2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

Quickly Generating Diverse Valid Test Inputs with
Reinforcement Learning

Sameer Reddy
University of California, Berkeley, USA
sameer.reddy@berkeley.edu

Rohan Padhye
University of California, Berkeley, USA
rohanpadhye@cs.berkeley.edu

ABSTRACT

Property-based testing is a popular approach for validating the logic
of a program. An effective property-based test quickly generates
many diverse valid test inputs and runs them through a parame-
terized test driver. However, when the test driver requires strict
validity constraints on the inputs, completely random input gen-
eration fails to generate enough valid inputs. Existing approaches
to solving this problem rely on whitebox or greybox information
collected by instrumenting the input generator and/or test driver.
However, collecting such information reduces the speed at which
tests can be executed. In this paper, we propose and study a black-
box approach for generating valid test inputs. We first formalize the
problem of guiding random input generators towards producing a
diverse set of valid inputs. This formalization highlights the role
of a guide which governs the space of choices within a random
input generator. We then propose a solution based on reinforce-
ment learning (RL), using a tabular, on-policy RL approach to guide
the generator. We evaluate this approach, RLCheck, against pure
random input generation as well as a state-of-the-art greybox evo-
lutionary algorithm, on four real-world benchmarks. We find that
in the same time budget, RLCheck generates an order of magnitude
more diverse valid inputs than the baselines.

ACM Reference Format:

Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen. 2020.
Quickly Generating Diverse Valid Test Inputs with Reinforcement Learning,.
In 42nd International Conference on Software Engineering (ICSE 20), May
23-29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3377811.3380399

1 INTRODUCTION

Property-based testing is a powerful method for testing programs
expecting highly-structured inputs. Popularized by QuickCheck [17],
the method has grown thanks to implementations in many different
languages [1, 2, 7, 8, 40], including prominent languages such as
Python [3], JavaScript [4], and Java [27]. Property-based testing
allows users to specify a test as Vx € X : P(x) = Q(x), where X is

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7121-6/20/05.

https://doi.org/10.1145/3377811.3380399

Caroline Lemieux
University of California, Berkeley, USA
clemieux@cs.berkeley.edu

Koushik Sen
University of California, Berkeley, USA
ksen@cs.berkeley.edu

a domain of inputs and P, Q are arbitrary predicates. The precondi-
tion P(x) is some sort of validity constraint on x. A property testing
tool quickly generates many inputs x € X and runs them through a
test driver. If the tool generates an x for which P(x) holds but Q(x)
does not hold, then the test fails.

Using a property-based testing tool requires two main steps.
First, the user needs to write a parameterized test driver, i.e., the
programmatic representation of P(x) = Q(x). Second, the user
needs to specify the generator for x € X. A generator for X is a non-
deterministic program returning inputs x € X. Testing frameworks
typically provide generators for standard types (e.g. primitive types
or a standard collections of primitives). If X is a user-defined type,
the user may need to write their own generator.

For property-based testing to be effective, the generator must
produce a diverse set of inputs x € X satisfying the validity con-
straint P(x). This is a central conflict in property-based testing. On
the one hand, a simple generator is easier for the user to write,
but not necessarily effective. On the other hand, a generator that
produces diverse valid inputs is good for testing, but very tedious
to write. Further, generators specialized to a particular validity
function P(x) cannot be reused to test other properties on X with
different validity constraints, say P’(x). We thus want to solve the
following problem: given a generator G of inputs x € X and a va-
lidity function P(x), automatically guide the generator to produce
a variety of inputs x satisfying P(x).

One way to solve this problem is to do whitebox analysis [14, 22—
24] of the generator and/or the implementations of P(x) and Q(x).
A constraint solver can be used to generate inputs x € X that are
guaranteed to satisfy P(x), which also exercise different code paths
within the implementation of Q(x) [42]. Another set of approaches,
adopted in recent greybox fuzzing-inspired work [31, 39], is to col-
lect code coverage during test execution. This information can be
used in an evolutionary algorithm that can generate inputs that
are likely satisfy P(x), while optimizing to increase code coverage
through Q(x). Both sets of approaches require instrumenting the
program under test; thus, they are limited in terms of performance.
Purely whitebox approaches have trouble scaling to complex va-
lidity functions due to the path explosion problem [16], and even
greybox fuzzing techniques require instrumentation that can lead
to slowdowns, thereby reducing the rate at which tests can be exe-
cuted. This is in conflict with the QuickCheck approach, in which
properties can be quickly validated without instrumenting the test

1410

program. In this paper, we address this gap by investigating a black-
box approach for guiding a generator G to produce a large number
of diverse valid inputs in a very short amount of time.

In this paper, we first formalize the problem of guiding the ran-
dom choices made by a generator for effective property testing
as the diversifying guidance problem. Second, we notice that the
diversifying guidance problem is similar to problems solved by rein-
forcement learning: given a sequence of prior choices (state), what
is the next choice (action) that the generator should make, in order
to maximize the probability of generating a new x satisfying P(x)
(get high reward)? We thus explore whether reinforcement learn-
ing can solve the diversifying guidance problem. We propose an
on-policy table-based approach which adapts its choices on-the-fly
during testing time. We call our technique RLCheck.

We implement RLCheck in Java and evaluate it to state-of-the-art
approaches Zest [39] and QuickCheck. RLCheck’s implementation
is open-source and available at: https://github.com/sameerreddy13/
rlcheck. We compare the techniques on four real-world benchmarks
used in the original evaluation of Zest: two benchmarks that operate
on schema-compliant XML inputs, and two that operate on valid
JavaScript programs. We find that RLCheck generates 1.4X-40X
more diverse valid inputs than state-of-the-art within the same tight
time budget. All methods are competitive in terms of valid branch
coverage, but the simple RL algorithm we explore in RLCheck may
be biased to certain parts of the valid input space. We also find that
a basic addition of greybox feedback to RLCheck does not produce
improvements that are worth the instrumentation slowdown.

In summary, we make the following contributions:

e We formalize the problem of making a generator produce
many valid inputs as the diversifying guidance problem.

e We propose a reinforcement learning approach to solve the
diversifying guidance problem, named RLCheck.

o We evaluate RLCheck against the state-of-the art Zest tool [39]
on its valid test-input generation ability.

2 A MOTIVATING EXAMPLE

Property-based testing tools [9, 17, 19, 21, 22, 40, 47] allow users to
quickly test a program by running it with many inputs. Originally
introduced for Haskell [17], property-based testing has since been
ported to many other programming languages [1-4, 7, 8, 27, 40].
Using a property-based testing tool involves two main tasks.

First, the user must write a parameterized test driver which takes
input x of some type X and runs test code checking a property
P(x) = Q(x). We say x is valid if it satisfies P(x).

For example, in Figure 1, the test driver test_insert (Line 15) is
given a binary tree tree and an integer to_add as input. If tree is
a binary search tree (Line 16), the driver inserts to_add into tree
(Line 17) and asserts that tree is still a binary search tree after the
insert (Line 18). The assume at Line 16 terminates the test silently if
tree is not a binary search tree. The assert at Line 18 is violated if
tree is not a binary search tree after the insertion. Thus, the test dri-
ver implements P(x) = Q(x) for the validity constraint P(x) =“x is
a binary search tree” and the post-condition Q(x) =“after inserting
to_add, x is a binary search tree’—by raising an assertion failure
when P(x) = Q(x) is falsified. In this example, the predicate Q(x)
is specified explicitly via assertions. Q(x) can also be implicitly

1411

from generators import generate_int

def generate_tree(depth=0):

4 value = random.Select([®, 1, ..., 10])
5 tree = BinaryTree(value)

6 if depth < MAX_DEPTH and

7 random.Select ([True, False]):

tree.left

generate_tree(depth+1)
if depth < MAX_DEPTH and

False]):
generate_tree (depth+1)

random.Select ([True,

tree.right

return tree

generate_tree, to_add
to_add):
assume (is_BST(tree))

to_add)
assert(is_BST(tree))

@given(tree = = generate_int)

def test_insert(tree,

BST_insert(tree,

Figure 1: DPseudocode for a property-based test.
generate_tree generates a random binary tree, and
test_insert tests whether inserting a given integer into
a given tree preserves the binary search tree property.
random.Select(D) returns a random value from D.

defined, e.g. Q(x) may be the property that the program does not
crash with a segfault when executed on x.

Second, the user must specify how to generate random inputs
for the test driver. This must be done by writing or specifying a
generator, a non-deterministic function returns a random input of a
given type in each of its executions. Property-based testing frame-
works typically provide generators for basic types such as primitive
types and predefined containers of primitives (e.g. generate_int in
Figure 1). If the test function takes a user-defined data structure,
such as the tree in Figure 1, Line 15, the user writes their own gen-
erator. For many types, writing a basic generator is fairly straight-
forward. In Figure 1, generate_tree generates a random binary tree
by (1) choosing a value for the root node (Line 4), (2) choosing
whether or not to add a left child (Line 7) and recursively calling
generate_tree (Line 8), and (3) choosing whether or not to add a
right child (Line 10) and recursively calling generate_tree (Line 11).
We have deliberately kept this generator simple in order to have a
small motivating example.

The user can now run test_insert on many different trees to
try and validate P(x) = Q(x): the assume in Line 16 effectively
filters out invalid (non-BST) inputs. Unfortunately, this rejection
sampling is not an effective strategy if P(x) is too strict. If the
generator has no knowledge of P(x), it will, first of all, very rarely
generate valid inputs. So, in a fixed time budget, very few valid
inputs will be generated. The second issue is that the generator
may not generate very diverse valid inputs. That is, the only valid
inputs the generator has a non-negligible probability of generating
may be very small valid inputs; these will not exercise a variety of
behaviors in the code under test. For example, out of 1000 generated
binary trees, the generator in Figure 1 only generates 20 binary
search trees of size > 3, and only one binary search tree of size 4
and 5, respectively. Overall, the generator has very low probability

of generating complex valid inputs, which greatly decreases the
efficacy of the property-based test.

Fundamentally, the input generated by a generator is governed by
the choices taken at various choice points. For example, in Figure 1,
at Line 4, the generator makes a choice of which integer value to
put in the current node, and it chooses to make a left or right child
at Lines 7 and 10, respectively. Depending on the prior sequence of
choices taken by the generator, only a subset of the possible choices
at a particular choice point may result in a valid input. For example,
if P(x) is the binary search tree invariant, when generating the
right child of a node with value n, the only values for the child
node that can result in a valid BST are those greater than n. While
narrowing the choice space in this manner is straightforward for
BSTs, manually encoding these restrictions is tedious and error-
prone for complex real-world validity functions.

Overall, we see that the problem of guiding G to produce many
valid inputs boils down to the problem of narrowing the choice
space at each choice point in the generator. We call this the diversi-
fying guidance problem. We formalize this problem in Section 3 and
propose a solution based on reinforcement learning in Section 4.

3 PROBLEM DEFINITION

In property-based testing, a generator G is a non-deterministic
program returning elements of a given space X. For example, in
Figure 1, X is the set of binary trees of depth up to Max_pEPTH with
nodes having integer values between 0-10, inclusive.

In particular, a generator G’s non-determinism is entirely con-
trolled by the values at returned at different choice points in the
generator. A choice point p is a tuple (¢, C) where ¢ € L is a pro-
gram location and C C C is a finite domain of choices. For example,
there are three choice points in the generator in Figure 1:

e (Line 4, [0, 1, ..., 161): the choice of node value;
o (Line 7, [True, False]): whether to generate a left child; and
o (Line 10, [True, False]): whether to generate a right child.

During execution, each time the generator reaches a choice point
(¢,C), it makes a choice ¢ € C. Every execution of the generator,
and thus, every value produced by the generator, corresponds to a
sequence of choices made at these choice points, say c1,c¢2,. .., cn.

For example, the execution through generate_BST in Figure 1
which produces the tree:

corresponds to the following sequence of choices ¢y, ca, . . . co:

Choice Index Choice Taken Choice Point

c1 2 (Line 4, [0, 1, ..., 101)
co True (Line 7, [True, False])
c3 1 (Line 4, [0, 1, ..., 10])
cy4 False (Line 7, [True, False])
cs5 False (Line 10, [True, False])
6 True (Line 10, [True, False])
¢y 3 (Line 4, [0, 1, ..., 101)
cs False (Line 7, [True, False])
cy False (Line 10, [True, False])

As the generator executes, each time it reaches a choice point
p = (¢,C), it will have already made some choices cq,c, . . . ck.
Traditional QuickCheck generators, like the one in Figure 1, will
simply choose a random ¢ € C at choice point p regardless of the
prefix of choices c1,ca, . . . cf.

Going back to our running example, suppose the generator has
reached the choice point choosing the value of the left child of 2,
i.e. choosing what to put in the ? :

That is, the generator has made the choices [¢; = 2, ¢z = True], and
must now choose a value from 0—10 at the choice point in Line 4.
The generator is equally likely to pick any number from this range.
Since only 2 of the 11 numbers from 0—10 are smaller than 2, it has
at most an 18% chance of producing a valid BST.

To increase the probability of generating valid inputs, the choice
at this point should be made not randomly, but according to a guide.
In particular, according to a guide which restricts the choice space
to only those choices which will result in a binary search tree. First,
we formalize the concept making choices according to a guide.

Definition 3.1 (Following a Guide). We say that a generator G
follows a guide y : C* X P X N — C if: during its tth execution,
given a sequence of past choices o = ¢y, cg, . . ., ¢k, and the current
choice point p = (¢, C), the generator G makes the choice y(o, p, t).

Suppose we have a validity function v : X — {True,False}
which maps elements, output by the generator, to their validity. For
example, is_BsT is a validity function for the generator in Figure 1.
The validity guidance problem is the problem of finding a guide that
leads the generator to produce valid elements of X:

Definition 3.2 (Validity Guidance Problem). Let G be a generator
producing elements in space X. Let v : X — {True,False} be a
validity function. The validity guidance problem is the problem of
creating a guide y such that:

if G follows y, then v(x) = True for any x € X generated by G.

Note that a solution to the validity guide problem is not nec-
essarily useful for testing. In particular, the guide y could simply
hard-code a particular sequence of choices through the generator
which results in a valid element x € X. Instead, we want to gener-
ate valid inputs with diverse characteristics. For example, we may
want to generate unique valid inputs, or valid inputs of different
lengths, or valid inputs that exercise different execution paths in
the test program. We use the notation £(x) to denote an input’s
characteristic of interest, such as identity, length, or code coverage.

Definition 3.3 (diversifying guidance problem). Let G be a genera-
tor producing elements in space X.Let v : X — {True,False} bea
validity function and ¢ be a characteristic function. The diversifying
guidance problem is the problem of creating a guide y such that:

if G follows y and X1 C X is the set of inputs generated by G after
T executions, [{&(x) : x € X7 A v(x)}| is maximized.
If £ is the identity function, then a solution to the diversifying
guidance problem is a guide which maximizes the number of unique
valid inputs generated.

1412

4 METHOD

In this section we describe our proposed solution to diversifying
guidance problem. In particular, our proposed guide uses reinforce-
ment learning to makes its choices. We begin with a basic back-
ground on Monte Carlo Control [46], the table-based reinforcement
learning method used in this paper. We then describe how it can
be used to solve the diversifying guidance problem.

4.1 Reinforcement Learning

We begin by defining a version of the problem solved by reinforce-
ment learning which is relevant to our task at hand. We use a
slightly nontraditional notation for consistency with the previous
and next sections. What we call choices are typically called actions,
and what we call a learner is typically called an agent.

We assume an learner in some environment. The learner can
perceive the state s of the environment, where s is in some set of
states S. At the first point in time, the learner is at an initial state
so € S. At each point in time, the learner can make a choice ¢ € C
which will bring it to some new state s’ € S. Eventually, the agent
gets into some terminal state s, € S, indicating the end of an
episode. An episode is the sequence of (state, choice) pairs made
from the beginning of time up to the terminal state, i.e.:

e = (s, ¢0), (s1,¢1),...(sT,cT)

Where the choice c7 in state s brings the learner to the terminal
state sterm. Finally, we assume we are given a reward r for a given
episode e. A larger reward is better.

The problem to solve is the following. Given a state space S,
choices C, and reward r, find a policy 7 which maximizes the
expected reward to the learner. That is, find a 7 such that if the
learner, at each state s € S, makes the choice ¢ = 7(s), then the
expected reward E ¢[r] from the resulting episode e is maximized.

4.1.1 Monte Carlo Control. One approach to solving the policy-
learning problem above is by on-policy Monte Carlo Control [46].
The technique is on-policy because the policy the learner is optimiz-
ing is the same one it is using to control its actions. Thus, a Monte
Carlo Control learner L defines both a policy 7, where 7(s) outputs
a choice ¢ for the given state s, as well as an update procedure that
improves 7 after each episode.

Algorithm 1 shows pseudocode for a Monte Carlo Control (MCC)
learner L. In the algorithm, we subscript the choice space, state
space, and Q and counts with L to emphasize these are independent
for each MCC learner. We will drop the subscript L when talking
about a single learner. The basic idea is as follows.

We are trying to learn a policy r for state space S and choices C.
The policy is e-greedy: with probability ¢ it makes random choices
(Line 7), otherwise it makes the choices that will maximize the
value function, Q (Line 9).

The value function Q[s, c] models the expected reward at the end
of the episode from the choice c in state s. It is initialized to 0 for
each (s, ¢) pair (Line 4), so the first episode follows a totally random
policy. Qls, c] is exactly the average rewards seen for each episode
e containing (s, c). Thus, at the end of each episode e, for each
(s,c) € e (Line 15), the running average for the rewards observed
with action (s, ¢) is updated to include the new reward r (Line 16).

1413

Algorithm 1 A Monte Carlo Control learner L. Implements a policy
s and an update function UPDATE] which updates 7 towards the
optimal policy after each episode.

Input: choice space Cr, state space Sg, and ¢,
1 ep «—[]
2: for (s,c) € S X Cr do

> initialize episode

3 countsg [s,c] « 0

& Qrls,c] <0

5: procedure r(state s)

6: if uNIFORMRANDOM() < ¢ then

7: ¢ < RANDOM(C)

8 else

9 ¢ « argmax,cc, QL[s,] > break ties arbitrarily
10: e[«—APPEND(ey, (s, ¢))

11: return choice

2: procedure UPDATE(reward r)

13: T «LEN(er)

14: for0 <t <Tdo

15: s,c — er[t]

16: Qrls.c] « HQLC[;,’A;]t;Y[iu:ﬁfl[s’c]) > update avg. reward
17: countsy [s, c] « countsg[s,c] + 1

ep <[]

If the reward function producing r is stationary (i.e., fixed), then
it can be shown that this update procedure always improves the
policy. That is, if 7 is the original policy, and 7’ is the policy after the
update, the expected reward from a learner following 7’ is greater
than or equal to the expected reward from a learner following 7.
Sutton and Barto [46] provide a proof.

We draw attention to some specifics of our implementation, that
diverge from what may appear in textbooks.

4.1.2 Algorithmic Changes. Firstly, we update an episode with a
single reward r which is distributed to all state action pairs. This is
because, as will be seen in later sections, we only observe rewards
at the end of an episode i.e there are no intermediate rewards
provided in our method. Secondly we do not use a discount factor
on the reward r. This is because the sequence of choices in an input
generation, do not lend themselves to a natural absolute ordering.
We cannot assume later decisions are more important than earlier
ones, which the discount factor implicitly does.

4.2 RLCheck: MCC with Diversity Reward

We now return to our problem space of generating inputs with a
generator G. Notice that the guides we defined in Definition 3.1
have a similar function to the learners in Section 4.1: given some
state (o, p, t) make a choice c.

This leads to the natural idea of implementing a guide as an MCC
learner, rewarding the learner with some r(x) after the generator
produces input x. However, note that for the guide, at each choice
point p = (£,C), only a subset of choices C € C can be taken.
Further, each choice point has a unique task: for example, choosing
whether to generate a left child (Figure 3, Line 9) or a right child
(Figure 3, Line 13). Thus, it is natural to define a separate learner

Ly for each choice point p, and call upDATE[, once for each learner
after every execution of the generator.

Finally, in Section 3, we defined a guide using a sequence o € C*
to influence its actions, while in Section 4.1, we assumed a finite
set of states S. Thus, we need a state abstraction function:

Definition 4.1 (State Abstraction Function). A state abstraction
function A: C* — 8 for a generator G is a deterministic function
mapping an arbitrary-length choice sequence o to a finite state
space S. A can rely on G to retrieve, for any c; € o, the choice point
p at which ¢; was made.

We will return to the state abstraction function in Section 4.3.
We can now define a Monte Carlo Control Guide.

Definition 4.2 (Monte Carlo Control Guide). Assume a generator
G producing inputs in X, a state abstraction function A, and a
reward function r : X — R. A Monte Carlo Control Guide y
consists of a set of Monte Carlo control learners, {L,}. Each learner
Ly is associated with a choice point p = (£,C) in G.

Let 7r£2 be Ly’s policy after ¢ — 1 calls to UPDATEL, (ref. Algo-
rithm 1). Then y is:

V(o.p.1) = 7 (A(0).

Finally, after G produces an input x, the guide y calls uppATEL , (r(x))
for each of its learners L.

Now, to use a Monte Carlo Control guide (MCC guide) to solve
the diversifying guidance problem, only (1) the state abstraction
function A (ref. Section 4.3) and (2) the reward function r need to
be specified. We construct a reward function as follows.

Let v be the validity function and ¢ the characteristic function of
interest. If X be the set of inputs previously generated by G, then
let = = {&(x’) : x’ € X} be the set of characteristics of all the
previously generated inputs. Then the reward function r is:

Runique ifv(x) Aé(x) ¢ 2
Ryalia f v(x) A &(x) € 2
Rinvatia if =v(x)

r(x) = (1)

Our technique, RLCheck, is thus: make a generator G follow an
MCC Guide with the reward function r above.

Note that this reward function is nonstationary, that is, it is not
fixed across time. If X = 0, then generating any x € X such that
v(x) holds will result in the reward Runique; re-generating the same x
in the next step will only result in the reward R, ,;j;4. This means the
assumptions underlying the classic proof of policy improvement do
not hold [46]. Thus, RLCheck’s guide is not guaranteed to improve
to an optimal policy. Instead, it practices a form of online learning,
adjusting its policy over time.

4.3 State Abstraction

A key element in enabling MCC to solve the diversifying guidance
problem is the state abstraction function (Definition 4.1), which
determines the current state given a sequence of past choices. The
choice of A impacts the ability of the MCC guide to learn an effective
policy. On one extreme, if A collapses all sequences into the same
abstract state (e.g., A(c) = 0), then a learner L, essentially attempts
to find a single best choice ¢ € Cp, for choice point p, regardless

1414

0122

si=z/ N\ =2

a c2 = True Cc¢ = True
Sp=21L ‘ S¢=2R
O® s =
S3 =2, 1../ \‘_24141
Cc4 = False (5 = False

Figure 2: A partially-generated binary tree (left) and its cor-
responding choice sequence arranged by influence (right).

of state. On the other extreme, if A is the identity function (i.e.,
A(o) = 0), then the state space is infinite; so for every previously
unseen sequence of choices o, the learner’s policy is random.

The ideal A is the abstraction function that maximizes expected
reward. However, computing such an A is not tractable, since it
requires inverting an arbitrary validity function v(x). Instead, we
apply the following heuristic: in many input generators, a good
representation for the state Sy, after making the n'? choice ¢, is
some function of a past subsequence of choices that influence the
choice c,,. The meaning of influence depends on the type of input
being generated and the nature of the validity function.

For example, Figure 2 shows a partially generated binary tree
on the left. On the right, we show the choices made in the binary-
tree generator (ref. Fig. 1) leading to this partial tree (c; = 2,¢2 =
True, c3 = 1,c4 = False, c5 = False, g = True), arranged by influence,
where a choice in the construction of a child node is influenced by
choices constructing its parent node.

With this influence heuristic, the best value for the next choice
c7, which determines the value assigned to the right child, should
depend on the choice ¢;, which decided that the root node had
value 2, as well as the choice c¢g, which made the decision to insert
a right child. The best value for this choice ¢7 does not necessarily
depend on choices cz—cs5, which were involved in the creation of the
left sub-tree. Therefore, the state S, in which the choice c7 is to be
made, can be represented as a sequence [f,(c1), fr(cs)]. Here, fy is
a function associated c;’s choice point (the node-value choice point
at Line 4 of Fig. 1) and f; is a function associated with cs’s choice
point (the right-child choice point at Line 10 of Fig. 1). In Figure 2,
the state S¢ after applying these functions is [2, R]; we will define
the functions f;, and f; for this figure later in this section.

An additional consideration when representing state as a se-
quence derived from past choices is that such sequences can be-
come very long. We need to restrict the state space to being finite.
Again, a reasonable heuristic is to use a trimmed representation of
the sequence, which incorporates information from up to the last w
choices that influence the current choice. w is a fixed integer that
determines the size of a sliding window.

We can build a state abstraction function that follows these con-
siderations in the following manner. First, build a choice abstraction
function f}, for each choice point p, which maps each c to an abstract
choice. Then, for ¢ = ¢1,¢2,...,cp, build S;; = A(o) so that:

|

Qifc=0
taily (Sg = fp(cn)) for some k < n otherwise,

1 def concat_tail(state, value):
2 return (state + [value])[—WINDOW_SIZE:]

4+ def gen_tree(state, depth=0):

5 value = guide.Select([0®, ..., 10], state, idx=1)
6 state = concat_tail(state, value)

7 tree = BinaryTree(value)

8 if depth < MAX_DEPTH and \

9 guide.Select ([True, False], state, idx=2):
10 left_state = concat_tail(state, "L")

1 tree.left = gen_tree(left_state, depth+1)

12 if depth < MAX_DEPTH and \

13 guide.Select ([True, False], state, idx=3):
14 right_state = concat_tail(state, "R")

15 tree.right = gen_tree(right_state, depth+1)

16 return tree

Figure 3: Pseudo-code for a binary tree generator which fol-
lows guide and builds a tree-based state abstraction.

£ Valid mEE
500001 mmm Unique Valid [

40000

30000

Number of Generated Inputs

= N
o o
o o
o o
o o
T

i

Sequence Tree
State Abstraction Method

Random Tree L/R

Figure 4: Number of (unique) valid inputs generated, by state
abstraction. “Random” is a no-RL baseline.

where :: is the concatenation operator and tail,, (s) takes the last w
elements of s. Assume ¢, was taken at choice point p.

We can build both very basic and very complex state abstractions
in this manner.

For example, we can get A(c) = cp—w+1, - - -, Cn—1, Cn by taking
fp = id for all and choosing k = n — 1 always. This would be a
simple sliding window of the last w choices.

The states S1-S¢ that annotate the edges in Figure 2 are derived
using the choice point abstraction functions f;,(c) = ¢ for the value
choice point, fr(c) = R for the right child choice point, and fj(x) = L
for the left child choice point. The k is chosen as k =“largest k < n
which is a choice from the parent node”. While programatically
deriving this k from a choice sequence o is tedious, it is quite
easy to do inline in the generator. The generator Figure 3 shows a
modified version of the generator from Figure 1, which updates an
explicit state value at each to compute exactly this state abstraction
function (Lines 6, 9, 13); it also uses guides to select arbitrary values
(Lines 5, 9, 13).

el
2
© 10001
[
8 100]
] 1
2
S 104
Q
< S
- 13 Random N
© — |
> 11 Sequence
g Tree
2 0.01{ — Tree LR
=)
2 4 6 8 10
Tree Size

Figure 5: Distribution of unique valid tree sizes, by state ab-
straction. “Random” is a no-RL baseline.

4.3.1 Case study. We evaluate the effect the state abstraction func-
tion has on the ability of RLCheck to produce unique valid inputs
for the BST example. We evaluate three state abstraction functions:

o Sequence, the sliding window abstraction which retains choices
from the sibling nodes, i.e. A(0) = cp—w+1, - - -» Cn—1,Cn-

o Tree L/R, the abstraction function illustrated in Figure 2 and
implemented in Figure 3.

e Tree, which chooses k like Tree L/R but has ﬁ, = id for all
choice points, and thus produces the same state for the left
and right subtree of a node.

For example, taking w = 4 and the choices to be abstracted ¢y, . . ., cg
from Figure 2: Sequence will give [1, False, False, Truel, Tree state
will give [2, Truel], and Tree L/R will give [2, "R"].

We evaluate each of these abstraction techniques for generating
BSTs with maximum depth 4 (i.e., 4 links), with ¢ = 0.25 and rewards
(Eq- 1) Rinyatia = =1, Rygtig = 0, and Rypigue = 20. We set w = 4
for the abstraction function: since there are at least two elements
in the state for each parent node, this means the learners cannot
simply memorize the decisions for the full depth of the tree.

Results. Figures 4 and 5 show the results for our experiments. In
each experiment we let each technique generate 100,000 trees. The
results show the averages and standard errors over 10 trials. We
compare to a baseline, Random, which just runs the generator from
Figure 1. Figure 4 illustrates that no matter the state abstraction
function chosen, RLCheck generates many more valid and unique
valid inputs than the random baseline; Tree L/R generates 10X more
unique valid inputs than random. Within the abstraction techniques,
Tree generates the fewest unique valid inputs. Sequence appears to
be better able to distinguish whether it is generating a left or right
child than Tree, probably because the Tree state is identical for the
left and right child choice points.

Tree L/R generates the fewest valid inputs, but the most unique
valid inputs, 36% more than Sequence. These unique valid inputs are
also more complex those generated with other state abstractions.
Figure 5 shows, for each technique, the average number of unique
valid trees generated of each size. Note the log scale. The tree
size is the number of nodes in the tree. We see that Tree L/R is
consistently able to generate orders of magnitude more trees of
sizes > 5 than the other techniques. Since we reward uniqueness,
the RLCheck is encouraged to generate larger trees as it exhausts
the space of smaller trees. These results suggest that Tree L/R has

1415

enough information to generate valid trees, and then combine these
successes into more unique valid trees.

Overall, we see that even with a naive state abstraction function,
RLCheck generates nearly an order of magnitude more unique
valid inputs than the random baseline. However, a well-constructed
influence-style state abstraction yields more diverse valid inputs.

5 EVALUATION

In this section we evaluate how RLCheck, our MCC-based solution
to the diversifying guidance problem, performs. In particular, we
focus on the following research questions:

RQ1 Does RLCheck quickly find many diverse valid inputs for real-
world benchmarks compared to state-of-the-art?

RQ2 Does RLCheck find valid inputs covering many different be-
haviors for real-world benchmarks?

RQ3 Does adding coverage feedback improve the ability of RLCheck
to generate diverse valid inputs for real-world benchmarks?

Implementation. To answer these research questions, we imple-
mented Algorithm 1 in Java, and RLCheck on top of the open-source
JQF [38] platform. JQF provides a mechanism for customizing input
generation for QuickCheck-style property tests.

Baseline Techniques. We compare RLCheck to two different meth-
ods: (1) junit-quickcheck [27], or simply QuickCheck, the baseline
generator-based testing technique which calls the generator with a
randomized guide; and (2) Zest [39], also built on top of JQF, which
uses an evolutionary algorithm based on coverage and validity feed-
back to “guide” input generators. Unlike RLCheck and QuickCheck,
Zest is a greybox technique: it relies on program instrumentation
to get code coverage from each test execution.

Benchmarks. We compare the techniques on four real-world Java
benchmarks used in the original evaluation of Zest [39]: Apache
Ant, Apache Maven, Google Closure Compiler, and Mozilla Rhino.
These benchmarks rely on two generators: Ant and Maven use an
XML generator, whereas Closure and Rhino use a generator for
JavaScript ASTs. The validity functions for each of these four bench-
marks is distinct: Ant expects a valid build.xml configuration,
Maven expects a valid pom. xml configuration, the Closure expects
an ES6-compliant JavaScript program that can be optimized, and
Rhino expects a JavaScript program that can be statically translated
to Java bytecode. Overall, Ant has the strictest validity function
and Rhino has the least strict validity function.

Design Choices. In our main evaluation, we simply use identity
as the characteristic function ¢ to which inputs get Rynigue. Thus,
RLCheck simply tries to maximize the number of unique valid inputs.
This allows us to run RLCheck at full speed without instrumentation,
and generate more inputs in a fixed time budget. In Section 5.3 we
compare this choice to a greybox version of RLCheck, where £(x)
takes into account the branch coverage achieved by input x.

We instantiate our reward function (Eq. 1) with Rynigue = 20,
Ryaiid = 0 and Rjy,45i¢ = —1. This incentivizes RLCheck to prioritize
exploration of new unique valid inputs, while penalizing strategies
that lead to producing invalid inputs. Additionally, we set ¢ = 0.25
in Algorithm 1, which allows RLCheck to explore at random with
reasonably high probability.

1416

We first modified the base generators provided by JQF for XML
and JavaScript to transform choice points with infinite domains to
finite domains. These are the generators we use for evaluation of
Zest and QuickCheck. We then built guide-based generators with
the same choice points as these base generators. For the guide-
based generators, we built the state abstraction inline, like it is built
in Figure 3. For each benchmark, the state abstraction function is
similar to that in Figure 3 as it maintains abstractions of the parent
choices. We set w = 5 for the state window size. The generator
code is available at https://github.com/sameerreddy13/rlcheck.

Experiments. We sought to answer our research questions in a
property-based testing context, where we expect to be able to run
the test generator for a short amount of time. Thus, we chose 5
minutes as a timeout. To account for variability in the results, we ran
10 trials for each technique. The experiments in Section 5.1 and 5.2
were run on GCP Compute Engine using a single VM instance with
8vCPUs and 30 GB RAM. The experiments in Section 5.3 were run
on a machine with 16GB RAM and an AMD Ryzen 7 1700 CPU.

5.1 Generating Diverse Valid Inputs

To answer RQ1, we need to measure whether RLCheck generates a
higher number of unique, valid inputs compared to our baselines.
On these large-scale benchmarks, where the test driver does non-
trivial work, simple uniqueness, at the byte or string level, is not
the most relevant measure of input diversity.

What we are interested in is inputs with diverse coverage. So, we
measure inputs with different traces, a commonly-used metric for
input coverage diversity in the fuzz testing literature [50] (some-
times these traces are called “paths”, but this is a misnomer). The
trace of an input x is a set of pairs (b, c) where b is a branch and
c is the number of times that branches is executed by x, bucketed
to base-2 orders of magnitude. Let £(x) give the trace of of x. If x1
takes the path A, B, A, then &(x1) = {(4, 2), (B, 1)}. If x, takes the
path A, A, A, B, then A is hit the same base-2 order-of-magnitude
times, so &£(x2) = {(A, 2), (B, 1)}. We call valid inputs with different
traces diverse valid inputs.

The results are shown in Figures 6 and 7. Figure 6 shows, at each
time, the percentage of all generated inputs that are diverse valid
inputs. For techniques that are only able to generate a fixed number
of diverse valid inputs, this percentage would steadily decrease
over time. In Figures 6¢ and 6d, we see an abrupt decrease at the
beginning of fuzzing for Zest and QuickCheck, and for Closure we
see a continuing decrease in the percentage over time for these
techniques. In Figures 6b, 6¢, and 6d see that RLCheck quickly con-
verges to a high percentage of diverse valid inputs being generated,
and maintains this until timeout.

RLCheck also generates a large quantity of diverse valid inputs.
Figure 7 shows the total number of diverse valid inputs generated
by each technique: we see that RLCheck generates multiple order
of magnitude more diverse valid inputs compared to our baselines.
The exception is on Rhino (Figure 7), RLCheck only has a 1.4x
increase over QuickCheck. Rhino’s validity function is relatively
easy to satisfy: most JavaScript ASTs are considered valid inputs for
translation; therefore, speed is the main factor in generating valid
inputs for this benchmark. Consequently, the blackbox techniques

80%
20.0%] _._ quickCheck 30.0% 0%
2 s o% Zest 2 2 60% —-- QuickCheck ="
g —— RLCheck g o — .~ QuickCheck g Zest g — .~ QuickCheck
- RLCheck* 2 20.0% QuickChec| > RLCheck = 40% QuickChec
£10.0% g Zest £40% ec g Zest
- 2 10.0% —— RLCheck = P —— 2 —— RLCheck
0% 20%
s 50% < = 20% o 20%
\-~ ______________________
0.0% 0.0%{ =i m - 0% 0%
o 1 2 3 a 5 o 1 2 3 a 5 o 1 2 3 4 5 o 1 2 3 4 5
Time (min) Time (min) Time (min) Time (min)
(a) Ant (*: at least 1 valid) (b) Maven (c) Rhino (d) Closure
Figure 6: Percent of total generated inputs which are diverse valids (i.e. have different traces). Higher is better.
150k 200k 150k
—-= QuickCheck —-= QuickCheck —-= QuickCheck —-= QuickCheck
» 30k Zest " Zest 0 150k Zest " Zest
o o he} . he}
E — RLCheck* EIOOK RLCheck E —— RLCheck '//- E 100k RLCheck
> 20k RLCheck > & 100k - o
i o il il
[9 50k [2 50k
> > > >
Z 10k 2 & 50k a
0 0] £ mnmnmnen=nznan=s 0 o] £Lomm e T T

2 3
Time (min)

2 3
Time (min)

(a) Ant (*: at least 1 valid) (b) Maven

2 3
Time (min)

2 3
Time (min)

(c) Rhino (d) Closure

Figure 7: Number of diverse valid inputs (i.e. inputs with different traces) generated by each technique. Higher is better.

RLCheck and QuickCheck outperform the instrumentation-based
Zest technique on the Rhino benchmark.

On both metrics, the increase in Ant is less pronounced, and very
variable. The variation in percentage for Ant is quite wide because it
is hard to get a first valid input for RLCheck (and QuickCheck), and
in some cases RLCheck did not get this within the five-minute time
budget. For an understanding of the effect on the results, RLCheck*
shows the results for only those runs that find at least one valid
input. The mean value for RLCheck™ is much higher, but the high
standard errors remain due to the fact that these runs find the
first valid input being at different times. For such extremely strict
validity functions, RLCheck has difficulty finding a first valid input
compared to coverage-guided techniques. This is a limitation of
RLCheck: a good policy can only be found after some valid inputs
have been discovered.

For completeness, we also ran longer experiments of 1 hour,
to see if Zest or QuickCheck would catch up to RLCheck. In 1
hour, RLCheck generates between 5-15X more diverse valid inputs
than Zest on all benchmarks and outperforms QuickCheck on all
benchmarks. Furthermore, RLCheck continues to generate a higher
percentage of generated diverse valid inputs after one hour. In
particular, the large improvements that are seen in Figures 6 are all
maintained at roughly the same rate except for Rhino. In the case
of Rhino, Zest improves its percentage of diverse valid inputs from
40% to 67% after one hour, while RLCheck continues to generate
78% diverse valid inputs throughout.

RQ1: RLCheck quickly converges to generating a high per-

centage of diverse valid inputs, and on most benchmarks
generates orders of magnitude more diverse valid inputs
than our baselines.

1417

5.2 Covering Different Valid Behaviors

Section 5.1 shows that RLCheck generates many more diverse valid
inputs than the baselines, i.e. solves the diversifying guidance prob-
lem more effectively. A natural question is whether the valid inputs
generated by each method cover the same set of input behaviors
(RQ2). For this, we can compare the cumulative branch coverage
achieved by the valid inputs generated by each technique.

Figure 8 shows the coverage achieved by all valid inputs for
each benchmark until timeout. The results are much more mixed
than the results in Section 5.1. On the Closure benchmark (Fig. 8d),
QuickCheck and RLCheck achieve the same amount of branch cov-
erage by valid inputs. On Rhino (Fig. 8c) QuickCheck dominates
slightly. On Maven (Fig. 8b), RLCheck takes an early lead in coverage
but Zest’s coverage-guided algorithm surpasses it at timeout.

On Ant (Figure 8a), RLCheck appears to perform poorly, but this
is mostly an artifact of RLCheck’s bad luck in finding a first valid
input. Again, for comparison’s sake, RLCheck® shows the results for
only those runs that generate valid inputs: we see that RLCheck’s
branch coverage is slightly above Zest’s on these runs.

The overall clearest trend from Figure 8 is that RLCheck’s branch
coverage seems to quickly peak and then flatten compared to the
other techniques. This suggests that our MCC-based algorithm,
while it is exploring diverse valid inputs, may still be tuned too
much towards exploiting the knowledge from the first set of valid
inputs it generates. We discuss in Section 6 some possible avenues
to explore in terms of the RL algorithm.

RQ2: No method achieves the highest branch coverage on all
benchmarks. RLCheck’s plateauing branch coverage suggests
that it may be learning to generate diverse inputs with similar
features rather than discovering new behavior.

3k
“ " 1k w 5K{ e "
S | e—— - S h=l B8k
= 4 5 800 S ak 3
22k > 2 8
2 Beoo] [/7 e - | B Zok
3 , 5|] e 5 K
o —-= QuickCheck o g ° 2 ak
4
© 1k Zest © 400 —.~ QuickCheck | £ —.- QuickCheck | o —.~ QuickCheck
2 —— RLCheck £ 200 Zest £ 1k Zest £ 2k Zest
@ RLCheck* @ —— RLCheck @ —— RLCheck @ —— RLCheck
0 0 0 0
o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5
Time (min) Time (min) Time (min) Time (min)
(a) Ant (b) Maven (c) Rhino (d) Closure
Figure 8: Number of branches covered by valid inputs generated by each technique. Higher is better
5.3 Greybox Information of these constraints we had to restrict our state and choice spaces

Given that RLCheck is able to attain its objective as defined by the di-
versifying guidance problem—generating large numbers of unique
valid inputs—(Section 5.1), but does not achieve the highest branch
coverage over all benchmarks (Section 5.2), a natural question is
to ask whether choosing a different ¢, one that is coverage-aware,
could help increase the diversity of behaviors discovered. This is
what we seek to answer in RQ3.

For this experiment, we re-ran RLCheck both blackbox, i.e. with
&pp = id, and with greybox information, using £g5(x) = “the set
of all branches covered by the input x”. Thus, Greybox RLCheck is
rewarded when it discovers a valid input that covers a distinct set
of branches compared to all generated inputs. Note that this does
not reward the guide more for generating an input which covers a
wholly-uncovered branch, compared to an input that covers a new
combination of already-seen branches. Again, we ran each method
for 10 trials, timing out at 5 minutes.

Figures 9 shows the number of diverse valid inputs (valid in-
puts with distinct traces) generated the the blackbox and greybox
versions of RLCheck, and Figure 10 shows the branch coverage by
valid inputs for these two versions. We see universally across all
benchmarks and both metrics that Blackbox RLCheck outperforms
Greybox RLCheck. This suggests that the slowdown incurred by in-
strumentation is not worth the increased information RLCheck gets
in the greybox setting. The difference is less striking for branch cov-
erage than number of diverse valid inputs generated, because fewer
inputs are required to get the same cumulative branch coverage.

We see much lower variation in Ant in this experiment because
on all 10 runs, Blackbox RLCheck was able to generate at least one
valid input for Ant. We chose random seeds at random in both
experiments, so this is simply a quirk of experimentation.

RQ3: Adding greybox feedback to RLCheck in terms of the
characteristic function ¢ causes a large slowdown, but no
huge gains in number of valid inputs or coverage achieved.
Overall, RLCheck performs best as a black-box technique.

6 DISCUSSION

Performance. Tabular methods such as ours do not scale well for
large choice or state spaces. Let S and C denote state and choice
space sizes, respectively. The Monte Carlo control algorithm re-
quires O(SC) space overall, and requires O(C) time for evaluating
the policy function 7. This is because all the algorithmic decision-
making is backed by a large Q-table with S X C entries. Because

1418

for RLCheck. For example, in our JavaScript implementation, when
selecting integer values, we restricted our choice space to the range
{0,1,...,10} rather than a larger range like {0, 1,...,100}. This
was necessary to generate inputs in a reasonable amount of time
with this generator. Function approximation methods, such as re-
placing the Q-table with a neural network, may be necessary for
dealing with larger, more complex, state and choice spaces.

Increasing Exploration. In Section 5.2 we observed that the branch
coverage achieved by RLCheck-generated valid inputs tends to
quickly plateau, even for benchmarks where the other methods
could achieve higher branch coverage (Figs 8b, 8c). This suggests
that even with a high ¢, MCC may still be too exploitative for the
diversifying guidance problem. One approach to increase explo-
ration would be to allow the learners to “forget” old episodes so
choices made early in the testing session that are not necessary
to input validity do not persist throughout the session. Curiosity-
based approaches, which strongly encourage exploration and avoid
revisiting states [41], may also be applicable.

Fine-tuning. In our experiments we heuristically chose the ¢ and
k values, and then kept them fixed across benchmarks. We noted
the importance of a large ¢ and modest k value for both generating
unique valid inputs and doing so quickly. We also chose the reward
function heuristically and in our design process we noticed how
that this choice significantly affected performance, and particularly
the distribution of invalid, valid, and unique valid inputs generated.
It may be valuable to fine tune these hyperparameters and reward
functions for different benchmarks.

Bootstrapping. In Section 5.1 we saw that RLCheck had difficulty
generating a first valid input for very strict validity functions (Ant).
This limitation could be overcome by allowing RLCheck to be boot-
strapped, i.e. given a sequence of choices that produces a valid
input at the beginning of testing. This choice sequence could be
user-provided, as long as there exists a relatively short sequence of
choices resulting in a valid input.

Relevance of Diverse Valid Inputs for Testing. In aswering RQ1, we
established that RLCheck was able to generate orders-of-magnitude
more diverse valid inputs. A natural question is whether this metric
is relevant for testing goals such as bug finding. While we did not
conduct an extensive study of bug-finding ability as part of our
research questions, we did look at RLCheck’s bug-finding ability on
our benchmark programs as compared to QuickCheck in Zest.

—— Blackbox RLCheck 200k

Greybox RLCheck

—— Blackbox RLCheck
Greybox RLCheck

w
=]
~

w n
2 2 150k
S 20k K
9 2100k
[[
> >
g1 B 50k

o

—— Blackbox RLCheck 300k —— Blackbox RLCheck
» 300k Greybox RLCheck “ Greybox RLCheck
= =
s T 200k
> >
> 200k >
4 4
3 3
2 2 100k
& 100k 2
0 0

2 3
Time (min)

2 3
Time (min)

(a) Ant (b) Maven

2 3
Time (min)

2 3
Time (min)

(c) Rhino (d) Closure

Figure 9: Number of diverse valid inputs generated by each technique. Higher is better.

3k

®
o
S}

0 0
b b

s & 600

> >

el o

> > 400

S S

gt € 200

S —— Blackbox RLCheck < —— Blackbox RLCheck
@ o Greybox RLCheck @ o Greybox RLCheck

Branch Cov. by Valids

N

~
©
~

w
~
o
~

N
~

N

~

—
~

—— Blackbox RLCheck
Greybox RLCheck

—— Blackbox RLCheck
Greybox RLCheck

N
~

Branch Cov. by Valids

o

2
Time (min)

4 5 2 3

Time (min)

4

(a) Ant (b) Maven

5

2
Time (min)

2
Time (min)

4 5 4 5

(c) Rhino (d) Closure

Figure 10: Number of branches covered by valid inputs generated by each technique. Higher is better.

During our evaluation runs, the techniques found a subset of
the bugs described in the Zest paper [39]. Table 1 lists, for each bug
that was discovered during out evaluation runs, the average time
to discovery (TTD) and reliability (percent of runs on which the
bug was found) for each method. Bugs are deduplicated, as done in
the Zest paper, by exception type.

We see that on the Ant, where RLCheck found 1000x more
diverse valid inputs than QuickCheck, it found bug (#1) 4x faster
and 5X more often than QuickCheck. It was also faster than Zest.
On Closure, where RLCheck found 60x more diverse valid inputs
than Zest, it was also 20X faster at finding fault (#2). In contrast,
on Rhino, RLCheck only found 1.4X more unique valid inputs than
QuickCheck. In fact, as shown in Figure 6c, over 30% of generator-
generated inputs already satisfied the validity function. Thus, we
see that the plain generator-based approach (QuickCheck) had
the best fault discovery of the three methods. This benchmark is
representative of situations where the generator is already fairly
well-tuned for the validity function of the program under test.

Overall, we believe these results suggest, but are not conclusive
in showing, that order-of-magnitude increases in input diversity
result in better fault discovery.

7 RELATED WORK

The problem of automatically generating test inputs that satisfy
some criteria has been studied for over four decades. Symbolic
execution [18, 28] as well as its dynamic [15] and concolic [24, 44]
variants attempt to generate test inputs that reach program points
of interest by collecting and solving symbolic constraints on inputs.
Despite numerous advances in improving the precision and perfor-
mance of these techniques [10, 12, 22, 29, 45], the path explosion
problem [16] remains a key challenge that limits scalability to large
complex constraints.

1419

Table 1: Average time to discovery (TTD) and Reliability
(Rel.)—the percentage of runs on which the bug was found—
for bugs found by each technique during our experiments.
Bugs are deduplicated by benchmark and exception type.
Dash “-” indicates bug was not found.

RLCheck QuickCheck Zest

Bug ID TTD Rel. TTD Rel. TTD Rel

Ant, (#1) 41s 50% 178s 10% 123s 90%
Closure, (#2) 1s 100% 1.2s 100% 23s 60%
Rhino, (#3) 95s 90% 62s 70% 276s 10%
Rhino, (#4) 11s 100% 1s 100% 30s 100%
Rhino, (#5) - - 35 100% 80s 100%
Rhino, (#6) - - 96s 20% - -

Fuzz testing [36] is a popular method to generate byte-sequence
test inputs. The key idea is to generate a huge quantity of test in-
puts at random, without incurring much cost for each individual
input. Input validity requirements can be addressed either via user-
provided input format specifications [5] or by mutating existing
valid inputs [6]. Coverage-guided fuzzing, popularized by tools
such as AFL [49], improves the effectiveness of mutation-based
fuzz testing by instrumenting the program under test and incorpo-
rating feedback in the form of code coverage achieved by each test
execution; the feedback is used to perform an evolutionary search
for test inputs that cover various behaviors in the test program.

Search-based software testing [25, 26, 34, 48] generates inputs
which optimize some objective function by using optimization
techniques such as hill-climbing or simulated annealing. These

techniques work well when the objective function is a smooth
function of the input characteristics.

QuickCheck [17] introduced the idea of formulating tests as
properties Vx : P(x) = Q(x), which could be validated to some de-
gree by randomly generating many instances of x that satisfy P(x).
Of course, the main challenge is in ensuring that P(x) is satisfied
often enough. Some researchers have attempted to write gener-
ators that produce diverse valid inputs by construction, such as
for testing compilers [35, 47], but solutions turn out to be highly
complex domain-specific implementations. For some domains, ef-
fective generators can also be automatically synthesized [32, 37].
Targeted property-based testing [33] biases hand-written input
generators for numeric utility values. Domain-specific languages
such as Luck [30] enable strong coupling of generators and validity
predicates. In contrast, we address the problem of biasing arbitrary
input generators towards producing inputs that satisfy arbitrary
validity functions, without any prior domain knowledge.

Recently, techniques such as Zest [39], Crowbar [20], and Fuz-
zChick [31] have combined ideas from coverage-guided mutation-
based fuzzing with generative techniques such as QuickCheck.
Although code coverage guidance helps discover new program be-
haviors, it comes at the cost of program instrumentation, which
significantly reduces the number of test inputs that can be executed
per unit time. In contrast, we address the problem of generating
valid test inputs when considering the program as a black box.

There has been increasing interest in using machine learning
to improve fuzz testing; Saavedra et al. [43] provide a survey. Bot-
tinger et al. [13] propose a deep reinforcement learning approach
to fuzz testing. This work uses the reinforcement learning agent to,
given a subsequence of the input file as state, perform a mutation
action on that subsequence. Instead of learning to mutate serialized
input strings directly, RLCheck employs reinforcement learning on
generators for highly structured inputs.

AlLisp [11] is a language for specifying reinforcement learning
problems in a hierarchical manner. Similarly to our work, these
hierarchical learning programs contain choices points where an
agent learns the best choice to take given the current state. ALisp
splits value functions into three functions: value of the current
action, current subroutine, and overall execution. It provides func-
tionality for the user to specify which parts of the state each of
these values depends on, which bears some similarity to our notion
of context. The input-generator domain has some key differences
from the hierarchical learning domain. Notably, we get reward only
at the end of the episode, when an input is generated. Thus, it is
unclear whether RLCheck value functions can be effectively split
into ALisp’s three components.

8 CONCLUSION

In this paper we investigated a reinforcement learning approach to
guiding input generators to generate more valid inputs for property-
based testing. We began by formalizing the problem of generating
many unique valid inputs for property-based testing as the diversi-
fying guidance problem. We proposed RLCheck, where generators
follow a Monte Carlo Control (MCC)-based guide to generate in-
puts. We found that RLCheck has great performance in terms of
generating many diverse valid inputs on real-world benchmarks.

1420

However, MCC seems to be prone to overfitting to a certain space of
valid inputs. We believe more exploration-oriented RL approaches
could be better suited to provide the guidance in RLCheck.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback, which
helped us improve the paper. This research is supported in part by
gifts from Samsung, Facebook, and Fujitsu, as well as by NSF grants
CCF-1900968, CCF-1908870, and CNS-1817122.

REFERENCES

[1] 2019. Eris: Porting of QuickCheck to PHP. https://github.com/giorgiosironi/eris.
Accessed January 28, 2019.

2019. FsCheck: Random testing for .NET. https://hypothesis.works/. Accessed
January 28, 2019.

2019. Hypothesis for Python. https://hypothesis.works/. Accessed January 28,
2019.

2019. JSVerify: Property-based testing for JavaScript. https://github.com/jsverify/
jsverify. Accessed January 28, 2019.

2019. PeachFuzzer. https://www.peach.tech. Accessed August 21, 2019.

2019. Radamsa: a general-purpose fuzzer. https://gitlab.com/akihe/radamsa.
Accessed August 21, 2019.

2019. ScalaCheck: Property-based testing for Scala. https://www.scalacheck.org/.
Accessed January 28, 2019.

2019. test.check: QuickCheck for Clojure. https://github.com/clojure/test.check.
Accessed January 28, 2019.

Claudio Amaral, Mario Florido, and Vitor Santos Costa. 2014. PrologCheck—
property-based testing in Prolog. In International Symposium on Functional and
Logic Programming. Springer, 1-17.

Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-driven
compositional symbolic execution. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer, 367-381.

David Andre and Stuart J. Russell. 2002. State Abstraction for Programmable
Reinforcement Learning Agents. In Eighteenth National Conference on Artificial
Intelligence. American Association for Artificial Intelligence, USA, 119-125.
Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.
Enhancing Symbolic Execution with Veritesting. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE 2014). ACM, New York, NY,
USA, 1083-1094.

Konstantin Bottinger, Patrice Godefroid, and Rishabh Singh. 2018. Deep Re-
inforcement Fuzzing. CoRR abs/1801.04589 (2018). arXiv:1801.04589 http:
//arxiv.org/abs/1801.04589

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat:
Automated Testing Based on Java Predicates. In Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA *02).
ACM, New York, NY, USA, 123-133. https://doi.org/10.1145/566172.566191
Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08).

Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:
three decades later. Commun. ACM 56, 2 (2013), 82-90.

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP).

Lori A. Clarke. 1976. A program testing system. In Proc. of the 1976 annual
conference. 488-491.

David Coppit and Jiexin Lian. 2005. Yagg: An Easy-to-use Generator for Struc-
tured Test Inputs. In Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE '05). ACM, New York, NY, USA, 356-359.
https://doi.org/10.1145/1101908.1101969

Stephen Dolan. 2017. Property fuzzing for OCaml. https://github.com/stedolan/
crowbar. Accessed Jul 23, 2019.

Roy Emek, Itai Jaeger, Yehuda Naveh, Gadi Bergman, Guy Aloni, Yoav Katz,
Monica Farkash, Igor Dozoretz, and Alex Goldin. 2002. X-Gen: A random test-
case generator for systems and SoCs. In High-Level Design Validation and Test
Workshop, 2002. Seventh IEEE International. IEEE, 145-150.

Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak,
and Darko Marinov. 2010. Test generation through programming in UDITA.
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. 225-234.
https://doi.org/10.1145/1806799.1806835

2

[11

(12

[13

[14

[16

[17]

[18

[19

[20

[21]

[22

[23] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based

[25

[26
[27
[28

[29

[30

[31

[32

(33

[34

[35

[36

]

)
]

]

]

Whitebox Fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI "08).

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI "05).

Mark Harman. 2007. The current state and future of search based software
engineering. In 2007 Future of Software Engineering. IEEE Computer Society,
342-357.

Mark Harman and Bryan F Jones. 2001. Search-based software engineering.
Information and software Technology 43, 14 (2001), 833-839.

Paul Holser. 2014. junit-quickcheck: Property-based testing, JUnit-style. https:
//pholser.github.io/junit-quickcheck. Accessed August 21, 2019.

James C. King. 1976. Symbolic execution and program testing. Commun. ACM
19 (July 1976), 385-394. Issue 7.

Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
Efficient state merging in symbolic execution. In Acm Sigplan Notices, Vol. 47.
ACM, 193-204.

Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes, Ben-
jamin C. Pierce, and Li-yao Xia. 2017. Beginner’s Luck: A Language for Property-
based Generators. In Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL 2017). ACM, New York, NY, USA, 114-129.
https://doi.org/10.1145/3009837.3009868

Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. [n.d.]. Coverage
Guided, Property Based Testing. Proc. ACM Program. Lang. 2, OOPSLA ([n.d.]).
Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2017.
Generating Good Generators for Inductive Relations. Proc. ACM Program. Lang.
2, POPL, Article 45 (Dec. 2017), 30 pages. https://doi.org/10.1145/3158133
Andreas Loscher and Konstantinos Sagonas. 2017. Targeted Property-based
Testing. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 46-56.
https://doi.org/10.1145/3092703.3092711

Phil McMinn. 2011. Search-Based Software Testing: Past, Present and Future.
In Proceedings of the 2011 IEEE Fourth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW °11). IEEE Computer Society,
Washington, DC, USA, 153-163. https://doi.org/10.1109/ICSTW.2011.100

Jan Midtgaard, Mathias Nygaard Justesen, Patrick Kasting, Flemming Nielson,
and Hanne Riis Nielson. 2017. Effect-driven QuickChecking of Compilers. Proc.
ACM Program. Lang. 1, ICFP (2017). http://doi.acm.org/10.1145/3110259
Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study
of the Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990), 32-44.
https://doi.org/10.1145/96267.96279

1421

[37

[38

[39

[40

[41

[42

[43]

[44

[45

N
o

[47

[48]

[49

[50

Agustin Mista, Alejandro Russo, and John Hughes. 2018. Branching Processes for
QuickCheck Generators. In Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell (Haskell 2018). ACM, New York, NY, USA, 1-13. https:
//doi.org/10.1145/3242744.3242747

Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: Coverage-guided
Property-based Testing in Java. In Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2019). ACM, New York,
NY, USA, 398-401. https://doi.org/10.1145/3293882.3339002

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le
Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’19). https:
//doi.org/10.1145/3293882.3330576

Manolis Papadakis and Konstantinos Sagonas. 2011. A PropEr Integration of
Types and Function Specifications with Property-based Testing. In Proceedings of
the 10th ACM SIGPLAN Workshop on Erlang (Erlang ’11). ACM, New York, NY,
USA, 39-50. https://doi.org/10.1145/2034654.2034663

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. 2017.
Curiosity-driven Exploration by Self-supervised Prediction. In ICML.

Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran. 2017.
A Solver-aided Language for Test Input Generation. Proc. ACM Program. Lang. 1,
OOPSLA, Article 91 (Oct. 2017), 24 pages. https://doi.org/10.1145/3133915
Gary J. Saavedra, Kathryn N. Rodhouse, Daniel M. Dunlavy, and W. Philip
Kegelmeyer. 2019. A Review of Machine Learning Applications in Fuzzing.
CoRR abs/1906.11133 (2019). arXiv:1906.11133 http://arxiv.org/abs/1906.11133
Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE-13).

Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE:
Multi-path symbolic execution using value summaries. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ACM, 842-853.
Richard S. Sutton and Andrew G. Barto. 2018. Reinforcment Learning: An Intro-
duction. MIT Press. http://www.incompleteideas.net/book/ebook/node53.html
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’11).
Shin Yoo and Mark Harman. 2007." Pareto efficient multi-objective test case

selection. In Proceedings of the 2007 international symposium on Software testing
and analysis. ACM, 140-150.

Michat Zalewski. 2014. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.
Accessed January 11, 2019.

Michatl Zalewski. 2014. American Fuzzy Lop Technical Details. http://lcamtuf.
coredump.cx/afl/technical_details.txt. Accessed Aug 2019.

