
Quickly Generating Diverse Valid Test Inputs with
Reinforcement Learning

Sameer Reddy

University of California, Berkeley, USA

sameer.reddy@berkeley.edu

Caroline Lemieux

University of California, Berkeley, USA

clemieux@cs.berkeley.edu

Rohan Padhye

University of California, Berkeley, USA

rohanpadhye@cs.berkeley.edu

Koushik Sen

University of California, Berkeley, USA

ksen@cs.berkeley.edu

ABSTRACT
Property-based testing is a popular approach for validating the logic

of a program. An effective property-based test quickly generates

many diverse valid test inputs and runs them through a parame-

terized test driver. However, when the test driver requires strict

validity constraints on the inputs, completely random input gen-

eration fails to generate enough valid inputs. Existing approaches

to solving this problem rely on whitebox or greybox information

collected by instrumenting the input generator and/or test driver.

However, collecting such information reduces the speed at which

tests can be executed. In this paper, we propose and study a black-

box approach for generating valid test inputs. We first formalize the

problem of guiding random input generators towards producing a

diverse set of valid inputs. This formalization highlights the role

of a guide which governs the space of choices within a random

input generator. We then propose a solution based on reinforce-

ment learning (RL), using a tabular, on-policy RL approach to guide

the generator. We evaluate this approach, RLCheck, against pure
random input generation as well as a state-of-the-art greybox evo-

lutionary algorithm, on four real-world benchmarks. We find that

in the same time budget, RLCheck generates an order of magnitude

more diverse valid inputs than the baselines.

ACM Reference Format:
Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen. 2020.

Quickly Generating Diverse Valid Test Inputs with Reinforcement Learning.

In 42nd International Conference on Software Engineering (ICSE ’20), May
23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3377811.3380399

1 INTRODUCTION
Property-based testing is a powerful method for testing programs

expecting highly-structured inputs. Popularized byQuickCheck [17],

the method has grown thanks to implementations in many different

languages [1, 2, 7, 8, 40], including prominent languages such as

Python [3], JavaScript [4], and Java [27]. Property-based testing

allows users to specify a test as ∀x ∈ X : P(x) ⇒ Q(x), where X is

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7121-6/20/05.

https://doi.org/10.1145/3377811.3380399

a domain of inputs and P , Q are arbitrary predicates. The precondi-

tion P(x) is some sort of validity constraint on x . A property testing

tool quickly generates many inputs x ∈ X and runs them through a

test driver. If the tool generates an x for which P(x) holds but Q(x)
does not hold, then the test fails.

Using a property-based testing tool requires two main steps.

First, the user needs to write a parameterized test driver, i.e., the
programmatic representation of P(x) ⇒ Q(x). Second, the user

needs to specify the generator for x ∈ X. A generator forX is a non-

deterministic program returning inputs x ∈ X. Testing frameworks

typically provide generators for standard types (e.g. primitive types

or a standard collections of primitives). If X is a user-defined type,

the user may need to write their own generator.

For property-based testing to be effective, the generator must

produce a diverse set of inputs x ∈ X satisfying the validity con-

straint P(x). This is a central conflict in property-based testing. On

the one hand, a simple generator is easier for the user to write,

but not necessarily effective. On the other hand, a generator that

produces diverse valid inputs is good for testing, but very tedious

to write. Further, generators specialized to a particular validity

function P(x) cannot be reused to test other properties on X with

different validity constraints, say P ′(x). We thus want to solve the

following problem: given a generator G of inputs x ∈ X and a va-

lidity function P(x), automatically guide the generator to produce

a variety of inputs x satisfying P(x).
One way to solve this problem is to do whitebox analysis [14, 22–

24] of the generator and/or the implementations of P(x) and Q(x).
A constraint solver can be used to generate inputs x ∈ X that are

guaranteed to satisfy P(x), which also exercise different code paths

within the implementation ofQ(x) [42]. Another set of approaches,
adopted in recent greybox fuzzing-inspired work [31, 39], is to col-

lect code coverage during test execution. This information can be

used in an evolutionary algorithm that can generate inputs that

are likely satisfy P(x), while optimizing to increase code coverage

through Q(x). Both sets of approaches require instrumenting the

program under test; thus, they are limited in terms of performance.

Purely whitebox approaches have trouble scaling to complex va-

lidity functions due to the path explosion problem [16], and even

greybox fuzzing techniques require instrumentation that can lead

to slowdowns, thereby reducing the rate at which tests can be exe-

cuted. This is in conflict with the QuickCheck approach, in which

properties can be quickly validated without instrumenting the test

1410

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

program. In this paper, we address this gap by investigating a black-
box approach for guiding a generator G to produce a large number

of diverse valid inputs in a very short amount of time.
In this paper, we first formalize the problem of guiding the ran-

dom choices made by a generator for effective property testing

as the diversifying guidance problem. Second, we notice that the

diversifying guidance problem is similar to problems solved by rein-

forcement learning: given a sequence of prior choices (state), what

is the next choice (action) that the generator should make, in order

to maximize the probability of generating a new x satisfying P(x)
(get high reward)? We thus explore whether reinforcement learn-

ing can solve the diversifying guidance problem. We propose an

on-policy table-based approach which adapts its choices on-the-fly

during testing time. We call our technique RLCheck.
We implement RLCheck in Java and evaluate it to state-of-the-art

approaches Zest [39] and QuickCheck. RLCheck’s implementation

is open-source and available at: https://github.com/sameerreddy13/

rlcheck. We compare the techniques on four real-world benchmarks

used in the original evaluation of Zest: two benchmarks that operate

on schema-compliant XML inputs, and two that operate on valid

JavaScript programs. We find that RLCheck generates 1.4×-40×

more diverse valid inputs than state-of-the-art within the same tight

time budget. All methods are competitive in terms of valid branch

coverage, but the simple RL algorithm we explore in RLCheck may

be biased to certain parts of the valid input space. We also find that

a basic addition of greybox feedback to RLCheck does not produce

improvements that are worth the instrumentation slowdown.

In summary, we make the following contributions:

• We formalize the problem of making a generator produce

many valid inputs as the diversifying guidance problem.

• We propose a reinforcement learning approach to solve the

diversifying guidance problem, named RLCheck.
• Weevaluate RLCheck against the state-of-the art Zest tool [39]
on its valid test-input generation ability.

2 A MOTIVATING EXAMPLE
Property-based testing tools [9, 17, 19, 21, 22, 40, 47] allow users to

quickly test a program by running it with many inputs. Originally

introduced for Haskell [17], property-based testing has since been

ported to many other programming languages [1–4, 7, 8, 27, 40].

Using a property-based testing tool involves two main tasks.

First, the user must write a parameterized test driver which takes

input x of some type X and runs test code checking a property

P(x) ⇒ Q(x). We say x is valid if it satisfies P(x).
For example, in Figure 1, the test driver test_insert (Line 15) is

given a binary tree tree and an integer to_add as input. If tree is

a binary search tree (Line 16), the driver inserts to_add into tree

(Line 17) and asserts that tree is still a binary search tree after the

insert (Line 18). The assume at Line 16 terminates the test silently if

tree is not a binary search tree. The assert at Line 18 is violated if

tree is not a binary search tree after the insertion. Thus, the test dri-

ver implements P(x) ⇒ Q(x) for the validity constraint P(x) =“x is

a binary search tree” and the post-condition Q(x) =“after inserting
to_add, x is a binary search tree”—by raising an assertion failure

when P(x) ⇒ Q(x) is falsified. In this example, the predicate Q(x)
is specified explicitly via assertions. Q(x) can also be implicitly

1 from generators import generate_int

2

3 def generate_tree(depth=0):

4 value = random.Select([0, 1, ..., 10])

5 tree = BinaryTree(value)

6 if depth < MAX_DEPTH and

7 random.Select([True, False]):

8 tree.left = generate_tree(depth+1)

9 if depth < MAX_DEPTH and

10 random.Select([True, False]):

11 tree.right = generate_tree(depth+1)

12 return tree

13

14 @given(tree = generate_tree , to_add = generate_int)

15 def test_insert(tree, to_add):

16 assume(is_BST(tree))

17 BST_insert(tree, to_add)

18 assert(is_BST(tree))

Figure 1: Pseudocode for a property-based test.
generate_tree generates a random binary tree, and
test_insert tests whether inserting a given integer into
a given tree preserves the binary search tree property.
random.Select(D) returns a random value from D.

defined, e.g. Q(x) may be the property that the program does not

crash with a segfault when executed on x .
Second, the user must specify how to generate random inputs

for the test driver. This must be done by writing or specifying a

generator, a non-deterministic function returns a random input of a

given type in each of its executions. Property-based testing frame-

works typically provide generators for basic types such as primitive

types and predefined containers of primitives (e.g. generate_int in

Figure 1). If the test function takes a user-defined data structure,

such as the tree in Figure 1, Line 15, the user writes their own gen-

erator. For many types, writing a basic generator is fairly straight-

forward. In Figure 1, generate_tree generates a random binary tree

by (1) choosing a value for the root node (Line 4), (2) choosing

whether or not to add a left child (Line 7) and recursively calling

generate_tree (Line 8), and (3) choosing whether or not to add a

right child (Line 10) and recursively calling generate_tree (Line 11).

We have deliberately kept this generator simple in order to have a

small motivating example.

The user can now run test_insert on many different trees to

try and validate P(x) ⇒ Q(x): the assume in Line 16 effectively

filters out invalid (non-BST) inputs. Unfortunately, this rejection

sampling is not an effective strategy if P(x) is too strict. If the

generator has no knowledge of P(x), it will, first of all, very rarely

generate valid inputs. So, in a fixed time budget, very few valid

inputs will be generated. The second issue is that the generator

may not generate very diverse valid inputs. That is, the only valid

inputs the generator has a non-negligible probability of generating

may be very small valid inputs; these will not exercise a variety of

behaviors in the code under test. For example, out of 1000 generated

binary trees, the generator in Figure 1 only generates 20 binary

search trees of size ≥ 3, and only one binary search tree of size 4

and 5, respectively. Overall, the generator has very low probability

1411

of generating complex valid inputs, which greatly decreases the

efficacy of the property-based test.

Fundamentally, the input generated by a generator is governed by

the choices taken at various choice points. For example, in Figure 1,

at Line 4, the generator makes a choice of which integer value to

put in the current node, and it chooses to make a left or right child

at Lines 7 and 10, respectively. Depending on the prior sequence of

choices taken by the generator, only a subset of the possible choices

at a particular choice point may result in a valid input. For example,

if P(x) is the binary search tree invariant, when generating the

right child of a node with value n, the only values for the child

node that can result in a valid BST are those greater than n. While

narrowing the choice space in this manner is straightforward for

BSTs, manually encoding these restrictions is tedious and error-

prone for complex real-world validity functions.

Overall, we see that the problem of guiding G to produce many

valid inputs boils down to the problem of narrowing the choice

space at each choice point in the generator. We call this the diversi-
fying guidance problem. We formalize this problem in Section 3 and

propose a solution based on reinforcement learning in Section 4.

3 PROBLEM DEFINITION
In property-based testing, a generator G is a non-deterministic

program returning elements of a given space X. For example, in

Figure 1, X is the set of binary trees of depth up to MAX_DEPTH with

nodes having integer values between 0–10, inclusive.

In particular, a generator G’s non-determinism is entirely con-

trolled by the values at returned at different choice points in the

generator. A choice point p is a tuple (ℓ,C) where ℓ ∈ L is a pro-
gram location andC ⊆ C is a finite domain of choices. For example,

there are three choice points in the generator in Figure 1:

• (Line 4, [0, 1, ..., 10]): the choice of node value;

• (Line 7, [True, False]): whether to generate a left child; and

• (Line 10, [True, False]): whether to generate a right child.

During execution, each time the generator reaches a choice point

(ℓ,C), it makes a choice c ∈ C . Every execution of the generator,

and thus, every value produced by the generator, corresponds to a

sequence of choices made at these choice points, say c1, c2, . . . , cn .
For example, the execution through generate_BST in Figure 1

which produces the tree:

2

1 3

corresponds to the following sequence of choices c1, c2, . . . c9:

Choice Index Choice Taken Choice Point

c1 2 (Line 4, [0, 1, ..., 10])

c2 True (Line 7, [True, False])

c3 1 (Line 4, [0, 1, ..., 10])

c4 False (Line 7, [True, False])

c5 False (Line 10, [True, False])

c6 True (Line 10, [True, False])

c7 3 (Line 4, [0, 1, ..., 10])

c8 False (Line 7, [True, False])

c9 False (Line 10, [True, False])

As the generator executes, each time it reaches a choice point

p = (ℓ,C), it will have already made some choices c1, c2, . . . ck .
Traditional QuickCheck generators, like the one in Figure 1, will

simply choose a random c ∈ C at choice point p regardless of the

prefix of choices c1, c2, . . . ck .
Going back to our running example, suppose the generator has

reached the choice point choosing the value of the left child of 2,

i.e. choosing what to put in the ? :

2

?

That is, the generator has made the choices [c1 = 2, c2 = True], and
must now choose a value from 0−10 at the choice point in Line 4.

The generator is equally likely to pick any number from this range.

Since only 2 of the 11 numbers from 0−10 are smaller than 2, it has

at most an 18% chance of producing a valid BST.

To increase the probability of generating valid inputs, the choice

at this point should be made not randomly, but according to a guide.
In particular, according to a guide which restricts the choice space

to only those choices which will result in a binary search tree. First,

we formalize the concept making choices according to a guide.

Definition 3.1 (Following a Guide). We say that a generator G

follows a guide γ : C∗ × P × N → C if: during its t th execution,

given a sequence of past choices σ = c1, c2, . . . , ck , and the current

choice point p = (ℓ,C), the generator G makes the choice γ (σ ,p, t).

Suppose we have a validity function ν : X → {True, False}
which maps elements, output by the generator, to their validity. For

example, is_BST is a validity function for the generator in Figure 1.

The validity guidance problem is the problem of finding a guide that

leads the generator to produce valid elements of X:

Definition 3.2 (Validity Guidance Problem). Let G be a generator

producing elements in space X. Let ν : X → {True, False} be a
validity function. The validity guidance problem is the problem of

creating a guide γ such that:

if G follows γ , then ν (x) = True for any x ∈ X generated by G.

Note that a solution to the validity guide problem is not nec-

essarily useful for testing. In particular, the guide γ could simply

hard-code a particular sequence of choices through the generator

which results in a valid element x ∈ X. Instead, we want to gener-

ate valid inputs with diverse characteristics. For example, we may

want to generate unique valid inputs, or valid inputs of different

lengths, or valid inputs that exercise different execution paths in

the test program. We use the notation ξ (x) to denote an input’s

characteristic of interest, such as identity, length, or code coverage.

Definition 3.3 (diversifying guidance problem). LetG be a genera-

tor producing elements in spaceX. Let ν : X → {True, False} be a
validity function and ξ be a characteristic function. The diversifying
guidance problem is the problem of creating a guide γ such that:

ifG follows γ and XT ⊆ X is the set of inputs generated by G after

T executions, |{ξ (x) : x ∈ XT ∧ ν (x)}| is maximized.

If ξ is the identity function, then a solution to the diversifying

guidance problem is a guide which maximizes the number of unique

valid inputs generated.

1412

4 METHOD
In this section we describe our proposed solution to diversifying

guidance problem. In particular, our proposed guide uses reinforce-

ment learning to makes its choices. We begin with a basic back-

ground on Monte Carlo Control [46], the table-based reinforcement

learning method used in this paper. We then describe how it can

be used to solve the diversifying guidance problem.

4.1 Reinforcement Learning
We begin by defining a version of the problem solved by reinforce-

ment learning which is relevant to our task at hand. We use a

slightly nontraditional notation for consistency with the previous

and next sections. What we call choices are typically called actions,
and what we call a learner is typically called an agent.

We assume an learner in some environment. The learner can

perceive the state s of the environment, where s is in some set of

states S. At the first point in time, the learner is at an initial state

s0 ∈ S. At each point in time, the learner can make a choice c ∈ C
which will bring it to some new state s ′ ∈ S. Eventually, the agent
gets into some terminal state sterm ∈ S, indicating the end of an

episode. An episode is the sequence of (state, choice) pairs made

from the beginning of time up to the terminal state, i.e.:

e = (s0, c0), (s1, c1), . . . (sT , cT)

Where the choice cT in state sT brings the learner to the terminal

state sterm. Finally, we assume we are given a reward r for a given
episode e . A larger reward is better.

The problem to solve is the following. Given a state space S,

choices C, and reward r , find a policy π which maximizes the

expected reward to the learner. That is, find a π such that if the

learner, at each state s ∈ S, makes the choice c = π (s), then the

expected reward Eπ ,e [r] from the resulting episode e is maximized.

4.1.1 Monte Carlo Control. One approach to solving the policy-

learning problem above is by on-policy Monte Carlo Control [46].
The technique is on-policy because the policy the learner is optimiz-

ing is the same one it is using to control its actions. Thus, a Monte

Carlo Control learner L defines both a policy π , where π (s) outputs
a choice c for the given state s , as well as an update procedure that

improves π after each episode.

Algorithm 1 shows pseudocode for a Monte Carlo Control (MCC)

learner L. In the algorithm, we subscript the choice space, state

space, andQ and counts with L to emphasize these are independent

for each MCC learner. We will drop the subscript L when talking

about a single learner. The basic idea is as follows.

We are trying to learn a policy π for state space S and choices C.

The policy is ε-greedy: with probability ε it makes random choices

(Line 7), otherwise it makes the choices that will maximize the

value function, Q (Line 9).

The value functionQ[s, c]models the expected reward at the end

of the episode from the choice c in state s . It is initialized to 0 for

each (s, c) pair (Line 4), so the first episode follows a totally random
policy. Q[s, c] is exactly the average rewards seen for each episode

e containing (s, c). Thus, at the end of each episode e , for each
(s, c) ∈ e (Line 15), the running average for the rewards observed
with action (s, c) is updated to include the new reward r (Line 16).

Algorithm 1AMonte Carlo Control learner L. Implements a policy

πL and an update function updateL which updates πL towards the

optimal policy after each episode.

Input: choice space CL , state space SL , and εL
1: eL ← [] ▷ initialize episode

2: for (s, c) ∈ SL × CL do
3: countsL[s, c] ← 0

4: QL[s, c] ← 0

5: procedure π (state s)
6: if uniformRandom() < ε then
7: c ← random(C)

8: else
9: c ← argmaxc ∈CL QL[s, c] ▷ break ties arbitrarily

10: eL ←append(eL , (s, c))
11: return choice
12: procedure update(reward r)
13: T ←len(eL)
14: for 0 ≤ t < T do
15: s, c ← eL[t]

16: QL[s, c] ←
r+QL [s,c]·(countsL [s,c])

countsL [s,c]+1
▷ update avg. reward

17: countsL[s, c] ← countsL[s, c] + 1
eL ← []

If the reward function producing r is stationary (i.e., fixed), then

it can be shown that this update procedure always improves the

policy. That is, if π is the original policy, and π ′ is the policy after the
update, the expected reward from a learner following π ′ is greater
than or equal to the expected reward from a learner following π .
Sutton and Barto [46] provide a proof.

We draw attention to some specifics of our implementation, that

diverge from what may appear in textbooks.

4.1.2 Algorithmic Changes. Firstly, we update an episode with a

single reward r which is distributed to all state action pairs. This is

because, as will be seen in later sections, we only observe rewards

at the end of an episode i.e there are no intermediate rewards

provided in our method. Secondly we do not use a discount factor

on the reward r . This is because the sequence of choices in an input

generation, do not lend themselves to a natural absolute ordering.

We cannot assume later decisions are more important than earlier

ones, which the discount factor implicitly does.

4.2 RLCheck: MCC with Diversity Reward
We now return to our problem space of generating inputs with a

generator G. Notice that the guides we defined in Definition 3.1

have a similar function to the learners in Section 4.1: given some

state (σ ,p, t) make a choice c .
This leads to the natural idea of implementing a guide as an MCC

learner, rewarding the learner with some r (x) after the generator
produces input x . However, note that for the guide, at each choice

point p = (ℓ,C), only a subset of choices C ⊆ C can be taken.

Further, each choice point has a unique task: for example, choosing

whether to generate a left child (Figure 3, Line 9) or a right child

(Figure 3, Line 13). Thus, it is natural to define a separate learner

1413

Lp for each choice point p, and call updateLp once for each learner

after every execution of the generator.

Finally, in Section 3, we defined a guide using a sequence σ ∈ C∗

to influence its actions, while in Section 4.1, we assumed a finite

set of states S. Thus, we need a state abstraction function:

Definition 4.1 (State Abstraction Function). A state abstraction
function A : C∗ → S for a generator G is a deterministic function

mapping an arbitrary-length choice sequence σ to a finite state

space S.A can rely onG to retrieve, for any ci ∈ σ , the choice point
p at which ci was made.

We will return to the state abstraction function in Section 4.3.

We can now define a Monte Carlo Control Guide.

Definition 4.2 (Monte Carlo Control Guide). Assume a generator

G producing inputs in X, a state abstraction function A, and a

reward function r : X → R. A Monte Carlo Control Guide γ
consists of a set of Monte Carlo control learners, {Lp }. Each learner

Lp is associated with a choice point p = (ℓ,C) in G.

Let π
(t)
Lp

be Lp ’s policy after t − 1 calls to updateLp (ref. Algo-

rithm 1). Then γ is:

γ (σ ,p, t) = π
(t)
Lp
(A(σ)).

Finally, afterG produces an inputx , the guideγ callsupdateLp (r (x))
for each of its learners Lp .

Now, to use a Monte Carlo Control guide (MCC guide) to solve

the diversifying guidance problem, only (1) the state abstraction

function A (ref. Section 4.3) and (2) the reward function r need to

be specified. We construct a reward function as follows.

Let ν be the validity function and ξ the characteristic function of

interest. If X be the set of inputs previously generated by G, then
let Ξ = {ξ (x ′) : x ′ ∈ X } be the set of characteristics of all the

previously generated inputs. Then the reward function r is:

r (x) =


Runique if ν (x) ∧ ξ (x) < Ξ

Rvalid if ν (x) ∧ ξ (x) ∈ Ξ

Rinvalid if ¬ν (x)

(1)

Our technique, RLCheck, is thus: make a generatorG follow an

MCC Guide with the reward function r above.
Note that this reward function is nonstationary, that is, it is not

fixed across time. If X = ∅, then generating any x ∈ X such that

ν (x) holds will result in the rewardRunique; re-generating the same x
in the next step will only result in the reward Rvalid. This means the

assumptions underlying the classic proof of policy improvement do

not hold [46]. Thus, RLCheck’s guide is not guaranteed to improve

to an optimal policy. Instead, it practices a form of online learning,

adjusting its policy over time.

4.3 State Abstraction
A key element in enabling MCC to solve the diversifying guidance

problem is the state abstraction function (Definition 4.1), which

determines the current state given a sequence of past choices. The

choice ofA impacts the ability of theMCC guide to learn an effective

policy. On one extreme, if A collapses all sequences into the same

abstract state (e.g.,A(σ) = 0), then a learner Lp essentially attempts

to find a single best choice c ∈ CLp for choice point p, regardless

2

1 ?

c1 = 2

c2 = True

c3 = 1

c4 = False c5 = False

c6 = True

c7 =?

S1 = 2

S2 = 2, L

S3 = 2, L, 1 S4 = 2, L, 1

S5 = 2

S6 = 2, R

Figure 2: A partially-generated binary tree (left) and its cor-
responding choice sequence arranged by influence (right).

of state. On the other extreme, if A is the identity function (i.e.,

A(σ) = σ), then the state space is infinite; so for every previously

unseen sequence of choices σ , the learner’s policy is random.

The ideal A is the abstraction function that maximizes expected

reward. However, computing such an A is not tractable, since it

requires inverting an arbitrary validity function ν (x). Instead, we
apply the following heuristic: in many input generators, a good

representation for the state Sn after making the nth choice cn is

some function of a past subsequence of choices that influence the
choice cn . The meaning of influence depends on the type of input

being generated and the nature of the validity function.

For example, Figure 2 shows a partially generated binary tree

on the left. On the right, we show the choices made in the binary-

tree generator (ref. Fig. 1) leading to this partial tree (c1 = 2, c2 =
True, c3 = 1, c4 = False, c5 = False, c6 = True), arranged by influence,
where a choice in the construction of a child node is influenced by

choices constructing its parent node.

With this influence heuristic, the best value for the next choice

c7, which determines the value assigned to the right child, should

depend on the choice c1, which decided that the root node had

value 2, as well as the choice c6, which made the decision to insert

a right child. The best value for this choice c7 does not necessarily
depend on choices c2–c5, which were involved in the creation of the
left sub-tree. Therefore, the state S6, in which the choice c7 is to be

made, can be represented as a sequence [fv (c1), fr (c6)]. Here, fv is

a function associated c1’s choice point (the node-value choice point
at Line 4 of Fig. 1) and fr is a function associated with c6’s choice
point (the right-child choice point at Line 10 of Fig. 1). In Figure 2,

the state S6 after applying these functions is [2, R]; we will define
the functions fv and fr for this figure later in this section.

An additional consideration when representing state as a se-

quence derived from past choices is that such sequences can be-

come very long. We need to restrict the state space to being finite.

Again, a reasonable heuristic is to use a trimmed representation of

the sequence, which incorporates information from up to the lastw
choices that influence the current choice.w is a fixed integer that

determines the size of a sliding window.
We can build a state abstraction function that follows these con-

siderations in the following manner. First, build a choice abstraction

function fp for each choice pointp, whichmaps each c to an abstract
choice. Then, for σ = c1, c2, . . . , cn , build Sn = A(σ) so that:

Sn =

{
∅ if σ = ∅

tailw (Sk :: fp (cn)) for some k < n otherwise,

1414

1 def concat_tail(state, value):

2 return (state + [value])[−WINDOW_SIZE:]

3

4 def gen_tree(state, depth=0):

5 value = guide.Select([0, ..., 10], state, idx=1)

6 state = concat_tail(state, value)

7 tree = BinaryTree(value)

8 if depth < MAX_DEPTH and \

9 guide.Select([True, False], state, idx=2):

10 left_state = concat_tail(state, "L")

11 tree.left = gen_tree(left_state , depth+1)

12 if depth < MAX_DEPTH and \

13 guide.Select([True, False], state, idx=3):

14 right_state = concat_tail(state, "R")

15 tree.right = gen_tree(right_state , depth+1)

16 return tree

Figure 3: Pseudo-code for a binary tree generator which fol-
lows guide and builds a tree-based state abstraction.

Random Sequence Tree Tree L/R
State Abstraction Method

0

10000

20000

30000

40000

50000

Nu
m

be
r o

f G
en

er
at

ed
 In

pu
ts

Valid
Unique Valid

Figure 4: Number of (unique) valid inputs generated, by state
abstraction. “Random” is a no-RL baseline.

where :: is the concatenation operator and tailw (s) takes the lastw
elements of s . Assume cn was taken at choice point p.

We can build both very basic and very complex state abstractions

in this manner.

For example, we can get A(σ) = cn−w+1, . . . , cn−1, cn by taking

fp = id for all and choosing k = n − 1 always. This would be a

simple sliding window of the lastw choices.

The states S1-S6 that annotate the edges in Figure 2 are derived

using the choice point abstraction functions fv (c) = c for the value
choice point, fr (c) = R for the right child choice point, and fl (x) = L
for the left child choice point. The k is chosen as k =“largest k < n
which is a choice from the parent node”. While programatically

deriving this k from a choice sequence σ is tedious, it is quite

easy to do inline in the generator. The generator Figure 3 shows a

modified version of the generator from Figure 1, which updates an

explicit state value at each to compute exactly this state abstraction

function (Lines 6, 9, 13); it also uses guides to select arbitrary values

(Lines 5, 9, 13).

2 4 6 8 10
Tree Size

0.01

0.1

1

10

100

1000

Un
iq

ue
 V

al
id

 In
pu

ts
 G

en
er

at
ed

Random
Sequence
Tree
Tree L/R

Figure 5: Distribution of unique valid tree sizes, by state ab-
straction. “Random” is a no-RL baseline.

4.3.1 Case study. We evaluate the effect the state abstraction func-

tion has on the ability of RLCheck to produce unique valid inputs

for the BST example. We evaluate three state abstraction functions:

• Sequence, the slidingwindow abstractionwhich retains choices

from the sibling nodes, i.e. A(σ) = cn−w+1, . . . , cn−1, cn .
• Tree L/R, the abstraction function illustrated in Figure 2 and

implemented in Figure 3.

• Tree, which chooses k like Tree L/R but has fp = id for all
choice points, and thus produces the same state for the left

and right subtree of a node.

For example, takingw = 4 and the choices to be abstracted c1, . . . , c6
from Figure 2: Sequence will give [1, False, False, True], Tree state
will give [2, True], and Tree L/R will give [2, "R"].

We evaluate each of these abstraction techniques for generating

BSTswithmaximum depth 4 (i.e., 4 links), with ε = 0.25 and rewards

(Eq. 1) Rinvalid = −1,Rvalid = 0, and Runique = 20. We set w = 4

for the abstraction function: since there are at least two elements

in the state for each parent node, this means the learners cannot

simply memorize the decisions for the full depth of the tree.

Results. Figures 4 and 5 show the results for our experiments. In

each experiment we let each technique generate 100,000 trees. The

results show the averages and standard errors over 10 trials. We

compare to a baseline, Random, which just runs the generator from

Figure 1. Figure 4 illustrates that no matter the state abstraction

function chosen, RLCheck generates many more valid and unique

valid inputs than the random baseline; Tree L/R generates 10×more

unique valid inputs than random.Within the abstraction techniques,

Tree generates the fewest unique valid inputs. Sequence appears to
be better able to distinguish whether it is generating a left or right

child than Tree, probably because the Tree state is identical for the
left and right child choice points.

Tree L/R generates the fewest valid inputs, but the most unique

valid inputs, 36% more than Sequence. These unique valid inputs are
also more complex those generated with other state abstractions.

Figure 5 shows, for each technique, the average number of unique

valid trees generated of each size. Note the log scale. The tree

size is the number of nodes in the tree. We see that Tree L/R is

consistently able to generate orders of magnitude more trees of

sizes > 5 than the other techniques. Since we reward uniqueness,

the RLCheck is encouraged to generate larger trees as it exhausts

the space of smaller trees. These results suggest that Tree L/R has

1415

enough information to generate valid trees, and then combine these

successes into more unique valid trees.

Overall, we see that even with a naïve state abstraction function,

RLCheck generates nearly an order of magnitude more unique

valid inputs than the random baseline. However, a well-constructed

influence-style state abstraction yields more diverse valid inputs.

5 EVALUATION
In this section we evaluate how RLCheck, our MCC-based solution

to the diversifying guidance problem, performs. In particular, we

focus on the following research questions:

RQ1 Does RLCheck quickly find many diverse valid inputs for real-

world benchmarks compared to state-of-the-art?

RQ2 Does RLCheck find valid inputs covering many different be-

haviors for real-world benchmarks?

RQ3 Does adding coverage feedback improve the ability of RLCheck
to generate diverse valid inputs for real-world benchmarks?

Implementation. To answer these research questions, we imple-

mented Algorithm 1 in Java, and RLCheck on top of the open-source
JQF [38] platform. JQF provides a mechanism for customizing input

generation for QuickCheck-style property tests.

Baseline Techniques. We compare RLCheck to two different meth-

ods: (1) junit-quickcheck [27], or simply QuickCheck, the baseline

generator-based testing technique which calls the generator with a

randomized guide; and (2) Zest [39], also built on top of JQF, which

uses an evolutionary algorithm based on coverage and validity feed-

back to “guide” input generators. Unlike RLCheck and QuickCheck,

Zest is a greybox technique: it relies on program instrumentation

to get code coverage from each test execution.

Benchmarks. We compare the techniques on four real-world Java

benchmarks used in the original evaluation of Zest [39]: Apache

Ant, Apache Maven, Google Closure Compiler, and Mozilla Rhino.

These benchmarks rely on two generators: Ant and Maven use an

XML generator, whereas Closure and Rhino use a generator for

JavaScript ASTs. The validity functions for each of these four bench-

marks is distinct: Ant expects a valid build.xml configuration,

Maven expects a valid pom.xml configuration, the Closure expects

an ES6-compliant JavaScript program that can be optimized, and

Rhino expects a JavaScript program that can be statically translated

to Java bytecode. Overall, Ant has the strictest validity function

and Rhino has the least strict validity function.

Design Choices. In our main evaluation, we simply use identity

as the characteristic function ξ to which inputs get Runique. Thus,
RLCheck simply tries tomaximize the number of unique valid inputs.

This allows us to run RLCheck at full speed without instrumentation,

and generate more inputs in a fixed time budget. In Section 5.3 we

compare this choice to a greybox version of RLCheck, where ξ (x)
takes into account the branch coverage achieved by input x .

We instantiate our reward function (Eq. 1) with Runique = 20,

Rvalid = 0 and Rinvalid = −1. This incentivizes RLCheck to prioritize

exploration of new unique valid inputs, while penalizing strategies

that lead to producing invalid inputs. Additionally, we set ε = 0.25

in Algorithm 1, which allows RLCheck to explore at random with

reasonably high probability.

We first modified the base generators provided by JQF for XML

and JavaScript to transform choice points with infinite domains to

finite domains. These are the generators we use for evaluation of

Zest and QuickCheck. We then built guide-based generators with

the same choice points as these base generators. For the guide-

based generators, we built the state abstraction inline, like it is built

in Figure 3. For each benchmark, the state abstraction function is

similar to that in Figure 3 as it maintains abstractions of the parent

choices. We set w = 5 for the state window size. The generator

code is available at https://github.com/sameerreddy13/rlcheck.

Experiments. We sought to answer our research questions in a

property-based testing context, where we expect to be able to run

the test generator for a short amount of time. Thus, we chose 5

minutes as a timeout. To account for variability in the results, we ran

10 trials for each technique. The experiments in Section 5.1 and 5.2

were run on GCP Compute Engine using a single VM instance with

8vCPUs and 30 GB RAM. The experiments in Section 5.3 were run

on a machine with 16GB RAM and an AMD Ryzen 7 1700 CPU.

5.1 Generating Diverse Valid Inputs
To answer RQ1, we need to measure whether RLCheck generates a

higher number of unique, valid inputs compared to our baselines.

On these large-scale benchmarks, where the test driver does non-

trivial work, simple uniqueness, at the byte or string level, is not

the most relevant measure of input diversity.

What we are interested in is inputs with diverse coverage. So, we

measure inputs with different traces, a commonly-used metric for

input coverage diversity in the fuzz testing literature [50] (some-

times these traces are called “paths”, but this is a misnomer). The

trace of an input x is a set of pairs (b, c) where b is a branch and

c is the number of times that branches is executed by x , bucketed
to base-2 orders of magnitude. Let ξ (x) give the trace of of x . If x1
takes the path A,B,A, then ξ (x1) = {(A, 2), (B, 1)}. If x2 takes the
path A,A,A,B, then A is hit the same base-2 order-of-magnitude

times, so ξ (x2) = {(A, 2), (B, 1)}. We call valid inputs with different

traces diverse valid inputs.

The results are shown in Figures 6 and 7. Figure 6 shows, at each

time, the percentage of all generated inputs that are diverse valid

inputs. For techniques that are only able to generate a fixed number

of diverse valid inputs, this percentage would steadily decrease

over time. In Figures 6c and 6d, we see an abrupt decrease at the

beginning of fuzzing for Zest and QuickCheck, and for Closure we

see a continuing decrease in the percentage over time for these

techniques. In Figures 6b, 6c, and 6d see that RLCheck quickly con-

verges to a high percentage of diverse valid inputs being generated,

and maintains this until timeout.

RLCheck also generates a large quantity of diverse valid inputs.

Figure 7 shows the total number of diverse valid inputs generated

by each technique: we see that RLCheck generates multiple order

of magnitude more diverse valid inputs compared to our baselines.

The exception is on Rhino (Figure 7), RLCheck only has a 1.4×

increase over QuickCheck. Rhino’s validity function is relatively

easy to satisfy: most JavaScript ASTs are considered valid inputs for

translation; therefore, speed is the main factor in generating valid

inputs for this benchmark. Consequently, the blackbox techniques

1416

0 1 2 3 4 5
Time (min)

0.0%

5.0%

10.0%

15.0%

20.0%

%
 D

iv
er

se
 V

al
id

QuickCheck
Zest
RLCheck
RLCheck*

(a) Ant (*: at least 1 valid)

0 1 2 3 4 5
Time (min)

0.0%

10.0%

20.0%

30.0%

%
 D

iv
er

se
 V

al
id

QuickCheck
Zest
RLCheck

(b) Maven

0 1 2 3 4 5
Time (min)

0%

20%

40%

60%

80%

%
 D

iv
er

se
 V

al
id QuickCheck

Zest
RLCheck

(c) Rhino

0 1 2 3 4 5
Time (min)

0%

20%

40%

60%

%
 D

iv
er

se
 V

al
id

QuickCheck
Zest
RLCheck

(d) Closure

Figure 6: Percent of total generated inputs which are diverse valids (i.e. have different traces). Higher is better.

0 1 2 3 4 5
Time (min)

0

10k

20k

30k

Di
ve

rs
e

Va
lid

s

QuickCheck
Zest
RLCheck
RLCheck*

(a) Ant (*: at least 1 valid)

0 1 2 3 4 5
Time (min)

0

50k

100k

150k

Di
ve

rs
e

Va
lid

s

QuickCheck
Zest
RLCheck

(b) Maven

0 1 2 3 4 5
Time (min)

0

50k

100k

150k

200k

Di
ve

rs
e

Va
lid

s

QuickCheck
Zest
RLCheck

(c) Rhino

0 1 2 3 4 5
Time (min)

0

50k

100k

150k

Di
ve

rs
e

Va
lid

s

QuickCheck
Zest
RLCheck

(d) Closure

Figure 7: Number of diverse valid inputs (i.e. inputs with different traces) generated by each technique. Higher is better.

RLCheck and QuickCheck outperform the instrumentation-based

Zest technique on the Rhino benchmark.

On both metrics, the increase in Ant is less pronounced, and very

variable. The variation in percentage for Ant is quite wide because it

is hard to get a first valid input for RLCheck (and QuickCheck), and

in some cases RLCheck did not get this within the five-minute time

budget. For an understanding of the effect on the results, RLCheck*
shows the results for only those runs that find at least one valid

input. The mean value for RLCheck* is much higher, but the high

standard errors remain due to the fact that these runs find the

first valid input being at different times. For such extremely strict

validity functions, RLCheck has difficulty finding a first valid input

compared to coverage-guided techniques. This is a limitation of

RLCheck: a good policy can only be found after some valid inputs

have been discovered.

For completeness, we also ran longer experiments of 1 hour,

to see if Zest or QuickCheck would catch up to RLCheck. In 1

hour, RLCheck generates between 5-15× more diverse valid inputs

than Zest on all benchmarks and outperforms QuickCheck on all

benchmarks. Furthermore, RLCheck continues to generate a higher

percentage of generated diverse valid inputs after one hour. In

particular, the large improvements that are seen in Figures 6 are all

maintained at roughly the same rate except for Rhino. In the case

of Rhino, Zest improves its percentage of diverse valid inputs from

40% to 67% after one hour, while RLCheck continues to generate

78% diverse valid inputs throughout.

RQ1: RLCheck quickly converges to generating a high per-

centage of diverse valid inputs, and on most benchmarks

generates orders of magnitude more diverse valid inputs

than our baselines.

5.2 Covering Different Valid Behaviors
Section 5.1 shows that RLCheck generates many more diverse valid

inputs than the baselines, i.e. solves the diversifying guidance prob-

lem more effectively. A natural question is whether the valid inputs

generated by each method cover the same set of input behaviors

(RQ2). For this, we can compare the cumulative branch coverage

achieved by the valid inputs generated by each technique.

Figure 8 shows the coverage achieved by all valid inputs for

each benchmark until timeout. The results are much more mixed

than the results in Section 5.1. On the Closure benchmark (Fig. 8d),

QuickCheck and RLCheck achieve the same amount of branch cov-

erage by valid inputs. On Rhino (Fig. 8c) QuickCheck dominates

slightly. OnMaven (Fig. 8b), RLCheck takes an early lead in coverage
but Zest’s coverage-guided algorithm surpasses it at timeout.

On Ant (Figure 8a), RLCheck appears to perform poorly, but this

is mostly an artifact of RLCheck’s bad luck in finding a first valid

input. Again, for comparison’s sake, RLCheck∗ shows the results for
only those runs that generate valid inputs: we see that RLCheck’s
branch coverage is slightly above Zest’s on these runs.

The overall clearest trend from Figure 8 is that RLCheck’s branch
coverage seems to quickly peak and then flatten compared to the

other techniques. This suggests that our MCC-based algorithm,

while it is exploring diverse valid inputs, may still be tuned too

much towards exploiting the knowledge from the first set of valid

inputs it generates. We discuss in Section 6 some possible avenues

to explore in terms of the RL algorithm.

RQ2: No method achieves the highest branch coverage on all

benchmarks. RLCheck’s plateauing branch coverage suggests
that it may be learning to generate diverse inputs with similar

features rather than discovering new behavior.

1417

0 1 2 3 4 5
Time (min)

0

1k

2k

3k

Br
an

ch
 C

ov
. b

y
Va

lid
s

QuickCheck
Zest
RLCheck
RLCheck*

(a) Ant

0 1 2 3 4 5
Time (min)

0

200

400

600

800

1k

Br
an

ch
 C

ov
. b

y
Va

lid
s

QuickCheck
Zest
RLCheck

(b) Maven

0 1 2 3 4 5
Time (min)

0

1k

2k

3k

4k

5k

Br
an

ch
 C

ov
. b

y
Va

lid
s

QuickCheck
Zest
RLCheck

(c) Rhino

0 1 2 3 4 5
Time (min)

0

2k

4k

6k

8k

Br
an

ch
 C

ov
. b

y
Va

lid
s

QuickCheck
Zest
RLCheck

(d) Closure

Figure 8: Number of branches covered by valid inputs generated by each technique. Higher is better

5.3 Greybox Information
Given that RLCheck is able to attain its objective as defined by the di-
versifying guidance problem—generating large numbers of unique

valid inputs—(Section 5.1), but does not achieve the highest branch

coverage over all benchmarks (Section 5.2), a natural question is

to ask whether choosing a different ξ , one that is coverage-aware,
could help increase the diversity of behaviors discovered. This is

what we seek to answer in RQ3.

For this experiment, we re-ran RLCheck both blackbox, i.e. with

ξbb = id, and with greybox information, using ξдb (x) = “the set

of all branches covered by the input x”. Thus, Greybox RLCheck is

rewarded when it discovers a valid input that covers a distinct set

of branches compared to all generated inputs. Note that this does

not reward the guide more for generating an input which covers a

wholly-uncovered branch, compared to an input that covers a new

combination of already-seen branches. Again, we ran each method

for 10 trials, timing out at 5 minutes.

Figures 9 shows the number of diverse valid inputs (valid in-

puts with distinct traces) generated the the blackbox and greybox

versions of RLCheck, and Figure 10 shows the branch coverage by

valid inputs for these two versions. We see universally across all

benchmarks and both metrics that Blackbox RLCheck outperforms

Greybox RLCheck. This suggests that the slowdown incurred by in-

strumentation is not worth the increased information RLCheck gets

in the greybox setting. The difference is less striking for branch cov-

erage than number of diverse valid inputs generated, because fewer

inputs are required to get the same cumulative branch coverage.

We see much lower variation in Ant in this experiment because

on all 10 runs, Blackbox RLCheck was able to generate at least one

valid input for Ant. We chose random seeds at random in both

experiments, so this is simply a quirk of experimentation.

RQ3: Adding greybox feedback to RLCheck in terms of the

characteristic function ξ causes a large slowdown, but no

huge gains in number of valid inputs or coverage achieved.

Overall, RLCheck performs best as a black-box technique.

6 DISCUSSION
Performance. Tabular methods such as ours do not scale well for

large choice or state spaces. Let S and C denote state and choice

space sizes, respectively. The Monte Carlo control algorithm re-

quires O(SC) space overall, and requires O(C) time for evaluating

the policy function π . This is because all the algorithmic decision-

making is backed by a large Q-table with S × C entries. Because

of these constraints we had to restrict our state and choice spaces

for RLCheck. For example, in our JavaScript implementation, when

selecting integer values, we restricted our choice space to the range

{0, 1, . . . , 10} rather than a larger range like {0, 1, . . . , 100}. This

was necessary to generate inputs in a reasonable amount of time

with this generator. Function approximation methods, such as re-

placing the Q-table with a neural network, may be necessary for

dealing with larger, more complex, state and choice spaces.

Increasing Exploration. In Section 5.2we observed that the branch
coverage achieved by RLCheck-generated valid inputs tends to

quickly plateau, even for benchmarks where the other methods

could achieve higher branch coverage (Figs 8b, 8c). This suggests

that even with a high ε , MCC may still be too exploitative for the

diversifying guidance problem. One approach to increase explo-

ration would be to allow the learners to “forget” old episodes so

choices made early in the testing session that are not necessary

to input validity do not persist throughout the session. Curiosity-

based approaches, which strongly encourage exploration and avoid

revisiting states [41], may also be applicable.

Fine-tuning. In our experiments we heuristically chose the ε and
k values, and then kept them fixed across benchmarks. We noted

the importance of a large ε and modest k value for both generating

unique valid inputs and doing so quickly. We also chose the reward

function heuristically and in our design process we noticed how

that this choice significantly affected performance, and particularly

the distribution of invalid, valid, and unique valid inputs generated.

It may be valuable to fine tune these hyperparameters and reward

functions for different benchmarks.

Bootstrapping. In Section 5.1 we saw that RLCheck had difficulty

generating a first valid input for very strict validity functions (Ant).

This limitation could be overcome by allowing RLCheck to be boot-
strapped, i.e. given a sequence of choices that produces a valid

input at the beginning of testing. This choice sequence could be

user-provided, as long as there exists a relatively short sequence of

choices resulting in a valid input.

Relevance of Diverse Valid Inputs for Testing. In aswering RQ1, we
established that RLCheck was able to generate orders-of-magnitude

more diverse valid inputs. A natural question is whether this metric

is relevant for testing goals such as bug finding. While we did not

conduct an extensive study of bug-finding ability as part of our

research questions, we did look at RLCheck’s bug-finding ability on

our benchmark programs as compared to QuickCheck in Zest.

1418

0 1 2 3 4 5
Time (min)

0

10k

20k

30k

Di
ve

rs
e

Va
lid

s

Blackbox RLCheck
Greybox RLCheck

(a) Ant

0 1 2 3 4 5
Time (min)

0

50k

100k

150k

200k

Di
ve

rs
e

Va
lid

s

Blackbox RLCheck
Greybox RLCheck

(b) Maven

0 1 2 3 4 5
Time (min)

0

100k

200k

300k

Di
ve

rs
e

Va
lid

s

Blackbox RLCheck
Greybox RLCheck

(c) Rhino

0 1 2 3 4 5
Time (min)

0

100k

200k

300k

Di
ve

rs
e

Va
lid

s

Blackbox RLCheck
Greybox RLCheck

(d) Closure

Figure 9: Number of diverse valid inputs generated by each technique. Higher is better.

0 1 2 3 4 5
Time (min)

0

1k

2k

3k

Br
an

ch
 C

ov
. b

y
Va

lid
s

Blackbox RLCheck
Greybox RLCheck

(a) Ant

0 1 2 3 4 5
Time (min)

0

200

400

600

800

Br
an

ch
 C

ov
. b

y
Va

lid
s

Blackbox RLCheck
Greybox RLCheck

(b) Maven

0 1 2 3 4 5
Time (min)

0

1k

2k

3k

4k

Br
an

ch
 C

ov
. b

y
Va

lid
s

Blackbox RLCheck
Greybox RLCheck

(c) Rhino

0 1 2 3 4 5
Time (min)

2k

4k

6k

8k

Br
an

ch
 C

ov
. b

y
Va

lid
s

Blackbox RLCheck
Greybox RLCheck

(d) Closure

Figure 10: Number of branches covered by valid inputs generated by each technique. Higher is better.

During our evaluation runs, the techniques found a subset of

the bugs described in the Zest paper [39]. Table 1 lists, for each bug

that was discovered during out evaluation runs, the average time

to discovery (TTD) and reliability (percent of runs on which the

bug was found) for each method. Bugs are deduplicated, as done in

the Zest paper, by exception type.

We see that on the Ant, where RLCheck found 1000× more

diverse valid inputs than QuickCheck, it found bug (#1) 4× faster

and 5× more often than QuickCheck. It was also faster than Zest.

On Closure, where RLCheck found 60× more diverse valid inputs

than Zest, it was also 20× faster at finding fault (#2). In contrast,

on Rhino, RLCheck only found 1.4× more unique valid inputs than

QuickCheck. In fact, as shown in Figure 6c, over 30% of generator-

generated inputs already satisfied the validity function. Thus, we

see that the plain generator-based approach (QuickCheck) had

the best fault discovery of the three methods. This benchmark is

representative of situations where the generator is already fairly

well-tuned for the validity function of the program under test.

Overall, we believe these results suggest, but are not conclusive

in showing, that order-of-magnitude increases in input diversity

result in better fault discovery.

7 RELATED WORK
The problem of automatically generating test inputs that satisfy

some criteria has been studied for over four decades. Symbolic

execution [18, 28] as well as its dynamic [15] and concolic [24, 44]

variants attempt to generate test inputs that reach program points

of interest by collecting and solving symbolic constraints on inputs.

Despite numerous advances in improving the precision and perfor-

mance of these techniques [10, 12, 22, 29, 45], the path explosion

problem [16] remains a key challenge that limits scalability to large

complex constraints.

Table 1: Average time to discovery (TTD) and Reliability
(Rel.)—the percentage of runs on which the bug was found—
for bugs found by each technique during our experiments.
Bugs are deduplicated by benchmark and exception type.
Dash “-” indicates bug was not found.

RLCheck QuickCheck Zest

Bug ID TTD Rel. TTD Rel. TTD Rel.

Ant, (#1) 41s 50% 178s 10% 123s 90%

Closure, (#2) 1s 100% 1.2s 100% 23s 60%

Rhino, (#3) 95s 90% 62s 70% 276s 10%

Rhino, (#4) 11s 100% 1s 100% 30s 100%

Rhino, (#5) - - 3s 100% 80s 100%

Rhino, (#6) - - 96s 20% - -

Fuzz testing [36] is a popular method to generate byte-sequence

test inputs. The key idea is to generate a huge quantity of test in-

puts at random, without incurring much cost for each individual

input. Input validity requirements can be addressed either via user-

provided input format specifications [5] or by mutating existing

valid inputs [6]. Coverage-guided fuzzing, popularized by tools

such as AFL [49], improves the effectiveness of mutation-based

fuzz testing by instrumenting the program under test and incorpo-

rating feedback in the form of code coverage achieved by each test

execution; the feedback is used to perform an evolutionary search

for test inputs that cover various behaviors in the test program.

Search-based software testing [25, 26, 34, 48] generates inputs

which optimize some objective function by using optimization

techniques such as hill-climbing or simulated annealing. These

1419

techniques work well when the objective function is a smooth

function of the input characteristics.

QuickCheck [17] introduced the idea of formulating tests as

properties ∀x : P(x) ⇒ Q(x), which could be validated to some de-

gree by randomly generating many instances of x that satisfy P(x).
Of course, the main challenge is in ensuring that P(x) is satisfied
often enough. Some researchers have attempted to write gener-

ators that produce diverse valid inputs by construction, such as

for testing compilers [35, 47], but solutions turn out to be highly

complex domain-specific implementations. For some domains, ef-

fective generators can also be automatically synthesized [32, 37].

Targeted property-based testing [33] biases hand-written input

generators for numeric utility values. Domain-specific languages

such as Luck [30] enable strong coupling of generators and validity

predicates. In contrast, we address the problem of biasing arbitrary

input generators towards producing inputs that satisfy arbitrary

validity functions, without any prior domain knowledge.

Recently, techniques such as Zest [39], Crowbar [20], and Fuz-

zChick [31] have combined ideas from coverage-guided mutation-

based fuzzing with generative techniques such as QuickCheck.

Although code coverage guidance helps discover new program be-

haviors, it comes at the cost of program instrumentation, which

significantly reduces the number of test inputs that can be executed

per unit time. In contrast, we address the problem of generating

valid test inputs when considering the program as a black box.

There has been increasing interest in using machine learning

to improve fuzz testing; Saavedra et al. [43] provide a survey. Böt-

tinger et al. [13] propose a deep reinforcement learning approach

to fuzz testing. This work uses the reinforcement learning agent to,

given a subsequence of the input file as state, perform a mutation

action on that subsequence. Instead of learning to mutate serialized

input strings directly, RLCheck employs reinforcement learning on

generators for highly structured inputs.

ALisp [11] is a language for specifying reinforcement learning

problems in a hierarchical manner. Similarly to our work, these

hierarchical learning programs contain choices points where an

agent learns the best choice to take given the current state. ALisp

splits value functions into three functions: value of the current

action, current subroutine, and overall execution. It provides func-

tionality for the user to specify which parts of the state each of

these values depends on, which bears some similarity to our notion

of context. The input-generator domain has some key differences

from the hierarchical learning domain. Notably, we get reward only

at the end of the episode, when an input is generated. Thus, it is

unclear whether RLCheck value functions can be effectively split

into ALisp’s three components.

8 CONCLUSION
In this paper we investigated a reinforcement learning approach to

guiding input generators to generate more valid inputs for property-

based testing. We began by formalizing the problem of generating

many unique valid inputs for property-based testing as the diversi-

fying guidance problem. We proposed RLCheck, where generators
follow a Monte Carlo Control (MCC)-based guide to generate in-

puts. We found that RLCheck has great performance in terms of

generating many diverse valid inputs on real-world benchmarks.

However, MCC seems to be prone to overfitting to a certain space of

valid inputs. We believe more exploration-oriented RL approaches

could be better suited to provide the guidance in RLCheck.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback, which

helped us improve the paper. This research is supported in part by

gifts from Samsung, Facebook, and Fujitsu, as well as by NSF grants

CCF-1900968, CCF-1908870, and CNS-1817122.

REFERENCES
[1] 2019. Eris: Porting of QuickCheck to PHP. https://github.com/giorgiosironi/eris.

Accessed January 28, 2019.

[2] 2019. FsCheck: Random testing for .NET. https://hypothesis.works/. Accessed

January 28, 2019.

[3] 2019. Hypothesis for Python. https://hypothesis.works/. Accessed January 28,

2019.

[4] 2019. JSVerify: Property-based testing for JavaScript. https://github.com/jsverify/

jsverify. Accessed January 28, 2019.

[5] 2019. PeachFuzzer. https://www.peach.tech. Accessed August 21, 2019.

[6] 2019. Radamsa: a general-purpose fuzzer. https://gitlab.com/akihe/radamsa.

Accessed August 21, 2019.

[7] 2019. ScalaCheck: Property-based testing for Scala. https://www.scalacheck.org/.

Accessed January 28, 2019.

[8] 2019. test.check: QuickCheck for Clojure. https://github.com/clojure/test.check.

Accessed January 28, 2019.

[9] Cláudio Amaral, Mário Florido, and Vítor Santos Costa. 2014. PrologCheck–

property-based testing in Prolog. In International Symposium on Functional and
Logic Programming. Springer, 1–17.

[10] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-driven

compositional symbolic execution. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer, 367–381.

[11] David Andre and Stuart J. Russell. 2002. State Abstraction for Programmable

Reinforcement Learning Agents. In Eighteenth National Conference on Artificial
Intelligence. American Association for Artificial Intelligence, USA, 119–125.

[12] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.

Enhancing Symbolic Execution with Veritesting. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE 2014). ACM, New York, NY,

USA, 1083–1094.

[13] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. 2018. Deep Re-

inforcement Fuzzing. CoRR abs/1801.04589 (2018). arXiv:1801.04589 http:

//arxiv.org/abs/1801.04589

[14] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat:

Automated Testing Based on Java Predicates. In Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’02).
ACM, New York, NY, USA, 123–133. https://doi.org/10.1145/566172.566191

[15] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-coverage Tests for Complex Systems Programs.

In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08).

[16] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:

three decades later. Commun. ACM 56, 2 (2013), 82–90.

[17] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. In Proceedings of the 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP).

[18] Lori A. Clarke. 1976. A program testing system. In Proc. of the 1976 annual
conference. 488–491.

[19] David Coppit and Jiexin Lian. 2005. Yagg: An Easy-to-use Generator for Struc-

tured Test Inputs. In Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’05). ACM, New York, NY, USA, 356–359.

https://doi.org/10.1145/1101908.1101969

[20] Stephen Dolan. 2017. Property fuzzing for OCaml. https://github.com/stedolan/

crowbar. Accessed Jul 23, 2019.

[21] Roy Emek, Itai Jaeger, Yehuda Naveh, Gadi Bergman, Guy Aloni, Yoav Katz,

Monica Farkash, Igor Dozoretz, and Alex Goldin. 2002. X-Gen: A random test-

case generator for systems and SoCs. In High-Level Design Validation and Test
Workshop, 2002. Seventh IEEE International. IEEE, 145–150.

[22] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak,

and Darko Marinov. 2010. Test generation through programming in UDITA.

In Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. 225–234.
https://doi.org/10.1145/1806799.1806835

1420

[23] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based

Whitebox Fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’08).

[24] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-

mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05).

[25] Mark Harman. 2007. The current state and future of search based software

engineering. In 2007 Future of Software Engineering. IEEE Computer Society,

342–357.

[26] Mark Harman and Bryan F Jones. 2001. Search-based software engineering.

Information and software Technology 43, 14 (2001), 833–839.

[27] Paul Holser. 2014. junit-quickcheck: Property-based testing, JUnit-style. https:

//pholser.github.io/junit-quickcheck. Accessed August 21, 2019.

[28] James C. King. 1976. Symbolic execution and program testing. Commun. ACM
19 (July 1976), 385–394. Issue 7.

[29] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.

Efficient state merging in symbolic execution. In Acm Sigplan Notices, Vol. 47.
ACM, 193–204.

[30] Leonidas Lampropoulos, Diane Gallois-Wong, Cătălin Hriţcu, John Hughes, Ben-

jamin C. Pierce, and Li-yao Xia. 2017. Beginner’s Luck: A Language for Property-

based Generators. In Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL 2017). ACM, New York, NY, USA, 114–129.

https://doi.org/10.1145/3009837.3009868

[31] Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. [n.d.]. Coverage

Guided, Property Based Testing. Proc. ACM Program. Lang. 2, OOPSLA ([n. d.]).

[32] Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2017.

Generating Good Generators for Inductive Relations. Proc. ACM Program. Lang.
2, POPL, Article 45 (Dec. 2017), 30 pages. https://doi.org/10.1145/3158133

[33] Andreas Löscher and Konstantinos Sagonas. 2017. Targeted Property-based

Testing. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 46–56.

https://doi.org/10.1145/3092703.3092711

[34] Phil McMinn. 2011. Search-Based Software Testing: Past, Present and Future.

In Proceedings of the 2011 IEEE Fourth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW ’11). IEEE Computer Society,

Washington, DC, USA, 153–163. https://doi.org/10.1109/ICSTW.2011.100

[35] Jan Midtgaard, Mathias Nygaard Justesen, Patrick Kasting, Flemming Nielson,

and Hanne Riis Nielson. 2017. Effect-driven QuickChecking of Compilers. Proc.
ACM Program. Lang. 1, ICFP (2017). http://doi.acm.org/10.1145/3110259

[36] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study

of the Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990), 32–44.

https://doi.org/10.1145/96267.96279

[37] Agustín Mista, Alejandro Russo, and John Hughes. 2018. Branching Processes for

QuickCheck Generators. In Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell (Haskell 2018). ACM, New York, NY, USA, 1–13. https:

//doi.org/10.1145/3242744.3242747

[38] Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: Coverage-guided

Property-based Testing in Java. In Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2019). ACM, New York,

NY, USA, 398–401. https://doi.org/10.1145/3293882.3339002

[39] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le

Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’19). https:

//doi.org/10.1145/3293882.3330576

[40] Manolis Papadakis and Konstantinos Sagonas. 2011. A PropEr Integration of

Types and Function Specifications with Property-based Testing. In Proceedings of
the 10th ACM SIGPLAN Workshop on Erlang (Erlang ’11). ACM, New York, NY,

USA, 39–50. https://doi.org/10.1145/2034654.2034663

[41] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. 2017.

Curiosity-driven Exploration by Self-supervised Prediction. In ICML.
[42] Talia Ringer, DanGrossman, Daniel Schwartz-Narbonne, and Serdar Tasiran. 2017.

A Solver-aided Language for Test Input Generation. Proc. ACM Program. Lang. 1,
OOPSLA, Article 91 (Oct. 2017), 24 pages. https://doi.org/10.1145/3133915

[43] Gary J. Saavedra, Kathryn N. Rodhouse, Daniel M. Dunlavy, and W. Philip

Kegelmeyer. 2019. A Review of Machine Learning Applications in Fuzzing.

CoRR abs/1906.11133 (2019). arXiv:1906.11133 http://arxiv.org/abs/1906.11133

[44] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing

Engine for C. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE-13).

[45] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE:

Multi-path symbolic execution using value summaries. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ACM, 842–853.

[46] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcment Learning: An Intro-
duction. MIT Press. http://www.incompleteideas.net/book/ebook/node53.html

[47] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-

derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’11).

[48] Shin Yoo and Mark Harman. 2007. Pareto efficient multi-objective test case

selection. In Proceedings of the 2007 international symposium on Software testing
and analysis. ACM, 140–150.

[49] Michał Zalewski. 2014. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.

Accessed January 11, 2019.

[50] Michał Zalewski. 2014. American Fuzzy Lop Technical Details. http://lcamtuf.

coredump.cx/afl/technical_details.txt. Accessed Aug 2019.

1421

