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Pavement surveying and distress mapping is completed by roadway authorities to quantify the topical and structural damage levels
for strategic preventative or rehabilitative action. The failure to time the preventative or rehabilitative action and control distress
propagation can lead to severe structural and financial loss of the asset requiring complete reconstruction. Continuous and
computer-aided surveying measures not only can eliminate human error when analyzing, identifying, defining, and mapping
pavement surface distresses, but also can provide a database of road damage patterns and their locations. The database can be used
for timely road repairs to gain the maximum durability of the asphalt and the minimum cost of maintenance. This paper
introduces an autonomous surveying scheme to collect, analyze, and map the image-based distress data in real time. A descriptive
approach is considered for identifying cracks from collected images using a convolutional neural network (CNN) that classifies
several types of cracks. Typically, CNN-based schemes require a relatively large processing power to detect desired objects in
images in real time. However, the portability objective of this work requires to utilize low-weight processing units. To that end, the
CNN training was optimized by the Bayesian optimization algorithm (BOA) to achieve the maximum accuracy and minimum
processing time with minimum neural network layers. First, a database consisting of a diverse population of crack distress types
such as longitudinal, transverse, and alligator cracks, photographed at multiple angles, was prepared. Then, the database was used
to train a CNN whose hyperparameters were optimized using BOA. Finally, a heuristic algorithm is introduced to process the
CNN’s output and produce the crack map. The performance of the classifier and mapping algorithm is examined against still
images and videos captured by a drone from cracked pavement. In both instances, the proposed CNN was able to classify the
cracks with 97% accuracy. The mapping algorithm is able to map a diverse population of surface cracks patterns in real time at the
speed of 11.1km per hour.

1. Introduction

Societal economic vitality and growth is intimately tied to
the state of infrastructure and its ability to safely and ef-
ficiently handle the transfer of goods from one point to
another. Pavement management, preservation, and re-
habilitation strategies are critical components in main-
taining the viability of infrastructure and economy over the
long term. Roadway networks contain millions of miles of
pavements, and maintenance operations of these systems

cost upwards of $25 billion per year [1]. As part of the
maintenance operations, pavement surveys, which include
both surface and subsurface assessments, are required
frequently to assess the state of the pavement and help to
prioritize rehabilitative and preservative action. Moreover,
according to the National Highway Traffic Safety Ad-
ministration, 16% of traffic crashes are produced due to
roadway environmental factors mainly by poor pavement
conditions [2]. Poor road conditions also lead to excessive
wear on vehicles and tend to increase the number of delays
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and crashes which can lead to additional financial losses
[3]. Currently, manual inspection is the most common
technique for identifying pavement distress road surveys
[4]. Manual inspection can be, however, time-consuming,
costly, and labor-intensive. Furthermore, during manual
inspection operations, human visual error is possible, the
operation itself can be unsafe due to the passing of nearby
motor vehicles, and the operations may impede traffic flow
[5]. To overcome the limitations of manual inspection,
automated and/or semiautomated crack detection tech-
niques can be developed to measure, monitor, and map the
evolution of the pavement surface and subsurface structure
and distress profile [6]. Semiautomated modern pavement
distress mapping or diagnosis techniques need to be
nondestructive, cost-effective, accurate, enabling data ac-
quisition at high-speed, and relatively user and environ-
mentally friendly [7]. As part of an effort to lower costs and
accelerate maintenance operations, transportation de-
partments are prioritizing the development of automated
systems profiling systems for pavement distress assessment
[8]. There remains a need, however, to develop automated
and real-time distress mapping and assessment tools that
can provide the end-user with large quantities of in-
formation related to the distress type, geometry, and dis-
tress source without manual surveillance either in situ or by
proxy. The prominent solution of replacing expert in-
spectors with robots that can automatically gather data and
analyze them has been studied or suggested extensively in
recent years.

In the literature, emphasis of automated crack detection
works was set on both using image processing for data
analysis and developing automatic method for fast data
collection like using robots or vehicles. Advantages like
portability, being nondestructive, and lane closure avoidance
are some of the important aspects of using vehicles for data
collection in pavement distress studies, as suggested in many
publications [9, 10].

Despite all benefits of automated data collection
methods, it leads to vast amount of raw pavement data.
Interpreting the raw data needs human expert for analysis
and decision making. Regarding the importance of on time
maintenance of pavements, it is impossible to process 256 x
256 all raw data relying on expert human performance
which has led the researchers to develop automatic in-
telligent algorithms for processing gathered raw data. The
utilization of computer vision methods for pavement en-
gineering applications has grown exponentially over the
last few decades [11], while many challenges should be
addressed to achieve a full and seamless realization due to
unwanted and highly variable image noises from random
variation of brightness color, camera, and the environment
[12]. In recent years, many transportation and highway
agencies in the US have become interested in image pro-
cessing-based methods for analyzing collected raw data
from highways and roads [13].

Classical image processing algorithms were suggested for
pavement distress analysis. Algorithms like edge detection
[14], wavelet transforms [15-18], intensity thresholding,
texture analysis, etc. have been well studied [18, 19].
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Although numerous suggested classical methods have hel-
ped in pavement distress analysis, some drawbacks like
being prone to environment noise, not being applicable
under all road conditions, being dependent to certain image
quality, etc. have reduced their robustness against processing
varying data. In the recent literature, machine learning-
based methods, especially deep learning, show promising
results in pavement distress analysis [20-24]. Unlike clas-
sical methods, machine learning-based algorithms proved to
be more robust for processing different pavement distress
images under noisy conditions. Several machine learning
methods like neural classifiers [25] and support vector
machines (SVM) [26] had been suggested for pavement
distress analysis. In a comprehensive review of computer
vision-based defect detection and condition assessment of
asphalt pavement, Koch et al. [11] identified SVM as the
most robust machine learning technique for image-based
pavement distress detection in 2015. Moreover, recently,
deep learning has become a popular alternative in pavement
distress analysis due to its convincing performance over
SVM and other methods [27].

Cha et al. [10] created a database with 40,000 images of
sizepixels and annotated them into crack or intact bins
utilizing MatConvNet [28] for crack detection that could
achieve 98% accuracy. Gopalakrishnan et al. [29] studied
transfer learning on a single-layer pretrained neural net-
work classifier for pavement distress detection. They la-
beled their data as crack or (“1”) and no-crack or (“0”).
Also, they could gain 90% accuracy by using ImageNet’s
pretrained VGG-16 as the feature extractor. Dorafshan
et al. [30] prepared a database of 1,574 crack and 16,426
without crack images. They compared deep learning and
edge detection methods and suggested a combination of
both for improving the results in crack detection of
concrete. Also, they used AlexNet architecture for feature
extraction. Smartphone-based data collection is proposed
in Maeda et al. [31], and they have tested several object
detection systems like Faster R-CNN, YOLO, SSD, and
R-FCN. Gopalakrishnan, in [27], has extensively reviewed
the most recent deep learning-based methods for pave-
ment distress detection. Besides developing crack distress
detection algorithm whether it is based on the classical or
deep learning method, some papers have suggested specific
platforms for data collection. Due to the vastness of the
roadway system, automatic pavement screening is needed.
Prasanna et al. [9] has suggested an automated crack
detection algorithm, called spatially tuned robust multi-
featured, for monitoring concrete bridges and they im-
plement the algorithm on the robot platform. In [32], some
had studied an automatic image-based road crack de-
tection method and a vehicle-based data collection plat-
form is used to collect data from different locations for
further processing. Among several data collection
methods, vehicle mounted cameras are the most popular
one.

The integration of computer vision methods using deep
convolutional neural networks (CNNs) shows exceptional
promise for use in crack detection applications, but require
many images for the training process [10, 27, 33]. Although
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utilizing CNNs improves the crack detection accuracy,
there are known drawbacks in the conventional approaches
for studying the cracks [10]. In the available works [10, 27],
whether asphalt pavement or other surfaces, the objective is
to distinguish cracked areas of pavement from uncracked
ones that yields to a binary decision with two outcomes:
cracked or noncracked. Due to the proven outstanding
performance of deep learning in contrast with other ma-
chine learning methods like SVM, Adaboost, and random
forest, still some shortage exists. For instance, in [11], al-
though it is proved that a CNN has the capability of
detecting cracks with high accuracy, authors suggest an
optimization for the CNN for future improvements. Also,
using transfer learning for pavement distress detection,
Gopalakrishnan et al. [29] suggested to add a feature for
evaluating severity of detected cracks, which shows possible
further improvements for pavement distress detection. In
deep learning-based methods, for pavement distress de-
tection, the current focus is on improving the accuracy of
neural network for identifying cracks. Also, most of the
recent work in this application uses AlexNet, VGG-16
CNN architecture, and some transfer learning methods for
pavement distress detection task. It is important to con-
sider that most of the mentioned architectures are designed
and tested on datasets that do not include pavement dis-
tress data. Although in many cases transfer learning is
applicable for reducing training time and improving ac-
curacy, the objects in datasets like MNIST, ImageNet,
CIFAR-100, etc. do not share similar patterns in pavement
applications, so using transfer learning with similar CNN
architectures is limited.

2. Methodology

As reviewed above, deep learning-based methods for
pavement distress detection improves false detection ac-
curacy within noncracked pavements, whether using dif-
ferent CNN architectures or transfer learning or pretrained
models. This paper proposes an approach to geometrically
map a surface crack on asphalt pavement using a technique
that involves image partitioning and crack geometrical and
spatial classification. This technique allows the user to both
detect the presence and map a crack on the road surface in
real time using raw input images. The work extends the
functionality of CNN-based classification techniques, which
up to date are limited to only crack presence detection and
do not provide simultaneous geometrical mapping of the
object [34, 35]. Crack images are aggregated in the database
and indexed according to their orientation and spatial po-
sition within a squared partitioned area of the larger raw
image file, which then allows the position and orientation to
be estimated heuristically using thirteen unique categories.
By applying this approach, instead of predicting crack po-
sition in each frame by a marginal error that depends on the
searching window, we not only are able to detect and classify
the cracks, but also map the crack and avoid errors caused by
the searching window.

Instead of relying on predesigned CNN architectures,
we have proposed an optimized architecture for the CNN

and hyperparameters within the pavement distress de-
tection task. Also, rather than taking the approach in the
crack detection task that is focused on detecting crack
from noncrack, which introduces some false positive after
classification, in this work, we propose a heuristic algo-
rithm CMA which is able to regenerate crack shape au-
tomatically. Alternatively, in this work, we propose a
method for mapping a crack’s shape or analyzing the
results based on the pattern of a crack in an entire image
or video frame that could yield a smoother crack map by
eliminating smaller cracks or errors. Moreover, the
proposed method is a general concept for automating the
road surface crack analysis that can be later adapted with
several highway agencies protocols like American Asso-
ciation of State Highway and Transportation Officials
(AASHTO) (PP67-10 and PP44-00) or Mechanical-Em-
pirical Pavement Design Guide (MEPDG) [36]. In other
words, by changing the camera parameters like sensor
size, focal length, lens type, distance of camera from
pavement, etc., it is possible to achieve the minimum
deficiency length that is considered crack in several
protocols.

In the proposed scheme, each image is first partitioned
into 300 equal square tiles. Then, a CNN is developed and
trained that classifies the cracks in the tiles to predefined
categories. Since the categorization of the cracks is con-
ducted tile-by-tile, the resulted map may show disconti-
nuities at the borders of the tiles. To mitigate such
discontinuity errors, a heuristic real-time crack mapping
algorithm (CMA) is introduced. The CMA processes the
classification results and, based on the regional crack’s in-
formation, it modifies the current segment that yields to a
unified and continuous map of cracks on the road surface
image. Further, the CMA has the ability to eliminate small
cracks or false positive objects isolated in one partitioned tile
that is continuous over multiple partitioned tiles. Since the
objective of this paper is to map the crack real-in-time in
image frames from a streaming video, the CNN hyper-
parameters (HPs) had to be optimized so the processing time
and the classification error for the input images are mini-
mized simultaneously. To that end, a Bayesian optimization
algorithm (BOA) was utilized in lieu of trial and error
methods. Experimental results show that the CNN installed
on a portable computer can process 5 frames per seconds
providing the ability to map one band of a road real-in-time
at the speed of 11.1 km per hour.

The primary objective of this work is to use real-time
images to map cracks on the surface of an asphalt pavement.
A crack is defined as a mechanical or thermal strain-induced
separation of material. This material separation allows
moisture to infiltrate the pavement structure internally,
leading to premature failure or accelerated deterioration.
Cracks are classified by their geometric orientation, source,
width, and concentration per unit length or area. Only
cracks visible and distinguishable to the naked eye are
considered in the distress survey.

As illustrated in Figure 1, the proposed crack mapping
scheme is comprised of three stages: database preparation,
training and optimizing, and real-time crack mapping. To
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FiGure 1: Flow chart for crack detection and mapping.

prepare the database, a descriptive approach was taken to
categorize a given crack based on its relative position and
geometric orientation within the image. This approach
labels the cracks based on their geometric orientation.
Multiple images of cracked asphalt pavements were
gathered from the field, and each image was subdivided
into smaller tiles (Tls). The Tls were classified into 12
different categories based on whether the TI contained a
crack. If a crack is detected, it is further classified by crack
position and orientation, i.e., horizontal, vertical, diagonal.
TIs that did not contain a visible crack, but rather contained
objects like grass, shadows, patched cracks, pavement
markings, general uncracked pavement, etc., were binned
into the 13" category. A CNN is then used to learn the
unique features contained within each TI, and then each TI
was classified +10° into a specific category (1-13) based on
crack presence, position, and orientation. To further refine
the process, BOA is used to objectively and systematically
achieve optimal HPs by selecting optimal initial learning
rates and momentum, which served to significantly re-
duced training time operations that have been shown to be
tedious when tuned manually [10, 12]. The trained CNN is
used for real-time crack mapping using video frames of a
cracked roadway surface that were received from a camera
installed on an aerial vehicle. The classified Tls are then sent
to the CMA which maps the cracks in real time. The CMA is
designed to enhance the decisions made by the CNN by
eliminating cracks found only within one isolated T1 and
requiring the crack maps to be contiguous across multiple
Tls to increase the smoothness and accuracy of the mapped
crack field.

3. Experimental Study

3.1. Database Preparation. To develop and evaluate the
CMA, 1500 images of cracked asphalt pavement surface
were collected to prepare a database to train the CNN.
Images were taken by a FLIR E5 camera with a 55" x 43"
field of view and 640 x 480 pixels resolution. The camera
was placed between 1.5 m and 2.5 m above the road with a
vertical line of sight and of tilt error. Each image was then
divided into 300 equal Tls containing 32 x 32 pixels. Each
Tl was then virtually divided into 9 equal blocks, as
depicted in Figure 2(a), where the hashed blocks indicate
the range of possible crack locations within a given
bounded region; which is uniquely defined for each cat-
egory. Figure 2(b) shows how an actual pavement surface
image is aligned with a given category. Category groups
{1, 2, 3}, {4, 5, 6}, and {7, ..., 12} represent horizontal,
vertical, and diagonal cracks, respectively. The non-
cracked category (13) is shown in Figure 2(c).

Based on the established definition of categories, a total
of 6,695 Tls were handpicked from the 1500 images that fit
into one of the 13 categories. For representing data, the
CIFAR-10 [37] layout was used that yielded to 13 different
data-batches equal to the number of crack categories. Each
data-batch contains similar manually annotated Tls that
represents one of the 13 categories along with an assigned
label Lb € {1,2,..,13} indicating TI's category number.
Then, 90% of each data-batch was randomly taken along
with their labels to form the training set, and the other 10%
was used for the test set. A test set is then used to measure the
accuracy of the trained CNN.
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FIGURE 2: (a) Categorization method based on the position of a crack in each tile, indicating a defective section. (b) Sample of tiles in 12
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FI1GURE 3: Network architecture used for crack detection. The number below each layer indicates the size of each layer. Conv: convolution
layer, BN: batch normalization layer, MP: max-pooling layer, and FC: fully connected layer.

3.2. CNN Architecture. Figure 3 illustrates the overall CNN
architecture-input and multiple convolutional layer, fol-
lowed by a batch normalization layer, ReLU layer, max-
pooling layer, fully connected (FC) layer, SoftMax layer, and
output layer for the classification task.

The first layer is the input layer that receives the input
image Tls for classification. The crack features in each data-
batch were extracted using multiple convolution layers. This
layer consists of various sets of neurons whose weights and
biases will be updated relative to the crack features. In the
convolutional layer, the neuron input consists of small
sectors from the previous layer that is called the filter
(kernel). The size of the filter, S;, can be tuned from
1 x 1pixels up to the size of the input image. In the

convolution layer, the filter moves along the input and builds
a convoluted feature map. To increase the number of feature
maps, multiple filters should be used, and each filter has
different weights and biases to be able to extract various
features of the image. The stride (amount of horizontal and
vertical movement of the filter on the input per convolution)
is set to 2 pixels.

After the convolution layer, a batch normalization layer
is used for reducing the CNN sensitivity to initial HPs values
and decreasing training processing time. Following the batch
normalization layer, a Rectified Linear Unit (ReLU) acti-
vation layer is added to apply a zero threshold to all negative
values in the batch normalization layer; that means, the
inputs from the previous layer b go through max (0, b). The



max-pooling layer downsamples the input by dividing it
into rectangular pooling regions to compute the maximum
of each region of gathered feature matrices. After designing
the feature extractor, the fully connected (FC) layer is used
to map the features matrix in the last layer in the form of a
1 x s vector, where s = 13 is chosen equal to the number of
categories in the database. For representing the probability
distribution over multiple classes in the output of a clas-
sifier, a generalized model of binary logistic regression
classifier (SoftMax function) is utilized after the FC
[38, 39]. Considering the input of the SoftMax function as a
sample tile that belongs to one of 13 categories, Tl € Cat;
where j € {1,...,13}; then the category prior probability
[40] is defined as P(Cat;), which shows the probability
of Tl € Cat; and conditional probability as P(TL, ¢ | Cat)),
where ¢ = [w,b] is the parameter vector that consists of
weights (w) and biases (b). The SoftMax function is described
as

P(TL ¢ | Cat;)P(Cat;)

$;(TL ¢) = P(Cat; | TL$) = 7 P(TL ¢ | Cat,,)P(Cat,,)

exp(r]- (T1, 5))
anlexp(rm (TL, 5))’

(1)

where T (Tl ¢) = In(P(TL ¢ | Catj)P(Cat]-)) and S;is a
probability distribution of the SoftMax function output,
where 0<S;<1and ¥ *,S,(TL ¢) = 1.

Following the SoftMax function, the classification output
layer (cross entropy function) is used to assign each input to
one of the n = 13 mutually exclusive categories using the loss
function shown in the following:

P n
@)=~y 3 dyIns(T1,9), @

i=1 j=1

where p is the number of samples and d;; is a matrix that
shows with what probability the i sample of Tl belongs to
j™ category.

3.3. Training. Stochastic Gradient Descent with Momentum
(SGDM) was used to train the CNN for classification. This
method updates CNN’s weights and biases to minimize the
loss function that measures the difference between true
classified and false classified Tls. The SGDM uses a subset of
training data (mini-batch). The gradient derived from the
data within the mini-batch is used for updating the weights
and biases. Each update to the weights and biases is defined
as one iteration. The gradient descent update law is described
as

b1 = B — /U@k) + ’7($k - %k—1)> (3)

where subscript k represents the iteration number, the initial
learning rate is 0<A<1, ¢ is a vector that contains the
weights and biases, /(@) is the loss function and 0<# <1 is
the momentum, which defines the level of contribution from
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the previous step. For A values close to 0, the learning process
is slowed and values close to 1 lead to either diverging or
suboptimal weights. Moreover, to prevent overfitting of
CNN during the training process, L2 regularization [39, 41]
is utilized as follows:

—T—

(Frn) = () + ) @
where 7 is the regularization factor. To both prevent over-
fitting and feature memorization and improve the gener-
alization of the SoftMax classifier during the training
process, a modified data augmentation procedure is used
during each iteration [38], where the Tls were translated
randomly in the horizontal and vertical directions by a
maximum of by +4pixels. It is noteworthy that the Tls
cannot get flipped or rotated since the classification process
is dependent on crack orientation.

3.4. Network Hyperparameters (HPs) Optimization. HPs in
the proposed CNN architecture and SGDM are the filter size S;,
number of filters N, the number of CNN layers ND, #, 7, and
A. The search range for HP was defined as ND ¢ {1,2,..., 15},
Se€{l,2,...,12}, N;e{l,2,...,100}, 0<y<1, 0<7<]1,
and 0<A< 1. The possible values for ND, S;, and N; are
integers and for #, 7, and A are logarithmically spaced values
between 0 and 1. The classification error is the number of
misclassified Tls by the classifier (SoftMax). The objective of
optimization is to find optimal values for the HPs such that the
classification error is minimized. So, the objective function can
be considered a function with HPs as the input and the
classification error as the output. Modeling of this objective
function is algebraically complicated and computationally
intensive. The BOA is capable of performing optimizing the
HPs to minimize the classification error, while the objective
function is considered as a black-box [42]. To perform the
BOA, a validation set was defined that consists of 10% ran-
domly selected Tls from the training set. The inputs of the
objective function are training set and validation set. As shown
in Figure 4, the objective function trains the CNN and returns
the classification error on the validation set. By modeling the
calculated error using Gaussian process (GP) as mentioned in
[43] and in multiple iterations z, where z = {1,2, ..., 100}, the
BOA finds the optimal values for HPs that minimize the
classification error. The kernel function that was used for GP is
the Automatic Relevance Determination (ARD) Matérn 5/2 in
[44]. In addition, the acquisition function (q, (HP)) that is used
for the GP is the Expected Improvement function E(.) [45], as
follows:

4. (HP) = argmax E (max{0, f .. (HP) - 7 (HP)}),

(5)

To perform the BOA, a validation set was defined that
consists of 10% randomly selected Tls from the training set.
The inputs of the objective function are training set and
validation set. As shown in Figure 4, the objective function
trains the CNN and returns the classification error on the
validation set. By modeling the calculated error using
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FIGURE 4: Block diagram of optimizing HPs using BOA.

Gaussian process (GP) as mentioned in [43] and in multiple
iterations z, where z = {1,2,...,100}, the BOA finds the
optimal values for HPs that minimize the classification error.
The kernel function that was used for GP is the Automatic
Relevance Determination (ARD) Matérn 5/2 in [44]. In
addition, the acquisition function (q, (HP)) that is used for
the GP is the Expected Improvement function E(-) [45], as
follows:

4. (HP) = argmax E (max{0, f... (HP) - f7 (HP)}),
(6)

where 7 (HP) is the current maximum observed value for
the objective function. The next estimation for maximizing
the objective function is obtained by using the acquisition
function. The GP posterior is updated in each iteration using

equation (6):

where u = {(HP,, f,),z = 1:100}.

The extrema of f,(HP) was obtained numerically at
sampled values of the function. A closed form expression
of the objective function is not required within the BOA
mathematical structure [46]. The objective function and
acquisition function for two of SGDM HPs, i.e., # and A,
during the optimization process are shown in Figure 5. As
depicted in Figure 5(a), the observed points are de-
marcated by blue dots (f, (HP)), the model mean that is
obtained from the observations is depicted as the red
surface, and subsequent evaluation point addition is de-
marcated with a black dot. Moreover, Figure 5(b) illus-
trates the acquisition function. The objective function is
shown to reach a minimum at the 69" iteration; this point
is demarcated with a black star. Figure 5(b) shows the
maximum feasible value that is generated upon mini-
mizing the classification error.

The total number of iterations was set to 100. Each
iteration calculates the classification error among 600
randomly selected Tls from 13 data-batches. Figure 6
represents the estimated (expected) improvement in
each iteration and the calculated improvement during
optimization. The BOA was evaluated statistically using
the Wald method [47] by representing the images in the
test set as independent events with a known probability of
success. The number of misclassified images was repre-
sented with a binomial distribution. By applying the
trained CNN with optimized HPs on the test set and

computing the number of correctly classified TlIs, the test
error E, is defined as follows:

E =1- Ts;, (8)

S =
M-

I
—

where Ts and b are the number of correctly classified Tls, and
the total number of Tls in the test set, respectively. Note to
evaluate the trained CNN performance on the test set
without exposing the CNN to the optimization process, Eq is
used to obtain the standard error. This approach helps to
increase the optimization speed. The standard error is
represented as follows:

E = w/% (1-E)). (9)

Moreover, as the target of this research, to obtaina +3%
error margin, a confidence interval of 97% is defined to
calculate the generalization error Ej defined as

E; = E, + 0.97E,. (10)

The final HPs value for the CNN were ND = 4, S, =5,
sz = 5, Sf3 = 6, Sf4 = 2, Nfl = 119, NfZ = 119, Nf3 = 108,
and Ny, = 96. Also, the optimized values for SGDM were
A =0.0005145, # = 0.040069, and 7 = 0.002859.

Applying the optimal HP values to the CNN and SGDM
yields a CNN with 24 layers and 96.67% accuracy in
10epochs as it is shown in Figure 7(a). Moreover, the
minimized value for the loss function was 0.033 in 10 epochs,
as shown in Figure 7(b). The generalized error E interval
for the test set was [0.0476,0.0184]. Figure 8 illustrates 24
randomly selected output of the fourth convolution layer,
indicating that the features of Tls extracted by the CNN.
Extracted features of the position and orientation of a crack
in each Tl can be easily recognized in Figure 8. Figure 9
depicts the confusion matrix for the test set, which is ob-
tained based on the CNN that is trained using final values. As
shown in Figure 9, the highest confusion is between the two
categories 5 and 6. The reason is that, from Figure 2(a),
categories 5 and 6 both represent vertical cracks in the
middle and right side of T1, respectively, which intrinsically
leads to a higher probability of misclassification. 24 ran-
domly selected Tls from the test set that were selected for
testing the optimized trained CNN are shown in Figure 10
along with the percentage probability that they belong to
each category. The trained CNN in this section will be used
to map the cracks with the CMA described in the following
section.

4. Real-Time Crack Mapping Algorithm (CMA)

In this section, the proposed real-time Crack Mapping
Algorithm is discussed. So far, a CNN is trained that clas-
sifies the cracks in a T1. However, if the CNN is directly used
to map a crack, the resulted map will not be continuous. The
discontinuity is the result of the classification errors, due to
the size of the tile blocks and the limited number of cate-
gories that the CNN classifier recognizes. To mitigate this
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problem, as it is indicated in Figure 1, a CMA block is added
to the mapping scheme that smoothens the resulted final
map. As shown in Figure 3, an input image or video frame is
divided to Tls in the same size as that of the database Tls
assuming that input images have 640 x 480 pixels. The
classifier assigns a score to Tls related to their similarity to
each category. The higher the score, the more probable that
TT’s crack belongs to a category. Among all assigned scores

for a T1, if a score is less than a defined threshold value of
85%, it is assumed as a noncracked TI that is the 13™
category. As shown in Figure 11, the divided input image
has 15rowsr = A,...,0,and 20 columns,c = 1,...,20. As
depicted in Figure 12, for each crack category, a raw
mapping plot was defined. The raw mapping plot is a
collection of straight-line segments that estimates crack
position and orientation based on its classification. This
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FIGURE 8: 24 randomly extracted features in the last convolution layer.

mapping will not be interconnected between tiles, which
leads to two immediate deficiencies: isolated cracks and
nonconnected cracks which lead to an overall mapping
error.

To improve the crack connectivity between tiles, without
refining the pixel dimensions of the Tls and increasing the

number of classification categories, a CMA block was cre-
ated to “tie” the crack line segments between neighboring
tiles. This procedure is described as follows: if a T] has any
common side (Si) or corner with other, TIs it is called
neighbor T1. Each TI has at least 3 neighbors at the image
corner and at most 8 neighbors in the image interior. An
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FIGURE 10: 24 randomly selected tiles from the test set. Category and its confidence are available on top of each tile.
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image. Red line shows the improved mapping the cracks using the CMA, isolated cracks were eliminated, and crack’s map is unified and

smoothed.

isolated Tl is a T1 with a detected crack, but no neighbor Tls
have detected cracks. The CMA begins to map the input
image in real time by scanning from row A from left to right.
To map each row, the CMA processes right, left, and upper
neighbors. While scanning a row, isolated TIs are discarded

as noncrack Tl. On the other hand, if two or more crack
neighbor Tls exist, the raw linear segment plot will be
translated vertically or horizontally until the raw mapping
segments in the Tl and neighbor TI intersect. As it is
depicted in Figure 13(a), the cracks in Tls are mapped by a
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FIGURE 16: Performance of the algorithm on multiple cracks under different conditions (a), (b), (c), and (d) wet, (e) bright, and (f) dark.

linear segment and the CMA starts scanning from row A
(Left to right). The tile A2 has a neighbor with a shared side
on A2 and B2. The CMA translates the start of linear segment
vertically downward until intersecting the end of the segment
in A2, as shown in Figure 13(b). After scanning row A, the
next row B is then scanned by the CMA. Tile B2 has a detected
crack and detects a crack in the neighbor tile A2. As depicted
in Figure 13(c), the CMA then translates the end of the line
segment within B2 horizontally to the right until intersecting
the start of the line segment in A2. This procedure continues
until every row in the image has been processed.

Figure 14 shows the connected CMA modified
mapping plots (red lines) overlaying both crack pavement
image and raw mapping plots (blue lines: without seg-
ment connection). An isolated crack (blue line) is de-
tected in tile C7 and classified into category 7. No
neighbor tiles to C7 have a detected crack. More isolated
cracks are detected in C7, E9, H17, and K8. The isolated
cracks are eliminated within the CMA. The surviving
linear segments are those that have neighbor Tls which
are shown from A9, B9, B10, C9, D9 ... to O13. By
defining the neighbor T, the mapped plots from A9, B9,
B10, C9, D9 ... to O13 form a pattern which can map the
underneath crack. The proposed method is not limited to
a certain vertical distance of the camera from the road. By
having the camera’s parameters like focal length, sensor
size, etc., the pinhole camera model in [48] can be used to
find the real dimensions of the road surface in each image.
This information is required to determine the size of the
crack in each image. As stated in Section 3, images were
taken from distance of 1.5 to 2 meters above the cracked
asphalt. For instance, for the camera used to collect the
images in this work, a 640 x 480 pixels image would cover
21036 mm x 915mm to 1280 mm x 1097 mm block on the

road. In that case, each TI would cover a 51.8 mm x 61 mm
to 64 mm X 73.1 mm area.

Therefore, considering the isolated Tls that are elimi-
nated by the CMA leads to exclusion of cracks with max-
imum length of 80.02 mm to 97.1 mm. On the other hand,
crack width is one of the other requirements by different
protocols for defining severity of deficiency. As an instance,
AASHTO protocol (PP44-00 and PP67-10) has three dif-
ferent levels for measuring the damage severity. Level 1 is
defined as cracks with width of less than 3 mm, level 2 refers
to cracks with width between 3 mm and 6 mm, and level 3 is
cracks with width of greater than 6 mm. Moreover, three
major types of cracks in most protocols are longitudinal,
transverse, and alligator cracks [36, 49]. Although con-
verting length and width of cracks to the percentage of lane
area is a straightforward task for transverse and longitudinal
cracks, there is no certain way for applying the same method
for alligator cracks. Hence, some protocols like HPMS,
LTPP, and PP44-00 are focusing on transverse and longi-
tudinal cracks and considering alligator cracks as a com-
bination of those two types. With the mentioned equipment
that is used in this paper, it is possible to detect cracks with
minimum width of 2 mm and maximum width of 30 mm in
images that are taken from 1.5 to 2 meters of the pavement
surface. The proposed algorithm has no limitation over the
length of crack. Moreover, the proposed algorithm is capable
of detecting all three types of cracks that is defined widely
accepted protocols.

5. Experimental Results

In this section, the test results of the trained CNN are pre-
sented in two subsections: (i) the performance of the algo-
rithm was tested on several single images with various crack
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FIGURE 17: 4 processed frames with detected and mapped cracks. Mapping algorithm was able to separate all of 4 significant cracks and map

them.

shapes and (ii) a real-time mapping evaluation was done on a
captured video that is obtained from a randomly selected
pavement roadway. The test images from the training and
testing database were not used, not filtered or modified, and
taken under varying light condition and camera position.
Also, in this paper, MATLAB was used for training and
optimizing the CNN and implementing the CMA algorithm.

5.1. Single Image Mapping Evaluation. As depicted in Fig-
ure 15, samples of three images having typical types of cracks
with vertical (Figure 15(a)), horizontal (Figure 15(b)), and
diagonal (Figure 15(c)) orientations were used to test the
CMA. There are no isolated tile cracks and the connected
mapped cracks cover the main crack with substantial

accuracy.
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TaBLE 1: Retraining the CNN by changing the HPs to validate the
calculated values by the BOA.

Changing the HPs (%) Accuracy (%)

+5 96
-5 95.9
+10 95.2
-10 95.7
+20 94.6
=20 93.1
+30 92.4
-30 89

Moreover, to test the algorithm’s performance under
different weather and illumination conditions, multiple
cracks were selected and pictured in different situation.
Figures 16(a)-16(f) show the wet, bright, and dark condi-
tions respectively. The CMA could map cracks regardless of
the road condition.

5.2. Real-Time Mapping Evaluation. Also, to evaluate the
CMA performance in a real-time manner, a video was
captured using a DJI Phantom 4 drone with mounted
camera. The CMA was implemented on the captured video’s
image frames. The drone was set to an altitude of 2.5 m from
the ground. The camera was perpendicular to the ground,
and the video quality was set to resolution of 640 x 480 and
120 fps. Since the drone was flown with a slow speed above
the crack, and due to the high frame rate, the frame interval
for processing was set to 60 frames. A ranging rod, 30.48 cm,
with orange and white bands was set beside a road crack, and
the drone was flown 3.6 meters in the forward direction. The
laptop that was used for processing the captured videos was
Alienware 15 R3 with NVIDIA GTX 1070 GPU and Intel
Core i7 processor. As it is shown in Figure 17, the algorithm
was able to detect and map deep cracks and avoid oil spills
on the surface road. Referring to Figure 17, each frame was
taken every 0.2 milliseconds. A total of 5 frames could be
processed per second which covers 0.6m of the road
pavement. This indicates that the maximum speed of the

real-time mapping with the current hardware is 11.1 km/h.
This speed, however, can be increased with the advent of
lighter and more powerful graphical and processing units.
Figure 18 shows a video obtained from the drone footage
with real-time crack mapping segments produced from the
CMA.

The proposed algorithm in this work improves upon
existing work [10] by integrating crack detection with a crack
mapping using image segmentation and classification within
a CNN architecture. In addition, the optimized CNN ar-
chitecture proposed here uses a significantly lower number
of filters in the convolution layer (256) leading to reduced
computational demand in both CNN training and real-time
processing. As mentioned in Section 6, the BOA is used to
compute the HPs. To verify the fact that the selected optimal
values maximize the CNN accuracy, during the training
process, all HPs were perturbed by a +5%, +10%, +20%,
and +30% white noise. As shown in Table 1, perturbing the
HPs by +5% decreases the accuracy by about 1%, while as it
increases to +30%, the accuracy decreases by at most 8%.

6. Conclusion

In this paper, an algorithm for mapping road cracks in real
time using convolutional neural networks was proposed and
tested. Authors gathered the database for this work, and due
to limited available resources, the size of the database was
limited to 6695 images. The convolutional neural network in
this work was optimized using the Bayesian optimization
algorithm. A heuristic algorithm for real-time crack map-
ping was introduced and tested on different images with
complicated crack position and orientation. Also, a video
was recorded and processed for testing the real-time ability
of the algorithm. Although the database was carefully se-
lected and curated in this work, the authors attempted to
include a robust population of crack images to improve the
selection and classification power of the CNN. However, this
study is limited to only one block size and 13 classification
categories. Certainly, for commercial applications, in-
creasing the number of images within the training and
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increasing the computing power will allow users to reduce
the size of the tiles and increase the number of classification
categories which may further refine the smoothness of the
mapping segments. The mapping results via the CMA may
also be used for crack type classification and causation,
analyzing what type of asphalt is more prone to cracking,
what type of asphalts are more suitable for different road
conditions with respect to the traffic, and how to choose the
best asphalt for various conditions, and finally estimating the
repair and protection costs for each individual road type.
Analyzing the crack propagation patterns based on geo-
graphical information of the road using the CMA provides
more analytical information in combination with other data
that could help during the decision making process for road
construction.
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