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ABSTRACT

We provide methods for in-database support of decision mak-
ing under uncertainty. Many important decision problems
correspond to selecting a package (bag of tuples in a rela-
tional database) that jointly satisfy a set of constraints while
minimizing some overall cost function; in most real-world
problems, the data is uncertain. We provide methods for
specifying—via a SQL extension—and processing stochastic
package queries (SPQs), in order to solve optimization prob-
lems over uncertain data, right where the data resides. Prior
work in stochastic programming uses Monte Carlo meth-
ods where the original stochastic optimization problem is
approximated by a large deterministic optimization problem
that incorporates many scenarios, i.e., sample realizations of
the uncertain data values. For large database tables, how-
ever, a huge number of scenarios is required, leading to poor
performance and, often, failure of the solver software. We
therefore provide a novel SummarySearch algorithm that,
instead of trying to solve a large deterministic problem, seam-
lessly approximates it via a sequence of smaller problems
defined over carefully crafted summaries of the scenarios
that accelerate convergence to a feasible and near-optimal
solution. Experimental results on our prototype system show
that SummarySearch can be orders of magnitude faster than
prior methods at finding feasible and high-quality packages.
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1 INTRODUCTION

Constrained optimization is central to decision making over
a broad range of domains, including finance [23, 27], trans-
portation [12], healthcare [20], the travel industry [14], ro-
botics [18], and engineering [2]. Consider, for example, the
following very common investment problem.

Example 1 (Financial Portfolio). Given uncertain pre-
dictions for future stock prices based on financial models de-
rived from historical data, an investor wants to invest $1, 000
in a set of trades (decisions on which stocks to buy and when to
sell them) that will maximize the expected future gain, while
ensuring that the loss (if any) will be lower than $10 with
probability at least 95%.

Suppose each row in a table contains a possible stock trade
an investor can make: whether to buy one share of a certain
stock, and when to sell it back, as shown in the left-hand
side of Figure 1. The investor wants a “package” of trades—a
subset of the input table, with possible repetitions (i.e., mul-
tiple shares)—that is feasible, in that it satisfies the given
constraints (total price at most $1,000 and loss lower than
$10 with probability at least 95%), and optimal, in that it
maximizes an objective (expected future gain). Although the
current price of a stock is known—i.e., price is a deterministic
attribute—its future price, and thus the gain obtained after
reselling the stock, is unknown. In the input table, Gain is a
stochastic attribute. If the future gains were known, Exam-
ple 1 would be a “package query” [3, 4], directly solvable
as an Integer Linear Program (ILP) using off-the-shelf linear
solvers such as IBM CPLEX [24], and declaratively express-
ible in the Package Query Language (PaQL). Because Gain
is stochastic, the investor is solving a stochastic ILP instead.
In this paper, we introduce stochastic package queries (SPQs),
a generalization of package queries that allows uncertainty
in the data, thereby allowing specification and solution of
stochastic ILP problems.
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Stock_Investments (Table)
id stock price sell_in Gain

1 AAPL 234 1 day ?
2 AAPL 234 1 week ?
3 MSFT 140 1 day ?
4 MSFT 140 1 week ?
5 TSLA 258 1 day ?
6 TSLA 258 1 week ?

Stochastic Package Query (sPaQL)

SELECT PACKAGE(∗) AS Portfolio
FROM Stock_Investments
SUCH THAT
SUM(price) ≤ 1000 AND
SUM(Gain) ≥ −10WITH PROBABILITY ≥ 0.95

MAXIMIZE EXPECTED SUM(Gain)

Portfolio (Package)
id stock price sell_in Gain

3 MSFT 140 1 day ?
3 MSFT 140 1 day ?
6 TSLA 258 1 week ?

“Buy 2 MSFT shares, sell them tomorrow.
Buy 1 TSLA share, sell it in 1 week”.

Figure 1: Example input table for the Financial Portfolio (left), its stochastic package query expression in sPaQL

(center), and an example output package (right) with a description of its meaning for the investor. Stochastic

attributes (Gain, in this example) are denoted in small caps and their values are unknown (shown by a question

mark). Sample realizations of the uncertain ? values are generated by calls to VG functions.

We first introduce a simple language extension to PaQL,
called sPaQL, that allows easy specification of package
queries with stochastic constraints and objectives. We show
the sPaQL query for Example 1 in Figure 1. The result of
the query, on the right-hand side of the figure, is a package
that informs the investor about how many trades to buy for
each individual stock, and when to plan reselling them to
the stock market.

Probabilistic databases [13, 39] enable the representation
of random variables in a database. The Financial Portfo-
lio, like many other real-world applications, typically uses
complex distributions to model uncertainty. For instance,
future stock prices are sometimes forecast using lognormal
variates based on “geometric Brownian motion” [35] using
historical stock price data; alternatively, forecasts can incor-
porate complex stochastic predictive simulation or machine
learning models. For this reason, we base SPQs on the Monte
Carlo probabilistic data model [25, 26], which offers support
for arbitrary distributions via user-defined variable genera-
tion (VG) functions. To generate a sample realization of the
random variables in a database, the system calls the appropri-
ate VG functions. Whereas existing probabilistic databases
excel at supporting SQL-like queries under uncertainty, they
do not support package-level optimization, and therefore
cannot answer SPQs. PackageBuilder [3, 4], on the other
hand, only supports deterministic package queries and their
translation into deterministic ILPs.
The state of the art in solving stochastic ILPs (SILPs) has

been developed outside of the database setting, in the field
of stochastic programming (SP) [1, 10, 22]. SP techniques ap-
proximate the given SILP by a large deterministic ILP (DILP)
that simultaneously incorporates multiple scenarios. In a
Monte Carlo database, a scenario is obtained by generating
a realization of every random variable in the table, via a
call to each associated VG function; this procedure may be
repeated multiple times, generating a set of scenarios that
are mutually independent and identically distributed (iid).
Figure 2 shows an example of three possible scenarios for

the input investment table for Example 1. Roughly speak-
ing, expectations in the SILP are approximated by averages
over the scenarios and probabilities by relative frequencies
to form the DILP, which is then fed to a standard solver
(e.g., CPLEX). The obtained solution approximates the true
optimal solution for the SILP; the more scenarios, the better
the approximation.
The solution of the DILP, however, may not be feasible

with respect to the original SILP, especially if the approxima-
tion is based on only a small number of scenarios that do not
well represent the true uncertainty distribution. For exam-
ple, a financial package obtained by using too few scenarios
might guarantee a loss less than $10 with a probability of
only 65%, rather then 95%, incurring more risk than desired.
There is no practical way to know how many scenarios

will be needed a priori; existing theoretical a-priori bounds—
see, e.g., [31]—are usually too conservative to be usable when
table sizes are large. For example, if the Stock_Investments
table contains N = 50,000 rows, then to guarantee that
the DILP solution is feasible for the SILP with merely 0.1%
probability (which is really no guarantee at all), one would
need 690,000 scenarios, resulting in a DILP with 34.5 billion
coefficients! SP solutions must therefore be “validated” a
posteriori, using a much larger, and out-of-sample, set of
scenarios. In Example 1, for instance, we would generate,
say, 106 scenarios and verify that the loss is less than $10
in at least 95% of them; such validation is much faster than
solving a DILP with 106 scenarios.
The state-of-the-art algorithm thus works in a loop: the

optimization phase creates scenarios, combines them into
a DILP, and computes a solution; the validation phase vali-
dates the solution against the out-of-sample scenarios. If the
solution is feasible on the validation scenarios (validation-
feasible), the algorithm terminates, otherwise it creates more
scenarios and repeats. A solution that is validation-feasible
is highly likely to be truly feasible for the original SILP. Typ-
ically the ultimate number of scenarios used to compute
the optimal solution to the DILP is astronomically smaller



Scenario 1
id . . . gain

1 . . . 0.1
2 . . . 0.05
3 . . . -0.2
4 . . . 0.2
5 . . . 0.1
6 . . . -0.7

Scenario 2
id . . . gain

1 . . . -0.2
2 . . . -0.03
3 . . . 0.5
4 . . . 0.7
5 . . . -0.7
6 . . . -0.001

Scenario 3
id . . . gain

1 . . . 0.01
2 . . . 0.02
3 . . . -0.1
4 . . . -0.3
5 . . . 0.2
6 . . . 0.3

Figure 2: Three example scenarios for the

Stock_Investments table, each showing only the ids and

specific realizations for the stochastic attribute Gain.

than the number prescribed by the conservative theoreti-
cal bounds (though it is still large enough to be extremely
computationally challenging).

Unfortunately, this process often breaks down in practice.
Uncertainty increases with increasing table size, and large
tables typically need a huge number of scenarios to achieve
feasibility. Thus the validation phase repeatedly fails, and the
scenario set—and hence the DILP—grows larger and larger
until the solver is overwhelmed. Even if the solver can ul-
timately handle the problem, many ever-slower iterations
may be required until validation-feasible solutions are found,
resulting in poor performance.
In this paper, we present an end-to-end system for SPQs,

seamlessly connecting SILP optimization with data manage-
ment and stochastic predictive modeling. Thus tasks related
to efficiently storing data, maintaining consistency, control-
ling access, and efficiently retrieving and preparing the data
for analysis can leverage the full power of a DBMS, while
avoiding the usual slow, cumbersome, and error-prone ana-
lytics workflowwhere we read a dataset off of a database into
main memory, feed it to stochastic-prediction and optimiza-
tion packages, and store the results back into the database.
We first introduce a Naïve query evaluation algorithm,

which embodies the state-of-the-art optimization/validation
technique outlined above, and thoroughly discuss its draw-
backs. (Although the Naïve technique is mentioned in the
SP literature, to our knowledge this is the first systematic im-
plementation of the approach.) We then introduce our new
algorithm, SummarySearch, that is typically faster than
Naïve by orders of magnitude and can handle problems that
cause Naïve to fail.
Our key observation is that the randomly selected set of

scenarios used to form the DILP during an iteration of Naïve
tend to be overly “optimistic”, leading the solver towards a
seemingly good solution that “in reality”—i.e., when tested
against the validation scenarios—turns out to be infeasible.
This problem is also known as the “optimizer’s curse” [38].

To overcome the optimizer’s curse, SummarySearch re-
places the large set of scenarios used to form the Naïve
DILP by a very small synopsis of the scenario set, called a
“summary”, which results in a “reduced” DILP that is much
smaller than the Naïve DILP. A summary is carefully crafted
to be “conservative” in that the constraints in the reduced
DILP are harder to satisfy than the constraints in the Naïve
DILP. Because the reduced DILP is much smaller than the
Naïve DILP, it can be solved much faster; moreover, the re-
sulting solution is much more likely to be validation-feasible,
so that the required number of optimization/validation it-
erations is typically reduced. Of course, if a summary is
overly conservative, the resulting solution will be feasible,
but highly suboptimal. Therefore, during each optimization
phase, SummarySearch implements a sophisticated search
procedure aimed at finding a “minimally” conservative sum-
mary; this search requires solution of a sequence of reduced
DILPs, but each can be solved quickly.

Our experiments (Section 6) show that, since its iterations
are much faster than those of Naïve, SummarySearch ex-
hibits a large net performance gain even when the number of
iterations is comparable; typically, the number of iterations
is actually much lower for SummarySearch than for Naïve,
further augmenting the performance gain.

In summary, the contributions of our paper are as follows.
• We extend the PaQL language for deterministic package

queries (itself an extension of SQL); the resulting language,
sPaQL,1 allows specification of package queries with sto-
chastic constraints and objectives.
• We provide a precise and concrete embodiment, theNaïve
algorithm, of the optimization/validation procedure sug-
gested by the SP literature (Section 3).
• We provide a novel algorithm, SummarySearch, that is

orders-of-magnitude faster than Naïve, and that can solve
SPQs that require too many scenarios for Naïve to han-
dle. This is a significant contribution and fundamental
extension to the known state-of-the-art in stochastic pro-
gramming (Section 4).
• We present techniques that allow SummarySearch to
optimize its parameters automatically, and we provide
theoretical approximation guarantees on the solution of
SummarySearch relative to Naïve (Section 5).
• We provide a comprehensive experimental study, which
indicates that SummarySearch always finds validation-
feasible solutions of high quality, evenwhenNaïve cannot,
with dramatic speed-ups relative to Naïve (Section 6).

Section 7 discusses related work, and we conclude in Sec-
tion 8. Our SPQ techniques represent a significant step to-
wards data-intensive decision making under uncertainty.
1A detailed description of sPaQL can be found in the online appendix [5].



2 PRELIMINARIES

Our work lies at the intersection of package queries, proba-
bilistic databases, and stochastic programming. In this sec-
tion, we introduce some basic definitions from these areas
that we will use throughout the paper.
Deterministic Package Queries. A package P of a relation
R is a relation obtained from R by insertingmP(t) ≥ 0 copies
of t into P for each t ∈ R; heremP is the multiplicity function
of P. The goal of a package query is to specifymP, and hence
the tuples of the corresponding package relation. A package
query may include aWHERE clause (tuple-level constraints),
a SUCH THAT clause (package-level constraints), a package-
level objective predicate and, possibly, a REPEAT limit, i.e.,
an upper bound on the number of duplicates of each tuple
in the package.
A deterministic package query can be translated into an

equivalent integer program [3]. For each tuple ti ∈ R, the
translation assigns a nonnegative integer decision variable xi
corresponding to the multiplicity of ti in P, i.e., xi =mP(ti ). If
the objective function and all constraints are linear in the xi ’s,
the resulting integer program is an ILP. A cardinality con-
straint COUNT(∗) = 3 is translated into the ILP constraint∑N

i=1 xi = 3. A summation constraint SUM(price) ≤ 1000
is translated into

∑N
i=1 ti .pricexi ≤ 1000; this translation

works similarly for other linear constraints and objectives.
A REPEAT l constraint is translated into constraints xi ≤
l + 1,∀i ∈ [1..N ].
Monte Carlo Relations. We use the Monte Carlo database
model to represent uncertainty in a database and, for sim-
plicity, we focus henceforth on the case where a database
comprises a single relation. Uncertain values are modeled as
random variables, and a scenario (a deterministic realization
of the relation) is generated by invoking all of the associated
VG functions for the relation. In the simplest case, where
all random variables are statistically independent, each ran-
dom variable has its own VG function; in general, multiple
random variables can share the same VG function, allowing
specification of various kinds of statistical correlations. We
assume that there exists a deterministic key column that is
the same in each scenario, so that each scenario contains
exactlyN tuples for someN ≥ 1 and the notion of the “ith tu-
ple ti " is well defined across scenarios. Our results extend to
Monte Carlo databases containing multiple (stochastic) base
relations in which the SPQ is defined in terms of a relation
obtained via a query over the base relations.
Stochastic ILPs. The field of stochastic programming
(SP) [28, 36] studies optimization problems—selecting values
of decision variables, subject to constraints, to optimize an
objective value—having uncertainty in the data. We focus
on SILPs with linear constraints and linear objectives that
are deterministic, expressed as expectations, or expressed

as probabilities. Probabilistic constraints are also called
“chance” constraints in the SP literature.
Linear constraints. Given random variables ξ1, . . . , ξN , deci-
sion variables x1, . . . xN , a real number v ∈ IR, and a relation
⊙ ∈ {≤, ≥}, a linear expectation constraint takes the form
E
(∑N

i=1 ξixi
)
⊙ v , and a linear probabilistic constraint takes

the form Pr
(∑N

i=1 ξixi ⊙ v
)
≥ p, where p ∈ [0, 1]. We refer

to the constraint
∑N

i=1 ξixi ⊙ v as the inner constraint of the
probabilistic constraint. Constraints of the form Pr (·) ≤ p
can be rewritten in the aforementioned form by flipping the
inequality sign of the inner constraint and using 1 − p in-
stead. If for constants c1, . . . , cN ∈ IRwe have Pr(ξi = ci ) = 1
for i ∈ [1..N ], then we obtain the deterministic constraint∑N

i=1 cixi ⊙ v as a special case of an expectation constraint.
Objective. Without loss of generality, we assume through-
out that the objective has the canonical form minx

∑N
i=1 cixi

for deterministic constants c1, . . . , cN . Indeed, observe that
an objective in the form of an expectation of a linear func-
tion can be written in canonical form: minx E

(∑N
i=1 ξixi

)
=

minx
∑N

i=1 E (ξi )xi , and thus we take ci = E (ξi ). (This as-
sumes that each expectation E (ξi ) is known or can be accu-
rately approximated.) Similarly, an objective in the form of a
probability can be written in canonical form using epigraphic
rewriting [9]. For example, we can rewrite an objective of the
form minx Pr

(∑N
i=1 ξixi ⊙ v

)
in canonical form as minx ,y y

and add a new probabilistic constraint Pr
(∑N

i=1 ξixi ⊙ v
)
≤ y.

Here c1 = · · · cN = 0 and y is an artificial decision vari-
able added to the problem with objective coefficient cy = 1.
Throughout the rest of the paper, we will primarily focus
on techniques for minimization problems with a nonnega-
tive objective function; the various other possibilities can be
handled with suitable modifications.

In our database setting, we assume for ease of exposition
that, in a given constraint or objective, each random variable
ξi corresponds to a random attribute value ti .A for some real-
valued attribute A; a different attribute can be used for each
constraint, and need not be the same as the attribute that
appears in the objective. Our methods can actually support
more general formulations: e.g., an expectation objective of
the form minx E

(∑N
i=1 д(ti )xi

)
, where д is an arbitrary real-

valued function of tuple attributes; constraints can similarly
be generalized. Note that this general form allows categorical
attributes to be used in addition to real-valued attributes.

3 NAÏVE SILP APPROXIMATION

Recall that Naïve is the first systematic implementation of
the optimization/validation approach mentioned in the SP
literature. The pseudocode is given as Algorithm 1. As dis-
cussed previously, the algorithm generates scenarios (line 1),
combines them into an approximating DILP (line 3), solves
the DILP to obtain a solution x (line 4), and then validates



Algorithm 1 Naïve Monte Carlo Query Evaluation
Q : A stochastic package query
M̂ : Number of out-of-sample validation scenarios (e.g., 106)
M : Initial number of optimization scenarios (e.g., 100)
m : Iterative increment toM (e.g., 100)
output: A feasible package solution x , or failure (no solution).
1: S ← GenerateScenarios(Q,M) ▷Optimization scenarios
2: repeat
3: SAAQ,M ← FormulateSAA(Q, S) ▷Approximate DILP
4: x ← Solve(SAAQ,M ) ▷Solve SAA with M scenarios

5: v̂x ← Validate(x,Q, M̂) ▷Validate using M̂ scenarios
6: if v̂x .is_feasible is True then ▷x is feasible
7: return x
8: ▷ Otherwise, use more optimization scenarios
9: S ← S ∪ GenerateScenarios(Q,m)
10: M ← M +m

the feasibility of x against a large number of out-of-sample
validation scenarios (line 5). The process is iterated, adding
additional scenarios at each iteration (line 10) until the vali-
dation phase succeeds. We now describe these steps in more
detail.
As discussed in the Introduction, the optimization phase

for the DILP can be very slow, and often the convergence
to feasibility requires so many optimize/validate iterations
that the DILP becomes too large for the solver to handle,
so that Naïve fails. Our novel SummarySearch algorithm
in Section 4 uses “summaries” to speed up the optimization
phase and reduce the number of required iterations.

3.1 Sample-average approximation

As mentioned previously, we can generate a scenario by
invoking all of the VG functions for a table to obtain a real-
ization of each random variable, and can repeat this process
M times to obtain aMonte Carlo sample ofM iid scenarios. In
our implementation, Naïve generates scenarios by seeding
the random number generator once for the entire execution,
and maintains scenarios in main memory.
We then obtain the DILP from the original SILP by re-

placing the distributions of the random variables with the
empirical distributions corresponding to the sample. That is,
the probability of an event is approximated by its relative fre-
quency in the sample, and the expectation of a random vari-
able by its sample average. In the SP literature, this approach
is known as Sample Average Approximation (SAA) [1, 31],
and we therefore refer to the DILP for the stochastic package
query Q as SAAQ,M .
More formally, suppose that we have M scenar-

ios S1, . . . , SM , each with N tuples, and that the SILP
has K probabilistic constraints. Recall that ti .A de-
notes the random variable corresponding to attribute
A in tuple ti , and denote by si j .A ∈ IR the realized

value of ti .A in scenario S j . Then each expected sum
E
(∑N

i=1 ti .A xi
)
=

∑N
i=1 E (ti .A)xi is approximated by∑N

i=1 ti .µ̄A xi , where ti .µ̄A = (1/M)
∑M

j=1 si j .A.
To approximate a probabilistic constraint of the form

Pr
( N∑
i=1

ti .A xi ⊙ v

)
≥ p, (1)

we add to the problem a new indicator variable,yj ∈ {0, 1} for
each scenario j ∈ [1..M], along with an associated indicator
constraint: yj = 1

(∑N
i=1 si j .A xi ⊙ v

)
, where the indicator

function 1 (·) equals 1 if the inner constraint is satisfied
and equals 0 otherwise. We say that solution x “satisfies
scenario S j ” (with respect to the constraint) if and only if
yj = 1. (Solvers like CPLEX can handle indicator constraints.)
Finally, we add the following linear constraint over the in-
dicator variables:

∑M
j=1 yj ≥ ⌈pM⌉, where ⌈u⌉ is the smallest

integer greater than or equal tou. That is, we require that the
solutionx satisfies at least a fractionp of theM scenarios. The
FormulateSAA() function applies these approximations to
create the DILP SAAQ,M .

The size of SAAQ,M , measured with respect to the number
of coefficients, is Θ(NMK): we have N coefficients for each
expectation constraint and, for each probabilistic constraint,
N + 1 coefficients (corresponding to x1, . . . , xN ,yj ) for the
jth scenario.
In our implementation, during a precomputation phase,

we actually average M̂ ≫ M scenarios—the same number as
the number of validation scenarios—to estimate eachE (ti .A);
we then append these estimates, denoted ti .µ̂A, to the table.
We do this because such averaging is typically very fast to
execute, and is space-efficient in that we simply maintain
running averages. Thus a solution x returned by a solver is
always feasible for every expectation constraint, and hence
is feasible overall if and only if, for every probabilistic con-
straint of the form (1), x satisfies at least a fraction p of the
validation scenarios. We can therefore focus attention on the
probabilistic constraints, which are the most challenging.

3.2 Out-of-sample validation

After using M scenarios to create and solve the DILP
SAAQ,M , we check to see if the solution x is validation-
feasible in that it is a feasible solution for the DILP SAAQ,M̂

that is constructed using M̂ ≫ M out-of-sample scenarios.
When M̂ is sufficiently large, validation feasibility is a
proxy for true feasibility, i.e., feasibility for the original
SILP; commonly, M̂ = 106 or 107. This definition of
validation-feasibility is simple, but widely accepted [31].
Although there are other, more sophisticated ways to
use validation scenarios to obtain confidence intervals
on degree of constraint violation—see, e.g., [9]—these are



orthogonal to the scope of this paper. Henceforth, we use
the term “feasibility” to refer to “validation feasibility”,
unless otherwise noted.

The procedure Validate(x,Q, M̂) checks the feasibility of
x , the solution to SAAQ,M ; we describe its operation assum-
ing a single probabilistic constraint Pr

(∑N
i=1 ti .A xi ⊙ v

)
≥ p.

It first seeds the system random number generator with a
different seed than the one used to generate the optimiza-
tion scenarios. For each j ∈ [1..M̂], it generates a realization
ŝi j .A for each ti .A such that xi > 0 (i.e., for each tuple that
appears in the solution package), and computes the “score”
σj =

∑
i :xi>0 ŝi j .A xi . It then sets yj = 1(σj ⊙ v). After all

scenarios have been processed, it computes Y =
∑M̂

j=1 yj and
declares x to be feasible if Y ≥ ⌈pM̂⌉. The algorithm purges
all realizations from main memory after each scenario has
been processed, and only stores the running count of the
yj ’s, allowing it to scale to an arbitrary number of validation
scenarios. Moreover, a package typically contains a realtively
small number of tuples, so only a small number of realiza-
tions need be generated. A similar procedure can be used to
quickly estimate a solution’s objective value using limited
space: in this case, the procedure simply maintains a running
average of the σj ’s.

4 SUMMARY-BASED APPROXIMATION

The Naïve algorithm has three major drawbacks. (1) The
overall time to derive a feasible solution to SAAQ,M can
be unacceptably long, since the size of SAAQ,M sharply in-
creases asM increases. (2) It often fails to obtain a feasible
solution altogether—in our experiments, the solver (CPLEX)
started failing with just a few hundred optimization scenar-
ios. (3) Naïve does not offer any guarantees on how close
the objective value ω of the solution x to SAAQ,M is to the
true objective value ω̂ of the solution x̂ to the DILP SAAQ,M̂
that is based on the validation scenarios. (Recall that we use
SAAQ,M̂ as a proxy for the actual SILP.) A feasible solution
x that Naïve provides can be far from optimal.

Our improved algorithm, SummarySearch, which we
present in this section, addresses these challenges by ensur-
ing the efficient generation of feasible results through much
smaller “reduced” DILPs that each replace a large collection
ofM scenarios with a very small number Z of scenario “sum-
maries”; in many cases it suffices to take Z = 1. We call
such a reduced DILP a Conservative Summary Approxima-
tion (CSA), in contrast to the much larger sample-average
approximation (SAA) used by Naïve. The summaries are
carefully designed to be more “conservative” than the origi-
nal scenario sets that they replace: the constraints are harder
to satisfy, and thus the solver is induced to produce feasible
solutions faster. SummarySearch also guarantees that, for
any specified approximation error ϵ > 0, if the algorithm

Scenario 1 Scenario 3 0.66-Summary
id . . . gain id . . . gain id . . . gain

1 . . . 0.1 1 . . . 0.01 1 . . . 0.01
2 . . . 0.05 2 . . . 0.02 2 . . . 0.02
3 . . . -0.2 3 . . . -0.1 3 . . . -0.2
4 . . . 0.2 4 . . . -0.3 4 . . . -0.3
5 . . . 0.1 5 . . . 0.2 5 . . . 0.1
6 . . . -0.7 6 . . . 0.3 6 . . . -0.7

Figure 3: Using two out of the three scenarios of Fig-

ure 2, we derive a 0.66-summary.

returns a solution x , then the corresponding objective value
ω satisfiesω ≤ (1+ϵ)ω̂; in this case we say that x is a (1+ϵ)-
approximate solution. (Recall that we focus on minimization
problems with nonnegative objective functions.)

4.1 Conservative Summary Approximation

We first define the concept of an α-summary, and then de-
scribe how α-summaries are used to construct a CSA.
Summaries. Recall that a solution x to SAAQ,M satisfies a
scenario S j with respect to a probabilistic constraint of the
form of Equation (1) if yj = 1

(∑N
i=1 si j .A xi ⊙ v

)
= 1, where

si j .A is the realized value of ti .A in S j .

Definition 1 (α-Summary). Letα ∈ [0, 1]. Anα-summary
S = {si .A : 1 ≤ i ≤ N } of a scenario set S = {S1, . . . , SM }
with respect to a probabilistic constraint C of the form (1) is a
collection of N deterministic values of attribute A such that if
a solution x satisfies S in that

∑N
i=1 si .A xi ⊙v , then x satisfies

at least ⌈αM⌉ of the scenarios in S with respect to C .

Constructing an α-summary, for α > 0, is simple: Suppose
that the inner constraint of probabilistic constraintC has the
form

∑N
i=1 ti .A xi ≥ v . Given any subset G(α) ⊆ S of ⌈αM⌉

scenarios in S, we define S as the tuple-wise minimum over
G(α):

si .A B min
Sj ∈G(α )

si j .A

Proposition 1. S is an α-summary of S with respect to C .

Proof. Suppose x satisfies S , i.e.,
∑N

i=1 si .A xi ≥ v . Then
for every scenario S j ∈ G(α),

∑N
i=1 si j .A xi ≥

∑N
i=1 si .A xi ≥

v . Since |G(α)| = ⌈αM⌉, the result follows. □

Figure 3 illustrates an α-summary for the three scenarios
in Figure 2, where α = 0.66 and G(α) comprises scenarios 1
and 3. The summary is conservative in that, for any choice
x of trades, the gain under the summary values will be less
than the gain under either of the two scenarios. Thus if
we can find a solution that satisfies the summary, it will
automatically satisfy at least scenarios 1 and 3. It might
also satisfy scenario 2, and possibly many more scenarios,
including unseen scenarios in the validation set. Indeed, if



we are lucky, and in fact our solution satisfies at least 100p%
of the scenarios in the validation set, then x will be feasible
with respect to the constraint on Gain.

Clearly, for an inner constraint with ≤, the tuple-wise
maximum ofG(α) yields an α-summary. While there may be
other ways to construct α-summaries, in this paper we only
consider minimum and maximum summaries, and defer the
study of other, more sophisticated summarization methods
to future work. Importantly, a summary need not coincide
with any of the scenarios in S; we are exploiting the fact that
optimization and validation are decoupled.
CSA formulation. A CSA is basically an SAA in which all
probabilistic constraints are approximated using summaries
instead of scenarios.2 The foregoing development implicitly
assumed a single summary (with respect to a given proba-
bilistic constraintC) for all of theM scenarios in S. In general,
we use Z summaries, where Z ∈ [1..M]. These are obtained
by dividing S randomly intoZ disjoint partitions Π1, . . . ,ΠZ ,
of approximatelyM/Z scenarios each. Then the α-summary
Sz = {siz .A : 1 ≤ i ≤ N } for partition Πz is obtained by
taking a tuple-wise minimum or maximum over scenarios
in a subset Gz (α) ⊆ Πz , where |Gz (α)| = ⌈α |Πz |⌉.
For each probabilistic constraint C of form (1), we add

to the DILP a new indicator variable, yz ∈ {0, 1}, and an
associated indicator constraint yz := 1

(∑N
i=1 siz .A xi ⊙ v

)
.

We say that solution x “satisfies summary Sz” iff yz = 1. We
also add the linear constraint

∑Z
z=1 yz ≥ ⌈pZ ⌉, requiring at

least 100p% of the summaries to be satisfied.
We denote the resulting reduced DILP by CSAQ,M ,Z . As-

suming K probabilistic constraints, the number of coeffi-
cients in CSAQ,M ,Z is Θ(NZK), which is independent ofM .
Usually, Z takes on only small values, so that the effective
size complexity is only Θ(NK). Our results (Section 6) show
that in most cases SummarySearch finds good solutions
with only one summary, i.e., Z = 1. Because Z is small, the
solution to CSAQ,M ,Z can be rapidly computed by a solver.
The CSA formulation is also more robust to random fluctua-
tions in the sampled data values, and less prone to “overfit”
to an unrepresentative set of scenarios obtained by luck of
the draw.

An important observation is that asZ increases, CSAQ,M ,Z
approaches the SAAQ,M formulation: at Z = M each parti-
tion will contain exactly one scenario, which will also co-
incide with the summary for the partition. Since CSAQ,M ,Z
encompasses SAAQ,M , we can always do at least as well as
Naïve with respect to the feasibility and optimality proper-
ties of our solution, givenM scenarios. We address the issue
of how to chooseZ , α , and eachGz (α) below and in Section 5,
and also discuss how to generate summaries efficiently.
2As with the SAA formulation, expectations are approximated as averages
over a huge number M̂ of independent scenarios.

Algorithm 2 SummarySearch Query Evaluation
Q : A stochastic package query with K probabilistic constraints
M̂ : Number of out-of-sample validation scenarios (e.g., 106)
M : Initial number of optimization scenarios (e.g., 100)
m : Iterative increment toM (e.g., 100)
z : Iterative increment to Z (e.g., 1)
ϵ : User-defined approximation error bound, ϵ ≥ 0
output: A feasible package solution x , or failure (no solution).
1: ▷ Solve probabilistically-unconstrained problem
2: x (0) ← Solve(SAA(Q0, M̂))
3: Z = 1 ▷Initial number of summaries
4: repeat
5: (x, v̂x ) ← CSA-Solve(Q, x (0),M,Z )
6: if v̂x .is_feasible then ▷x is feasible
7: if v̂x .worst_bound ≤ ϵ then ▷x is (1 + ϵ )-approximate
8: return x
9: else if Z < M then

10: z′ ← min{z,M − z}
11: Z ← Z + z′ ▷More summaries to improve optimality

12: else

13: M ← M +m ▷More scenarios to improve feasibility

4.2 Query Evaluation with CSA

Algorithm 2 shows query evaluation with SummarySearch.
The goal is to find a feasible solution whose objective value
is as close as possible to ω̂, the objective value of the SAA
based on the M̂ validation scenarios. In the algorithm, Q0
denotes the SPQ obtained from Q by removing all of the
probabilistic constraints. At the first step, SummarySearch
computes x (0), the solution to the DILP SAAQ0,M̂ ; the only
constraints are deterministic constraints and expectation
constraints, with the latter estimated from M̂ scenarios in
the usual way. This corresponds to the “least conservative”
solution possible, and is effectively equivalent to solving a
CSA using summaries constructed with α = 0, because 0%
(i.e., none) of the scenarios are required to be satisfied. For
some problems, x (0) might have an infinite objective value, in
which case we simply ignore this solution and incrementally
increase α until we find a finite solution.
Like Naïve, the SummarySearch algorithm starts with

an initial number of optimization scenarios, M ≥ 1, and it-
eratively increments it while solutions are infeasible. In the
optimization phase, the algorithm uses a CSA formulation,
which replaces the M real scenarios with Z conservative
summaries. Initially, the algorithm uses Z = 1, replacing the
set ofM scenarios with a single summary. After feasibility is
achieved for a solution x with objective value ωx , the algo-
rithm tries to check whether the ratio ϵx = (ωx −ω̂)/ω̂ is less
than or equal to the user-defined error bound ϵ ; although
ω̂—and hence ϵx—is unknown, we can conservatively check
whether ϵ ′x ≤ ϵ , where ϵ ′x is a worst-case upper bound on ϵx



that we develop in Section 5.4, If the solution is unsatisfac-
tory, SummarySearch increasesZ , and iterates again. The al-
gorithm stops if and when a feasible and (1+ϵ)-approximate
solution is found. In practice, because of the conservative na-
ture of summaries, SummarySearch typically finds feasible
solutions in drastically fewer iterations than Naïve.

5 OPTIMAL SUMMARY SELECTION

The key component of SummarySearch is CSA-Solve, de-
scribed in this section. WithM and Z fixed, CSA-Solve finds
the best CSA formulation, i.e., the one having, for each con-
straint, the optimal value ofα and the best setGz (α) of scenar-
ios for each summary. CSA-Solve thus determines the best
solution x achievable with M scenarios and Z summaries,
and also computes metadata v̂x used by SummarySearch
for checking feasibility and optimality.

5.1 CSA-Solve Overview

Algorithm 3 depicts the iterative process of CSA-Solve: at
each iteration q it produces a solution x (q) to a problem
CSAQ,M ,Z based on an α

(q)
k -summary for each constraint

Ck . Initially, α
(0)
k = 0 for all k , and thus the solution to

CSAQ,M ,Z is simply x (0), which has already been computed
by SummarySearch prior to calling CSA-Solve. Then CSA-
Solve stops in two cases: (1) if it finds a (1 + ϵ)-approximate
solution; (2) if it enters a cycle, where it produces the same
solution twice with the same αk values. In case (2), it returns
the “best” solution found so far: if one or more feasible so-
lutions have been found, it returns the one with the best
objective value, otherwise it returns an infeasible solution,
and SummarySearch will increaseM in its next iteration.

5.2 Choosing α
Larger α leads to more conservative α-summaries, as we
take the tuple-wise minimum (or maximum) over more and
more scenarios. Thus a high value of α increases the chances
of finding a feasible solution. On the other hand, if the con-
straints are more restrictive than necessary, then the solution
can have a seriously suboptimal objective value because we
are considering fewer candidate solutions, possibly miss-
ing the best ones. Thus, CSA-Solve needs the minimally
conservative value of α that will suffice.

How can we measure the true conservativeness of α with
respect to a constraintC B Pr(

∑N
i=1 ti .A xi ⊙ v) ≥ p? As dis-

cussed previously, the solution x to a formulation SAAQ,M
based on α-summaries is guaranteed to satisfy at least 100α%
of the M optimization scenarios, but the actual true prob-
ability of satisfying the constraint—or more pragmatically,

the fraction of the M̂ validation scenarios satisfied by x—
will usually differ from α . Thus, we look at the difference
between the fraction of validation scenarios satisfied by x
and the target value p. We call this difference the p-surplus,
and define it as:

r = r (α) B

{
(1/M̂)

M̂∑
j=1

1

( N∑
i=1

ŝi j .A xi ⊙ v
)}
− p

We expect the function r (α) to be increasing in α with high
probability.
Observe that x essentially satisfies the constraint C ′ B

Pr(
∑N

i=1 ti .A xi ⊙ v) ≥ p + r . Clearly, if r < 0, then x is
infeasible for constraint C , whereas if r > 0, then x sat-
isfies the inner constraint with a probability that exceeds
p, and so is conservative and therefore likely suboptimal.
Thus the optimal value α∗ satisfies r (α∗) = 0. Solutions that
achieve zero p-surplus may be impossible to find, and there-
fore CSA-Solve tries to choose α = (α1, . . . ,αK ) to minimize
the p-surplus for each of the K constraints, while keeping it
nonnegative. The search space is finite (hence the possibility
of cycles) since αk ∈ {Z/M, 2Z/M, . . . , 1} for k ∈ [1..K].
At each iteration q, CSA-Solve updates α (q−1) to α (q),

creates the corresponding CSA problem, and produces a
new solution x (q). For simplicity and ease of computation,
our initial implementation updates each α

(q)
k individually

by fitting a smooth curve R(q)k (αk ) to the historical points
(α (0)k , r

(0)
k ), . . . , (α

(q−1)
k , r

(q−1)
k ) and then solving the equation

R
(q)
k (αk ) = 0. In our experiments, we observed that (1) fitting

an arctangent function provides the most accurate predic-
tions and (2) this artificial decoupling with respect to the
constraints yields effective summaries; we plan to investigate
other methods for jointly updating (α (q−1)1 , . . . ,α

(q−1)
K ).

5.3 Choosing Gz

So far, we have assumed that the subset Gz (α
(q)
k ) used to

build the summary is any set containing n(q)k = ⌈α
(q)
k |Πz |⌉

scenarios. SummarySearch employs a simple greedy heuris-
tic to determine Gz (α

(q)
k ): it chooses the n

(q)
k scenarios that

produce the summary most likely to keep the previous solu-
tion feasible in the current iteration, so that the new solution
will likely have a higher objective value. For an inner ≥ (≤)
constraint, this is achieved by sorting the scenarios in Πz ac-
cording to their “scenario score”

∑N
i=1 si j .A x

(q−1)
i and taking

the first n(q)k in descending (ascending) order.

5.4 Approximation Guarantees

If x (q) is feasible, SummarySearch can terminate if it can
determine that x (q) is (1 + ϵ)-approximate relative to the
optimal feasible solution x̂ based on the validation scenarios,



Algorithm 3 CSA-Solve
Q : A stochastic package query with K probabilistic constraints
x (0) : Solution of probabilistically-unconstrained problem
M : Number of optimization scenarios
Z : Number of summaries, 1 ≤ Z ≤ M
ϵ : User-defined approximation error bound, ϵ ≥ 0
output: A feasible and (1 + ϵ)-optimal solution, or an infeasible
solution
1: q ← 0 ▷Iteration count
2: H← ∅ ▷Initialize validation history

3: α (q) = (α (q)1 , . . . ,α
(q)
K ) ← (0, . . . , 0) ▷Initial conservativeness

4: repeat
5: ▷ If entered a cycle, return best solution from history
6: if (x (q),α (q)) ∈ H then

7: return Best({x : (x,α) ∈ H})
8: H← H ∪ {(x (q),α (q))} ▷Update validation history
9: v̂(q) ← Validate(x (q),Q, M̂) ▷Validate & compute metadata
10: for k = 1, . . . ,K do

11: r
(q)
k ← v̂

(q)
k .surplus ▷Validation p-surplus

12: ϵ
(q)
k ← v̂

(q)
k .worst_bound ▷Validation worst ϵ -bound

13: ▷ Early termination with (1 + ϵ )-approximation

14: if ∀k : r (q)k ≥ 0 and ∃k : ϵ (q)k ≤ ϵ then

15: return (x (q), v̂(q))

16: q ← q + 1 ▷Iterate again with a new set of summaries
17: α (q) ← GuessOptimalConservativeness(H)
18: for k = 1, . . . ,K do

19: S̃k ← Summarize(x (q),α (q)k ,Ck ,Hk )

20: CSAQ,M ,Z ← FormulateSAA(Q, {S̃1, . . . , S̃K })
21: x (q) ← Solve(CSAQ,M ,Z )

i.e., that ω(q) ≤ (1 + ϵ)ω̂, where ω(q) and ω̂ are the objective
values for x (q) and x̂ , respectively, and ϵ is an accuracy pa-
rameter specified by the user. Without loss of generality, we
assume below that the objective function is an expectation;
should the objective be deterministic, nesting it within an
expectation does not change its value.
This termination check proceeds as follows. During

the qth iteration of SummarySearch, the function Vali-
date(x (q),Q, M̂) computes p-surplus values r

(q)
1 , . . . , r

(q)
K ,

one for each of the K probabilistic constraints in the query.
Further, it computes K values ϵ (q)k , k ∈ [1..K]. We show
below that if ∀k : r (q)k ≥ 0 and ∃k : ϵ (q)k ≤ ϵ , then x (q) is a
feasible, (1 + ϵ)-approximate solution, and SummarySearch
can immediately return x (q) and terminate. As usual, we
focus on minimization problems with nonnegative objective
values, and assume throughout that the number M̂ of
validation scenarios is large enough so that the optimal
solution x̂ and objective value ω̂ of SAAQ,M̂ are effectively
indistinguishable from those for the original SILP. We start
with the following simple but important result.

Proposition 2 (General Approximation Guarantee).
Let ϵ ≥ 0 and let ω1, . . . ,ωK be positive constants that satisfy
max1≤k≤K ωk ≤ ω̂. Set ϵ (q)k =

(
(ω(q)/ωk ) − 1

)
for k ∈ [1..K].

If ∃k : ϵ (q)k ≤ ϵ , then ω(q) ≤ (1 + ϵ)ω̂.

Proof. Suppose that ϵ (q)k ≤ ϵ for some k ∈ [1..K]. Since
ω̂/ωk ≥ 1, we have

ω(q) ≤
( ω̂
ωk

)
ω(q) =

(
1+

(ω(q)
ωk
−1

))
ω̂ =

(
1+ϵ (q)k

)
ω̂ ≤ (1+ϵ)ω̂,

and the result follows. □

We obtain a different specific formula for each ϵ
(q)
k by

choosing a specific value for ωk . Clearly, we would like to
choose ωk as large as possible, since this maximizes the
likelihood that ϵ (q)k ≤ ϵ . One simple choice that always works
is to set ωk = ω(0), where ω(0) is the objective value of the
SAA problem corresponding to the original SILP but with all
probabilistic constraints removed—see line 2 of Algorithm 2.
This choice works asω(0) is the objective for the SAAwith the
K (approximated) probabilistic constraints removed, and ω̂
is the objective for the same SAA but with the K constraints
intact. The set of feasible solutions for the former is strictly
larger than that for the latter, and hence has an objective
value at least as good.

For some queries, we can obtain better, i.e., larger, val-
ues of ωk by exploiting the specific structure of the con-
straints. For example, when all random variables are lower-
bounded by a constant s > 0, and the size of any feasible
package is lower-bounded by a constant l > 0. That is, let
s B min1≤j≤M̂ ,1≤i≤N ŝi j .A ≥ 0 be the minimum attribute
value across the validation scenarios and l be the minimum
size of any feasible package, e.g., as specified by aCOUNT(∗)
constraint. Then

∑N
i=1 ŝi j .A xi ≥ sl , ∀j ∈ [1..M̂], so that

ω̂ =
1
M̂

M̂∑
j=1

N∑
i=1

ŝi j .A x̂i ≥
1
M̂

M̂∑
j=1

sl = sl,

and we can take ϵ (q)k =
(
ω(q)/(sl)

)
− 1.

Better values ofωk can be found by exploiting the relation
of the constraints to the objective.

Definition 2 (Objective-Constraint Interaction).
Let the objective be min E(

∑N
i=1 ξixi ), for some random

variables ξi . If the query includes a probabilistic constraint
of the form Pr

(∑N
i=1 ξixi ≤ v

)
≥ p, for some v and p, then

we say that the objective is supported by the constraint.
If the query includes a probabilistic constraint of the form
Pr(

∑N
i=1 ξixi ≥ v) ≥ p, then the objective is said to be

counteracted by the constraint. If the objective is neither



supported nor counteracted, we say it is independent of the
probabilistic constraints.

Intuitively, a supporting probabilistic constraint “supports”
the objective function in the same “direction” of the opti-
mization (≤ for minimization, ≥ for maximization), whereas
a counteracting constraint goes against the optimization.
When Ck is a counteracting constraint with v ≥ 0, we can
take ϵ (q)k =

(
ω(q)/(pv)

)
− 1. Similar formulas can be derived

for other possible cases— maximization problems, negative
objective values, and so on; see the online appendix [5].

5.5 Implementation Considerations

We now discuss several implementation optimizations.

Efficient summary generation. Recall that summariza-
tion has two steps: (1) computing the scenario scores to sort
scenarios by the previous solution, and (2) computing the
tuple-wise minimum (or maximum) of the first α% of the
scenarios in sorted order. The fastest way to generate an α-
summary is if allM scenarios are generated and kept in main
memory at all times. In this case, computing the tuple-wise
minimum (or maximum) is trivial. However, the Θ(MNK)
memory requirement for this may exceed the memory limits
ifM is large. We devise two possible strategies for memory-
efficient summary generation with optimal Θ(NZK) space
complexity: tuple-wise summarization and scenario-wise sum-
marization. Tuple-wise summarization uses a unique random
number seed for each tuple (i = 1, . . . ,N ) and it generates
allM realizations, one tuple at a time. Scenario-wise summa-
rization uses a unique seed for each scenario (j = 1, . . . ,M),
and it generates one realization for all tuples, one scenario
at a time.

With tuple-wise summarization, sorting the scenario only
requires Θ(PM) time, where P =

∑N
i=1 xi is the size of the

current package; usually, P ≪ N . However, generating the
summaries is more costly, as it requires Θ(NM) time, as all
M realizations must be constructed for all N tuples. The total
time isΘ(M(P+N )). With scenario-wise summarization, gen-
erating summaries has lower time complexity ofΘ(αNM), as
it only generates scenarios in Gz (α), but sorting has higher
complexity Θ(NM), with total time Θ(NM(α + 1)).
It follows that if α ≥ P/N , tuple-wise summarization is

generally faster than scenario-wise summarization. However,
other factors may affect the runtime, e.g., some random num-
ber generators, such as Numpy, generate large quantities of
random numbers faster if generated in bulk using a single
seed. In this case, tuple-wise summarization may suffer con-
siderably in the summary generation phase, as it needs to
re-seed the random number generator for each tuple. In our
experiments, we observed that tuple-wise summarization
is better when the input table is relatively small, but worse

than scenario-wise for larger tables. In general, a system
should implement both methods and test the two in situ.
Convergence acceleration. When α

(q)
k is obtained by de-

creasing α (q−1)k , the solution x (q−1) typically is feasible, and
our goal is for x (q) to strictly improve in objective value. CSA-
Solve achieves this by slightly modifying the generation of
summaries in order to ensure that the previous solution is
still feasible for the next CSA problem. This is done by using
the tuple-wise maximum (instead of minimum) in the sum-
mary generation for all tuples ti such that x (q−1)i > 0 (tuples
in the previous solution). For all other tuples, we set the sum-
mary as usual. We have found that ensuring monotonicity
of the objective values promotes faster convergence.

6 EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of
our techniques for stochastic package queries on three
different domains where uncertainty naturally arises:
noise in sensor data, uncertainty in future predictions,
uncertainty due to data integration [17]. Our results show
that: (1) SummarySearch is always able to find feasible
solutions, while Naïve cannot in most cases—when both
SummarySearch and Naïve can find feasible solutions,
SummarySearch is often faster by orders of magnitude;
(2) The packages produced by SummarySearch are of high
quality (low empirical approximation ratio), sometimes
even better than Naïve when they both produce feasible
solutions; (3) Increasing M , the number of optimization
scenarios, helps SummarySearch find feasible solutions,
and the value of M required by SummarySearch to start
producing feasible solutions is much smaller than Naïve,
explaining the orders of magnitude improvement in running
time; (4) Increasing Z , the number of summaries, helps
SummarySearch find higher-quality solutions; (5) Increas-
ing N , the number of input tuples, impacts the running time
of both algorithms, but SummarySearch is still orders of
magnitude faster than Naïve, and finds feasible solutions
with better empirical approximation ratios than Naïve.

6.1 Experimental Setup

Environment. We implemented our methods in Python
2.7, used Postgres 9.3.9 as the underlining DBMS, and IBM
CPLEX 12.6 as the ILP solver. We ran our experiments on
servers equipped with two 24 2.66GHz cores, 15GB or RAM,
and a 7200 RPM 500GB hard drive.
Datasets and queries. We constructed three workloads:
Noisy sensor measurement: The Galaxy datasets vary
between 55,000 and 274,000 tuples, extracted from the Sloan
Digital Sky Survey (SDSS) [40]. Each tuple contains the
color components of a small portion of the sky as read by
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Figure 4: End-to-end results of SummarySearch vs. Naïve. Plotting the average time (and 95% confidence inter-

vals) to reach 100% feasibility rate. Of the 23 feasible queries (TPC-H Q8 is infeasible), SummarySearch always

reaches 100% feasibility rate, whileNaïve in only 7 queries. In 15 queries, when SummarySearch succeeds,Naïve

is still at 0% feasibility. SummarySearch can be orders of magnitude faster even when both reach 100% feasibility.

a telescope. We model the uncertainty in the telescope
readings as Gaussian or Pareto noise.

Financial predictions: The Portfolio dataset contains 6,895
stocks downloaded from Yahoo Finance [42]. The initial
price of each stock is set according to its actual value on
January 2, 2018, and future prices are generated according
to a geometric Brownian motion. We consider selling stocks
in one day or in one week, as in Figure 1; the dataset for the
short-term (resp., long-term) trades contains 14,000 (resp.,
48,000) tuples. For each prediction type, we also extracted
a subset corresponding to the 30% most volatile stocks to
construct some of the hardest queries. Tuples referring to
the same stock are correlated to one another. For example,
in Figure 1, tuples 1 and 2 are correlated to each other but
are independent of the other tuples.

Data integration: The TPC-H dataset consists of about
117,600 tuples extracted from the TPC-H benchmark [41].
We simulate the result of hypothetically integrating several
data sources to form this data set: we model uncertainty in
each attribute’s value with discrete probability distributions.
For each original (deterministic) value in the TPC-H dataset,
we generate D possible variations thereof, where D is the
number of data sources that have been integrated into one.
The mean of these D values is anchored around the original
value; each source value is sampled from an exponential,
Poisson, uniform or Student’s t-distribution.

For each of the three datasets, we constructed a workload
of eight sPaQL queries; all 24 queries, except one in TPC-H,
are feasible. The workloads span seven different distribu-
tions for the uncertain data attributes, including a complex
VG function to predict future stock prices. The objective

functions are supported by the constraints for the Portfo-
lio queries, independent for the TPC-H queries and either
supported or counteracted for the Galaxy queries (see Defi-
nition 2 for supported/counteracted/independent objectives).
The Portfolio workload tests high- and low-risk, high- and
low-VaR (Value at Risk)—i.e., p andv in Equation (1)—as well
as short- and long-term trade predictions. The TPC-H work-
load is split into queries with D = 3 and D = 10 (number of
integrated sources). For all queries there are two constraints,
one of which is probabilistic with p ≥ 0.9. Examples include:
(1) for Galaxy, we seek a set of five to ten sky regions that
maximizes total expected radiation flux while avoiding total
flux levels less than 40 with high probability, and (2) for TPC-
H, we seek a set of between one and ten transactions having
maximum expected total revenue, while containing less than
15 items total with high probability. A detailed description
of the workloads can be found in the online appendix [5].
Evaluation metrics. We measure response time (in seconds
and logarithmic scale) across 10 i.i.d runs using different
seeds for generating the optimization scenarios, and evalu-
ate feasibility and the objective value on an out-of-sample
validation set with 106 scenarios (107 for the Portfolio work-
load). We plot the average across the 10 runs, and its 95%
confidence interval in a shaded area. For each run of an al-
gorithm, we set a time limit of four hours. When the time
limit expires, we interrupt CPLEX and get the best solution
found by the solver until then. We measure feasibility rate
as the fraction, out of the 10 runs, in which a method pro-
duces a feasible solution (including, for all methods, when
the time limit expired). Because the true optimal solution
for any of the queries is unknown, we measure accuracy by
1 + ϵ̂ , where ϵ̂ B ω/ω∗ − 1 and ω∗ is the objective value of
the best feasible solution found by any of the methods.
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Figure 5: Scalability of Naïve and SummarySearch with increasing number of optimization scenarios. Naïve

struggles to find feasible solutions even with a large number of scenarios and often fails completely (missing

points in the plot). SummarySearch quickly finds feasible solutionswith few scenarios. The approximation ratios

of SummarySearch’s solutions are generally low when the number of scenarios is small.

6.2 Results and Discussion

We evaluate four fundamental aspects of our algorithms:
(1) query response time to reach 100% feasibility rate; (2) scal-
ability with increasing number of scenarios (M); (3) scala-
bility of SummarySearch with increasing number of sum-
maries (Z ); (4) scalability with increasing dataset size (N ).

6.2.1 Response time to reach 100% feasibility rate. Both
Naïve and SummarySearch increase M (the number of
scenarios) up to when solutions start to be feasible. We
report the cumulative time for all iterations the algorithm
took to reach a certain feasibility rate, from 0%, up to 100%
(when the algorithm produces feasible solutions for all
10 runs). For SummarySearch, Z is fixed (1 for Galaxy
and Portfolio, 2 for TPC-H). We set Z to the lowest value
(per workload) such that SummarySearch could reach
100% feasibility rate. Figure 4 shows the results of the
experiment. For all (23) feasible queries across all workloads,
SummarySearch is always able to reach 100% feasibility
rate, while Naïve can only reach 100% feasibility for only
7 queries. Even then, SummarySearch is usually orders
of magnitude faster than Naïve (e.g., Galaxy Q6, TPC-H
Q2, Q6, and Q7). Moreover, in 15 out of the 23 feasible
queries, SummarySearch reached 100% feasibility while
Naïve was still at 0%. The conservative nature of summaries
allows higher feasibility rates for SummarySearch even

with fewer scenarios. As the number of scenarios increases,
SummarySearch solves a much smaller problem than
Naïve, leading to orders-of-magnitude faster response time.
The only case where SummarySearch is slower than

Naïve at reaching 100% feasibility rate is Galaxy Q7, which
was an easy query for both methods: both solved it with
only 10 scenarios. This query has a supported objective
function over data with minimal uncertainty described by
a Pareto distribution with “scale” and “shape” both equal to
1. For this query, the summarization process and solving a
probabilistically-unconstrained problem are overheads for
SummarySearch. TPC-H Q8 is an infeasible query. Both
methods increaseM up to 1000 before declaring infeasibility,
but again SummarySearch is faster than Naïve in doing so.

6.2.2 Effect of increasing the number of optimization scenar-
ios. We evaluate the scalability of our methods when the
number of optimization scenariosM increases; Z is fixed as
described above. For each algorithm, we group feasibility
rates into 5 groups: 0%, 25%, 50%, 75% and 100%, and use
different shadings to distinguish each case.
Figure 5 gives scalability results for the three workloads.

Generally, with lowM , Naïve executes very quickly to pro-
duce infeasible solutions with low objective values (opti-
mizer’s curse); as Naïve increases M , the running time in-
creases exponentially—note the logarithmic scale—up to a
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Figure 6: Effects of increasing number of summaries (Z ) on the Portfolio workload, as a percentage of the num-

ber of scenarios, from 1 summary up to M summaries (100%). Increasing Z improves the approximation ratio of

the solution produced by SummarySearch. Increasing Z too far results in infeasible solutions as, when Z = M ,

SummarySearch is identical to Naïve, and it thus overfits, like Naïve, to a bad set of scenarios.

point where it fails altogether (missing Naïve points in the
plots). On the other hand, SummarySearch finds feasible
solutions even with as little as 10 scenarios.
SummarySearch produces high quality solutions as

demonstrated by the low approximation ratio (1 + ϵ̂), close
to 1 for most queries. However, with the hardest Portfolio
queries (Q5 and Q6), the worst approximation ratio for
SummarySearch is quite high for feasible solutions: this is
an indicator that the number of summaries, Z = 1 is too low
and should be increased.

6.2.3 Effect of increasing the number of summaries. In this
experiment, we show how increasing the number of sum-
maries (Z ) helps improve the approximation ratio in the
Portfolio queries. We increase Z from 1 up to M (number
of scenarios), where M is set to where the feasibility rate
of SummarySearch was 100% in the previous experiment,
and we show the running time and approximation ratio com-
pared to Naïve withM scenarios. Figure 6 shows the results
of this experiment. First, the response time with increasing
Z is in most cases independent of Z . In fact, while increas-
ing Z adds more scenarios to the CSA formulation, each
summary becomes less and less conservative, making the
problem a bit larger but always easier; in the limit (Z = M),
each summary is identical to an original scenario, and thus
SummarySearch only pays the extra overhead, compared to
Naïve, of solving the probabilistically-unconstrained prob-
lem first. On the other hand, Naïve is always faster, but its
solutions are infeasible. For most queries, the approximation
ratio closely approaches 1, while still maintaining a high fea-
sibility rate. Increasing Z too far eventually causes feasibility
to drop, reaching that of Naïve in the limit (Z = M).

Finally, even though infeasible solutions tend to have bet-
ter objective values than feasible ones, we find that Naïve’s
infeasible solutions to Q7 and Q8 haveworse objective values.
These queries proved quite challenging for Naïve as they
involved stock price predictions for a week in the future.

6.2.4 Effect of increasing the dataset size. In this experiment,
we increase the Galaxy dataset up to five times from 55,000
tuples to 274,000 tuples. For all queries except Q8 we fixM =
56 (for both algorithms) and Z = 1. In general, Summary-
Search scales well with increasing data set size: it finds
feasible solutions with good approximation ratios. Naïve,
however, times out for several queries (Q1, Q2, Q5, Q6, &
Q8) and its response time sharply increases as dataset size
increases (Q1, Q2, Q6, Q8). Except for three queries (Q3,
Q4, Q7), most of Naïve’s solutions are infeasible; even then,
SummarySearch produces feasible solutions in orders of
magnitude less time with better approximation ratios.

In Q8, we setM = 562 to enable SummarySearch to still
produce feasible solutions (75% feasibility at 274K tuples),
without causing Naïve to fail. Q8 is a challenging query
as each data value is sampled from a Pareto distribution
with different parameters leading to high variability across
scenarios.
To further increase the data size scalability of Summary-

Search, we hope to combine it with partitioning and divide-
and-conquer approaches similar to SketchRefine [3].

7 RELATEDWORK

Probabilistic databases and package queries. Probabilis-
tic databases [13, 39] have focused mainly on modeling
discrete data uncertainty; the Monte Carlo Database
(MCDB) [25] supports arbitrary uncertainty, via VG
functions. Probabilistic databases support SQL queries, but
lack support for optimization. Package query engines [3, 37]
offer support only for deterministic optimization.
Stochastic optimization. Stochastic optimization [22] stud-
ies approximations for stochastic constraints and objectives.
Probabilistic constraints are very hard to handle in general,
because the feasible region of the inner constraint may be
non-convex [1, 7, 10, 16, 22, 32, 34]. In this work, we study
stochastic optimization problems with objective functions
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Figure 7: Scalability of Naïve and SummarySearchwith increasing dataset size (N ) on the Galaxy workload. The

running times of both algorithms degrades with increasing N , but SummarySearch scales up well in comparison

with Naïve.

and constraints defined in terms of linear functions of the
tuple attributes.

OurNaïvemethod is derived from the numerous “scenario
approximations” from the SP literature [7, 8, 10, 22, 28, 31,
33, 34]. Choosing the number of scenarios (M) a priori is one
of the most studied problems. Campi et al. [10] show that the
optimal solution of a Monte Carlo formulation that satisfies
exactlyM iid scenarios is feasible with probability at least δ
ifM ≥ 2

1−pj

(
ln

( 1
1−δ

)
+ N

)
. A-priori bounds quickly become

impractical in a database setting, where N is also the number
of tuples, and thus typically large. For example, with a table
of size N = 50,000, pj = 0.9, δ = 0.95, at leastM ≥ 1,000,060
scenarios must be generated and all satisfied.

Scenario removal studies techniques for removing scenar-
ios after sampling [6, 8, 19, 29, 31]. Empirically, these meth-
ods generally provide a reduction factor of only 50% or less,
which is insufficient for our setting. Our α-summary can be
viewed as removing 100(1 − α)% of the scenarios, where α
is usually very small (below 0.01); not only do we remove
scenarios, but we replace them with conservative summaries.

Similar to our setting, distributionally robust optimization
(DRO) [15, 21, 30] attempts to mitigate the optimizer’s curse
when the uncertainty distribution is unknown but is assumed
to lie in some set of candidate distributions; the original prob-
ability constraints are replaced with worst-case probability
constraints based on this set. In contrast, SummarySearch
uses deterministic worst-case constraints, which are sim-
pler and avoid assumptions on the uncertainty distribution.
DRO methods also show limited scalability in the number of
variables N , e.g., N is at most 20 in the experiments in [30].

The goal of wait-and-judge optimization [9, 11] is to per-
form a-posteriori feasibility analysis. Existing approaches
help provide bounds on the quality of a solution, but do not
provide algorithms that dynamically adapt in response to
poor solutions. SummarySearch, instead, adjusts the con-
servativeness of the summaries to obtain feasible solutions
with minimum computational cost. SummarySearch can po-
tentially use wait-and-judge during out-of-sample validation
to decide when to stop increasing the number of scenarios.

8 CONCLUSION AND FUTUREWORK

In this paper, we addressed single-stage decision making
under uncertainty, in which decisions are made before the
values of the random variables become known. In many
cases, however, uncertainty is revealed over time, in stages,
allowing for remedial actions. We plan to explore these dy-
namic settings, referred to as stochastic programming with
recourse. Another goal is to extend our methods to problems
that involve probabilistic constraints where the inner con-
straints must jointly be satisfied with a given probability;
such an extension is highly nonntrivial.
We also plan to work on further algorithmic improve-

ments, including (i) developing more sophisticated summa-
rization methods than minimum and maximum summaries;
(ii) scaling up SummarySearch to very large datasets (e.g.,
millions of tuples) by combining summaries with divide-and-
conquer approaches like SketchRefine [3]; (iii) parallelizing
CSA-Solve and summary generation; and (iv) fully integrat-
ing stochastic package queries into a probabilistic database
to handle multi-table queries.

We also plan to further develop our theory on Summary-
Search to formally prove its convergence to feasible solu-
tions as the number of scenarios increases.
Finally, we plan to explore ways to “open the black box”

of optimization software to allow for further performance
improvements, in analogy to the way MCDB re-engineered
query operations to efficiently handle uncertain tuple at-
tributes.
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