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In audio-visual recordings of music performances, visual cues from instrument players exhibit
good temporal correspondence with the audio signals and the music content. These corre-
spondences provide useful information for estimating source associations, i.e., for identifying
the affiliation between players and sound sources or score tracks. In this paper, we propose
a computational system that models audio-visual correspondences to achieve source associ-
ation for Western chamber music ensembles including strings, woodwind, and brass instru-
ments. Through its three modules, the system models three typical types of correspondences
between 1) body motions (e.g., bowing for string instruments and sliding for trombone) and note
onsets, 2) finger motions (e.g., fingering for most woodwind/brass instruments) and note on-
sets, and 3) vibrato hand motions (e.g., fingering hand rolling for string instruments) with pitch
fluctuations. Although the three modules are designed for estimating associations for different
instruments, the overall system provides a universal framework for all common melodic instru-
ments in Western chamber ensembles. The framework automatically and adaptively integrates
the three modules, without requiring prior knowledge of the instrument types. The system op-
erates in an online fashion, i.e., associations are updated as the audio-visual stream progresses.
We evaluate the system on ensembles with different instruments and polyphony, ranging from
duets to quintets. Results demonstrate that association accuracy increases as the duration of
video excerpts increases. For string quintets, the accuracy is over 90% from just a 5-second
video excerpt, while for woodwind, brass, and mixed-instrument quintets, a similar accuracy
can be reached after processing 30 seconds of video. The result of the proposed framework
is promising and enables novel applications such as interactive audio-visual music editing and
auto-whirling camera in concerts.
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1. Introduction bums is shown to provide an eight-percent boost, on

Visual aspects of music performances are often impor-
tant. In live concerts, performers use various kinds
of body movements to express their emotions and to
impress audiences (Parncutt and McPherson, 2002}
Sorgjerd, |2000). In music ensembles, visual interac-
tions among musicians are important for coordination
of timing and dynamics. In pop music, creative vi-
sual performances give artists a substantial competi-
tive advantage. The inclusion of videos in music al-
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average, in purchase intent and improved perception
(measured by Nielsen Holding. Even in prestigious
classical music performances, research has shown that
body movements and facial expressions of perform-
ers exert strong influences on the judgment of per-
formance quality, for expert or novice audiences alike
(Tsay, |2014).

On the technical side, the rapid expansion of digi-
tal storage and Internet bandwidth in the past decades
has not only popularized video streaming services like
YouTube but also significantly changed the way people
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enjoy music. With the surge of Virtual Reality (VR) and
Augmented Reality (AR) technologies and their adop-
tion in music entertainment, visual aspects of music
performances will further gain importance in innova-
tive music enjoyment experiences.

While Music Information Retrieval (MIR) based on
the audio signal and symbolic score (e.g., MIDI) has
been widely studied, only limited explorations have
been conducted on the interplay of visual and acoustic
aspects of music performances. The auditory and vi-
sual modalities are intimately related in music perfor-
mances. Sounds from acoustic instruments are invari-
ably mediated by the instrument players’ movements
and characteristics of the movements are reflected in
the resulting sounds. For example, the amplitude en-
velope and spectral evolution of a violin note are di-
rectly related to the velocity and pressure of a bowing
motion (Askenfelt, [1989) and fingering force (Obata
et all [2009); the timing of a clarinet note is often
correlated to the fingering movements; the loudness
of a drum hit is strongly related to the drumstick’s
preparatory height and striking velocity (Dahl, |2004).
These characteristics have been utilized to solve tradi-
tional MIR problems such as multi-pitch analysis (Di-
nesh et al., [2017), music transcription (Paleari et al.,
2008), score alignment (Bazzica et al., [2014), source
separation (Parekh et al., 2017b)), etc. An overview of
related literature is available in (Duan et al., 2019).

Classical chamber music is performed by a small
ensemble of instrumentalists, with one player per score
track (Burkholder and Grout, |2014). In this paper, we
study the relationship between the instrument players’
body movements and sound events in classical cham-
ber ensemble performances. The aim is to solve the
source association problem, i.e., identifying the bijec-
tion between score tracks (MIDI or MusicXML format)
and players in the video. The bijection, together with
a score-informed audio source separation technique
(Ewert et al., 2014), can allow users to separate the
audio source for each particular player in the video.

Exploiting information in the video about instru-
ment players’ movements for source association is chal-
lenging because many body movements (e.g., head
movement) are irrelevant to sound articulation (Godgy
and Jensenius, [2009) and relevant movements (e.g.,
maneuver with fingers) can be subtle. In music ensem-
bles, similar body movements can be observed among
different musicians when they have similar rhythmic
patterns. These challenges are especially pronounced
when the video clip is short (e.g., from online streams)
and when the ensemble is large. For a quintet, possible
associations can be enumerated as 120 permutations,
but only one is correct.

Source association enables novel research and ap-
plications. It is essential for leveraging the visual infor-
mation to analyze individual sound sources in music
performances. The related techniques include multi-

pitch analysis (Dinesh et al., |2017), performance ex-
pressiveness analysis (Li et al, 2017b)), source separa-
tion (Parekh et al) [2017a), etc. By exploiting source
associations, one can envision an augmented video
streaming service that allows users to click on a player
in the video and isolate/enhance the corresponding
source of the audio (Zhao et al., |2018). Based on
SLAVE (Thomas et al., |2009), a music exploration sys-
tem that manages multimedia music collections, one
can envision an augmented sheet music display inter-
face where on each score track, the visual performance
of the specific player is retrieved and demonstrated.
For music production, source association can help en-
able remixing of audio sources along with automatic
video scene recomposition. An online source associa-
tion system, which does not need to “look into the fu-
ture”, can be further useful in online video streaming of
live concerts. For example, it enables an auto-whirling
camcorder to focus on the soloist.

In this paper, we build upon our previous work on
source association for string instruments using bow-
ing motions (Li et al., |2017a) and vibrato motions (Li
et al.} 2017¢), and propose the first universal system
to address the problem for common melodic instru-
ments in Western chamber ensembles such as string,
woodwind, and brass instruments (barring polyphonic
instruments such as piano and harp). This system
does not require prior knowledge of instrumentation
of the piece or pre-training of audio-visual correspon-
dence. The system input is the audio/video perfor-
mance and the corresponding music score as pianoroll
representations, and the output is the association be-
tween audio/score tracks and video players, assuming
audio and video tracks are synchronized and audio and
score tracks are associated. After temporally aligning
the score with the live performance from auditory cues,
the system uses three modules to analyze different vi-
sual motion types that may be present in the perfor-
mance, as shown in Figure[l] Because many performed
motions are related to note onsets, the first two mod-
ules focus on the motion-onset correspondence. The
first module extracts large-scale body motions, which
mainly capture bowing motions of string instruments.
The second module extracts subtle fingering motions
and correlates these with note onsets. The correlation
aids associations for woodwind/brass instruments, as
pitch changes are mostly controlled by finger-operated
keys. In addition to note onsets, variations of acous-
tic features throughout tone articulations also show
correspondence with certain motions, for instance, for
the vibrato articulation in string instruments. There-
fore, the third module is designed to detect periodic
fingering motions (if any) and to correlate them with
the periodic pitch fluctuation estimated from audio.
This module is primarily directed at string instruments,
where vibrato articulations can be characterized from
the visual modality. Note that the first and third mod-
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ules are adapted from previously proposed systems by
(Lietal.,)2017a)) and (Li et al.,|2017c) respectively, and
the second module is proposed in this paper as the first
solution for wind/brass instruments. Finally, we also
propose to integrate the output of the three modules
through weighted voting according to motion salience.
It is noted that the system does not need to detect the
instrument type; it simply extracts the three kinds of
motions (if any) for each player and integrates their
correspondence with score/audio tracks, jointly.

The proposed system works in an online fashion:
The audio-score alignment, the correlation between
motion and audio/score, and the association output
are all updated in a frame-by-frame fashion without
“looking into the future”. Associations in each frame
are updated using the Hungarian algorithm (Kuhn,
1955), with a minimum computational cost. Experi-
ments on 17,574 audio-visual clips generated from 44
chamber music pieces in the URMP dataset (Li et al.)
2019) that spans a polyphony range from duets to
quintets, show that: 1) Different modules are helpful
for different instruments, and the system is able to inte-
grate them automatically to achieve a high overall ac-
curacy; 2) Accuracy increases as longer video streams
are available, reaching an average accuracy of 90%
for 5-second video excerpts of string instruments, and
for 30-second excerpts of woodwind and brass instru-
ments. In summary, the proposed system for audio-
visual source association:

* works universally for all instruments common in

Western chamber ensemble performances,

* does not require prior knowledge of instrumen-

tation, and

* relies purely on motion information for associ-

ation without modeling instrument characteris-
tics; which allows it to also work for ensembles
of the same instrument type, e.g., violin duets.

In the following, we first review existing work on
multi-modal modeling in Section[2] and highlight chal-
lenges involved in source association in music perfor-
mances. We then describe our proposed method in
three modules for the different motion cues for associa-
tions in Section[3} In Section [4] we conduct systematic
experiments to evaluate the proposed system. Finally,
we conclude the paper in Section 5]

2. Related Work

2.1 Source Localization

When there is at most one active sound source at a
time, the problem of audio-visual source association
is also known as source localization, i.e., indicating
the location of the sound source in the video. For
audio-visual speech, source localization is helpful for
speaker face segmentation (Liu and Sato), [2008)). Early
work on speaker localization correlates audio energy
changes with pixel motions via non-linear diffusion
(Casanovas and Vandergheynst, 2010) or with seman-
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Figure 1: Outline of the proposed universal source
association system for chamber ensemble perfor-
mances. Three types of motion are modeled and
correlated with the audio and score in three mod-
ules.

tic regions via video segmentation and tracking (Li
et al., |2014). Other methods include time-delayed
neural networks (Cutler and Davis, 2000), probabilis-
tic multi-modal generative models (Fisher and Dar-
rell, |2004), and Canonical Correlation Analysis (CCA)
(Kidron et al., [2007; Izadinia et al., [2013)).

More recent work proposes to localize seman-
tic objects in unconstrained videos by learning deep
multi-modal representations. Owens and Efros (2018)
propose a fused multi-sensory network to learn an
audio-visual representation, which further localizes the
sound objects on the video frames. |Senocak et al.
(2018)) employ a similar two-stream network structure,
where an attention mechanism is developed for sound
source localization. A similar idea is adopted by|Arand-
jelovic and Zisserman| (2018) for cross-modal retrieval
and source localization, and by [Tian et al.| (2018) for
both spatial and temporal localization.

2.2 Source Association for Separation

Other work deals with mixtures of active sources,
where cross-modal association can be applied to isolate
sounds that correspond to each visual object. Barze-
lay and Schechner| (2007} 2010) detect drastic changes
(i.e., onsets of events) in audio and video and then
use their coincidence to associate audio-visual com-
ponents that belong to the same source of harmonic
sounds. |Sigg et al.| (2007)) reformulate CCA by intro-
ducing non-negativity and sparsity constraints on the
coefficients of the projection directions to locate and
separate sound sources in movies. In (Casanovas et al.,
2010), auditory and visual modalities are decomposed
into relevant structures using redundant representa-
tions for source localization. Segments, where only
one source is active, are used to learn a timbre model
for the separation of the source. Ephrat et al.| (2018)
propose a deep network-based model to isolate single
speech signals from a mixture of sounds given the tar-
get speaker from the video. |Gao et al.| (2018) map au-
dio frequency bases to individual visual objects via an
audio-visual object model, which further guides audio
source separation. Most of these methods, however, ei-
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ther deal with mixtures with at most two active sources
or only focus on isolating one source from multiple ac-
tive sources (e.g., background noises). The association
problem for each individual source is not addressed.

2.3 Source Association for Chamber Ensembles

The source association problem for music ensembles is
more challenging since all the available sound sources
(the players) are active almost all the time, and the dif-
ficulty increases dramatically as the number of sources
increases. Although each track is performed by one
player in chamber music, the same kind of instruments
are often used for different score tracks (e.g., a vio-
lin duet). Therefore, approaches aiming at learning a
deep representation that maps audio features with vi-
sual appearances to localize each source (Owens and
Efros, 2018} /Senocak et al.,|2018;|Arandjelovic and Zis-
serman, [2018)) are not applicable. Instead, one needs
to recognize the distinct motions of different players
and correlate them with the music content to achieve
association.

Bazzica et al| (2014) first propose to detect
play/non-play conditions for each player in an orches-
tra, which are compared with each score track to solve
the temporal alignment. In our previous work (Li et al.,
2017a)), we propose an approach to solving the associ-
ation problem for string ensembles with up to five si-
multaneously active sources in a score-informed fash-
ion. The approach analyzes the bowing motion and
correlates it with note onsets in score tracks. The as-
sumptions are that many note onsets correspond to
the beginning of bowing strokes and that different
instrumental parts often have different rhythmic pat-
terns. When these assumptions are invalid, for ex-
ample, when multiple notes are played within a sin-
gle bow stroke (i.e., legato bowing) or when different
parts show a similar rhythmic pattern, the approach
becomes less robust. Later we propose a complemen-
tary approach (Li et al., 2017c) which correlates the
fingering hand rolling motion with pitch fluctuations of
vibrato notes for the association of string instruments.
However, the method only works when vibrato notes
are played. To our best knowledge, there is neither an
existing work on integrating the bowing motion and
vibrato motion for source association for string instru-
ments, nor any extensions of the concept to deal with
non-string instruments.

3. Method

The proposed system takes data in three modalities
as the input: the audio recordings, the video record-
ings, and the music scores of the chamber music per-
formances. As illustrated in Figure (1} the system uses
three parallel modules to model three types of tempo-
ral correspondence between motions detected in the
video and note events captured in other modalities for
different instrumentalists. In this section, we present
the system in detail.

3.1 Performance-Score Alignment

As the proposed approach is score informed, a prelim-
inary step for the system is to temporally align the
music score with the dynamic timing of the audio-
visual ensemble performance (assuming audio and
video are pre-synchronized). The temporal alignment
is achieved through audio-score alignment on the har-
monic content (Miller, 2015). To do so, the audio
is first converted to short-time Fourier spectral magni-
tudes with a 42.7 ms frame length (2048 samples for a
48 kHz sampling rate), 10 ms hop size, Hamming win-
dow, and zero padding to produce 4 times the original
length. The short-time Fourier spectral magnitudes are
then mapped to 12-D chroma vectors, where each el-
ement represents a pitch class. Each chroma vector is
normalized by its root mean square (RMS) value. A
similar operation is applied to the score, which is seg-
mented into non-overlapping frames of the same dura-
tion using the default tempo notated in the score. A
12-D binary chroma vector is calculated for each frame
to indicate the presence (taking more than 50% of the
frame) and absence of a pitch class. The chroma vector
is then normalized by its RMS.

In offline scenarios where the entire performance
is available beforehand, the alignment can be ob-
tained by the dynamic time warping (DTW) algo-
rithm (Miller, 2007), which is robust and efficient
(Miller et al., [2006). In online scenarios where
the performance data arrives as a live stream, one
commonly used framework is an online DTW algo-
rithm (Dixon, |2005)), which provides options such as
“forward-backward strategy” to reconsider the past de-
cisions (Arzt et al., |2008), or a step to incorporate
a tempo model (Arzt and Widmer, |2010) for robust-
ness. An alternative framework employs a stochas-
tic model (Grubb and Dannenberg, 1997; Duan and
Pardol 2011b)), where the score position hypotheses
are represented by a probability density function. In
this paper, to deal with online video streaming scenar-
ios, we apply the online method proposed by Duan and
Pardo| (2011b)), which is based on a Hidden Markov
Model with a 2D continuous state space to repre-
sent the score position and tempo. This framework
is previously evaluated on the Bachl0 dataset (Duan
et al., 2010) showing decent results. Further qualita-
tive check guarantees a good alignment performance
on the URMP dataset used in our experiments.

3.2 Onset Correspondence with Body Motion
3.2.1 Body Motion Extraction

In music performances, body motion of performers
conveys important musical expressions and ideas, e.g.,
the head nodding at leading notes. For some instru-
ments, body motion directly articulates notes (e.g.,
strings, drums) or controls the pitch (e.g., trombones).
To capture body motion from video recordings, one
approach is optical flow estimation. In our previous
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Figure 2: Body motion extraction. Upper body skele-
tons (second row) are extracted with OpenPose
(Cao et al., [2017) in each video frame (first row)
followed by temporal smoothing over time.

approach |Li et al.| (2017a) we apply optical flow es-
timation to extract bowing motion of string players.
However, we argue that this pixel-level analysis may
not be ideal for semantic-level understanding of body
gestures and movements, and can be less robust to oc-
clusions and camera viewpoint changes.

In this paper, we propose to apply OpenPose (Cao
on each frame, a multi-person pose esti-
mation approach to extract body skeleton coordinates
for all the players on stage without pre-segmentation
on the video recording. A skeleton in each frame is rep-
resented as a 20-D vector y(¢) corresponding to the hor-
izontal and vertical coordinates of the 10 upper body
joints, including nose, neck, shoulders, elbows, wrists,
and hips. We do not include lower body joints as they
are often less relevant to note events. Figure [2| shows
video frames of several instrumentalists with the ex-
tracted body skeletons. To form a continuous skele-
ton sequence across time, we eliminate joint coordi-
nates if the confidence score from OpenPose is smaller
than 0.2 and the L, distance between a joint in con-
secutive frames is larger than 10% of the head-hip dis-
tance, which is considered the maximal regular move-
ment in a =30-FPS video without shot transition. We
also temporally smooth their coordinates using a mov-
ing average with a 5-frame window size. These post-
processings are referred from where
the same approach is applied to extract skeletons for
pianists. We then take the two hips as reference coordi-
nates to align the body position across frames. Finally,
we calculate motion velocities z(¢) as the derivative of
y(#) w.r.t. time. Compared to optical flow estimation,
this gesture-based motion analysis approach is seman-
tically more meaningful, less computationally expen-
sive, and more robust to occlusions and camera view-
point changes such as camera zooming or panning.

To extract motions related to note onsets in
each video frame, for each player we denote the
motion velocities of n frames in the past as Z =
(z1(£),22(2), -+, 2, (1)) T € R"?0 and apply principal com-
ponent analysis (PCA) by eigen value decomposition
277 = vV’ where V and X represent the matrix of
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Figure 3: Example correspondence between body mo-
tion and note onsets. Top: temporally aligned score
track with onsets marked by red circles. Middle: ex-
tracted motion salience (primarily bowing motion)
from the visual performance of a violin player. Bot-
tom: derived onset likelihood curve from the mo-
tion salience.

eigen vectors and the corresponding eigen values re-
spectively. We then project the motion velocity z(r)
onto the principal component direction (first column
of V) and take its absolute value as the motion salience
s(t). Choosing the salient motion discards the direc-
tion information of the motions (e.g., up/down-bow
for violinists), which is less relevant to timings than
the amplitude information. We set n to 150 frames,
i.e., 5 seconds in time, assuming a player’s pose stays
consistent in this range. To reduce the computational
cost, we update V every 1 second (assuming consistent
motion patterns within a short period).

3.2.2 Onset Likelihood

From the motion salience s(¢), we infer the timings
of the motion strokes that are potentially related to
score note onsets. As a note onset often corresponds
to the beginning or ending of a sound articulation mo-
tion (e.g., a bowing stroke for string instruments), the
motion speed at the onset is often small. Therefore,
local minima of the motion salience s(¢) is often in-
dicative of note onsets. Let Q be the set of all the local
minima throughout a piece. For each local minimum
7 € Q, we represent the likelihood of a note onset as
a(r) = maXye(r,r+30)S(y) — $(7) that is determined by the
maximum speed of the motion stroke considering the
following 30 frames: the larger the value of a(r) the
more likely that a note onset is activated by the motion
stroke. Here 30 frames are considered to span the high
energy part of most notes. Therefore, we can define an
onset likelihood curve ¢, (1) derived from body motion
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analysis as

(Pb(t):(z a(r)-é(t—r))*ﬂ(t), (D

TEQ

where 6(¢) is the Dirac delta function, = is the con-
volution operation, and A4 (¢) is a Gaussian function
to give each predicted onset time a tolerance (width)
with a standard deviation of 3 frames (30 ms) (consid-
ering some slight non-synchronization between differ-
ent modalities in the recording file). It is noted that
¢p(1) can be calculated in an online fashion, with a de-
lay of up to 1 second due to the search for the local
maximum after each local minimum. Figure [3| plots
the onset likelihood curve ¢, (#) along with the associ-
ated and temporally aligned score track as piano-roll,
where the note onset timings are marked as red circles.
We find that many of the note onsets can be associated
with peaks of ¢, (f). The correspondence between the
notes and peaks sets the basis for the association be-
tween score and motion, as described below.

3.2.3 Pair-wise Correspondence

We extract the motion-based onset likelihood curve
for each player from the video performance as d);]p o),
where p is the player index. From each track of the
temporally aligned score, we use a binary impulse train
w9 (1) to represent the note onsets, where g is the
track index, w!9' (1) = 1 if there is a note onset in the ¢-th
frame of the g-th track and y!9! () = 0 otherwise. Then
the pair-wise matching score between the p-th player
and the g-th score track, up to the #-th frame, can be
calculated through inner product:

t
MI[]M] (1) = ZO(?b[bp] (1) - w[q] 1). (2)
T=

This can be updated in an online fashion as new tem-
poral frames arrive.

3.3 Onset Correspondence with Finger Motion
3.3.1 Finger Motion Extraction
While note articulation is visible on body movements
for string instrumentalists, this is generally not the case
for woodwind/brass instrumentalists, where notes are
articulated by blowing to the reed/mouthpiece, show-
ing a less visible motion around the mouth. How-
ever, pitch changes of these instruments are mostly
controlled by finger-operated keys, which often result
in synchronized events between finger movements and
note onsets (Palmer et al., 2007). Compared to body
motions, finger motions are more subtle and more
prone to occlusion. In this section, we propose to ex-
tract finger motions and correlate them with note on-
sets.

We apply OpenPose again to extract the positions of
all the finger joints from each player. Due to the limited
video resolution and occlusion, the result is not robust

enough to estimate the motion. Inspired by our previ-
ous work (Li et al.,|2017c), we use optical flow estima-
tion (Sun et al., [2010) to capture this subtle motion at
the pixel level. To reduce the computational cost, we
set a region of interest (ROI) around the detected fin-
ger joints from OpenPose for optical flow estimation.
The ROI centers at the median of all the finger joints
for each hand, and spans to cover all the joints. Simi-
lar to body skeletons, we smooth the joint coordinates
using moving average filter with a window size of 5
frames. Then we compute the optical flow estimation
inside the ROI. Again, to eliminate the rigid and affine
motion, each optical flow vector is subtracted by the
average motion vector of the ROI, resulting in a motion
vector u’/) (¢) at the pixel (i, j) and ¢-th frame. Figure[4]
takes one flute player and one clarinet player as ex-
amples to visualize the optical flow estimation of one-
hand finger motion in five consecutive frames, where
the estimated finger joint positions are overlaid on the
first video frames.

3.3.2 Onset Likelihood
On each frame we take the maximum value of pixel-
wise motion magnitude [u'/ ()| across all the pixels
in the ROI as the motion flux, which captures the fin-
ger movements corresponding to pitch changes and is
directly considered as onset likelihood ¢(t) from fin-
ger motions. Figure 5| plots the onset likelihood curve
¢ (1) along with the associated and temporally aligned
score track as piano-roll. We can observe salient mo-
tion flux around most note onset frames. Compared to
Figure [3] the correspondence of note onsets to finger-
ing motions for woodwind/brass instruments is not as
robust as that to body motions for string instruments.
The observation can be attributed to the fact that fine-
grained motion is more sensitive to irrelevant motions.
In addition, repeated notes for most woodwind/brass
instruments are not reflected by finger maneuver on
the keys.

Analogous to Eq. (2), the pair-wise matching score
from finger motions can be calculated as:

t
M0 =Y ¢ @ -y . )
7=0

3.4 Pitch Correspondence with Vibrato Motion

In addition to the onset time, variations of acoustic fea-
tures throughout the entire process of some note ar-
ticulations show correspondence with specific motions.
Vibrato is one such feature. Vibrato is a commonly used
artistic note articulation method to color a tone and ex-
press emotions in music performances. Physically, vi-
brato is generated by pitch modulation of a note in a
periodic fashion. For some instruments such as strings,
vibrato is often visible as the left hand rolling motion
on the fingerboard. The relationship between visible
motion and vibrato motivates us to follow our previous
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Figure 4: Optical flow visualization of finger motions
in five consecutive frames corresponding to note
changes. The color encoding scheme is adopted
from |Baker et al. (2011).
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Figure 5: Example correspondence between finger
motion and note onsets of a flute player. Top: tem-
porally aligned score track with onsets marked by
red circles. Bottom: extracted motion flux from fin-
ger movements.

work (Li et al, [2017c) to extract the fine motion and

find the correspondence with pitch contours extracted
from the audio modality.

3.4.1 Vibrato Motion Extraction

We retrieve the fingering motion u'/)(t) as computed
from the previous section. Although the vibrato mo-
tion is mostly a rigid motion (fingers move together
with little relative movements), it is periodic and very
fast (usually about 4-7.5 Hz (Geringer et al., 2010)),
and hence it is not removed as other slow rigid/affine
motions. Figure [f]illustrates several frames of the op-
tical flow estimation of the vibrato hand motions from
the two players. For each frame ¢, we take the aver-
age motion vector across all pixels within the ROI as
u(t) = [ux (1), uy(1)] T where the motion direction is pre-
served for vibrato detection.

The vibrato detection module works as a binary
classifier as proposed and trained by [Li et al.| (2017b).
The classifier is implemented as a support vector ma-
chine (SVM) that takes the input of a 8-dimensional
feature extracted from each sample, including the zero

Figure 6: Optical flow visualization of the hand mo-
tions corresponding to vibrato articulation. Color
encoding scheme is adopted from
(2011).
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Figure 7: The same segment of normalized pitch con-
tour f(1) (green) overlaid with the motion displace-
ment curve d(t) (black) from the associated track
(left) and another random track (right).

crossing rate of the x- and y- motion velocities and
their auto-correlations, the energy of 3-9 Hz frequency
range, and the auto-correlation peaks. According to
(2017D), this method achieves a vibrato detection
accuracy of over 90% from visual motions regardless of
the polyphony number and instrument type within the
string instrument family. Here each input sample is a 1-
second segment of u(f) (again introducing an average
0.5-second delay of the association system).

For each detected vibrato segment, we perform PCA
on u(#) within this 1-second segment to obtain the 1-D
principal motion velocity curve v(t). We then integrate
v(t) over time to calculate a motion displacement curve,
d(t), which corresponds to the length fluctuation of the
vibrating string, and hence the pitch fluctuation of the
note. We normalize each vibrato segment of d(r) to
zero mean and unit variance. We set the non-vibrato
segments of d(f) to zero.

3.4.2 Pitch Contour Extraction

Utilizing the score information, we apply Soundprism
(Duan and Pardol 2011a)), an online score-informed
source separation system, to separate the polyphonic
audio mixture into individual sources. Note that al-
though audio recordings of individual instrumental
tracks are available in the dataset, we do not use them
as they are not generally available in real concert sce-
narios. To extract the pitch contour, we perform a
score-informed pitch estimation step on each separated
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audio source, as described by our previous work (Li
et al., |2017c). The pitch contour of each note seg-
ment is normalized to have zero mean and unit vari-
ance, and is denoted as f(¢). The normalization op-
eration discards the original pitch height information,
and only preserves the pitch drift from the central fre-
quency within each note. Figure |7 plots a 1-second
segment of the normalized pitch contour overlaid with
a motion displacement curve from the associated track
(left) and a random track (right). Similar to Egs. (2]
and (3)), we calculate the vibrato correspondence as:

13
MPD () = Y dP @ f9 ). 4)
7=0

3.5 Integrating All Correspondences

We integrate the three modules to calculate the
pair-wise correspondence between visual motion and
score/audio events considering both onset timing and
the entire note articulation process. The calculation is
presented as

M[Wi] (t)

wy () - M7 (1)
+ wpn- M)
+ w0 M), 5)

where Ml[f g, Mj[f D (5), and M7 (1) represent the

normalized correspondence across all of the pair-wise
combinations between N players and N tracks as:

ietb f,v}, (6)

and wy, wy, w, represent the weighting parameters
to re-scale the normalized correspondences from dif-
ferent modules. Weight w, is set as 2wy, to place
greater emphasis on finger motions with vibrato pat-
terns. Weights wj;, and wy are linearly related to their
motion salience/flux in the past frames as

wp()  Ti_s(@)
we(t) Xty ¢r@’

7

The linear relationship recovers the original scale of
body and finger motion to weigh the correspondences
My (1) and Mg(1). It allows the system to focus on
the part with stronger motion cues, such as body mo-
tion for string instrumentalists, and finger motion for
wind/brass instrumentalists. In Section [4} we test the
components in isolation as well as some combinations
of them.

For an ensemble with N players, the number of pos-
sible associations is the factorial of N. Let o(-) be a
permutation function from p € [1,N] to q € [1, N] that
represents one association candidate, where the p-th
player is associated with the o(p)-th track. For each

association candidate o, we calculate an overall asso-
ciation score as the product of the N pair-wise corre-
spondence values. The final association solution & is
returned to maximize the association score as:

N N

6 =argmax [[ M'P°?P) = argmin }_ ~logM'P7P). (8)

o o
p=1 p=1

The replacement of product with sum of negative loga-
rithms makes the efficient Hungarian algorithm (Kuhn,
1955) directly applicable for finding the best associa-
tion.

4. Experiments

4.1 Dataset

The proposed source association system is evaluated
on the URMP dataset (Li et al.l |2019). To our best
knowledge, this is the only publicly available multi-
track audio-visual music performance dataset that is
suitable for our evaluations. It contains 44 classical
chamber ensemble pieces ranging from duets to quin-
tets, assembled from 149 individually recorded tracks.
Each piece comes with an audio recording (48 kHz,
24 bits) of the ensemble performance along with the
audio recording for each individual instrument track,
an assembled video recording (1080P, 29.97 FPS) of
all instrumentalists as a whole, pitch/note annotations
for each track, and the corresponding MIDI file as mu-
sic score. In the assembled video recording, players
are arranged horizontally from left to right, with the
right-front side exposed to camera. The video has a
static view without camera panning/zooming or shot
transitions during the whole performance. The whole
dataset is accessible from (Li et al., 2018a).

We further expand the dataset by creating all pos-
sible track combinations within each piece. In the ex-
panded set, audio is remixed from the provided indi-
vidual audio tracks. For videos, we directly use the es-
timated pose of each player from the original video en-
sembles for augmented track combinations. This pro-
cess gives equivalent results as if we first create the
assembled videos of the augmented instrumental com-
binations and then run OpenPose on these assembled
videos, but simply reduce computations in the experi-
ments. For the example of a quartet, we further gen-
erate 6 duets and 4 trios from the 4 original tracks.
Note that we do not combine tracks across pieces, to
ensure the naturalness of the expanded set. The total
expanded dataset comprises of 171 duets, 126 trios, 47
quartets, and 7 quintets. The number of pieces for dif-
ferent instrument arrangements are listed in Table

To further understand the dataset, we calculate the
onset overlap rate for each original piece. This statis-
tic is defined as the percentage of onset positions that
are shared by two or more tracks for each piece. This
statistic is relevant to the performance of the proposed
source association approach, as two out of the three
motion analysis modules rely on onset patterns to as-
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String ~ Woodwind/Brass ~ Mixed  Total
Duet 2 6 3 11
Original Trio 2 6 4 12
Quartet 5 6 3 14
Quintet 2 4 1 7

Duet 57 91 23 171

Expanded Trio 41 65 20 126
Quartet 15 25 7 47
Quintet 2 4 1 7

Table 1: The number of pieces for different instru-
ment arrangements from the original and expanded
URMP dataset.
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Figure 8: Onset overlap rate for each piece from the
original URMP dataset.

sociate players with tracks. Figure |8| plots this statistic
for all of the original 44 pieces. While the rate varies
much from one piece to another, we see a general in-
creasing trend as the polyphony increases.

4.2 System Setup

For implementation, the audio is processed with a
frame length of 42.7 ms and a hop size of 10
ms for score following and pitch contour extraction.
When calculating the vibrato correspondence, the mo-
tion curve extracted from the 29.97-frame-per-second
(FPS) video is up-sampled to 100 FPS, enabling a
synchronized time resolution between the audio and
video. As vibrato detection is performed on 1-second
segments and the onset likelihood curve from body mo-
tion is derived from a local maximum within future
30 frames (=1 second), the system has a 1-second in-
herent delay when it runs for real-time applications.
The past 5-second of body and finger motion velocities
are stored in memory to apply PCA (described in Sec-
tion and to calculate the weighting parameters
in Eq. (7).

For evaluation, we first address each track indepen-
dently to investigate the quality of the extracted on-
set likelihood features, using the traditional onset de-
tection measures. Then we evaluate the association
performance on the expanded set of ensemble pieces.
The result is grouped by different ensemble types, from
duets to quintets, which directly correlate with the dif-
ficulty levels. Note that whatever number of tracks pre-
sented in the performance, only one association is cor-
rect. We do not include a quantitative evaluation of
the score following and vibrato detection modules in
this paper, since they have been fully evaluated in the
previous work.

4.3 Onset Detection Evaluation

As two modules of the proposed system rely on the
synchronization cues of onset timing between different
modalities, we evaluate the quality of our proposed on-
set likelihood curves that are extracted from body mo-
tions and finger motions. To do so, we set up an onset
detection task. We take the onset likelihood curve as
the onset detection function (Bello et al., )2005), and
perform peak-picking to retrieve the onsets. A true
positive detection is counted when a detected onset is
within a tolerance window of 3 video frames (100ms).
This is wider than the standard 50ms in the literature,
since the precise timing is not the main focus of the
source association system.

—wn
va
—vc
—db
fi

a @
S o
S

-=-ob
==l
-=bn
S 1\ = __ sax
P r S -
/. 20 \ tpt
i/ hn
10 Ui 10 -~ tbn

0 - - tha

Precision (%)
I

s 0 o
8 g

n W
o © o
Precision (%)

0
0 10 20 30 40 50 60 70 80 90 100
Recall (%)

0 10 20 30 40 50 60 70 80 90 100
Recall (%)

(a) (b)

Figure 9: Onset detection evaluation results from
body motions (a) and finger motions (b) for dif-
ferent instruments.

Figure [9] plots the precision versus recall by vary-
ing the peak-picking threshold on the onset likelihood
curves extracted from body motions and finger mo-
tions respectively. Precision and recall are calculated
for each instrument across all pieces in the original
dataset. Observing Figure [J] reveals that the onset
likelihood curve extracted from body motion shows
better correlation with the ground-truth onset timings
for string instruments, while, that from finger motion
shows better correlation for woodwind/brass instru-
ments. An exception is trombone, where the onset like-
lihood curve extracted from body motion shows bet-
ter correlation than that from finger motions. The ob-
servation is reasonable as the trombone pitch change
(hence note transition) is mainly performed by moving
the slide using the right arm (body motion).

Another interesting observation is that although
the onset likelihood curve ¢, (f) in Figure [3| is visu-
ally less noisy than ¢(z) in Figure |5, the recall cal-
culated from ¢ () for string instruments cannot reach
as high value as that of woodwind/brass instruments
calculated from ¢¢(¢). We argue that this is because
legato bowing (i.e., articulating a sequence of notes
from one sustained bowing action) is widely used in
string instrument performances, where onset detection
from bow motions misses some true positives. This ex-
plains the upper bound of recall rates (around 80%
as in Figure |§| (a)) for string instruments. For wood-
wind/brass instruments, there are also onsets not vis-
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excerpt duration (sec)

String 5 10 15 20 25 30
Duet 1323 642 420 303 236 200
Trio 1044 506 333 240 189 158
Quartet 355 172 114 82 65 54
Quintet 64 31 21 15 12 10
. excerpt duration (sec)
Woodwind/Brass 5 10 Pl 5 20 25 30
Duet 1809 887 557 435 323 266
Trio 1275 626 391 309 229 187
Quartet 474 232 145 115 86 68
Quintet 66 32 20 16 12 9
. excerpt duration (sec)
LB, 5 0 D590 Cas a0
Duet 441 203 141 96 82 60
Trio 380 174 121 82 70 51
Quartet 199 92 64 44 37 28
Quintet 22 10 7 5 4 3

Table 2: The number of evaluation samples with dif-
ferent length and instrumentation for source associ-
ation.

ible such as repeated notes, but the amount is much
smaller, which explains why the recall rates can reach
closely to 100% in Figure[9] (b).

4.4 Source Association Evaluation

In this section we evaluate the source association per-
formance, first for each module (corresponding to each
component in Eq. independently, then for the fi-
nally integrated approach. We use association accuracy
as the evaluation measure, which is defined as the per-
centage of correctly associated pieces among all test-
ing pieces. A piece is considered correctly associated
if the exactly correct bijection between players and
score/audio tracks is retrieved. Note that the difficulty
of source association increases dramatically from small
to large ensembles. In a quintet ensemble, there are in
total 5! = 120 bijection candidates, and only one is con-
sidered correct. Therefore, we divide our evaluation
based on the size of ensembles.

Besides the ensemble size, the length of the per-
formance also affects the difficulty of the association
problem, assuming longer pieces provide richer cues.
In an online setting, we hope that the proposed system
can retrieve the correct association as quickly as pos-
sible. Therefore, in the experiments, we segment the
testing pieces into non-overlapping excerpts for each
of the following lengths: 5, 10, 15, 20, 25, and 30 sec-
onds. When doing so, we first remove the beginning
and the last 5 seconds of each piece as the performance
may not cover the entire length of those segments. This
segmentation further expands the testing pieces to a
large number of evaluation samples, totaling 17,574
samples, as presented in Table

4.4.1 Body Motion

We first evaluate the source association performance
using the normalized onset correspondence M, be-
tween score tracks and body motions (the first
component of Eq. (5)). Figure (a)-(c) shows
the association accuracy for ensembles consisting
of string, woodwind/brass, and mixed instruments
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Figure 10: (a)-(c): Source association accuracy only
using onset correspondence between score tracks
and body motions (the first component M in
Eq. (5)). (d)-(D): Source association accuracy only
using onset correspondence between score tracks
and finger motions (the second component My in

Eq. (5.

with different polyphony. Note that the “All En-
sembles” evaluated in Figure (¢) and (f) con-
tain all the instrument categories from Table |2} i.e.,
String+Woodwind/Brass+Mixed. For each piece, we
plot how the association accuracy varies as the dura-
tion of the input stream increases from 5 to 30 sec-
onds. Each marker in the figure is the association ac-
curacy calculated from the number of excerpts shown
in Table

Comparing different ensemble sizes, the association
accuracy decreases as the number of players/tracks in-
creases. From Figure (a), we find that correlating
onsets with body motions is beneficial for string instru-
ments. Note that this evaluation is reproduced from
our previous work in (Li et al., 2017a) as one baseline
system here. The accuracy increases as the duration
of video stream increases, which provides more cues
to solve the association. The accuracy reaches around
90% for all ensemble sizes when the video stream du-
ration reaches 30 seconds. This strategy based on onset
correspondence from body motion, however, is not ef-
fective for woodwind/brass instruments, where the as-
sociation accuracy remains around random guess accu-
racy as shown in Figure[10| (b), e.g., 1/6 for trios. This
observation is consistent with our expectations and the
onset detection evaluations in Figure[9]
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4.4.2 Finger Motion

We then evaluate the source association performance
using the normalized onset correspondence M; be-
tween score tracks and finger motions (the second
component of Eq. (5)). The association accuracy is
plotted in Figure[10] (d)-(f), with the same set of pieces
used for evaluations plotted in Figure (a)-(c). From
Figure (d)-(f) we can observe that finger motion is a
more prominent cue for correspondence with note on-
sets for woodwind/brass instruments (except for trom-
bone). When a 30-second video excerpt is available,
the association accuracy reaches about 90% for all
sizes of woodwind/brass ensembles. These observa-
tions are also consistent with our onset detection evalu-
ations in Figure[9] For string instruments, however, the
extracted finger motions are mostly vibrato motions,
which are not relevant to note onsets.

Figure also reveals some limitations of the
source association solution based on onset-motion cor-
respondence. First, there are many note onsets not
revealed from body or finger motions, such as notes
played with legato bowing for string instruments and
repeated notes from woodwind/brass instruments, as
analyzed in Section Second, as note synchro-
nization between players is at the foundation of music
performances, note onsets between tracks have high
chances to overlap with each other, as shown in Fig-
ure |8 The limitations restrict the association perfor-
mance for approaches that only rely on onset-motion
correspondence, especially from short video excerpts.

4.4.3 Vibrato Motion
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Figure 11: Source association accuracy of string en-
sembles by (a) only using vibrato correspondence
between pitch fluctuation and hand motion (M,
in Eq. (5)), and (b) combining vibrato correspon-
dence with onset correspondence from body mo-
tion in (M} and M, in Eq. ).

The correspondence between pitch fluctuations and
vibrato motion (denoted as M,, the third component
of Eq. (5)) helps to retrieve the source association on
a finer level for string instrumentalists. The evaluation
result is plotted in Figure (a) for the same set of
pieces performed by string ensembles used for evalua-
tions plotted in Figure [10| (a). Note that this baseline
is the same system as proposed in our previous work
in (Li et al., 2017c). We do not include the wood-

wind/brass instrument group here since no vibrato pat-
tern can be detected from finger motions. We can find
that the source association can reach a high accuracy
from shorter video clips, i.e., 90% after 10 seconds.
The limitation of this approach is that vibrato articula-
tion is not guaranteed to be always present in the per-
formance. We thus combine this module with the on-
set correspondence from body motions, the two dom-
inant cues to solve association for string instruments,
to evaluate the association accuracy as shown in Fig-
ure (b). The two components from M;, and M, work
together to reach a high association accuracy from a
short video stream.

4.4.4 The Integrated System
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Figure 12: Source association accuracy of ensembles
with different instrumentation using all of the
three modules: onset correspondence from body
motions, onset correspondence from finger mo-
tions, and vibrato correspondence from hand mo-

tions (Eq. ).

Finally, we evaluate the proposed complete source
association system after integrating all the modules to-
gether, as presented in Eq. (5). The evaluated pieces
are the same as the ones plotted in Figure This
presents a universal source association system for com-
mon melodic instruments. Overall woodwind/brass in-
struments have less chance to retrieve the correct asso-
ciation than string instruments, since only the subtle
finger motions contribute to the correspondence with
onset events. This correspondence is often inaccessible
due to overlapping onsets across tracks or repeating
onsets as analyzed in Section Comparing Fig-
ure[12| (a) with Figure[11] (b), or Figure[12](b) with Fig-
ure (e), we observe that adding components with
irrelevant association cues does not harm the system,
thanks to the weighting strategy in Eq. over dif-
ferent modules. Comparing Figure (c) with Fig-
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ure [10[(c)/(f), the integrated system greatly improves
the association accuracy for pieces with mixed types of
instruments. The association accuracy for mixed en-
sembles is between that of string and woodwind/brass
ensembles.

4.5 Discussions

The proposed source association system is designed
and evaluated for the online scenario, where all the
system components do not rely on the performance
data after the current time instant. Note that due to the
limitation of the dataset, we have not systematically
evaluated the robustness of the system against camera
viewpoint changes. However, we argue that this will
not be a big problem for the proposed system, as all
the rigid/affine motions are easy to eliminate by setting
up reference points (e.g., players’ hips) after extracting
the skeleton data for each player. Another challenge in
a real-world application is introduced by camera shot
transitions in music video post-production. One sug-
gested strategy is to clear the accumulated association
scores and re-register the players when a shot transi-
tion is detected. But further experiments need to be
conducted to validate this strategy. Another limitation
of the experiments is that all the players in the dataset
have their front-right side facing the camera with most
finger motions visible. If this is not satisfied in real sce-
narios, only the first computation module (correspon-
dence between body motion and note onsets) provides
useful information, making the system only work for
string ensembles. This conclusion, however, is also true
for humans to recognize the association.

5. Conclusion

In this paper, we propose an online source association
system for Western chamber ensembles, which aims to
retrieve the association between players in the video
and the audio/score tracks through the analysis of the
cross-modal temporal correspondences. We designed
three modules to model different correspondences be-
tween 1) body motions and note onsets, 2) finger mo-
tions and note onsets, and 3) vibrato motions and pitch
fluctuations. Although these correspondences apply to
different kinds of instruments, the proposed system
automatically integrates them in an adaptive fashion,
without the need for knowing the instrument types.
This makes the system a universal framework for com-
mon instruments in Western chamber ensembles in-
cluding strings, woodwind, and brass instruments. In
addition, the system runs in an online fashion to up-
date association results as the video stream progresses.
Experiments with audio-visual recordings of perfor-
mances with different polyphony and instrumentation
demonstrate that the accuracy of the proposed system
increases with the length of video streams, and high
accuracy is achieved within a relatively short interval.
The accuracy for string ensembles is generally better
than that for woodwind, brass, and mixed-instrument

ensembles because more correspondences are modeled
for these instruments.

Acknowledgment

This work is supported by the National Science Foun-
dation grant No. 1741472.

References

Arandjelovi¢, R. and Zisserman, A. (2018). Objects
that sound. In Proceedings of the European Con-
ference on Computer Vision (ECCV), volume 1,
pages 451-466. DOI: https://doi.org/10.1007/
978-3-030-01246-5_27.

Arzt, A. and Widmer, G. (2010). Simple tempo models
for real-time music tracking. In Proceedings of the
Sound and Music Computing Conference (SMC).

Arzt, A., Widmer, G., and Dixon, S. (2008). Automatic
page turning for musicians via real-time machine
listening. In Proceedings of the European Confer-
ence on Artificial Intelligence (ECAI), pages 241-
245.

Askenfelt, A. (1989). Measurement of the bowing
parameters in violin playing. II: Bow-bridge dis-
tance, dynamic range, and limits of bow force.
The Journal of the Acoustical Society of America,
86(2):503-516. DOI: https://doi.org/10.1121/
1.398230.

Baker, S., Scharstein, D., Lewis, J., Roth, S.,
Black, M. J., and Szeliski, R. (2011). A
database and evaluation methodology for opti-
cal flow. International Journal of Computer Vi-
sion, 92(1):1-31. DOI: |https://doi.org/10.
1007/511263-010-0390-2.

Barzelay, Z. and Schechner, Y. Y. (2007). Harmony in
motion. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 1-8. DOI: https://doi.org/10.1109/CVPR.
2007.383344.

Barzelay, Z. and Schechner, Y. Y. (2010). Onsets co-
incidence for cross-modal analysis. IEEE Transac-
tions on Multimedia, 12(2):108-120. DOI: https:
//doi.org/10.1109/TMM. 2009.2037387.

Bazzica, A., Liem, C. C., and Hanjalic, A. (2014). Ex-
ploiting instrument-wise playing/non-playing la-
bels for score synchronization of symphonic mu-
sic. In Proceedings of the International Society for
Music Information Retrieval (ISMIR), pages 201-
206.

Bello, J. P., Daudet, L., Abdallah, S., Duxbury, C.,
Davies, M., and Sandler, M. (2005). A tutorial
on onset detection in music signals. IEEE Transac-
tions on Speech and Audio Processing, 13(5):1035-
1047. DOI: https://doi.org/10.1109/TSA.2005.
851998.

Burkholder, J. P. and Grout, D. J. (2014). A History
of Western Music: Ninth International Student Edi-
tion. WW Norton & Company, Inc.


https://doi.org/10.1007/978-3-030-01246-5_27
https://doi.org/10.1007/978-3-030-01246-5_27
https://doi.org/10.1121/1.398230
https://doi.org/10.1121/1.398230
https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1109/CVPR.2007.383344
https://doi.org/10.1109/CVPR.2007.383344
https://doi.org/10.1109/TMM.2009.2037387
https://doi.org/10.1109/TMM.2009.2037387
https://doi.org/10.1109/TSA.2005.851998
https://doi.org/10.1109/TSA.2005.851998

13 Li et al.: Online Audio-Visual Source Association for Chamber Music Performances

Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017).
Realtime multi-person 2D pose estimation using
part affinity fields. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), volume 1, pages 7291-7299. DOI:
https://doi.org/10.1109/CVPR.2017.143.

Casanovas, A. L., Monaci, G., Vandergheynst, P.,
and Gribonval, R. (2010). Blind audiovisual
source separation based on sparse redundant rep-
resentations. IEEE Transactions on Multimedia,
12(5):358-371. DOI: https://doi.org/10.1109/
TMM. 2010.2050650.

Casanovas, A. L. and Vandergheynst, P. (2010). Non-
linear video diffusion based on audio-video syn-
chrony. IEEE Transactions on Multimedia.

Cutler, R. and Davis, L. (2000). Look who’s talking:
Speaker detection using video and audio corre-
lation. In Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME), vol-
ume 3, pages 1589-1592. DOI: https://doi.org/
10.1109/ICME. 2000.871073.

Dahl, S. (2004). Playing the accent-comparing strik-
ing velocity and timing in an ostinato rhythm per-
formed by four drummers. Acta Acustica united
with Acustica, 90(4):762-776.

Dinesh, K., Li, B., Liu, X.,, Duan, Z., and Sharma,
G. (2017). Visually informed multi-pitch anal-
ysis of string ensembles. In Proceedings of the
IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pages 3021-
3025. DOI: https://doi.org/10.1109/ICASSP.
2017.7952711.

Dixon, S. (2005). Live tracking of musical perfor-
mances using on-line time warping. In Proceedings
of the International Conference on Digital Audio Ef-
fects (DAFx), pages 92-97.

Duan, Z., Essid, S., Liem, C., Richard, G., and Sharma,
G. (2019). Audiovisual analysis of music perfor-
mances: Overview of an emerging field. IEEE
Signal Processing Magazine, 36(1):63-73. DOI:
https://doi.org/10.1109/MSP.2018.2875511.

Duan, Z. and Pardo, B. (2011a). Soundprism: An
online system for score-informed source separa-
tion of music audio. IEEE Journal of Selected Top-
ics in Signal Processing, 5(6):1205-1215. DOI:
https://doi.org/10.1109/JSTSP.2011.2159701.

Duan, Z. and Pardo, B. (2011b). A state space model
for online polyphonic audio-score alignment. In
Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 197-200. DOI: https://doi.org/10.1109/
ICASSP.2011.5946374.

Duan, Z., Pardo, B., and Zhang, C. (2010). Multiple
fundamental frequency estimation by modeling
spectral peaks and non-peak regions. IEEE Trans-
actions on Audio, Speech, and Language Process-

ing, 18(8):2121-2133. DOI: https://doi.org/
10.1109/TASL.2010.2042119.

Ephrat, A., Mosseri, 1., Lang, O., Dekel, T., Wilson,
K., Hassidim, A., Freeman, W. T., and Rubin-
stein, M. (2018). Looking to listen at the cock-
tail party: A speaker-independent audio-visual
model for speech separation. ACM Transactions on
Graphics (TOG), 37(4). DOI: https://doi.org/
10.1145/3197517.3201357.

Ewert, S., Pardo, B., Miiller, M., and Plumbley, M. D.
(2014). Score-informed source separation for mu-
sical audio recordings: An overview. IEEE Sig-
nal Processing Magagzine, 31(3):116-124. DOI:
https://doi.org/10.1109/MSP.2013.2296076.

Fisher, J. W. and Darrell, T. (2004). Speaker associ-
ation with signal-level audiovisual fusion. IEEE
Transactions on Multimedia, 6(3):406-413. DOI:
https://doi.org/10.1109/TMM. 2004 .827503.

Gao, R., Feris, R., and Grauman, K. (2018). Learn-
ing to separate object sounds by watching un-
labeled video. In Proceedings of the European
Conference on Computer Vision (ECCV), volume 3,
pages 36-54. DOI: https://doi.org/10.1007/
978-3-030-01219-9_3.

Geringer, J. M., MacLeod, R. B., and Allen, M. L.
(2010). Perceived pitch of violin and cello vi-
brato tones among music majors. Journal of Re-
search in Music Education, 57(4):351-363. DOI:
https://doi.org/10.1177/0022429409350510.

Godgy, R. I. and Jensenius, A. R. (2009). Body move-
ment in music information retrieval. In Proceed-
ings of the International Society for Music Informa-
tion Retrieval (ISMIR), pages 45-50.

Grubb, L. and Dannenberg, R. (1997). A stochastic
method of tracking a vocal performer. In Proceed-
ings of the International Computer Music Confer-
ence (ICMC), pages 301-308.

Izadinia, H., Saleemi, I., and Shah, M. (2013). Mul-
timodal analysis for identification and segmenta-
tion of moving-sounding objects. IEEE Transac-
tions on Multimedia, 15(2):378-390. DOI: https:
//doi.org/10.1109/TMM.2012.2228476.

Kidron, E., Schechner, Y. Y., and Elad, M. (2007).
Cross-modal localization via sparsity. IEEE
Transactions on Signal Processing, 55(4):1390-
1404. DOI: https://doi.org/10.1109/TSP.2006.
888095.

Kuhn, H. W. (1955). The hungarian method for the as-
signment problem. Naval Research Logistics (NRL),
2(1-2):83-97. DOI: https://doi.org/10.1002/
nav.3800020109.

Li, B., Dinesh, K., Duan, Z., and Sharma, G.
(2017a). See and listen: Score-informed associ-
ation of sound tracks to players in chamber mu-
sic performance videos. In Proceedings of the
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 2906-


https://doi.org/10.1109/CVPR.2017.143
https://doi.org/10.1109/TMM.2010.2050650
https://doi.org/10.1109/TMM.2010.2050650
https://doi.org/10.1109/ICME.2000.871073
https://doi.org/10.1109/ICME.2000.871073
https://doi.org/10.1109/ICASSP.2017.7952711
https://doi.org/10.1109/ICASSP.2017.7952711
https://doi.org/10.1109/MSP.2018.2875511
https://doi.org/10.1109/JSTSP.2011.2159701
https://doi.org/10.1109/ICASSP.2011.5946374
https://doi.org/10.1109/ICASSP.2011.5946374
https://doi.org/10.1109/TASL.2010.2042119
https://doi.org/10.1109/TASL.2010.2042119
https://doi.org/10.1145/3197517.3201357
https://doi.org/10.1145/3197517.3201357
https://doi.org/10.1109/MSP.2013.2296076
https://doi.org/10.1109/TMM.2004.827503
https://doi.org/10.1007/978-3-030-01219-9_3
https://doi.org/10.1007/978-3-030-01219-9_3
https://doi.org/10.1177/0022429409350510
https://doi.org/10.1109/TMM.2012.2228476
https://doi.org/10.1109/TMM.2012.2228476
https://doi.org/10.1109/TSP.2006.888095
https://doi.org/10.1109/TSP.2006.888095
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109

14 Li et al.: Online Audio-Visual Source Association for Chamber Music Performances

2910. DOI: https://doi.org/10.1109/ICASSP.
2017.7952688.

Li, B., Dinesh, K., Sharma, G., and Duan, Z. (2017b).
Video-based vibrato detection and analysis for
polyphonic string music. In Proceedings of the In-
ternational Society for Music Information Retrieval
(ISMIR), pages 123-130.

Li, B., Liu, X., Dinesh, K., Duan, Z., and Sharma, G.
(2018a). Data from: “Creating a multi-track clas-
sical music performance dataset for multi-modal
music analysis: Challenges, insights, and applica-
tions.”. Dryad Digital Repository. |https://doi.
org/10.5061/dryad.ng3r749.

Li, B., Liu, X., Dinesh, K., Duan, Z., and Sharma, G.
(2019). Creating a music performance dataset for
multimodal music analysis: Challenges, insights,
and applications. IEEE Transactions on Multimedia,
21(2):522-535. DOI: https://doi.org/10.1109/
TMM. 2018.2856090.

Li, B., Maezawa, A., and Duan, Z. (2018b). Skele-
ton plays piano: online generation of pianist body
movements from MIDI performance. In Proceed-
ings of the International Society for Music Informa-
tion Retrieval (ISMIR).

Li, B.,, Xu, C., and Duan, Z. (2017c). Audiovisual
source association for string ensembles through
multi-modal vibrato analysis. In Proceedings of the
Sound and Music Computing (SMC), pages 159-
166.

Li, K., Ye, J., and Hua, K. A. (2014). What’s making that
sound? In Proceedings of the ACM International
Conference on Multimedia, pages 147-156. DOI:
https://doi.org/10.1145/2647868.2654936.

Liu, Y. and Sato, Y. (2008). Finding speaker face region
by audiovisual correlation. In Proceedings of the
Workshop on Multi-camera and Multi-modal Sensor
Fusion Algorithms and Applications (M2SFA2).

Miiller, M. (2007). Dynamic time warping. In Infor-
mation retrieval for music and motion, chapter 4,
pages 69-84. Springer. DOI: https://doi.org/
10.1007/978-3-540-74048-3_4.

Miiller, M. (2015). Music synchronization. In Funda-
mentals of music processing, chapter 3, pages 115-
166. Springer. DOI: https://doi.org/10.1007/
978-3-319-21945-5_3.

Miiller, M., Mattes, H., and Kurth, F. (2006). An ef-
ficient multiscale approach to audio synchroniza-
tion. In Proceedings of the International Society for
Music Information Retrieval (ISMIR).

Obata, S., Nakahara, H., Hirano, T., and Kinoshita, H.
(2009). Fingering force in violin vibrato. In Pro-
ceedings of the International Symposium on Perfor-
mance Science, volume 429.

Owens, A. and Efros, A. A. (2018). Audio-visual
scene analysis with self-supervised multisensory
features. In Proceedings of the European Con-
ference on Computer Vision (ECCV), volume 6,

pages 639-658. DOI: https://doi.org/10.1007/
978-3-030-01231-1_39.

Paleari, M., Huet, B., Schutz, A., and Slock, D. (2008).
A multimodal approach to music transcription. In
Proceedings of the IEEE International Conference on
Image Processing (ICIP), pages 93-96. DOI: https:
//doi.org/10.1109/ICIP.2008.4711699.

Palmer, C., Carter, C., Koopmans, E., and Loehr, J. D.
(2007). Movement, planning, and music: Motion
coordinates of skilled performance. In Proceedings
of the International Conference on Music Communi-
cation Science, pages 119-122. University of New
South Wales Sydney, NSW.

Parekh, S., Essid, S., Ozerov, A., Duong, N., Perez, P.,
and Richard, G. (2017a). Motion informed audio
source separation. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 6-10. DOI: https:
//doi.org/10.1109/ICASSP.2017.7951787.

Parekh, S., Essid, S., Ozerov, A., Duong, N. Q., Pérez,
P., and Richard, G. (2017b). Guiding audio source
separation by video object information. In Proceed-
ings of the IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), pages
61-65. DOI: |https://doi.org/10.1109/WASPAA.
2017.8169995.

Parncutt, R. and McPherson, G. (2002). The sci-
ence and psychology of music performance: Cre-
ative strategies for teaching and learning. Oxford
University Press. DOI: https://doi.org/10.1177/
1321103X020190010803.

Senocak, A., Oh, T.-H., Kim, J., Yang, M.-H., and
Kweon, I. S. (2018). Learning to localize sound
source in visual scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4358-4366. DOI: https:
//doi.org/10.1109/CVPR.2018.00458.

Sigg, C., Fischer, B., Ommer, B., Roth, V., and Buh-
mann, J. (2007). Nonnegative CCA for audiovi-
sual source separation. In Proceedings of the IEEE
Workshop on Machine Learning for Signal Process-
ing, pages 253-258. DOI: |https://doi.org/10.
1109/MLSP.2007.4414315.

Sorgjerd, M. (2000). Auditory and Visual Recogniton
of Emotional Expression in Performance of Music.
PhD thesis, Uppsala universitet, Institutionen for
psykologi.

Sun, D., Roth, S., and Black, M. J. (2010). Se-
crets of optical flow estimation and their prin-
ciples. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 2432-2439. DOI: https://doi.org/10.
1109/CVPR.2010.5539939.

Thomas, V., Fremerey, C., Damm, D., and Clausen,
M. (2009). SLAVE: a score-lyrics-audio-video-
explorer. In Proceedings of the International Society
for Music Information Retrieval (ISMIR).


https://doi.org/10.1109/ICASSP.2017.7952688
https://doi.org/10.1109/ICASSP.2017.7952688
https://doi.org/10.5061/dryad.ng3r749
https://doi.org/10.5061/dryad.ng3r749
https://doi.org/10.1109/TMM.2018.2856090
https://doi.org/10.1109/TMM.2018.2856090
https://doi.org/10.1145/2647868.2654936
https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1007/978-3-319-21945-5_3
https://doi.org/10.1007/978-3-319-21945-5_3
https://doi.org/10.1007/978-3-030-01231-1_39
https://doi.org/10.1007/978-3-030-01231-1_39
https://doi.org/10.1109/ICIP.2008.4711699
https://doi.org/10.1109/ICIP.2008.4711699
https://doi.org/10.1109/ICASSP.2017.7951787
https://doi.org/10.1109/ICASSP.2017.7951787
https://doi.org/10.1109/WASPAA.2017.8169995
https://doi.org/10.1109/WASPAA.2017.8169995
https://doi.org/10.1177/1321103X020190010803
https://doi.org/10.1177/1321103X020190010803
https://doi.org/10.1109/CVPR.2018.00458
https://doi.org/10.1109/CVPR.2018.00458
https://doi.org/10.1109/MLSP.2007.4414315
https://doi.org/10.1109/MLSP.2007.4414315
https://doi.org/10.1109/CVPR.2010.5539939
https://doi.org/10.1109/CVPR.2010.5539939

15 Li et al.: Online Audio-Visual Source Association for Chamber Music Performances

Tian, Y., Shi, J., Li, B., Duan, Z., and Xu, C. (2018).
Audio-visual event localization in unconstrained
videos. In Proceedings of the European Con-
ference on Computer Vision (ECCV), volume 2,
pages 252-268. DOI: https://doi.org/10.1007/
978-3-030-01216-8_16.

Tsay, C.-J. (2014). The vision heuristic: Judging mu-
sic ensembles by sight alone. Organizational Be-
havior and Human Decision Processes, 124(1):24—
33. DOI: https://doi.org/10.1016/j.obhdp.
2013.10.003.

Zhao, H., Gan, C., Rouditchenko, A., Vondrick, C.,
McDermott, J., and Torralba, A. (2018). The
sound of pixels. In Proceedings of the European
Conference on Computer Vision (ECCV), volume 1,
pages 587-604. DOI: https://doi.org/10.1007/
978-3-030-01246-5_35.


https://doi.org/10.1007/978-3-030-01216-8_16
https://doi.org/10.1007/978-3-030-01216-8_16
https://doi.org/10.1016/j.obhdp.2013.10.003
https://doi.org/10.1016/j.obhdp.2013.10.003
https://doi.org/10.1007/978-3-030-01246-5_35
https://doi.org/10.1007/978-3-030-01246-5_35

5 Li et al.: Online Audio-Visual Source Association for Chamber Music Performances

Figure 2: Body motion extraction. Upper body skele-
tons (second row) are extracted with OpenPose
(Cao et al., 2017) in each video frame (first row)
followed by temporal smoothing over time.

approach Li et al. (2017a) we apply optical flow es-
timation to extract bowing motion of string players.
However, we argue that this pixel-level analysis may
not be ideal for semantic-level understanding of body
gestures and movements, and can be less robust to oc-
clusions and camera viewpoint changes.

In this paper, we propose to apply OpenPose (Cao
et al., 2017) on each frame, a multi-person pose esti-
mation approach to extract body skeleton coordinates
for all the players on stage without pre-segmentation
on the video recording. A skeleton in each frame is rep-
resented as a 20-D vector y(¢) corresponding to the hor-
izontal and vertical coordinates of the 10 upper body
joints, including nose, neck, shoulders, elbows, wrists,
and hips. We do not include lower body joints as they
are often less relevant to note events. Figure 2 shows
video frames of several instrumentalists with the ex-
tracted body skeletons. To form a continuous skele-
ton sequence across time, we eliminate joint coordi-
nates if the confidence score from OpenPose is smaller
than 0.2 and the L, distance between a joint in con-
secutive frames is larger than 10% of the head-hip dis-
tance, which is considered the maximal regular move-
ment in a =30-FPS video without shot transition. We
also temporally smooth their coordinates using a mov-
ing average with a 5-frame window size. These post-
processings are referred from (Li et al., 2018b) where
the same approach is applied to extract skeletons for
pianists. We then take the two hips as reference coordi-
nates to align the body position across frames. Finally,
we calculate motion velocities z(t) as the derivative of
y(#) w.r.t. time. Compared to optical flow estimation,
this gesture-based motion analysis approach is seman-
tically more meaningful, less computationally expen-
sive, and more robust to occlusions and camera view-
point changes such as camera zooming or panning.

To extract motions related to note onsets in
each video frame, for each player we denote the
motion velocities of n frames in the past as Z =
(z1(2),22(2), -+, 2, ()] T € R™?0 and apply principal com-
ponent analysis (PCA) by eigen value decomposition
277 = vV’ where V and X represent the matrix of
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Figure 3: Example correspondence between body mo-
tion and note onsets. Top: temporally aligned score
track with onsets marked by red circles. Middle: ex-
tracted motion salience (primarily bowing motion)
from the visual performance of a violin player. Bot-
tom: derived onset likelihood curve from the mo-
tion salience.

eigen vectors and the corresponding eigen values re-
spectively. We then project the motion velocity z(r)
onto the principal component direction (first column
of V) and take its absolute value as the motion salience
s(t). Choosing the salient motion discards the direc-
tion information of the motions (e.g., up/down-bow
for violinists), which is less relevant to timings than
the amplitude information. We set n to 150 frames,
i.e., 5 seconds in time, assuming a player’s pose stays
consistent in this range. To reduce the computational
cost, we update V every 1 second (assuming consistent
motion patterns within a short period).

3.2.2 Onset Likelihood

From the motion salience s(t), we infer the timings
of the motion strokes that are potentially related to
score note onsets. As a note onset often corresponds
to the beginning or ending of a sound articulation mo-
tion (e.g., a bowing stroke for string instruments), the
motion speed at the onset is often small. Therefore,
local minima of the motion salience s(#) is often in-
dicative of note onsets. Let Q be the set of all the local
minima throughout a piece. For each local minimum
7 € Q, we represent the likelihood of a note onset as
a(r) = maXye(r,r+30)S(y) — s(7) that is determined by the
maximum speed of the motion stroke considering the
following 30 frames: the larger the value of a(r) the
more likely that a note onset is activated by the motion
stroke. Here 30 frames are considered to span the high
energy part of most notes. Therefore, we can define an
onset likelihood curve ¢, (1) derived from body motion
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Figure 4: Optical flow visualization of finger motions
in five consecutive frames corresponding to note
changes. The color encoding scheme is adopted
from Baker et al. (2011).
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Figure 5: Example correspondence between finger
motion and note onsets of a flute player. Top: tem-
porally aligned score track with onsets marked by
red circles. Bottom: extracted motion flux from fin-
ger movements.

work (Li et al., 2017c¢) to extract the fine motion and
find the correspondence with pitch contours extracted
from the audio modality.

3.4.1 Vibrato Motion Extraction

We retrieve the fingering motion u'/(t) as computed
from the previous section. Although the vibrato mo-
tion is mostly a rigid motion (fingers move together
with little relative movements), it is periodic and very
fast (usually about 4-7.5 Hz (Geringer et al., 2010)),
and hence it is not removed as other slow rigid/affine
motions. Figure 6 illustrates several frames of the op-
tical flow estimation of the vibrato hand motions from
the two players. For each frame ¢, we take the aver-
age motion vector across all pixels within the ROI as
u(t) = [ux (1), uy(1)] T where the motion direction is pre-
served for vibrato detection.

The vibrato detection module works as a binary
classifier as proposed and trained by Li et al. (2017b).
The classifier is implemented as a support vector ma-
chine (SVM) that takes the input of a 8-dimensional
feature extracted from each sample, including the zero

Time ——

Figure 6: Optical flow visualization of the hand mo-
tions corresponding to vibrato articulation. Color
encoding scheme is adopted from Baker et al.
(2011).
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Figure 7: The same segment of normalized pitch con-
tour f(1) (green) overlaid with the motion displace-
ment curve d(t) (black) from the associated track
(left) and another random track (right).

crossing rate of the x- and y- motion velocities and
their auto-correlations, the energy of 3-9 Hz frequency
range, and the auto-correlation peaks. According to Li
et al. (2017b), this method achieves a vibrato detection
accuracy of over 90% from visual motions regardless of
the polyphony number and instrument type within the
string instrument family. Here each input sample is a 1-
second segment of u(f) (again introducing an average
0.5-second delay of the association system).

For each detected vibrato segment, we perform PCA
on u(#) within this 1-second segment to obtain the 1-D
principal motion velocity curve v(t). We then integrate
v(t) over time to calculate a motion displacement curve,
d(t), which corresponds to the length fluctuation of the
vibrating string, and hence the pitch fluctuation of the
note. We normalize each vibrato segment of d(r) to
zero mean and unit variance. We set the non-vibrato
segments of d(f) to zero.

3.4.2 Pitch Contour Extraction

Utilizing the score information, we apply Soundprism
(Duan and Pardo, 2011a), an online score-informed
source separation system, to separate the polyphonic
audio mixture into individual sources. Note that al-
though audio recordings of individual instrumental
tracks are available in the dataset, we do not use them
as they are not generally available in real concert sce-
narios. To extract the pitch contour, we perform a
score-informed pitch estimation step on each separated
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