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Noise-Resilient Training Method for Face Landmark
Generation From Speech
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Abstract—Visual cues such as lip movements, when available,
play an important role in speech communication. They are espe-
cially helpful for the hearing impaired population or in noisy en-
vironments. When not available, having a system to automatically
generate talking faces in sync with input speech would enhance
speech communication and enable many novel applications. In this
article, we present a new system that can generate 3D talking
face landmarks from speech in an online fashion. We employ a
neural network that accepts the raw waveform as an input. The
network contains convolutional layers with 1D kernels and outputs
the active shape model (ASM) coefficients of face landmarks. To
promote smoother transitions between video frames, we present
a variant of the model that has the same architecture but also
accepts the previous frame’s ASM coefficients as an additional
input. To cope with background noise, we propose a new training
method to incorporate speech enhancement ideas at the feature
level. Objective evaluations on landmark prediction show that
the proposed system yields statistically significantly smaller errors
than two state-of-the-art baseline methods on both a single-speaker
dataset and a multi-speaker dataset. Experiments on noisy speech
input with five types of non-stationary unseen noise show statisti-
cally significant improvements of the system performance thanks to
the noise-resilient training method. Finally, subjective evaluations
show that the generated talking faces have a significantly more
convincing match with the input audio, achieving a similarly con-
vincing level of realism as the ground-truth landmarks.

Index Terms—Speech animation, noise-resilient, convolutional
neural networks, speech processing, face landmarks.

I. INTRODUCTION

PEECH communication between humans is often not
merely via the acoustic channel; visual cues can also play
an important and even critical role. Extensive studies have
shown that seeing lip movements besides hearing speech can
significantly improve speech comprehension for both the gen-
eral and hearing impaired population [1]-[4], especially when
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background noise or compression effects corrupt the acoustic
signal.

Therefore, having ways to generate talking faces from acous-
tic speech signals would significantly improve speech commu-
nication and comprehension in many scenarios and enable many
applications. It improves access to abundantly available speech
content on the web for the hearing impaired population. It is also
useful in AR/VR professional training applications for pilots,
drivers, machine operators, doctors, police officers, and soldiers,
where the training scenarios are often noisy, and audio-only
speech comprehension can be challenging. It is also useful for
developing visual dubbing applications for movies.

To this end, researchers proposed end-to-end and module-
based systems. End-to-end data-driven methods can learn the
mapping between speech and visual cues; as a result, they
can generate natural looking talking faces [5]-[7]. However,
utilizing separate modules to generate the key parameters (ar-
ticulation, mouth shapes) and fine details (texture, identity) has
benefits. The key parameters, such as face landmarks, are driven
by the speech content directly, and they play the skeleton role in
such systems. Another module can further process the generated
face landmarks to impose photo-realistic textures and details of
the face. This modular design provides more flexibility than end-
to-end generation systems. For example, the face landmarks can
be manipulated before being processed by the texture module to
change the facial expression, emotion and the fine articulation
of words.

Speech signals encountered in the wild often contain back-
ground noise that degrades the performance of automatic speech
processing systems. It is vital that the talking face generation
system is resilient to such background noise in practice. To our
best knowledge, however, most of the existing systems do not
consider background noise in their system design and evaluation.

In this paper, we improve on our previous work [8] and present
a new method that generates 3D face landmarks directly from
the raw waveform. We propose a novel pre-processing method
to normalize the identities of the face landmarks. In addition,
we propose a neural network that processes the waveform with
convolutional layers with 1D filters and predicts the active shape
model (ASM) parameters of 3D face landmarks with a following
fully connected (FC) layer. We train the network with pairs
of speech audio and 3D face landmarks extracted from the
GRID dataset [9]. To cope with background noise in speech
input, we further propose a noise-resilient training method that
uses speech enhancement ideas in feature learning. Objective
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evaluations show that our proposed method yields better results
than two state-of-the-art baseline methods. Results also show
significant improvement thanks to the noise-resilient training
method in non-stationary noise conditions. Through subjective
evaluations, we show that the generated 3D face landmarks
demonstrate a convincing match with the speech audio signals.
To promote scientific reproducibility, we release several gener-
ation examples, code of the proposed system, and pre-trained
models.!

Compared to our preliminary work [8], we make the fol-
lowing contributions in this work: 1) We generate 3D face
landmarks as opposed to 2D as our previous work. Including
the 3 rd dimension allows novel applications such as AR/VR,
video games and movie dubbing. 2) Instead of Mel-Frequency
Cepstral Coefficients (MFCC) and their temporal derivatives,
we directly input the raw waveform to the network. 3) We pro-
pose a new network architecture that replaces Long Short-Term
Memory (LSTM) layers with convolutional layers for improving
the results on raw waveform inputs. 4) We propose a noise-
resilient training method to incorporate speech enhancement
ideas at the feature level to increase the system’s robustness to
non-stationary background noise. This noise-resilient training
method can be applied to other speech processing tasks such as
automatic speech recognition, emotion recognition, and speaker
identification/verification.

The rest of the paper is organized as follows: We first present
related work on speech animation in Section II. We then describe
the proposed neural network system and its data preparation
in Section IIl. Then, we present implementation details, the
objective and subjective evaluations, and the analysis of the
architecture in Section IV. Finally, we conclude the paper in
Section V.

II. RELATED WORK

Audio-visual and multi-modal approaches have received
much attention in signal processing in recent years. When
multi-modal inputs are available, performance of many tasks
such as speech enhancement, source separation, speech recog-
nition, emotion recognition and voice activity detection can be
significantly improved [10]-[15]. When one modality (e.g., text,
audio, visual) is missing, cross-modal generation approaches
have been proposed to reconstruct that modality from other
modalities [16]-[18].

Generating talking faces from speech belongs to cross-modal
generation. It has drawn much attention from researchers in
recent years. There are shape model-oriented methods and
image-oriented methods. Shape model-oriented methods usu-
ally employ a deformable face shape model, where the face
shape is represented by sparse points in a 2D or 3D space.
These models can be controlled by low dimensional param-
eters that are often obtained by principal component analy-
sis (PCA) or other dimensionality reduction methods. Image-
oriented models predict the RGB face or mouth image sequences

1 [Online]. Available:
3Dtalkingface.html

http://www.ece.rochester.edu/projects/air/projects/

directly from speech. Some of these methods use intermedi-
ate representations as constraints, such as the face or mouth
landmarks.

Some works generate talking faces from text [19]-[24]. There
is akey difference between text-driven and speech-driven talking
faces. Speech signals show large variations across speakers,
emotions, and accents for the same text, and the generated
talking face must be in sync with the input speech. However,
for text-driven faces, any plausible talking face is sufficient.
These two tasks require different approaches. Therefore, in the
following, we only review speech-driven talking face generation
methods.

A. Image-Oriented Methods

Suwajanakorn et al. [S] demonstrated an LSTM-based system
on synthesizing videos of President Barack Obama from his
speech. This system uses a two-stage approach. It first uses an
LSTM to predict PCA coefficients of 18 mouth landmark points
from 13 MFCCs plus the energy term. Then, according to the
predicted PCA coefficients, few nearest candidate frames are
selected from the dataset that contains the images of the target
identity, and the weighted median is applied to synthesize the
texture. Therefore, this method is a hybrid shape-image model
since it predicts mouth landmarks first. Although the results
are photo-realistic and impressive, the method requires a large
amount of training data for the target identity. It can accept
speech from a different person; however, it can only generate the
face of the person in the training data. It is also computationally
heavy, making it difficult to run on edge devices.

Chung et al. [6] proposed a method that accepts 12 MFCCs
and a single frame target image to generate a talking face video.
The system uses an audio encoder and an identity encoder to
convert audio features and the target image to their respective
embeddings. It then uses an image decoder to generate face
images from these embeddings. Since the generated images
are blurry, the system utilizes a separate deblurring module to
sharpen the images. All modules are based on 2D convolutional
neural networks. This method can run in real-time on a GPU.
Similar to this work, Chen et al. [25] proposed a method that
leverages an adversarial loss function in addition to a pixel-level
reconstruction loss and a perceptual loss, to generate sequences
of images from speech. The network accepts the speech and a
target lip image as inputs and outputs 16 frames of lip images
that are synchronized with the speech. The network contains an
audio encoder, an identity encoder, and 3D convolutional resid-
ual blocks. Compared to Chung et al.’s method, the generated
images are sharper, and a deblurring module is not needed.

A disadvantage of these systems is that facial expressions,
animations, and for some systems, the identity information, are
difficult to manipulate during generation. The shape model-
oriented methods usually predict an intermediate representation
that can be manipulated before rendering the details.

B. Shape Model-Oriented Methods

Early works focused on Hidden Markov Models (HMMs) to
map from speech to talking faces [26]-[32]. Voice puppetry [26]
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was one of the early works. It models 26 points of a face using
HMM and drove them using linear predictive coding and relative
spectral transform - perceptual linear prediction audio features.
Choi et al. [27] used HMM inversion (HMMI) to estimate
visual parameters from 12 MFCCs of speech, where the visual
parameters include the left and right corners of the mouth and
the heights of the upper and lower lips.

Cosker et al. [28], [29] employed a hierarchical model that
models subareas of the face independently by an active appear-
ance model (AAM) [33] and then merges them into a full face
containing a total of 82 landmark points. Each sub-area is driven
by 12 MFCCs of speech. Xie et al. [30] proposed a system
that generates only the mouth region using coupled HMMs
(cHMMs) to compensate audio-visual asynchrony. They used
MEFCCs and their first- and second-order derivatives as speech
features and PCA coefficients of the mouth region as the visual
parameters. Zhang et al. [32] also used PCA coefficients of
the mouth region as the visual parameters, but estimated HMM
states from speech features with a deep neural network (DNN).

Recent works use deep neural networks to map speech fea-
tures to face landmarks. Pham et al. [34] proposed an LSTM
network that predicts the 3D face model parameters from speech
input features, namely MFCCs and the chromagram. The authors
later improved their work by using spectrograms as input and
employing convolutional and recurrent layers [7] in the network
architecture. Karras et al. [35] employed a network that maps
speech into 3D positions of 5022 landmark points. The network
can generate realistic faces with emotions using only 5 minutes
of training data. However, their system is designed for the
generation of a single speaker.

Compared to these listed works, our approach includes a
novel pre-processing method that normalizes the identities of the
target data (face landmarks). This normalization improves the
quality of results, leads to faster convergence for neural network
training and can work using fairly simple network architectures.
In addition, our approach uses a noise-resilient training mech-
anism to ensure its robustness in noisy conditions. To our best
knowledge, this is the first consideration of background noise
in the system design and evaluation of talking face generation
from speech. Furthermore, compared to shape model-oriented
methods described above, our system predicts landmarks by
the multi-pie 68 point markup convention [36], which is used
by most of the existing systems for facial landmark detection,
face morphing, and face swapping applications. This allows our
system to be seamlessly integrated into a pipeline for facial
manipulation with such systems. A quantitative side-by-side
comparison with the most closely related methods, however,
is difficult. Karras et al. [35] and Pham et al. [34] are the two
most similar methods to ours, but their systems are optimized for
different face models making a side-by-side comparison difficult
with ours. In particular, Karras et al. used facial motion capture
to obtain a 3D mesh model of the face. Pham et al. used a 3D
mesh model of the face built from a Kinect point cloud, and they
developed a technique to map videos into this 3D mesh model.
We do not have access to their code of these face models, and
we believe that it is not fair to those methods to re-implement
them but using our 68 point face model to compare with ours.

Considering the above-mentioned difficulties, we eventually
chose to compare with the landmark generation part of the
system proposed by Suwajanakorn et al. [5] and our prior
preliminary system [8]. The system in [5] is a state-of-the-art
image-oriented system that generates realistic face images of
a single speaker. As an intermediate step, it also predicts PCA
coefficients of mouth landmarks similar to our method. There-
fore, we believe that it is a reasonable baseline for our method.

III. METHOD

In this section, we describe face landmark extraction, land-
mark pre-processing before training the neural network, the
proposed neural network architecture, the proposed method to
increase the system’s resilience against background noise, and
how it works during the inference process.

A. Pre-Processing

1) Face Landmark Extraction: We first use the open source
library DLIB [37] to extract 2D face landmarks (z and y coordi-
nates), and then use the method described in [38] to estimate 3D
face landmarks from these 2D landmarks and their correspond-
ing video frames. We extract a total of 68 landmarks, following
a standard in the mark-up convention described in [36]. Face
shapes formed by connecting these landmarks are shown in the
first row of Fig. 1.

2) Face Landmark Alignment: The extracted raw landmarks
are in pixel coordinates and can be at different positions, scales
and orientations. These variations make it difficult to train our
neural network, as they are largely irrelevant to the input speech.
To minimize these variations, we use Procrustes analysis [39] to
align the 3D landmarks. This is a common practice for creating
active shape models (ASMs) [40] and active appearance models
(AAMs) [33], [41]. Face shapes after alignment are shown in
the second row of Fig. 1.

3) Face Landmark Identity Removal: Different speakers
have different face shapes, where mouth, nose, and eyes may
not be well aligned across speakers even after the Procrustes
analysis. These variations are also less correlated to the input
speech. Therefore, we want to remove this identity variation
from our 3D face landmarks. To achieve that, for each land-
mark sequence, we detect one reference frame that contains a
closed mouth by thresholding the distance between the upper
lip and lower lip coordinates. We then calculate the landmark
coordinate deviations from this reference frame for each frame
in the sequence, and impose these deviations onto a template
face across all sequences of all identities. This template face is
calculated as the average of aligned faces with a closed mouth
across all identities. The 3D face landmarks can be represented
as:

T
S:(I1,y1721,f€2,y2,22,--~7IN,ZJN7ZN) s (D

where IV is the number of vertices and T denotes vector trans-
pose. The identity removal operation can be described as:

SIR =S —ScM + ST, (2)
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Fig. 1.

Data preparation steps for face landmarks illustrated on six different speakers, where each column corresponds to a speaker. We draw lines between certain

landmarks to form face shapes. The first, second, and third rows show raw face landmarks extracted from video images, landmarks after Procrustes alignment, and

landmarks after identity removal, respectively.

where sy represents the identity removed face shape, sc s is a
face frame with mouth closed that is automatically selected from
the video, and st is the template (reference) shape. Face shapes
after identity removal are shown in the third row of Fig. 1.

4) Active Shape Model (ASM): ASMs [40] are deformable
shape models that can represent the variations in the training set
by a set of coefficients. These coefficients are the weights for
eigenvectors that are obtained by PCA. By using the parameters
obtained from PCA, s in Equation (2) can be described as
follows:

s=s,+WwS, 3)

where s,, is the mean shape vector, w = [c1, ..., cp] is a vector
that contains the weights and S = [sq, ..., sp] is a matrix that
contains the eigenvectors. P is the number of PCA components,
which is smaller than their dimensionality (P < N).

We create pairs of raw speech waveforms and corresponding
ASM weights w as the input-output pairs for neural network
training.

5) Data Augmentation: By removing the target identity from
the 3D face landmarks, we already standardized the face land-
marks, which is described in Section III-A3. We do not further
augment the landmark data.

For the speech input, we perform data augmentation to im-
prove our system’s robustness to pitch and loudness variations.
Augmentation is not performed before but rather during training
iterations. For each sample in each training batch, we randomly
choose whether we use the original training sample or an aug-
mented sample. If it is the latter, two augmentation steps are
applied in a sequence. We first pitch shift the sample by one
or two semitones up or down. We then apply a gain factor to
the amplitude of the sample between —12 dB and 6 dB with a
3 dB granularity. It is noted that this dynamic augmentation is
random, but it saves memory compared to a preset augmentation
beforehand.

B. Network Architecture

The deep neural network (DNN) accepts a frame (280 ms) of
the raw waveform as an input and outputs the ASM weights
of that frame. There are four convolutional layers with 1D
filter kernels operating on the raw waveform. The number of
filters grows as the time dimension shrinks. We use strides
for each convolutional layer, which halves the time-steps. Each
convolutional layer is followed by LeakyReLU activation with
a slope of 0.3 and a dropout layer that discards 20% of the units.
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TABLE I
DETAILED PARAMETERS OF THE PROPOSED NETWORK ARCHITECTURE. THE NUMBER OF FILTERS AND HIDDEN UNITS, FILTER SIZES, STRIDES, ACTIVATIONS, AND
OUTPUT SHAPES ARE SHOWN FOR EACH LAYER. /D_CNN_TC 1S IDENTICAL TO /D_CNN; FURTHER, IT ACCEPTS CONDITION INPUT AND CONCATENATES IT
WITH THE OUTPUT OF THE FULLY CONNECTED (FC) LAYER THAT IS SHOWN IN THE LAST TWO ROWS OF THE TABLE. THIS CONCATENATED TENSOR IS FED TO
ANOTHER FC LAYER THAT OUTPUTS THE FINAL ASM WEIGHTS

Number of Filters
Net Layers or Filter Size | Strides Activation Output Shape
Hidden Units
Input - - - - (2240, 1)
Conv 64 (21, 1) 2, 1) LeakyReLU | (1110, 64)
1D CNN Conv 128 (21, 1) 2, 1) LeakyReLU | (545, 128)
- Conv 256 (21, 1) (2, 1) | LeakyReLU | (263, 256)
Conv 512 (21, 1) (2, 1) | LeakyReLU | (122, 512)
FC 6 - - LeakyReLU | (6)
Condition - - - - (6)
ID_CNN_TC FC 6 - ~ [ LeakyReLU | (6)
= X X
5
.
2
FC \—@) =
@ (b) Bhr e &
LOSS L
w W
L1L08s [Crioss]
| w
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Fig. 2. The network architecture for (a) I/D_CNN network and
(b) ID_CNN_TC network. ID_CNN_TC is identical to I/D_CNN, except
that it accepts the previous frame’s ASM weights as a condition to enforce
temporal constraint. Raw waveform is fed to four convolutional layers, followed
by a fully connected (FC) layer.

The final layer is a fully connected layer that outputs the ASM
weights. The network architecture is shown in Table I and Fig. 2.

In order to have smooth transitions between generated talking
faces across frames, we further added a temporal constraint to
the network architecture. It accepts the previous frame’s ASM
weights as a condition in order to obtain smoother results over
time. The condition is concatenated to the intermediate tensor
immediately after the fully connected layer, and we add another
fully connected layer as shown in Table I. We discuss the trade-
off between these two models in Section IV. We denote our
proposed method as /D_CNN and the temporally constrained
version as /D_CNN_TC throughout the rest of this paper.

The network minimizes the L1 loss between the predicted and
ground-truth ASM weights, as follows:

“)

where w is the ASM weight vector predicted by the network.
Equation (4) shows the loss for a single sample. During training,
the average of all training samples is minimized.

Jo(w, W) = |[w —wl|z,

GROUND TRUTH

Fig. 3. The noise-resilient training scheme. The networks on the left and right
sides are the same, and their weights are shared. The clean and noisy speech
goes through the left and the right networks, respectively, to reconstruct their
face landmarks. A mean-squared error (MSE) constraint is applied to the latent
representations to incorporate the supervised speech enhancement idea at the
feature level.

C. Noise-Resilient Training

To make the system robust to noise, we propose a novel, yet
simple method for noise-resilient training. The idea is to match
the intermediate features obtained from the clean and noisy
speech, as in theory, they contain the same speech information
hence the extracted features are ideally be the same. This is
shown in Fig. 3. The clean features h is obtained by feeding
the clean speech z to the network. The corrupted features h is
obtained by feeding the corrupted speech ¥ to the same network.
In addition to the ASM coefficient loss on both networks, we also
add the weighted MSE between £ and h:

J=Jn(w, W)+ Jo(w,w) +Alh—hs, )

where A is the weighting coefficient, and W is the ASM param-
eters generated from corrupted speech z.
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Fig. 4. System overview. A talking face is generated every 40 ms (frame hop
size) from 320 ms (frame length) of audio. ¢ represents the time.

D. System Overview

During inference, our system utilizes a speech buffer that
acts as first-in-first-out (FIFO) queue. First, the speech buffer
is initialized with zeros. When the system receives new speech
data, it is pushed to the speech buffer, and the network predicts
the next frame’s weights. There is no pre-processing applied to
the speech; the raw speech is directly fed to the neural network.
The predicted weights are converted to 3D landmark points using
Equation (3). The system overview is shown in Fig. 4.

For the 1D_CNN_TC network, the system utilizes another
buffer, called the conditioning buffer, that stores the last frame.
The conditioning buffer is initialized with the template face
shape weights.

IV. EXPERIMENTS
A. Datasets

We start our experiments in a single-speaker setting. To this
end, we follow Suwajanakorn et al. [5] and utilize President
Obama’s weekly address videos, which are available online.2 We
downloaded 315 videos that have 3 minutes average duration,
totaling to approximately 18 hours of content. The videos are
provided in 30 frames per second (FPS) and we down-sampled
the videos to 25 FPS. We split the dataset into training (70%),
validation (15%), and testing (15%) sets.

For multi-speaker experiments, we use a publicly available
audio-visual dataset called GRID [9] to train our system. There
are 34 native English speakers in this dataset, with 16 female and
18 male speakers, who are ranging from 18 to 49 years old. All
of the speakers are from England except one from Scotland and
one from Jamaica. Each speaker has 1000 recordings that are 3
seconds in duration. The recordings contain sentences that are
identical for each speaker. The structure of the sentences is in the
following form: command (4) - color (4) - preposition (4) - letter
(25) - digit (10) - adverb (4), where the numbers of choices are
shown in parenthesis for each component. An example sentence
can be given as “set blue at C 5 please”.

2[Online]. Available: https://obamawhitehouse.archives.gov/briefing-room/
weekly-address

Recordings are provided both in audio and video format. In
this study, we use the high-resolution videos included in the
GRID dataset. These videos have a frame rate of 25 FPS and a
resolution of 720 x 576 pixels. Since each recording is 3 seconds
in duration, each video has a total of 75 frames. The video
files contain the corresponding audio that has a sampling rate
of 44.1 kHz. We down-sample the audio to 8 kHz which is a
typical sampling rate for speech signals in telecommunication.
We split the GRID dataset into training (92%) and validation
(8%) sets.

We employ another multi-speaker dataset that is disjoint from
the GRID dataset for testing on unseen speakers, namely Speech
Test Video Corpus (STEVI) [42]. Specifically, we employ the
High-Probability speech perception in noise (SPIN) Sentences
and Nonsense Sentences listed in [42]. The videos are provided
in 29.97 FPS and 1920 x 1080 resolution. The audio stream has
a sampling rate of 48 kHz. We down-sample the audio to 8 kHz
and generate 3D talking faces. Since our system is trained to
generate 25 FPS videos, we use cubic spline interpolation to
up-sample the generated videos to 29.97 FPS to match with the
ground truth face landmarks. There are a total of 4 speakers,
each of which has 400 sentences, 200 High-Probability SPIN
Sentences and 200 Nonsense Sentences. The duration of each
sentence is around 2 to 3 seconds.

We use DLIB [37] and [38] to extract face landmarks from
these videos according to Section III-A1 for training, validation
and testing. To verify the validity of the extracted face landmarks,
we employ a two-step approach. First, we run a script that
automatically identifies wrong landmarks by comparing the
upper and lower lip landmark positions and eliminates invalid
landmark sequences. This script was applied to all extracted
landmarks. In the second step, we manually check the landmarks
and eliminate problematic sequences. Since manual verification
is costly, the second step is only applied to the STEVI dataset
and the test set of the Obama dataset. In this way, we further
improve the quality and validity of the evaluation data.

To create noisy speech input, we employ a noise dataset
named Sound Ideas [43] that contains 138 different noise types
including non-stationary noises from various environments such
as nature, city, domestic, office, traffic, and industry. A noisy
speech is created by mixing a clean speech file with a randomly
selected noise file in 6 to 30 dB SNRs with 3 dB increments.

B. Implementation Details

Our system was trained to generate 25 FPS videos, i.e.,
the system generates a talking face every 40 ms. We include
the context information to our input speech. Specifically, we
concatenate 3 frames from past and future, totaling 7 frames.
For 8 kHz speech signals, a 40 ms window contains 320 data
points. The input speech size becomes 7 x 320 = 2240 as shown
in Table I. The networks were trained for 100 epochs, and the
weights were saved only if the validation loss was improved
for each epoch. We implemented our method in PyTorch [44].
The mini-batch size and learning rate were set to 128 and 1074,
respectively. We used Adam [45] optimizer during training.
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Fig. 5. Single-speaker objective evaluation results for the BLI [5], BL2 [8],
1D_CNN and ID_CNN_TC methods. We calculate the root-mean-squared error
(RMSE) between generated and ground-truth 2D mouth landmarks, and its first-
and second-order temporal derivatives. Error bars show the standard deviation.

We compared our method with Suwajanakorn et al.’s [5] land-
mark generation method denoted as BL/ and our preliminary
work [8] denoted as BL2. BLI utilizes a single LSTM layer
with a time delay to generate 20 PCA coefficients for the mouth
landmarks. The input of their network is the 13 MFCCs plus the
log mean energy and their first temporal derivatives. BL2 accepts
first and second derivatives of 13 MFCCs of speech as input and
outputs PCA coefficients for the whole face landmarks. There
are 4 LSTM layers in the network architecture.

For single-speaker experiments, we trained all of the above-
mentioned methods on the Obama dataset, while for multi-
speaker experiments, we trained them on GRID and evaluated
them on STEVL.

C. Objective Evaluation

We used the root-mean-squared error (RMSE) between the
ground-truth and predicted face landmark sequences and their
first and second derivatives for evaluation. Although our system
generates 3D landmarks, we used only x and y coordinates (2D
landmarks) of the results of our system for these calculations
since the baseline can only generate 2D face landmarks. There-
fore, all numbers reported in this section were obtained from 2D
landmarks. Before we evaluated the landmarks, we normalized
the values between 0 and 1. Therefore, each 0.01 RMSE value
corresponds to approximately 1 percent of the face length.

For the single-speaker setting, we evaluated our systems and
the baseline systems with the test set of Obama dataset by using
only the mouth landmarks. For the multi-speaker setting, we
used unseen speakers from STEVI corpus. Figs. 5 and 6 show the
single- and multi-speaker results, respectively, for the baseline
methods (BLI and BL2), and two versions of our proposed
methods (/D_CNN and ID_CNN_TC).

For the single-speaker setting, the results show that the
1D_CNN method yields the best objective results with an RMSE
value of 1.38 x 10~2 followed by /D_CNN_TC with an RMSE

RMSE

RMSE'
BL1 EBL2 ®1D_CNN

RMSE"
1D_CNN_TC

Fig. 6.  Multi-speaker objective evaluation results for the BLI [5], BL2 [8],
1D_CNN and ID_CNN_TC methods. We calculate the root-mean-squared error
(RMSE) between generated and ground-truth 2D full face landmarks, and
its first- and second-order temporal derivatives. Error bars show the standard
deviation.

value of 1.52 x 10~2. For the multi-speaker setting, the trends
are similar: the /D_CNN method yields the best objective results
with an RMSE value of 1.46 x 102 followed by /D_CNN_TC
with an RMSE value of 1.55 x 1072, There is a significant
improvement over the BLI method that has an RMSE value
of 1.91 x 1072.

ID_CNN_TC results are smoother due to the temporal con-
straint. However, the resulting mouth movement of the talk-
ing faces has weaker high-frequency movements. This can
also be observed from the multi-speaker objective results. The
RMSE’ and RMSE” are higher for /D_CNN_TC (0.88 x 1072,
1.2 x 10~2) compared to ID_CNN (0.77 x 1072,1.03 x 1072);
and both of them are better than the baseline methods. A paired
t-test shows that results of both proposed systems are statistically
significantly better than the baseline at a significance level of
0.01 for all the three measures.

There is a trade-off between these two versions of our method.
From our observations of the generated outputs, /D_CNN
yields better mouth movement and mouth shape match, where
1D_CNN_TC yields more stable and smoother shape changes
over time. One may prefer /D_CNN for applications that fo-
cus on improving speech comprehension since high-frequency
mouth movement is essential in such cases, and one may prefer
ID_CNN_TC for general speech animation applications. An
example result for the word “ashes” has been shown in Fig. 7.

D. Analysis of the Network

We further analyze the /D_CNN network architecture by
changing the number of convolutional layers, the number of
filters in each layer, and the input speech size in the multi-speaker
setting on the STEVI corpus.

1) Number of Layers: The original configuration contains
four convolutional layers. We conducted experiments with 2,
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Fig. 7. The example output showing the pronunciation of the word “ash”. The speech sample was taken from STEVI corpus. The first row shows the result
generated by /D_CNN. The second row shows the comparison of the result generated by /D_CNN and the ground-truth (dotted red line). The third and fourth rows
show the result generated by /D_CNN_TC and comparison with the ground-truth (dotted red line). Columns show every three frames.
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Fig. 8. Comparison of /D_CNN configurations with different number of
convolution layers. The number of filters for Layers 1 to 4 is shown in Table 1.
The number of Layers 5 and 6 is both 512. We compare the root-mean-squared
error (RMSE) between generated and ground-truth landmarks, and its first- and
second-order temporal derivatives. Error bars show the standard deviation.

3,4, 5 and 6 convolutional layers, and compared the objective
results. For fifth and sixth layers, we used 512 filters.

The results are shown in Fig. 8. The 4-layer configuration
achieves the best results, where 5-layer configuration has the
worst results. An interesting outcome is that the 2-layer config-
uration has the second best results. For RMSE”, there is a big

gap between the 4-layer configuration and others. A paired t-test
shows that RMSE’ and RMSE” results of 4-layer configuration
is statistically better at a significance level of 0.01 compared to
other configuration results. In conclusion, we selected 4-layer
configuration in our final models.

2) Number of Filters: Table I shows the number of filters for
the convolutional layers, whichare z = 64, 2x = 128,4x = 256
and 8x = 512 for the four layers, respectively, in the original
configuration. We varied x to have values of 16, 32, 64, and 128
and compared the objective results.

Fig. 9 shows the results. Networks with = 16 and x = 32
perform similarly for all metrics. The network with x = 128 has
the worst performance compared to other configurations; We
suspect that this is due to over-fitting given its largest capacity.
The network with x = 64 performs better than other configura-
tions. A paired t-test shows that RMSE' and RMSE” results of
x = 64 configuration is statistically better at a significance level
of 0.01 compared to other configuration results. Therefore, we
selected © = 64 as the final parameter for our networks.

3) Input Speech Size: The input speech includes con-
text information of past and future frames as described in
Section IV-A. In the original configuration, we use 7 frames
of speech, including 3 frames before and 3 frames after the
current frame. Each frame corresponds to 40 ms of speech. In
this section, we vary the input size from 5, 7, and 9 frames and
compare the performance.

The results are shown in Fig. 10. The RMSE results
are similar; However, for RMSE’' and RMSE”, 7 frames
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Fig.9. The comparison of /D_CNN configurations that has a different number
of filters in convolutional layers is shown. The number of filters in the first layer
is displayed, which are 16, 32, 64, and 128. After the first layer, the filters
are doubled with each following convolutional layer. We compare the root-
mean-squared error (RMSE) between generated and ground-truth landmarks,
and its first- and second-order temporal derivatives. Error bars show the standard
deviation.

RMSE RMSE’

E7 B9

RMSE"

Fig. 10.  The comparison of results for different sizes of the input speech is
shown for /D_CNN network. The number of frames is displayed, which are 5,
7, and 9. Each frame spans 40 ms speech. We predict the middle frame and
use previous and past frames as context information. We compare the root-
mean-squared error (RMSE) between generated and ground-truth landmarks,
and its first- and second-order temporal derivatives. Error bars show the standard
deviation.

configuration has better results. A paired t-test shows that
RMSE’ and RMSE” results of 7 frames configuration is sta-
tistically better at a significance level of 0.01 compared to 5 and
9 frames configuration results. In our final network, we selected
7 frames of speech as our input.

E. Resilience Against Noise

In this section, we evaluate our system on noisy conditions.
We consider five types of noise for the evaluation, namely
babble, factory, speech-shaped noise (SSN), motorcycle and
cafeteria. We mix the speech files of STEVI corpus with the
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Fig. 11.  Average RMSE, RMSE/, and RMSE" of face landmark generation

with five unseen noise types (babble, factory, SSN, motorcycle and cafeteria) at
an SRN from —10 to 30 dB with 1 dB increments.

noises described above in 5 and 10 dB signal-to-noise ratio
(SNR) values and report the RMSE values of the generated faces.
Note that the noise types used in evaluation were not included in
the training set, and were obtained from a different source (i.e.,
different recording conditions).

For the noise-resilient training method, we initialized the
weights using the pre-trained weights from the clean version of
our network and reduced the learning rate to 10~°. We conducted
experiments and varied the A parameter in Equation (5) between
1 and 0, and found that 102 performs the best. Therefore, we set
X to 1072, The network was trained for 100 epochs. The noise
resilient (NR) version of our network is denoted as /D_CNN_NR
throughout the rest of the paper.

Fig. 11 shows the average results of the baseline systems and
the proposed system with and without the noise-resilient training
method on noisy speech with five kinds of noises at SNRs rang-
ing from —10 dB to 30 dB with 1 dB increments. The test noises
include babble, factory, SSN, motorcycle and cafeteria noise
types, none of which were included in the training. The results
show that the proposed method outperforms both baselines on
all three measures across all SNRs. In particular, the proposed
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method with noise-resilient training at the worst SNR (—10 dB)
achieves better performance than both baselines at the highest
SNR (30 dB). Comparing /D_CNN_NR with ID_CNN, we see a
significant performance boost thanks to noise-resilient training.
When the SNR is between —5 dB and 20 dB, the reduction
of errors is equivalent to an increase of SNR for 15-20 dB
(e.g., errors for /D_CNN_NR at —5 dB SNR are about the same
as those for /D_CNN at 15 dB). It is noted that the training
noises were mixed in SNRs ranging from 6 dB to 30 dB with
3 dB increments (as described in Section IV-A); therefore, these
results show that the noise-resilient training can generalize to
the unseen SNRs, even in extremely noisy conditions (negative
SNRs). We conducted a paired t-test between the results of
ID_CNN and ID_CNN_NR for each noise category in —5 dB to
20 dB SNRs. The results show that the three versions of RMSE
values are all statistically significant at a significance level
of 0.01.

F. Subjective Evaluation

To further evaluate the match between generated face land-
marks and the input speech, we conducted a subjective Turing
test in the multi-speaker setting. We recruited 20 volunteers as
our evaluators. We presented each evaluator a random selection
of 16 samples generated by BL1, 16 samples generated by BL2,
16 samples generated by the proposed system, and 16 samples
of ground-truth landmarks. All of the speech samples were taken
from the STEVI dataset, which was not used for training. For
the BLI, we retrained the system with full 68 face landmarks’
PCA coefficients instead of just the mouth landmarks’ PCA
coefficients in order to conduct the subjective tests. We found
out that using only the mouth region compared to using all 68
face landmarks does not change mouth movements. This is due
to the alignment of face landmarks in pre-processing; the regions
besides the mouth region do not change much.

The generated landmarks were painted and added teeth and
eyes in order for evaluators to easily recognize the faces and
mouth movements. During evaluation, a few ground-truth talk-
ing face samples were shown to each evaluator. Then, the 64
samples were presented to the evaluator in a random order, and
the evaluator was asked to assign a score between 0 (worst)
and 100 (best) based on the match between the speech and
mouth movement. Each sample was presented twice before the
evaluator was asked to assign a score.

The results are shown in Fig. 12. The proposed method signif-
icantly scores higher than the baseline methods. These results
show comparable scores for our method and the ground-truth
face landmarks, indicating that our system can generalize well
to unseen speakers and can convince evaluators that speech
and articulation match strongly. A paired t-test shows that the
1D_CNN results are statistically significantly better compared
to the both baseline results at the significance level of 0.01.

G. Limitations

As a data-driven approach, the performance of our method
highly depends on the the training data. The dataset should

100
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Fig. 12.  The results for the subjective test of speech-mouth match. The bars
show the average score for the baseline method, proposed method (1D_CNN)
and ground-truth face landmarks. Error bars show the standard deviation.

contain a wide variety of phonemes, ideally uniformly dis-
tributed. However, the GRID dataset is limited in terms of
the words and phonemes it includes. Our future work includes
expanding the training set to include more data that has rich pho-
netic content and balancing the data in order to have uniformly
distributed phoneme content.

The performance of our system is proportional to the per-
formance of the face landmarks extractor on the training data.
The extractor we used in this study works on each single frame
and does not consider temporal relations across frames. This
might be the main reason for noisy mouth movements in the
extracted landmarks. We believe that by utilizing a video-based
face landmark extractor that models temporal dependencies of
landmarks, the quality of landmark extraction and our trained
model will be improved.

V. CONCLUSION

In this work, we proposed a new noise-resilient neural network
architecture to generate 3D face landmarks from speech in
an online fashion that is robust against unseen non-stationary
background noise. The network predicts active shape model
(ASM) coefficients of face landmarks from input speech. In
one version of the system, we further added the predicted
ASM coefficients in the previous frame to the network in-
put to improve the smoothness of frame transitions. We con-
ducted objective evaluations on landmark prediction errors and
subjective evaluations on audio-visual coherence. Both objective
and subjective evaluations showed that the proposed method
statistically significantly improves over state-of-the-art baseline
methods. Detailed analyses of network hyper-parameters were
also provided to gain insights into the architecture design. To
promote scientific reproducibility, we provided the research
community with our pre-trained models, code and generation
examples.
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