970, Wilcoxon test) of mEPSCs (WT
n=17,KO n=15) and d-f, frequency (WT 4.7 + 0.5 Hz, KO 3.6 + 0.4 Hz; P = 0.4074,
Wilcoxon test) and amplitude (WT 36.0 + 1.9 pA, KO 37.6 + 2.5 pA; P = 0.8238, Wilcoxon test)
of mIPSCs (WT n =28, KO n = 25) recorded from parvalbumin-positive (PV) inhibitory neurons
are not statistically different between Cntnap2 KO and WT mice. Distribution of data is
represented as box and whiskers plots with mean + SEM. g, Monopolar tungsten electrode was
used to stimulate long-range axons (purple), which extend from the anterior forceps of the corpus
callosum and project onto a patched excitatory neuron in L2/3 mPFC. h, Stimulus response onset
for L2/3 pyramidal neurons in WT (3.03 + 0.19 ms; n = 10 cells) and KO (3.77 + 0.28 ms; n = 13
cells) mice shows an increase in evoked AMPA current response latency from time stimulus
onset (*P = (0.0438, Wilcoxon test).
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Supplementary Fig. 4. | Cntnap2 KO mice exhibit unaltered L2/3 neuronal cell density and
PV+ neuron density but reduced asymmetric (excitatory) and symmetric (inhibitory)
synapse density in L1 of prelimbic mPFC. Related to Figure 3. a. Prelimbic mPFC L2/3
neuronal density as measured by counting nuclei in n=52 (WT) and n=45 (KO) toluidine blue
stained thin sections from n=3 (WT) and n=3 (KO) mice (p=0.36). b, Prelimbic PV" neuron
density as measured by counting immuno-labeled PV* neurons in n=6 (WT) and n=8 (KO)
sections from n=4 (WT) and n=4 (KO) mice (p=0.23). ¢-d, Graphs showing quantification of
asymmetric (putative excitatory: WT 38.26 + 1.14 synapses/100 um?, n = 52 fields; KO 34.63 +
0.98 synapses/100 pm?, n = 45 fields; 3 mice per genotype; *P= 0.019, unpaired t-test) and
symmetric synapses (putative inhibitory: WT 12.33 + 0.52 synapses/100 um?, n = 52 fields; KO
8.91 + 0.58 synapses/100 um?, n = 44 fields; ****P < 0.0001, unpaired t-test).
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Supplementary Fig. 5 | Comparison of locomotion features and spiking characteristics
during both locomotion and immobility between WT and KO single units. Related to Figure
4. a, Frequency of motion bouts per animal. b, Mean duration per bout. ¢, Percentage time spent
in locomotion. d, Mean velocity per motion bout. e, Mean distance traveled per bout (velocity
integral). f, Mean velocity per bout during motion initiation and termination. All differences are
non-significant (P > 0.05; Two-sample t-test, except for panel F, where Wilcoxon test was
applied for timesteps where distributions were non-normal by Lilliefors goodness of fit test). g,
Left column: Wide-spiking units. Right: Narrow-spiking units. Each panel depicts distributions
over all WT (blue) and KO (red) unit spiking during locomotion. Lines: Means of corresponding
distributions. From top: Firing rate Fano factors (spiking variability), inter-spike intervals and
burst indexes. Asterisks: P < 0.05, Wilcoxon test, Bonferroni corrected over the two cell types
for each measure). Comparing median values yielded similar results (not shown). h, Same as g
for immobility segments.
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Supplemental Figure 6 | Phase-locking strength and preferred phases of WS and NS units
for higher frequency oscillations during locomotion and immobility. Related to Figure 5. a-
b. Distributions and corresponding histograms of strength of phase-locking (mean vector length)
versus preferred phases of pooled WS units (a) and NS units (b) from WT (blue) and KO mice
(red). Plotted similarly to Figure 5c. Dashed lines and open rectangles indicate phase means of
distributions that are not significantly non-uniform (P > 0.05; Rayleigh test for non-uniformity).
c-d. Same as Figure 5d for all segments of immobility. Both WS and NS units from KO animals
exhibit an overall weaker phase locking than those of WT animals (significant mostly in NS
units and particularly in higher frequencies).
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Supplemental Figure 7 | Comparison of firing rate correlations between pairs of WT and
KO single units during locomotion and immobility. Related to Figure 5. a, Firing rate
correlations between pairs of wide-spiking units (left), narrow-spiking units (middle) and wide-
narrow spiking unit pairs (right) plotted similarly to Figure 5Se. From top: Firing rates per unit
pair, computed for locomotion segments over non-overlapping time bins of length: 100ms, 50ms,
25ms, 10ms. Only units with >200 spikes during all motion segments were included. Asterisks: P
< 0.05, Wilcoxon test, Bonferroni corrected over the 3 unit-type combinations. b, Same as a for
immobility segments.
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Supplementary Table 2

Mean number of cells included in phase modulation analysis during locomotion

Wide-spiking units Narrow-spiking units
Frequency WT KO P-value WT KO P-value
1-4Hz 0.274 337+2382 5.8+4.97
(Delta) 10.87+£10.19 6+4.95 (Wile. test) 0.292 (t-test)
5-11Hz 0.192 0.424
(Theta) 7.25+7.78 3+283 (Wilc. test) 2.75+2.87 42+3.11 (Wilc. test)
12 -30 Hz 0.170
(Beta) 5+8.25 1.4+2.07 0.926 (t-test) 225+2.25 0.8+ 1.30 (Wilc. test)
30-55Hz ), 4oy 0.2 +0.45 0.718 (t-test) 1.12+1.55 0.2 +0.45 0.391 (t-test)
(Slow gamma)
80100 1 +2.45 0+0 0.718 (t-test) 0.62 + 1.06 0+0 0.391 (t-test)

(Fast gamma)

Mean number of cells included in phase modulation analysis during immobility

Wide-spiking units Narrow-spiking units
Frequency WT KO P-value WT KO P-value
1-4Hz 18.62+3.33  18+9.03 0.340 (t-test) 4.75+2.81 6+5.79 0.670
(Delta) ' : ' ' ' ' : (Wilc. test)
5-11Hz 0.635
(Theta) 17.12+2.75 16.6 £9.127 0.603 (t-test) 45+251 5.8+ 5.40 (Wilc. test)
12 -30 Hz 0.832 0.663
(Beta) 13.87+7.38 13+£6.78 (Wile. test) 437 +2.44 5.6+5.59 (Wile. test)
30 -55Hz 0.996 0.516
(Slow gamma) 1262904 1265698 (Wile. test) 437+2.56 6.2 +5.49 (Wile. test)
80100 8.37+7.03 8.8+3.70 0.381 (t-test) 3.12+1.96 5.2+5.26 0.439

(Fast gamma) (Wilc. test)

Mean number of cells included in correlation analysis

Wide-spiking units Narrow-spiking units
WT KO P-value WT KO P-value
. 0.336 0.572
Locomotion 10.75+11.44 5.8+6.26 (Wilc. test) 3+2.83 4.4+4.72 (Wilc. test)
Immobility 20.12+7 19.2 £9.88 0.923 (t-test) 4.5+2.45 5.6 541 Lews

(Wilc. test)

Table S2: Mean number of cells included in phase modulation analysis and correlation
analysis. Related to Figure 5.
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