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Abstract. We consider dynamic assortment problems with reusable products, in which
each arriving customer chooses a product within an offered assortment, uses the prod-
uct for a random duration of time, and returns the product back to the firm to be used by
other customers. The goal is to find a policy for deciding on the assortment to offer to each
customer so that the total expected revenue over a finite selling horizon is maximized. The
dynamic-programming formulation of this problem requires a high-dimensional state
variable that keeps track of the on-hand product inventories, as well as the products that
are currently in use.We present a tractable approach to compute a policy that is guaranteed
to obtain at least 50% of the optimal total expected revenue. This policy is based on
constructing linear approximations to the optimal value functions. When the usage du-
ration is infinite or follows a negative binomial distribution, we also show how to effi-
ciently perform rollout on a simple static policy. Performing rollout corresponds to
using separable and nonlinear value function approximations. The resulting policy is also
guaranteed to obtain at least 50% of the optimal total expected revenue. The special case of
our model with infinite usage durations captures the case where the customers pur-
chase the products outright without returning them at all. Under infinite usage dura-
tions, we give a variant of our rollout approach whose total expected revenue differs
from the optimal by a factor that approaches 1 with rate cubic-root of Cmin, where Cmin
is the smallest inventory of a product. We provide computational experiments based on
simulated data for dynamic assortment management, as well as real parking transaction
data for the city of Seattle. Our computational experiments demonstrate that the practical
performance of our policies is substantially better than their performance guarantees and
that performing rollout yields noticeable improvements.
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1. Introduction
Revenue management problems focus on making
capacity-allocation decisions for limited inventories
of products over a finite selling horizon. These prob-
lems have applications in areas as diverse as air-
line, hotel, electric power, healthcare, consumer credit,
cruise line, and advertising capacity management
(Ozer and Phillips 2012). The dynamic-programming
formulations of revenue management problems are
generally intractable because they require high-
dimensional state variables that keep track of the re-
maining inventory of each product. Thus, computing
the optimal policy is computationally difficult, so re-
searchers have focused on approximate policies. In
traditional application areas of revenue management

problems, the customers purchase the products for
final consumption. Some emerging industries, how-
ever, focus on renting out products such as computing
capacity, fashion items, and storage units. In these
industries, each customer requests a product, uses the
product for a possibly random duration of time, and
returns the product back to the firm, at which point
the product can be used by other customers. For ex-
ample, firms such as Amazon and Google offer cloud-
computing services, where users utilize computing
capacity for a certain duration of time before returning
it. The firm needs to decide what type of comput-
ing capacity to offer to each user and what prices to
charge. Firms such as Rent the Runway and Glam-
Corner rent fashion items to shoppers through their
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online platforms. Thefirm needs to decide which as-
sortment of fashion items to offer to each shopper
and at what prices. Firms such as CubeSmart and
MakeSpace lease storage units, where customers
return the leased storage units back after using them
for a certain duration of time. Thefirm needs to decide
what prices to charge for the storage units as a function
of the current occupancy. Using real-time information
on the availability of street parking spaces, city
governments have the opportunity to dynamically
adjust the price for parking spaces, where each
driver uses a parking space for a certain duration of
time before leaving and making it available for other
drivers. When making capacity management decisions
in such environments, thefirm must consider the on-
hand product inventories, as well as the products that
are currently in use.
In this paper, we consider dynamic assortment

problems with reusable products. In our problem
setting, we have access to a set of products with limited
inventories. Customers randomly arrive into the sys-
tem. Among the products for which we currently have
available units on-hand, we offer an assortment of
products to the arriving customer. The customer either
chooses a product from the offered assortment or
decides to leave the system. If the customer chooses a
product, then she uses the product for a random du-
ration of time. After a usage duration, the customer
returns the product. The returned product can be
used to offer an assortment to another customer in
thefuture.Thegoalistofind a policy for deciding on
the assortment to offer to each customer so that the
total expected revenue over afinite selling horizon is
maximized.
Our dynamic-programming formulation of the

problem allows for a broad class of choice models for
describingthechoiceprocessofthecustomers,non-
stationarities in the revenue structure, and arbitrary
distributions for the random usage durations. In our
formulation, the randomness in the usage duration
is not resolved until the customer returns the rented
product back, but we can also modify our formulation
to address the case where the usage duration is revealed
before thefirm makes its assortment offering decision.
To our knowledge, our model is thefirst revenue
management model with limited inventories of reus-
able resources, where the customers can choose among
the offered products according to a broad class of choice
models, there can be nonstationarities in the revenue
structure, and the distributions of the usage durations
can be arbitrary. The dynamic-programming formu-
lation of the problem requires a high-dimensional state
variable that keeps track of the inventories of the
products that are available on-hand, as well as the
products that are currently in use. Therefore,finding
the optimal policy is computationally difficult. We

propose tractable policies that provide performance
guarantees.

1.1. Main Contributions
In Section3, we provide a method to construct linear
approximations to the optimal value functions in the
dynamic-programming formulation of the problem.
Our method uses an efficient backward recursion over
the time periods in the selling horizon. At each time
period, we solve a static assortment problem, where
we adjust the product revenues by time-dependent
constants computed from the recursion andfind an
assortment of products that maximizes the expected
adjusted revenue from a customer (Section3.1). We
show that the greedy policy with respect to our linear
value function approximations is guaranteed to ob-
tain at least 50% of the optimal total expected revenue
(Section3.2), but this policy turns out to be agnostic
to inventory levels. Specifically, whether this policy
offers a particular product at a particular time pe-
riod does not depend on the exact on-hand inventory
level of this product, as long as on-hand inventory is
available. To remedy this shortcoming, we construct
separable and nonlinear value function approxima-
tions, as discussed next.
In Section4, we perform rollout on a static policy
to construct separable and nonlinear value function
approximations. We start with a static policy that of-
fers the same assortment at a particular time period,
irrespective of the state of the system (Section4.1). We
compute the total expected revenue obtained by the
static policy, starting at each state and at each time
period, which can be done by focusing on each product
separately. We use these total expected revenues as the
value function approximations at different states and
at different time periods. In this way, we obtain sep-
arable and nonlinear value function approximations.
In rollout, we use the greedy policy with respect to
these value function approximations (Bertsekas and
Tsitsiklis1996). We show that the policy obtained
through the rollout approach is also guaranteed to
yield at least 50% of the optimal total expected rev-
enue (Section4.2). This policy is not agnostic to in-
ventory levels, unlike the greedy policy with respect
to linear value function approximations. We dem-
onstrate that we can efficiently perform rollout when
the usage duration follows a negative binomial dis-
tribution (Section4.3) or when the usage duration is
infinite (Section4.4).
The case with infinite usage durations corresponds
tothesituationwherethecustomerspurchasethe
product outright, rather than renting. Under infinite
usage durations, we also tailor our rollout approach
to strengthen the performance guarantee. In partic-
ular, we useCminto denote the smallest inventory of a
product andRto denote the largest relative deviation
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of the price of a product over the selling horizon. If
the prices of the products are stationary, then we
haveR 1. We show how to construct separable and
nonlinear value function approximations under infinite
usage durations such that the greedy policy with re-
spect to these value function approximations is guar-
anteed to obtain at least max{12,1−

R
23̅
̅̅̅̅
Cmin
√ }fraction of

the optimal total expected revenue. Therefore, the
tailored policy provides at least a half-approximate
performance guarantee, but as the inventories of
theproductsbecomelarge, the tailored policy be-
comes near-optimal. Our dynamic assortment prob-
lem with infinite usage durations corresponds to the
choice-based revenue management problem over par-
allelflight legs operating between the same origin–
destination pair, which is an important problem class
that has been studied in the literature (Zhang and
Cooper2005, Liu and van Ryzin2008,Daietal.2014).
In Section5, we provide extensions of our results.

We extend our approach to the case with multiple
types of customers, each of whom makes choices
according to a different choice model and rents the
products according to different usage distributions
(Section5.1). In our setup, we know the type of a
customer before offering an assortment, so that we
can personalize the assortment according to known
customer features. Because different customer types
can have different usage distributions and we know
the type of a customer before offering an assortment,
this extension allows us tocapture the case where the
usage duration is revealed before we offer an assort-
ment to a customer. We also extend our approach to
the cases where we set the prices of the products rather
than choosing an assortment to offer (Section5.2)and
when we only approximately solve the assortment-
optimization problems used in the construction of
our value function approximations (Section5.3).
In Section6, we provide computational experi-

ments. We formulate a linear program that yields an
upper bound on the optimal total expected revenue
(Section6.1). In ourfirst set of computational exper-
iments, we consider dynamic assortment manage-
ment, where we offer an assortment of products to each
arriving customer (Section6.2). Our policies perform
remarkably well when compared with the upper
bound on the optimal total expected revenue and
yield average improvements of 1%–10% when com-
pared with other benchmarks. In our second set of
computational experiments, we consider the problem
of dynamically adjusting the prices for street parking
spaces (Section6.3). We treat each parking space as
a reusable product with a random usage duration.
Using data from the city of Seattle to estimate the
model parameters, dynamically adjusting the prices

improves the total expected revenues by 2%–7%
when compared with static pricing.

1.2. Literature Review
We review the recent work on revenue management
models with reusable products. Levi and Radovanovic
(2010) study a model that assumes independent de-
mands across products, without any choice behavior
for the customers. Focusing on the infinite selling
horizon setting with stationary demand, the authors
establish a performance guarantee for a static policy
that does not consider the real-time state of the sys-
tem. Owen and Simchi-Levi (2017)extendthiswork
to incorporate customer choice behavior and afinite
selling horizon. The authors assume that the usage
durations are exponentially distributed and note that
this assumption can be relaxed under a stationary
customer choice process. They develop a policy that is
guaranteed to obtain 1/efraction of the optimal total
expected revenue. This policy may offer products
for which there is no on-hand inventory. If the cus-
tomer chooses a product for which there is no on-hand
inventory, then she must leave without making a
purchase. The policy in their paper is also static be-
causeitofferseachassortmentofproductswitha
fixed probability that does not depend on the real-
time state of the system. By contrast, our model can
accommodate arbitrary distributions for the random
usage durations and arbitrary nonstationarities in
the choice process of the customers. The policy that we
construct takes the real-time state of the system into
consideration. As long as the choice process of the cus-
tomers is governed by a random utility maximization
principle, our policy never offers products for which
there is no on-hand inventory.
Lei and Jasin (2016) develop a model with reusable
resources, deterministic usage durations, and advance
reservations. Their model includes multiple resources,
and each product uses a different combination of re-
sources. The authors give a data-dependent performance
guarantee and show that their model is asymptotically
optimal when the resource inventories and the number
of time periods in the selling horizon scale up linearly
at the same rate. Chen et al. (2017) study a model with
multiple units of a single reusable product, random
usage durations, and advance reservations. Their
model allows random usage durations, but the usage
duration is revealed at the time of the reservation. The
authors also provide a data-dependent performance
guarantee and show that their model is asymptoti-
cally optimal when the product inventory and the
customer arrival rate scale up linearly at the same rate.
In our work, we do not allow advance reservations,
but we provide constant-factor performance guar-
antees that are not dependent on the problem data,
work with arbitrary usage duration distributions,
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and allow the randomness in the usage durations to
be resolved when the customer returns the product.
Golrezaei et al. (2014) study dynamic assortment

problems with nonreusable products. In essence, their
modelisaspecialcaseofours withinfinite usage
durations. Considering the case with multiple cus-
tomer types, the authors construct a policy that is
guaranteed to obtain at least 50% of the optimal
total expected revenue, even when the sequence of
customer type arrivals is chosen by an adversary. As
the product inventories become arbitrarily large, the
performance guarantee of their policy improves from
50% to 1−1/e. When the type of a customer is drawn
from a stationary distribution over the time periods,
the performance guarantee further improves to 75%.
The key idea in this work is to adjust revenue from the
sale of each product by a revenue modifier, which is
an increasing function of the current inventory of the
product. The policy offers the assortment that max-
imizes the expected adjusted revenue from each
customer. As the inventory of a product is depleted,
its adjusted revenue decreases, and the policy is more
likely not to offer this product. The proof of the per-
formance guarantee in Golrezaei et al. (2014)isbased
on formulating a deterministic linear-programming
approximation and constructing a dual feasible so-
lution to the approximation by using the revenue
modifier. Wenotethatitispossibletoformulatea
similar linear program under reusable products, but
this linear program has a capacity constraint for each
product and at each time period, thus ensuring that
theexpectednumberofproductsthatareon-hand
and in use at any time period will not exceed the
product inventory. The dual of this linear program is
substantially more complicated, and it is not clear
how to construct a feasible dual solution by using
the revenue modifier.
Considering the problem setting in Golrezaei et al.

(2014), we can tailor our results in this paper to
nonreusable products to obtain stronger performance
guarantees. Under nonreusable resources, we can give
a variant of our rollout approach that is guaranteed to
obtain max{12,1−

R
23̅
̅̅̅̅
Cmin
√ }fraction of the optimal total

expected revenue, whereCminandRare as discussed
earlier in this section. If, for example, the prices of the
products are stationary and each product has at least
100 units of inventory, then this performance guar-
antee computes to be 89%. Similar to the policy in
Golrezaei et al. (2014), all of our policies are based on
adjusting the revenue from the sale of each prod-
uct by a revenue modifier. The revenue modifiers in
Golrezaei et al. (2014) are multiplicative, whereas our
revenue modifiers are additive. The construction of
the revenue modifiers in Golrezaei et al. (2014)only
uses the current and initial inventory levels, whereas

the construction of our revenue modifiers uses all of
the problem data. Thus, the revenue modifier in
Golrezaei et al. (2014) is robust, as it is insensitive to a
large part of the problem data. Our computational
experiments, however, indicate that using all of the
problem data pays off, and our policies can perform
noticeably better than the one in Golrezaei et al.
(2014). Motivated by the online resource-allocation
setting, Stein et al. (2019), Wang et al. (2016), and
Gallego et al. (2016)alsoconsiderproblemsthatin-
volve allocating products to customers arriving over
time and provide policies with performance guar-
antees, but this stream of work does not deal with
reusable products either.
In the work discussed so far, the initial inventories
of the products are exogenously given. There is work
on computing stocking quantities at the beginning of
the selling horizon when the customers arriving over
time choose among the products according to a cer-
tain choice model. The paper by van Ryzin and
Mahajan (1999) gives a model to compute the opti-
mal stocking quantities under the assumption that a
customer can choose a product for which there is no
on-hand inventory, in which case she leaves without
a purchase, possibly resulting in a penalty or emer-
gency procurement cost. Other work considers the
case where a customer chooses only among the prod-
ucts for which there is on-hand inventory. Mahajan and
van Ryzin (2001) use stochastic descent to compute
stocking quantities without a performance guarantee.
Honhon et al. (2010) use a choice model based on
ranked preference lists and compute the optimal
stocking quantities through a dynamic program,
whose running time is exponential in the number of
products. Under ranked preference lists, Aouad et al.
(2019) give approximation algorithms, whereas Goyal
et al. (2016) give polynomial-time approximation
schemes. Under the multinomial logit model, Aouad
et al. (2018) provide approximation algorithms. These
papers do not consider reusable products.
Finally, our work is related to revenue management
problems under customer choice. Zhang and Cooper
(2005) compute upper bounds on the optimal value
functions for the choice-based parallel-flights prob-
lem. Gallego et al. (2004) focus on network revenue-
management problems and study static policies extracted
from a deterministic linear program. Adelman (2007)
constructs linear value function approximations when
customers arrive into the system to purchasefixed
products without a choice process. His approach yields
upper bounds on the optimal value functions, but
without a performance guarantee. Tong and Topaloglu
(2013) show that the approach in Adelman (2007)
boils down to solving a linear program whose di-
mensions increase only linearly with the num-
bers of itineraries,flights, and time periods. Liu and
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van Ryzin (2008) develop dynamic-programming de-
composition methods for decomposing the dynamic-
programming formulation of the network revenue
management problem by the flight legs. The authors
obtain separable and nonlinear value function ap-
proximations, also without a performance guarantee.
Zhang and Adelman (2009) and Vossen and Zhang
(2015) extend the work of Adelman (2007)toinclude
a customer choice process. Their approach requires
solving a linear program whose number of constraints
increases exponentially withthe number of itineraries.
Therefore, the linear program is solved by using col-
umn generation. We can solve the column generation
subproblem efficiently under some choice models, but
there is no a priori bound on the number of columns
that need to be generated to obtain the optimal solu-
tion. Overall, the work discussed in this paragraph
constructs linear and nonlinear value function ap-
proximations, but without performance guarantees.

1.3. Organization
In Section2, we provide a dynamic-programming
formulation for our dynamic assortment problem
with reusable products. In Section3, we design a policy
that is guaranteed to obtain at least 50% of the optimal
total expected revenue. This policy uses linear value
function approximations. In Section4, we use rollout
on a static policy to obtain separable and nonlinear
value function approximations. The resulting policy
is also guaranteed to obtain at least 50% of the opti-
mal total expected revenue. In Section5,wedescribe
extensions to the cases where we have multiple
customer types, we make pricing decisions, and we
can solve the assortment problems with errors. In
Section6, we give our computational experiments.
In Section7,weconclude.

2. Problem Formulation
We have a set of products with limited inventories.
At each time period in the selling horizon, we decide
on the set of products to offer. A customer arriving
into the system either chooses to rent one of the of-
fered products or decides to leave the system with-
out renting anything. We capture the choice process of
the customers through a discrete choice model. If the
customer chooses to rent one of the offered products,
then she uses the product for a random duration of
time by paying an upfront fee and a per-period rental
fee for each time period that she uses the product. After
using the product for a random duration of time, the
customer returns the product, at which point we can
rent the product to another customer. Our goal is to
find a policy for maximizingthe total expected reve-
nue over the selling horizon. We describe the problem
data, state, and transition dynamics, followed by a
dynamic-programming formulation of the problem.

2.1. Problem Data
We have nproducts indexed by1 {1,...,n}.For
each producti∈1,letCi∈Z+denote its initial in-
ventory level. There areTtime periods in the selling
horizon indexed by7 {1,...,T}. Each time period
corresponds to a small interval of time, and there is
exactly one customer arrival at each time period. It is
not difficult to extend our model to the case with at
most one customer arrival at each time period. If we
offer the subset of productsS,thenacustomerar-
riving at time periodtchooses productiwith prob-
abilityφti(S). Naturally, we haveφ

t
i(S) 0foralli∈S.

If a customer chooses to rent productiat time periodt,
then she immediately pays a one-time upfront fee of
rti. If a customer is renting productiduring time pe-
riodt, then she also pays a per-period rental fee ofπti.
Depending on the specific application at hand, one of
the fees can be zero; in addition, one or both of the fees
can be stationary. The per-period rental fee can also
depend on how long the product has been in use.
We use the generic random variable Durationito
represent the random rental duration of producti.
The random variableDurationihas a probability mass
functionfi:Z++→[0,1],where

∑∞
1fi() 1. We de-

scribe the rental duration in terms of its hazard rate
ρi,associated with the probability mass functionfi,
where for each ∈Z+,wehave

ρi, Pr{Durationi +1|Durationi> }
fi(+1)
∑∞
s +1fi(s)

.

The hazard rateρi,is the probability that each unit of
productiis returned after+1 periods, given that the
product has been used for more than periods. Be-
cause

∑∞
s1fi(s) 1, we haveρi,0 fi(1),sothatρi,0is

the probability that a unit of productiis used for
exactly one time period. The usage durations of different
units are assumed to be independent of each other.
At each time periodt, the following sequence of
events happen. We observe the state of the system,
which consists of the current on-hand units and the
outstanding units that are currently being rented by
the customers. Based on the state, we decide which
subset of products to offer. The customer arriving
at time periodtchooses a unit to rent or leaves the
system without renting. We collect the upfront fee for
the rented unit and the rent from all customers still
using their rented units. Finally, we observe whether
each customer with a rented unit of product decides to
return the unit, including the customer who rented a
unit at the current time period.

2.2. State and Transition Dynamics
To capture the state of the system at a generic time
period, letqi,0denote the number of units of producti
available as on-hand inventory at the beginning of the
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time period. Also, for ≥1, letqi,denote the number
of units of productithat have been used for exactly
time periods at the beginning of the time period.
Thus,wedescribethestateofthesystembythevector
q (qi, :i∈1, 0,1,...). For example, ifqrepre-
sents the state of the system at the beginning of time
periodt,thenqi,1is the number of units of product
irented at time periodt−1 and not returned by
the beginning of time periodt.Because

∑∞
0qi, Ci,

let4 {(qi,:i∈1, 0,1,...):
∑∞

0qi, Ci∀i∈1}de-
note the set of all possible states. We assume that the
system starts with no units in use. Thus, there will
never be a unit in use for more thanTtime periods,
which makes the effective set of possible statesfinite.
Consider the stateqat the beginning of time pe-

riodt.Thereareqi,units of productithat have been
used for exactly periods. By definition of the hazard
rate, with probabilityρi,,eachoftheqi,units will be
returned by the beginning of time periodt+1. Thus,
ifnopurchaseis madeattimeperiodt, then the
number of units that will be available as on-hand
inventory at the beginning of time periodt+1isqi,0+∑∞

1Bin(qi,,ρi,),whereBin(k,p)denotes a binomial
random variable with parametersk∈Z+andp∈[0,1].
Also, at the beginning of time periodt+1, the number
of units of productithat will have been rented out for
+1 periods will beqi,−Bin(qi,,ρi,), wherethe
second term reflects the units that will be returned at
time periodt. Therefore, given the stateqat the be-
ginning of time periodt, if there is no purchase by a
customer, then the stateX(q) (Xi,(q):i∈1,
0,1,...)at the beginning of periodt+1isgivenby

Xi,q
()

qi,0+
∑∞

s1

Binqi,s,ρi,s
( )

if 0,

0 if 1,

qi,−1−Binqi,−1,ρi,−1
( )

if ≥2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Note that if there is no purchase at time periodt,thena
unit that was on-hand will stay on-hand at time pe-
riodt+1. Also, a unit that was in use will either be
returned or it will stay in use. In the latter case, its
usage duration will be at least two time periods. So,
we haveXi,1(q) 0.

2.3. Dynamic-Programming Formulation
We use ^to denote the collection of feasible subsets
of products that we can offer to the customers at
each time period, which captures the constraints that
we may impose on the offered subset of products.
To formulate the problem as a dynamic program, we
denote a Bernoulli randomvariable with parameter
ρ∈[0,1]byZ(ρ). Also, viewing the stateq (qi,:i∈1,
0,1,...)as a vector, we letei,kbe a unit vector with

one in the(i,k)-th coordinate and zero everywhere
else. LetJt(q)denote the maximum total expected

revenue over the time periodst,...,T, given that the
system is in stateqat the beginning of time periodt.
Then, using1{·}to denote the indicator function, we
can compute the optimal value functions{Jt:t∈7}
by solving the dynamic program

Jtq
() ∑

i∈1

πti
∑∞

1

qi,

+max
S∈̂

∑

i∈1

1qi,0≥1{ }φ
t
i(S)r

t
i+π

t
i+E

{
Zρi,0
( )

Jt+1 Xq
()( )(

{

+ 1−Zρi,0
( )( )

Jt+1
(
Xq
()
−ei,0+ei,1

)})

+

(

1−
∑

i∈1

1{qi,0≥1}φ
t
i(S)

)

EJt+1Xq
()( ){ }
}

,

(2)
with the boundary condition that JT+1 0. In the
dynamic-programming formulation above, we im-
plicitly assume that even ifqi,0 0, meaning that we
do not have any on-hand inventory for producti,we
can offer an assortment that includes producti.Note
the indicator function; if a customer chooses a product
with zero on-hand inventory, then she leaves the
system without renting any products. The possibility
of offering products with zero on-hand inventory
may be unrealistic in certain settings. Shortly in this
section, in Assumption2.1, we impose rather mild as-
sumptions on the discrete choice model{φti(S):i∈1,
S⊆1}andthesetoffeasibledecisions^to ensure
that the optimal policy never offers a product with
zero on-hand inventory, even if we are allowed to
do so. So, under Assumption2.1, it follows that the
dynamic-programming formulation above is equiv-
alent to a dynamic-programming formulation that
explicitly imposes a constraint to ensure that we must
have nonzero on-hand inventory for each product
that we offer.
In the dynamic program in (2), the term

∑
i∈1π

t
i·∑∞

1qi,captures the rent payments from customers
with already rented units at the beginning of time
periodt. Ontheotherhand,thetermrti+π

t
i+

E{Z(ρi,0)J
t+1(X(q)) + (1−Z(ρi,0))J

t+1(X(q)−ei,0+ei,1)}
corresponds to the expected revenue from a customer
who selects productiat time periodt. Here,rti+π

t
i

reflects the one-time upfront payment and the per-
period rent for thefirst rental period. Noting the
definition of the hazard rate, we haveρi,0 fi(1).
Therefore, the Bernoulli random variableZ(ρi,0)takes
a value of 1 if and only if the customer renting a unit of
productiat time periodtuses the product for exactly
one time period. IfZ(ρi,0) 1, then the unit is returned
to thefirm at the end of time periodt,inwhichcase,
the state at the beginning of time periodt+1isX(q),
which is identical to the state that we would have
obtained when no rentals were made at time periodt.
On the other hand, ifZ(ρi,0) 0, then the selected unit
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of productiwill not be returned at the end of time
periodt. In this case, the selected unit of producti
will not be on-hand at the beginning of time period
t+1; instead, this unit will be in use for exactly one
time period. Therefore, the state of the system at the
beginning of time periodt+1 will beX(q)−ei,0+ei,1.
To simplify our dynamic-programming formulation,
note that because the rental durations of different units
are independent of each other,X(q)andZ(ρi,0)are in-
dependent of each other as well. Therefore, we obtain

EZρi,0
( )

Jt+1Xq
()( )
+1−Zρi,0

( )( )
Jt+1Xq

()
−ei,0+ei,1

( ){ }

−EJt+1Xq
()( ){ }

ρi,0EJ
t+1Xq

()( ){ }
+1−ρi,0
( )

·EJt+1Xq
()
−ei,0+ei,1

( ){ }
−EJt+1Xq

()( ){ }

−1−ρi,0
( )

EJt+1Xq
()( )
−Jt+1Xq

()
−ei,0+ei,1

( ){ }
,

in which case, simply by arranging the terms, we can
write the dynamic-programming formulation in (2)
equivalently as

Jt(q)
∑

i∈1

πti
∑∞

1

qi,+EJ
t+1Xq

()( ){ }

+max
S∈̂

∑

i∈1

1{qi,0≥1}φ
t
i(S)r

t
i+π

t
i−1−ρi,0
( )(

{

·EJt+1Xq
()( )
−Jt+1Xq

()
−ei,0+ei,1

( ){ })
}

.

(3)

Note thatJt+1(X(q)) −Jt+1(X(q)−ei,0+ei,1)captures the
marginalvalueofrentingoneunitofproductito the
customer at time periodt.
Throughout the paper, we impose a mild assumption

on the discrete choice model{φti(S):i∈1,S⊆1}and
the set of feasible decisionŝ to ensure that the op-
timal policy never offers a product with zero on-hand
inventory. This assumption is given below.

Assumption 2.1(Substitutability and Feasibility).Adding
more products to an assortment does not increase the se-
lection probability;that is,for all S⊆1and k∈1,φti(S∪
{k}) ≤φti(S)for all i∈S.In addition,if a set of products is
feasible to offer,then so are all of its subsets;that is,if A∈̂ ,
then S∈̂ for all S⊆A.

Thefirst assumption ensures that products are
substitutable, and, thus, the probability of choosing
any product never increases if more options become
available. This assumption is rather mild, and it holds
for all choice models that satisfy the random utility
maximization principle, including the multinomial
logit, nested logit,d-level logit, paired combinatorial
logit, and many others. In addition, the second as-
sumption on the collection of feasible subsetŝ also
holds for a broad class of assortment constraints, such
as a shelf-space constraint^ S⊆1:

∑
i∈Sci≤B{ },

whereciis the space consumed by productiandBis
the total shelf-space available. Under the assumption
above, it is not difficult to see that the optimal policy
never offers a product with zero on-hand inventory.
In the maximization problem in (3), the profitcon-
tribution of productiis1{qi,0≥1}×(r

t
i+π

t
i−(1−ρi,0)·

E{Jt+1(X(q))−Jt+1(X(q)−ei,0+ei,1)}).LetS
∗be an opti-

mal solution to this maximization problem. In this
case, observe that we can drop all products with non-
positive profit contributions fromS∗without degrad-
ing the objective value of the maximization problem
in (3)because,ifwedropsuchproducts,thenbythe
substitutability assumption, the selection probabilities
of all other products increase, whereas by the feasibility
assumption, the subset we obtain remains feasible.
Thus, the new subset that we obtain in this fashion
provides an objective value to the maximization problem
in (3)thatisatleastaslargeasthatprovidedbyS∗.
Because the profit contribution of productiis zero
when1{qi,0≥1} 0, there exists an optimal policy that
never offers a product with zero on-hand inventory.
Because all products are available at the beginning
of the selling horizon, the optimal total expected
revenue isJ1

∑
i∈1Ciei,0( ).Onesourceofdifficulty in

computing the optimal value functions{Jt:t∈7}is
that the maximization problem in (3)isacombina-
torial optimization problem that chooses the set of
products to offer. However, there exist efficient al-
gorithms to solve this problem under many discrete
choice models, including the multinomial logit (Talluri
and van Ryzin2004, Rusmevichientong et al.2014),
nested logit (Davis et al.2014, Gallego and Topaloglu
2014),d-level logit (Li et al.2015),andpairedcom-
binatoriallogit(Zhangetal.2017), and under many
different types of feasible sets^(Davis et al.2013,
Feldman and Topaloglu2015, Desire et al.2016). Later
in the paper, we will also discuss how our results can
be extended when we can only approximately solve
the maximization problem in (3).
Although we can solve the maximization problem
in (3)efficiently, tofind the optimal policy, we need to
compute the optimal value functionJt(q)for eachq∈4
andt∈7. The number of possible states4||grows
exponentially withnandT,whichmakesitdifficult to
find the optimal policy. Thus, throughout the rest of
thepaper,wefocusondeveloping approximate pol-
icies that are efficient to compute and have provable
performance guarantees.

3. Linear Value Function Approximations
Wedevelopanapproachtoconstructlinearapproxi-
mations to the optimal value functions and analyze the
performance of a policy that uses these approxima-
tions.Inparticular,wegiveatractablerecursionto
come up with linear value function approximations.
We show that if we use the greedy policy with respect
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to these linear value function approximations, then
we obtain a policy that is guaranteed to obtain at least
50% of the optimal total expected revenue.

3.1. Specification of Linear Value
Function Approximations

We consider an approximation Ĵtto the optimal value
functionJtgiven by

Ĵtq
() ∑

i∈1

∑∞

0

ν̂ti,qi,, (4)

where, for ≥1, the parameterν̂ti, represents the
marginal value at time periodtof each unit of product
ithat has been in use for periods, whereas the pa-
rameter̂νti,0represents the marginal value of each unit
of productithat is currently available as on-hand
inventory at time periodt. We propose computinĝνti,
recursively as follows.
•Initialization:Setν̂T+1i, 0foralli∈1,≥0.
•Backward Recursion:Fort T,T−1,...,1, we

computeν̂ti, by using{̂ν
t+1
i, :i∈1,≥0}as follows.

LetÂt∈̂ be an assortment such that

Ât arg max
S∈̂

∑

i∈1

φti(S)r
t
i+π

t
i−1−ρi,0
( )

ν̂t+1i,0−ν̂
t+1
i,1

( )[ ]
.

(5)

OnceÂtis computed, for eachi∈1,let

ν̂ti,0 ν̂t+1i,0+
1

Ci
φtiÂ

t
( )

rti+π
t
i−1−ρi,0
( )

ν̂t+1i,0 −ν̂
t+1
i,1

( )[ ]

ν̂ti, πti+ρi,ν̂
t+1
i,0+1−ρi,

( )
ν̂t+1i,+1 ∀ 1,2,....

(6)

The above description completes the specification of
the approximate value function̂Jt.Weshortlygivethe
intuition behind our approach. Because we start the
system with all units available as on-hand inventory,
no unit will be in use for more thanTtime periods.
Thus, we only need to computeν̂ti,for 0,1,...,T,
so we can execute the above recursion infinite time.
We provide some intuition into the computation

ofÂt.Intuitivelyspeaking,wecaninterpretÂtas an
ideal assortment to offer at time periodtunder the
linear value function approximations when we ignore
inventory availability. In particular, if we replace
the value functionJt+1in the maximization problem
on the right side of (3) with the linear approxima-
tion̂Jt+1(q)

∑
i∈1
∑∞

0ν̂
t+1
i, qi,and drop the indicator

function1{qi,0≥1}to ignore inventory availability, then
the objective function of this maximization problem

takes the form
∑
i∈1φ

t
i(S)[r

t
i+π

t
i−(1−ρi,0)(̂ν

t+1
i,0−ν̂

t+1
i,1)],

which is the same as the objective function of the
maximization problem in (5). Next, we provide some
intuition into the computation of̂νti,0,whichmeasures
the value of a unit of on-hand inventory for producti
at time periodt. Roughly speaking, assume that we

offer the ideal assortmentÂtat time periodt,andifa
customer selects productiat time periodt,thenwe
“direct”the customer to one of theCicopies of
productiwith equal probability of 1/Ci.Inthiscase,
the probability that a unit of producti“sees”ademand
at time periodtisφti(̂A

t)1Ci. We write the recursion that
we use to computeν̂ti,0in (6)equivalentlyas

ν̂ti,0
1

Ci
φtiÂ

t
( )

rti+π
t
i+ρi,0ν̂

t+1
i,0 +1−ρi,0

( )
ν̂t+1i,1

[ ]

+ 1−
1

Ci
φtiÂ

t
( )( )

ν̂t+1i,0.

On the left side above,ν̂ti,0is the value of a unit of
production-hand at time periodt. If we offer the ideal
assortmentÂtat time periodt, then a unit of producti
sees a demand with probability1Ciφ

t
i(̂A
t).Inthiscase,

we collect the upfront feertiand the rentπ
t
ifor thefirst

time period. As discussed earlier, with probability
ρi,0 fi(1), the customer rents productifor exactly one
time period, in which case she returns the product by
the beginning of time periodt+1. The value of a unit
of on-hand inventory of productiat time periodt+1
iŝνt+1i,0. With probability 1−ρi,0, the customer rents
productiformorethanonetimeperiod,inwhichcase
the product will have been rented out at the beginning
of time periodt+1 for exactly one period. The value of
aunitofproductiat time periodt+1 that has been in
use for one period isν̂t+1i,1. This discussion provides the
intuition for the termrti+π

t
i+ρi,0ν̂

t+1
i,0+(1−ρi,0)̂ν

t+1
i,1

on the right side above. With probability 1−1Ciφ
t
i(̂A
t),

theunitofproductidoes not see a demand, in which
case this unit is still available at time periodt+1, and
the value of this unit is given bŷνt+1i,0.
We can give a similar intuition for the recursion that
is used to computêνti,for all 1,2,....Notingthe
recursion̂νti, πti+ρi,ν̂

t+1
i,0+(1−ρi,)̂ν

t+1
i,+1,recallthat

ν̂ti,on the left side is the value of a unit of productithat
has been in use for periods at time periodt.Thisunit
of productiwill certainly be used until the end of
time periodt, and we will obtain the rental fee ofπti.
Furthermore, by the definition of the hazard rateρi,,a
unit of productithat has been in use for periods at
time periodtwill be returned by the beginning of the
next time period with probabilityρi,, in which case
the value of this on-hand unit at time periodt+1is
ν̂t+1i,0, yielding the termρi,ν̂

t+1
i,0on the right side. On the

other hand, once again, by the definition of the hazard
rateρi,, a unit of productithathasbeeninusefor
periods at time periodtwill not be returned by the
beginning of time periodt+1 with probability 1−ρi,.
Therefore, this unit of productiwill have been used
for+1 periods at the next time period, and the value
of this unit at time periodt+1isν̂t+1i,+1, yielding the
term(1−ρi,)̂ν

t+1
i,+1on the right side.
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The discussion in the previous two paragraphs
also provides a natural interpretation for our value
function approximations. In particular, our value
function approximations correspond to the total ex-
pectedrevenuethatweobtainwhenweuseapolicy
that manages each unit of productiindependently.
Focus on one particular unit of producti.Attime
periodt, we always offer the assortment̂At,inwhich
case an arriving customer selects productiwith
probabilityφti(̂A

t). If the customer selects producti,
then we direct the customer to each unit of producti
with equal probability of 1/Ci. In this case, the unit
of productithat we focus on sees a demand at time
periodtwith probabilityφti(̂A

t)1Ci. If the unit of product
ithat we focus on sees a demand, then it is rented, so
we collect the upfront fee ofrtiand the rent ofπ

t
ifor the

firsttimeperiod.Aunitthatisrentedstaysinusefora
random duration of time that is governed by the
hazard rates{ρi,:≥0}, during which we collect the
rent ofπtiat each time periodtthat the unit is in
use. After the usage duration has expired, the unit is
returned. By the discussion in the previous two para-
graphs, if we use a policy that manages each unit of
productiindependently in the way we just described,
then̂νti, corresponds to the total expected revenue
from a unit of productithat has been in use for exactly
time periods at the beginning of time periodt.
Therefore, our value function approximations corre-
spond to the value functions of a policy that manages
each unit independently. Clearly, this policy does
notpooltheunitsofthesameproducttogether,so
wecertainlydonotadvocateusingsuchapolicyin
practice. We will only use the value functions of this
policy to construct value function approximations. It
turns out that the greedy policy with respect to the
value function approximations will have a perfor-
mance guarantee.
Considering the effort to compute the parameters

{̂νti,:i∈1, 0,...,T,t∈7}, we need to solve prob-
lem (5) for each time periodt∈7.Thenumberof
operations to solve this problem depends on the un-
derlying choice model. We use Opt to denote the number
of operations to solve one instance of problem (5). Next,
we need to compute{φti(̂A

t):i∈1,t∈7}.Thenum-
ber of operations to compute these choice probabilities
also depends on the underlying choice model. We use
Prob to denote the number of operations to compute
{φti(S):i∈1}for afixed subsetSand time periodt.
Once we compute{φti(̂A

t):i∈1,t∈7},wecanuse(6)
tocomputeeachoneoftheparameters{̂νti,:i∈1,
0,...,T,t∈7}inO(1)operations. Thus, noting that
there areO(T2n)such parameters, we can compute
all of the parameters{̂νti,:i∈1, 0,...,T,t∈7}
inO(T×Opt+T×Prob+T2n)operations. For ex-
ample, if the customers choose according to the

multinomial logit model, then we can solve one instance
of problem (5)inO(nlogn)operations (Talluri and van
Ryzin2004). Also, for afixed subsetSand time periodt,
we can compute{φti(S):i∈1}inO(n)operations. In
thiscase,wecancomputealloftheparameters{̂νti,:
i∈1, 0,...,T,t∈7}inO(Tnlogn+T2n)operations.
Lastly, although we use linear value function ap-
proximations, it is not difficult to see that the optimal
value functions are not even separable by the prod-
ucts. In Online Appendix A, we give a problem in-
stance with only one time period in the selling
horizon, in which the optimal value functions are not
separable by the products. We close this section with
the next lemma, where we show that the marginal
value of a unit of on-hand inventory becomes smaller
as the end of the selling horizon approaches. We will
use this property several times throughout the paper.

Lemma 3.1(Properties of the Marginal Values).The mar-
ginal value of on-hand inventory decreases over time;that
is,̂νti,0≥ν̂

t+1
i,0 for all t∈7and i∈1.

Proof.For notational brevity, letΔti rti+π
t
i−(1−

ρi,0)(̂ν
t+1
i,0 −ν̂

t+1
i,1). We will shortly show the claim that

φti(̂A
t)Δti≥0 for alli∈1.Inthiscase,bytherecursion

in (6) that we use to computêνti,0,wehavêν
t
i,0 ν̂t+i,0+

1
Ci
φti(̂A

t)Δti≥ν
t+1
i,0, which is the desired result. To see

the claim thatφti(̂A
t)Δti≥0 for alli∈1,assumeonthe

contrary that there exists somek∈1 such that
φtk(̂A

t)Δtk<0. Let1
+ {i∈1:Δti≥0}and1

− {i∈
1:Δti<0}.Byourassumption,thereexistssome
k∈1−such thatφtk(̂A

t)>0. Furthermore, by Assump-
tion2.1,φti(̂A

t∩1+)≥φti(̂A
t)for alli∈Ât∩1+.By

the same assumption, becauseÂt∈̂ , we haveÂt∩
1+∈̂ . So, we get

∑

i∈1

φtiÂ
t

( )
Δti

∑

i∈1+
φtiÂ

t
( )

Δti+
∑

i∈1−
φtiÂ

t
( )

Δti

<
∑

i∈1+
φtiÂ

t
( )

Δti
∑

i∈Ât∩1+

φtiÂ
t

( )
Δti

≤
∑

i∈Ât∩1+

φtiÂ
t∩1+

( )
Δti

∑

i∈1

φtiÂ
t∩1+

( )
Δti,

where thefirst inequality follows because there exists
somek∈1−such thatφtk(̂A

t)>0, the second equality
holds becauseφti(̂A

t) 0foralli∈Ât,andthesecond
inequality uses the fact thatφti(̂A

t∩1+)≥φti(̂A
t)for

alli∈Ât∩1+.BecauseÂt∩1+∈̂ , the chain of in-
equalities above contradicts the fact thatÂtis an optimal
solution to problem (5). □

3.2. An Approximate Policy Using Marginal Values
We consider the greedy policy with respect to the value
function approximations{̂Jt:t∈7}. If the system is in
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stateqat time periodt,thenthispolicyoffersthe
assortmentŜt(q)given by

Ŝtq
()

arg max
S∈̂

∑

i∈1

1qi,0≥1{ }φ
t
i(S)r

t
i+π

t
i−1−ρi,0
( )[

{

·EĴt+1Xq
()( )
−Ĵt+1Xq

()
−ei,0+ei,1

( ){ }]
}

arg max
S∈̂

∑n

i1

1qi,0≥1{ }φ
t
i(S)
[
rti+π

t
i−1−ρi,0
( )

·ν̂t+1i,0−ν̂
t+1
i,1

( )]
,

(7)

where the second equality uses the definition of the
value function approximations in (4). The next the-
orem is the main result of this section, giving a per-
formance guarantee for this policy.

Theorem 3.2(Performance of the Greedy Policy).The
total expected revenue of the greedy policy with respect to the
value function approximationsĴt:t∈7

{ }
is at least 50%of

the optimal total expected revenue;that is,this policy is a
half-approximation.

The proof of this theorem makes use of the next
lemma. Because we do not have any products in use at
the beginning of the selling horizon, the initial state is
∑
i∈1Ciei,0. The next lemma relates the approximation
Ĵ1(
∑
i∈1Ciei,0)to the optimal total expected reve-

nueJ1(
∑
i∈1Ciei,0).

Lemma 3.3(Expected Revenue Upper Bound).We have
J1(
∑
i∈1·Ciei,0)≤2̂J

1(
∑
i∈1Ciei,0).

Proof.By Adelman (2007), we can obtain an upper
bound on the optimal total expected revenue by using
the objective value provided by any feasible solution to
the linear program

minJ̃1
∑

i∈1

Ciei,0

( )

s.t.̃Jt(q)≥
∑

i∈1

πti
∑∞

1

qi,+EJ̃
t+1Xq

()( ){ }

+
∑

i∈1

1{qi,0≥1}φ
t
i(S)r

t
i+π

t
i−1−ρi,0
( )[

·EJ̃t+1Xq
()( )
−J̃t+1Xq

()
−ei,0+ei,1

( ){ }]

∀q∈4,S∈̂ ,t∈7,

where the decision variables are {̃Jt(q):q∈4,t∈7}

and we follow the convention thatJ̃T+1 0. Define
the constantβ̂t

∑
i∈1ν̂

t
i,0Ci. We proceed to show

that{̂βt+Ĵt(q):q∈4,t∈7}withĴt(q)as in (4)–(6)is
a feasible solution to the linear program above.

(Without the constantβ̂t,thesolution{̂Jt(q):q∈4,
t∈7}is not necessarily feasible to the linear pro-
gram.) As all units are available at the beginning of the
selling horizon, a unit will never be in use for more
thanTtime periods. Thus, we can assume that4is a
finite set, so the numbers of decision variables and
constraints above arefinite. By the definitions of
Ĵt+1(q)in (4)andX(q)in (1), we get

β̂t+1+EĴt+1Xq
()( ){ }

β̂t+1+
∑

i∈1

ν̂t+1i,0

[

qi,0+
∑∞

1

ρi,qi,

]

+
∑∞

1

ν̂t+1i,+1

{

·qi,−ρi,qi,
[ ]

}

β̂t+1+
∑

i∈1

{

qi,0ν̂
t+1
i,0+

∑∞

1

qi,ρi,ν̂
t+1
i,0 +1−ρi,

( )[

·̂νt+1i,+1

]}

.

Similarly,EĴt+1X(q)
( )

−̂Jt+1X(q)−ei,0+ei,1
( ){ }

ν̂t+1i,0−̂ν
t+1
i,1.

So,ifweevaluatetherightsideoftheconstraintin
the linear program above at{̂βt+̂Jt(q):q∈4,t∈7},then
we obtain

∑

i∈1

πti
∑∞

1

qi,+β̂
t+1+EĴt+1Xq

()( ){ }

+
∑

i∈1

1qi,0≥1{ }φ
t
i(S)r

t
i+π

t
i−1−ρi,0
( )

Eβ̂t+1
{[

+Ĵt+1Xq
()( )
−β̂t+1−Ĵt+1Xq

()
−ei,0+ei,1

( )}]

∑

i∈1

πti
∑∞

1

qi,+β̂
t+1

+
∑

i∈1

qi,0ν̂
t+1
i,0+

∑∞

1

qi,ρi,ν̂
t+1
i,0+ 1−ρi,

( )
ν̂t+1i,+1

[ ]
{ }

+
∑

i∈1

1qi,0≥1{ }φ
t
i(S)r

t
i+π

t
i−1−ρi,0
( )[

ν̂t+1i,0−ν̂
t+1
i,1

( )]

∑

i∈1

ν̂t+1i,0Ci+
∑

i∈1

qi,0ν̂
t+1
i,0+

∑∞

1

qi,ν̂
t
i,

{ }

+
∑

i∈1

1qi,0≥1{ }φ
t
i(S)r

t
i+π

t
i−1−ρi,0
( )

ν̂t+1i,0−ν̂
t+1
i,1

( )[ ]
,

where the second equality holds because we have
ν̂ti, πti+ρi,ν̂

t+1
i,0 +(1−ρi,)̂ν

t+1
i,+1 by (6)andβ̂

t+1

∑
i∈1ν̂

t+1
i,0Ci. By a simple lemma, given as Lemma B.1

in Online Appendix B, if we letΔti rti+π
t
i−(1−

ρi,0)(̂ν
t+1
i,0−ν̂

t+1
i,1), then

∑
i∈1φ

t
i(̂A
t)Δti≥

∑
i∈11{qi,0≥1}·

φti(S)Δ
t
ifor allS∈̂ . Note that this inequality does not

follow from the definition ofÂtbecause although we
have

∑
i∈1φ

t
i(̂A
t)Δti≥

∑
i∈1φ

t
i(S)Δ

t
iby (5), we may have

Δti<1{qi,0≥1}Δ
t
iwhenΔ

t
i<0. Thus, using the chain of
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equalities above, we upper bound the right side of
the constraint in the linear program as

∑

i∈1

ν̂t+1i,0Ci+
∑

i∈1

qi,0ν̂
t+1
i,0+

∑∞

1

qi,ν̂
t
i,

{ }

+
∑

i∈1

1qi,0≥1{ }φ
t
i(S)r

t
i+π

t
i−1−ρi,0
( )

ν̂t+1i,0−ν̂
t+1
i,1

( )[ ]

≤
∑

i∈1

ν̂t+1i,0Ci+
∑

i∈1

∑∞

0

qi,ν̂
t
i,

+
∑

i∈1

φtiÂ
t

( )
rti+π

t
i− 1−ρi,0
( )

ν̂t+1i,0−ν̂
t+1
i,1

( )[ ]

∑

i∈1

ν̂t+1i,0Ci+
∑

i∈1

∑∞

0

qi,ν̂
t
i,+
∑

i∈1

Ciν̂
t
i,0−ν̂

t+1
i,0

( )

∑

i∈1

ν̂ti,0Ci+
∑

i∈1

∑∞

0

qi,ν̂
t
i, β̂t+Ĵtq

()
,

where the first inequality holds asν̂ti,0≥ν̂
t+1
i,0 by

Lemma3.1,thefirst equality follows from (6), and the
last equality is by the definition ofβ̂t.Bythechainof
inequalities above, for anyq∈4,S∈̂ ,andt∈7,if
we evaluate the right side of the constraint at {̂βt+
Ĵt(q):q∈4,t∈7}, then the right side of the constraint
is upper bounded bŷβt+Ĵt(q). So, the solution{̂βt+
Ĵt(q):q∈4,t∈7}is feasible to the linear program,
which implies that the objective value of the linear
program evaluated at this solution is an upper bound
on the optimal total expected revenue. The objective
value of the linear program evaluated at the solution

{̂βt+Ĵt(q):q∈4,t∈7} is β̂1+Ĵ1(
∑
i∈1Ciei,0) β̂1+

∑
i∈1ν̂

1
i,0Ci 2

∑
i∈1ν̂

1
i,0Ci 2̂J1(

∑
i∈1Ciei,0).Thus,2̂J

1

(
∑
i∈1Ciei,0)is an upper bound on the optimal total

expected revenue. □

The greedy policy with respect to the value function
approximations{̂Jt:t∈7}offers the assortmentŜt(q)
in (7) when the system is in stateqat time periodt.Let
Ut(q)denote the total expected revenue under this
greedypolicyoverthetimeperiodst,...,T,giventhat
we are in stateqat time periodt. We can compute
{Ut:t∈7}by using the recursion

Ut(q)
∑

i∈1

πti
∑∞

1

qi,

+
∑

i∈1

1qi,0≥1{ }φ
t
iŜ
tq
()( )(

rti+π
t
i+E

{

Zρi,0
( )

Ut+1Xq
()( )

+ 1−Zρi,0
( )( )

Ut+1Xq
()
−ei,0+ei,1

( )
})

+

(

1−
∑

i∈1

1qi,0≥1{ }φ
t
iŜ
tq
()( ))

EUt+1Xq
()( ){ }
,

with the boundary condition thatUT+1 0. In the re-
cursion above, we use the same line of reasoning that
we used for the dynamic-programming formulation
in (2), but the decision isfixed aŝSt(q).Anobservation
that will shortly be useful is thatUt+1appears with a

positive coefficientontherightsideabove.Therefore,
if we replaceUt+1with a functionHt+1that satisfies
Ut+1(q)≥Ht+1(q), then the right side of the expression
above becomes smaller. By using the same sequence
of manipulations that we used to obtain the dynamic
program in (3), we can write the above recursion
equivalently as

Utq
() ∑

i∈1

πti
∑∞

1

qi,+EU
t+1Xq

()( ){ }

+
∑

i∈1

1qi,0≥1{ }φ
t
iŜ
tq
()( )

rti+π
t
i−1−ρi,0
( )(

·EUt+1Xq
()( )
−Ut+1Xq

()
−ei,0+ei,1

( ){ })
. (8)

The coefficients ofUt+1are not necessarily all positive
on the right side above, but the last two recursions
are equivalent. So, if we replaceUt+1on the right side
above with a functionHt+1that satisfiesUt+1(q)≥
Ht+1(q), then the right side of the expression above still
gets smaller.
Here is the proof of Theorem3.2.

Proof of Theorem 3.2.We will use induction over the
time periods to show thatUt(q)≥̂Jt(q)for allq∈4and
t∈7, wherêJt(q)is as in (4). By definition, we have
ν̂T+1i, 0 for alli∈1, 0,1,..., so thatĴT+1 0.
Furthermore, we haveUT+1 0. Thus, the result holds
at time periodT+1. Assuming thatUt+1(q)≥̂Jt+1(q)
for allq∈4, we proceed to show thatUt(q)≥̂Jt(q)for
allq∈4. Using the same argument in the proof of
Lemma3.3, we have

EĴt+1Xq
()( ){ }

∑

i∈1

qi,0ν̂
t+1
i,0+
∑∞

1

qi, ρi,ν̂
t+1
i,0+1−ρi,

( )
ν̂t+1i,+1

[ ]
{ }

.

Similarly, we haveEĴt+1(X(q))−̂Jt+1X(q)−ei,0+ei,1
( ){ }

ν̂t+1i,0−̂ν
t+1
i,1.Thus, by the inductive hypothesis and the

recursion definingUt(q)in (8), we obtain

Ut(q)≥
∑

i∈1

πti
∑∞

1

qi,+EĴ
t+1Xq

()( ){ }

+
∑

i∈1

1qi,0≥1{ }φ
t
iŜ
tq
()( )

rti+π
t
i−1−ρi,0
( )(

·EĴt+1Xq
()( )
−Ĵt+1Xq

()
−ei,0+ei,1

( ){ })

∑

i∈1

πti
∑∞

1

qi,+
∑

i∈1

qi,0ν̂
t+1
i,0+

∑∞

1

qi,ρi,ν̂
t+1
i,0

[
{

+1−ρi,
( )

ν̂t+1i,+1

]
}

+
∑

i∈1

1qi,0≥1{ }φ
t
iŜ
tq
()( )

rti+π
t
i

[

−1−ρi,0
( )

ν̂t+1i,0−ν̂
t+1
i,1

( )]
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∑

i∈1

qi,0ν̂
t+1
i,0+

∑∞

1

qi,π
t
i+ρi,ν̂

t+1
i,0+1−ρi,

( )
ν̂t+1i,+1

[ ]
{ }

+max
S∈̂

∑

i∈1

1qi,0≥1{ }φ
t
i(S)r

t
i+π

t
i

[

−1−ρi,0
( )

ν̂t+1i,0 −ν̂
t+1
i,1

( )]
,

where the last equality follows from the fact thatŜt(q)
is, by (7), an optimal solution to the maximization
problem on the right side above. Noting (6), for all
≥1, we haveν̂ti, πti+ρi,ν̂

t+1
i,0+(1−ρi,)̂ν

t+1
i,+1.In

this case, the expression on the right side of the chain
of inequalities above can equivalently be written as

∑

i∈1

qi,0ν̂
t+1
i,0+

∑∞

1

qi,ν̂
t
i,

{ }

+max
S∈̂

∑

i∈1

1qi,0≥1{ }φ
t
i(S)

·rti+π
t
i−1−ρi,0
( )

ν̂t+1i,0−ν̂
t+1
i,1

( )[ ]

≥
∑

i∈1

qi,0ν̂
t+1
i,0+

∑∞

1

qi,ν̂
t
i,

{ }

+
∑

i∈1

1qi,0≥1{ }

·φtiÂ
t

( )
rti+π

t
i−1−ρi,0
( )

ν̂t+1i,0 −ν̂
t+1
i,1

( )[ ]

≥
∑

i∈1

qi,0ν̂
t+1
i,0+

∑∞

1

qi,ν̂
t
i,

{ }

+
∑

i∈1

qi,0
Ci

·φtiÂ
t

( )
rti+π

t
i−1−ρi,0
( )

ν̂t+1i,0−ν̂
t+1
i,1

( )[ ]

∑

i∈1

qi,0ν̂
t+1
i,0+

∑∞

1

qi,ν̂
t
i,

{ }

+
∑

i∈1

qi,0ν̂
t
i,0−ν̂

t+1
i,0

( )

∑

i∈1

∑∞

0

qi,ν̂
t
i, Ĵtq

()
.

In the chain of inequalities above, to see that the
second inequality holds, by the discussion in the
proof of Lemma 3.1, we haveφti(̂A

t)[rti+π
t
i−

(1−ρi,0)(̂ν
t+1
i,0−ν̂

t+1
i,1)] ≥0foralli∈1. Also,bythe

definition of4,wehaveqi,0≤Cifor anyq∈4,which
implies that1{qi,0≥1}≥

qi,0
Ci
.Thefirst equality follows

from (6). The chain of inequalities above completes
the induction argument so that we haveUt(q)≥̂Jt(q)
for allq∈4andt∈7. Because the initial state of the
system is

∑
i∈1Ciei,0, the total expected revenue col-

lected by the greedy policy isU1
∑
i∈1Ciei,0( ).So,using

the last inequality witht 1andq
∑
i∈1Ciei,0,we

getU1
∑
i∈1Ciei,0( )≥Ĵ1

∑
i∈1Ciei,0( )≥12J

1∑
i∈1Ciei,0( ),

where the second inequality follows by Lemma3.3.□

We note that simple myopic approaches that ignore
the future customer arrivals can perform arbitrarily
poorly, as we demonstrate in Online Appendix C. In
contrast, by Theorem3.2, the greedy policy with re-
spect to the value function approximations{̂Jt:t∈7}
is guaranteed to obtain at least 50% of the optimal
total expected revenue. In our computational exper-
iments, we demonstrate that the practical performance

of this greedy policy can be substantially better than
this theoretical performance guarantee. Despite having
a performance guarantee, the greedy policy with re-
spect to the value function approximations{̂Jt:t∈7}
has a somewhat undesirable feature. Consider two
statesq∈4andq∈4such that{i∈1:qi,0≥1}
{i∈1:qi,0≥1}. In other words, the set of products for
which we have on-hand inventory is the same in the
two states. In this case, by (7), we havêSt(q) Ŝt(q).
Therefore, the decisions of the greedy policy depend
on the set of products for which we have on-hand
inventory, but not on the level of inventory for these
products. The greedy policy does not differentiate
between having too much or too little inventory of a
product, as long as we have on-hand inventory for
this product. In the next section, we develop a more
sophisticated policy that explicitly takes the in-
ventory levels into consideration, while still main-
taining the performance guarantee of the greedy
policy. Our computational experiments demonstrate
that the latter policy can perform noticeably better
than the greedy policy.

4. Improving the Policy Performance
Through Rollout

To develop a policy that explicitly takes the inventory
levels of the products into consideration, we build on a
static policy that offers afixed assortment at each time
period. With the assortmentÂtdefined in (5), the static
policy always offers the assortmentÂtat time periodt.
Using an analysis similar to the one for the greedy
policy with respect to the linear value function ap-
proximations discussed in the previous section, we
show that the static policy obtains at least 50% of the
optimal total expected revenue. Furthermore, the
value functions associated with the static policy are
separable by the products. We perform rollout on the
static policy to obtain a policy that takes the inventory
levels of the products into consideration, while still
maintaining the performance guarantee of the static
policy. Exploiting the fact that the value functions asso-
ciated with the static policy are separable by the products,
we show that we can efficiently perform rollout on the
static policy when the usage durations follow a negative
binomial distribution or when the customers purchase
the products outright without returning them at all.

4.1. Properties of the Static Policy
We consider a static policy that always offers the
assortmentÂtat time periodtregardless of the
product availabilities, whereÂtis defined in (5). If a
customer chooses a product that is not available,
then she leaves the system. By the next lemma, the
static policy obtains at least 50% of the optimal total
expected revenue. The proof is similar to the analy-
sis of the greedy policy with respect to the linear
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value function approximations. The details are in
Online Appendix D.

Lemma 4.1(Performance of the Static Policy).The total
expected revenue of the static policy that offers assortmentÂt

at time period t is at least 50%of the optimal total expected
revenue.

LetVt(q)denote the total expected revenue under
the static policy over the time periodst,...,T,given
that we are in stateqat time periodt. Similar to the
dynamic program in (3), we can compute{Vt:t∈7}
by using the recursion

Vt(q)
∑

i∈1

πti
∑∞

1

qi,+EV
t+1Xq

()( ){ }

+
∑

i∈1

1qi,0≥1{ }φ
t
iÂ

t
( )

rti+π
t
i−1−ρi,0
( )(

·EVt+1Xq
()( )
−Vt+1Xq

()
−ei,0+ei,1

( ){ })
,

with the boundary condition thatVT+1 0. The fol-
lowing lemma shows thatVt(q)decomposes by
products. The proof is in Online Appendix E. To facili-
tate our exposition, letebe the standard unit vector
with one in the -th coordinate. Letqi (qi,: 0,1,...)
denote the numbers of units of productithat have
been in use for different numbers of time periods.
By (1), the state of the units of productiat the next
time period depends on the state of the units of
productiat the current time period, but not on other
products. Thus,Xi,(q)is a function ofqionly, which
implies that we can writeXi,(q)asXi,(qi),sowecan
define the vectorXi(qi) (Xi,(qi): 0,1,...).

Lemma 4.2(Decomposability by Products).For each t∈7
andq∈4,we have Vt(q)

∑
i∈1V

t
i(qi),where for each

i∈1,{Vti:t∈7}is computed by using the recursion

Vti(qi) π
t
i

∑∞

1

qi,+EV
t+1
i Xiqi

()( ){ }

+1qi,0≥1{ }φ
t
iÂ
t

( )
rti+π

t
i−1−ρi,0
( )(

·EVt+1i Xiqi
()( )
−Vt+1i Xiqi

()
−e0+e1

( ){ })
, (9)

with the boundary condition that VT+1i 0.

4.2. Rollout Policy Based on the Static Policy
We perform rollout on the static policy to obtain a
policy that takes the inventory levels of the products
into consideration. To perform rollout on the static
policy, given that we are in a particular state at the
current time period, we choose the decision that
maximizes the immediate expected revenue at the
current time period plus the expected revenue from
the static policy starting from the state at the next time
period. We refer to the policy obtained by performing
rollout on the static policy as the rollout policy. The

rollout policy ultimately corresponds to usingVt(q)
∑
i∈1V

t
i(qi)as a separable nonlinear approximation

toJt(q).LetStrollout(q)be the assortment offered by
the rollout policy given that we are in stateqat time
periodt.AsVt+1(q)is the total expected revenue
obtained by the static policy starting in stateqat time
periodt+1,Strollout(q)is given by

Strolloutq
()

arg max
S∈̂

∑

i∈1

1qi,0≥1{ }φ
t
i(S)r

t
i+π

t
i+E

{
Zρi,0
( )(

{

·Vt+1Xq
()( )
+1−Zρi,0

( )( )
Vt+1Xq

()
−ei,0+ei,1

( )})

+ 1−
∑

i∈1

1qi,0≥1{ }φ
t
i(S)

( )

EVt+1Xq
()( ){ }
}

arg max
S∈̂

∑

i∈1

1qi,0≥1{ }φ
t
i(S)r

t
i+π

t
i−1−ρi,0
( )(

·EVt+1Xq
()( )
−Vt+1Xq

()
−ei,0+ei,1

( ){ })

arg max
S∈̂

∑

i∈1

1qi,0≥1{ }φ
t
i(S)r

t
i+π

t
i−1−ρi,0
( )(

·EVt+1i Xiqi
()( )

−Vt+1i Xiqi
()
−e0+e1

( ){ })
.

In thefirst equality above, we follow the same ar-
gument that we used to construct the dynamic pro-
gram in (2), in which wefind an assortment that
maximizes the immediate expected revenue and the
expected value function at the next time period under
the optimal policy, but above, we use the value
function of the static policy at the next time period.
We arrive at the second equality by the same rea-
soning that we used to obtain the dynamic program
in (3)fromthedynamicprogramin(2). The third
equality follows from the fact that the value functions
of the static policy decompose by the products, as
showninLemma4.2.
It is a well-known result that the policy obtained by
performing rollout on a base policy always performs
at least as well as the base policy itself; see sec-
tion 6.1.3 in Bertsekas and Tsitsiklis (1996). Therefore,
the total expected revenue obtained by our rollout
policy is at least as large as the total expected revenue
obtained by the static policy. So, by Lemma4.1,the
rollout policy obtains at least 50% of the optimal
total expected revenue as well. In many applications,
a policy based on rollout tends to offer a dramatic
improvement over the base policy. The key question
is whether the rollout assortmentStrollout(q)can be com-
puted efficiently. Lemma4.2shows that the value
function of the static policy is separable by the prod-
ucts, indicating that computing the value functions of
the static policy through the recursion in (9)ismore
manageable than computing the value functions of
the optimal policy through the dynamic program
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in (3). As discussed earlier, without loss of generality,
we can assume that the vectorqi (qi,: 0,1,...)
isfinite-dimensional, because we start with no units
in use so that we always haveqi, 0forall ≥T.
However, the state variableqi (qi,: 0,1,...)in
the recursion in (9) is still a high-dimensional vector.
In particular, the state space in this recursion is given
by4i {(qi,∈Z+: 0,1,...)|

∑∞
0qi, Ci}and com-

puting the value functionVti(qi)of the static policy for
allqi∈4iis difficult.
In the remainder of this section, we consider two

cases. First, if the usage duration follows a negative
binomial distribution, then the value functions of the
static policy can be computed efficiently. Second, if the
customers purchase the products outright and never
return them, then the value functions of the static policy
can be computed efficiently as well. Once we compute
the value functions{Vt:t∈7}of the static policy ef-
ficiently, we can solve the maximization problem
above that definesStrollout(q)tofind the assortment
offered by the rollout policy. Note that the maximi-
zation problem that we solve to obtain the assortment
Strollout(q)has the same structure as the maximization
problem on the right side of the dynamic program
in (3). Thus, once we compute the value functions{Vt:
t∈7}of the static policy, as discussed at the end of
Section2, there are numerous choice models that
render this maximization problem tractable. Lastly,
we emphasize that, even if we cannot compute the
value functions{Vt:t∈7}of the static policy, we can
use simulation to estimate the expected revenue of the
static policy, which still allows performing rollout
on the static policy. Section 6.1.3 in Bertsekas and
Tsitsiklis (1996) discusses using simulation to per-
form rollout. Naturally, the computational require-
ments of performing rollout inflate when we use
simulation to estimate the total expected revenue of
the static policy. Next, we discuss how to perform
rollout efficiently when the usage durations have a
negative binomial distribution.

4.3. Negative Binomial Usage Duration
In this section, we assume that for each producti∈1,
the usage duration is given asDurationi 1+
NegBin(si,ηi),whereNegBin(si,ηi)denotes a negative
binomial random variable with parameterssi∈Z++
andηi∈[0,1]taking values over{0,1,...}.Anegative
binomial random variable with parameters(si,ηi)
corresponds to the sum ofsiindependent geometric
random variables, each with parameterηi.Thus,a
negative binomial random variable with parame-
ters(1,ηi)is equivalent to a geometric random vari-
able with parameterηi.Assiincreases, the probability
mass function of a negative binomial random variable
with parameters (si,ηi)becomes more symmetric.
Even withsi 3, the probability mass function is

rather symmetric. Therefore, a negative binomial random
variable is quiteflexible for modeling usage durations.
Noting that a negative binomial random variable
with parameters(si,ηi)corresponds to the sum ofsi
geometric random variables, we provide the follow-
ing interpretation for our use of a negative binomial
random variable for modeling the usage durations. At
each time period, a customer is satisfied with product
iwith probabilityηi.Assoonasacustomerisdis-
satisfied with the product forsitimes, she returns the
product, ending her rental duration. Naturally, we do
not advocate this interpretation as a model of how a
customer makes a decision for keeping the product,
butthisinterpretationprovidesuswiththevocabu-
lary to explain our model more clearly, as follows. If
the usage durations have negative binomial distri-
butions, then our state variable does not need to keep
track of the numbers of units of each productithat
have been in use for a certain duration of time. It is
enoughtouseastatevariablethatkeepstrackofthe
numbers of customers who are using each producti
and have been dissatisfied for a certain number of times.
In this case, we can efficiently compute the value func-
tions of the static policy, as long assiis relatively small.
We discuss how we can compute the value func-
tions of the static policy by using a recursion similar to
the one in (9) when the usage durations are negative
binomial random variables.

State and Transition Dynamics.To compute the value
functions of the static policy through a recursion
similar to the one used in (9), we define

wi,d number of customers who are using producti
and have been dissatisfied fordtimes.

A customer using productireturns the product once
she has been dissatisfied forsitimes, in which case,
the product becomes available on-hand. Therefore,
thesi-dimensional vector(wi,0,...,wi,si−1)captures the
state of the customers using producti.Theon-hand
inventory of productiis given byCi−

∑si−1
d0wi,d.Under

negative binomial usage durations, we usewi (wi,d:
0≤d≤si−1)to denote the state vector for producti
at the beginning of a generic time period. With this
staterepresentation,ifnopurchaseis madeatthe
current time period, then the new random state
Fi(wi) Fi,d(wi):0≤d≤si−1

( )
atthenexttimepe-

riod is given by

Fi,d(wi)

Binwi,0,ηi
( )

if d 0,

Binwi,d,ηi
( )

+wi,d−1−Binwi,d−1,ηi
( )( )

if d 1,2,...,si−1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

whereweusethefactthatforeachd,thenumberof
customers who continue to remain dissatisfied ford
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times at the next time period is equal toBin(wi,d,ηi),
because each customer is satisfied with the product
with probability ηi, independently of each other.
Furthermore,wi,d−1−Bin(wi,d−1,ηi)captures the num-
ber of customers who were dissatisfied ford−1times
at the beginning of the current time period and they
were dissatisfied one more time in the current time
period; in that case, these customers are dissatisfied
for a total ofdtimes at the next time period. These
customers add up to the number of customers dis-
satisfieddtimes at the next time period.

Dynamic-Programming Formulation.With this state
representation, we can compute the value functions of
the static policy for each productithrough the following
recursion. We usewi (wi,0,...,wi,si−1)to capture the
state of producti. Recall that the static policy offers the
assortmentÂtat each time periodt. Giventhat
the state of productiat time periodtiswi,letV

t
i(wi)be

the total expected revenue from productiunder the
static policy over the time periodst,...,T.Usingthe
vectorse0 (1,0,0,...,0)∈R

si ande1 (0,1,0,...,0)∈R
si,

we can compute{Vti:t∈7}by using the recursion

Vti(wi)

πti
∑si−1

d0

wi,d+ 1−1∑si−1
d0
wi,d<Ci

{ }φtiÂ
t

( )( )

EVt+1i Fi(wi)
( ){ }

+1∑si−1
d0
wi,d<Ci

{ }φtiÂ
t

( )(
rti+π

t
i+ηiEV

t+1
i Fi(wi)+e0( )

{ }

+1−ηi
( )

EVt+1i Fi(wi)+e1( )
{ })

πti
∑si−1

d0

wi,d+EV
t+1
i Fi(wi)( )

{ }
+1∑si−1

d0
wi,d<Ci

{ }φtiÂ
t

( )

·rti+π
t
i−ηiEV

t+1
i Fi(wi)( )−Vt+1i Fi(wi)+e0( )

{ }(

−1−ηi
( )

EVt+1i Fi(wi)( )−Vt+1i Fi(wi)+e1( )
{ })

,

(10)

with the boundary condition thatVT+1i 0. In thefirst
equality above, for a customer to rent a unit of producti,
we need to have productiavailable on-hand and the
customer needs to choose producti. The number of
units of productiavailable on-hand is given by
Ci−

∑si−1
d0wi,d, so the expression

1−1
∑si−1

d0

wi,d<Ci

{ }·φtiÂ
t

( )

captures the probability that a customer does not
rent productiwhen we offer the assortment Ât.If
∑si−1
d0wi,d<Ci,thenwehaveproductiavailable on-
hand. If the customer chooses producti,thenshe
rents this product. With probabilityηi,thecustomer
renting productiat the current time period is satis-
fied, and she ends up being a customer with no dis-
satisfactions at the beginning of the next time period.

With probability 1−ηi,thecustomerrentingproducti
at the current time period is dissatisfied, and she
becomes a customer who is dissatisfied for one time at
the beginning of the next time period. The second
equality follows by arranging the terms. Ifsi 1, so
that the usage durations for productiare geometric
random variables, then the state variablewibecomes
the scalarwi,0, in which case, the recursion above
continuestoholdaslongaswesete0 1ande1 0.

Discussion of the State Variable.We can reach the state
variablewi (wi,d:0≤d≤si−1)that we used in (10)
by starting from the state variableqi (qi,: 0,1,...)
that we used in (9). Recall thatqi,is the number of
units of productithat have been in use for exactly
time periods. Because the number of units of producti
available on-hand is given byqi,0 Ci−

∑∞
1qi,, we

can use the state variable(qi,: 1,2,...),insteadof
(qi,: 0,1,...).Letyi,d,be the number of customers
who have been using product ifor exactly time
periods and have been dissatisfied fordtimes. By
definition, we haveqi,

∑si−1
d0yi,d,.So, wecanuse

the state variableyi (yi,d,: 1,2,...,0≤d≤si−1)
instead of(qi,: 1,2,...),becausegiven(yi,d,: 1,
2,...,0≤d≤si−1), we can compute(qi,: 1,2,...)as

qi,
∑si−1
d0yi,d,. Lastly, under negative binomial usage

durations, from the perspective of immediate ex-
pected revenues and state transitions, if we know the
number of times a customer has been dissatisfied,
then we do not need to know how long she has been
using the product. Thus, lettingwi,d

∑∞
1yi,d,be the

number of customers who are using productiand
have been dissatisfieddtimes, we can usewi (wi,d:
0≤si−1)as the state variable, which is precisely the
state variable in (10).
In the recursion in (10), the state variable is ansi-di-
mensional vector(wi,0,...,wi,si−1)such that

∑si−1
d0·wi,d≤Ci,

so the number of states isO(Csii).Thus,whensiis rel-
atively small, we can compute the value functions of
the static policy efficiently. For example, in our compu-
tational experiments, using transaction data from the city
of Seattle, wefind that the negative binomial distribution
provides a reasonably good model for the duration of
time for which the drivers park their vehicles. In our
experiments, thefitted value for the parametersiwas 2.

4.4. Infinite Usage Duration
In this section, we focus on the case in which the usage
duration is infinity. This case corresponds to the sit-
uation where the customers buy the products outright,
never returning them. Infinite usage durations have a
number of interesting applications. In the retail set-
ting, customers make purchases among substitut-
able products, in which case our model dynamically
makes product assortment offerings to each individ-
ual customer as a function of the remaining product
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inventories (Topaloglu2013, Golrezaei et al.2014).
Also, an important class of revenue management prob-
lems occurs on aflight network with parallelflights op-
erating between the same origin–destination pair. In this
setting, the customers make a purchase among mul-
tiple parallelflights on a particular departure date. Our
model dynamically adjusts the assortment offlights
offered to each individual customer as a function of the
remainingflight capacities (Zhang and Cooper2005,
Liu and van Ryzin2008, Dai et al.2014). Under infinite
usage durations, we proceed to discuss how we can
compute the value functions of the static policy by using a
recursion similar to the one in (9).

State and Transition Dynamics.Because the products
are purchased outright, we assume thatπti 0forall
t∈7, so that there is no per-period rental fee. Because
the products are not returned, we only need to keep
track of the on-hand inventory of producti.Weletqi,0
be the number of units of production-hand and useqi,0
as the state variable at the beginning of a time period.
If the state of the system at the current time period is
qi,0and a customer purchases producti, then the state
of the system at the next time period is simplyqi,0−1.

Dynamic-Programming Formulation.Given that we
haveqi,0units of production-hand, letV

t
i(qi,0)be the

total expected revenue from productiunder the static
policy over the time periodst,...,T. We can compute
{Vti:t∈7}by using the recursion

Vtiqi,0
( )

1−1qi,0≥1{ }φ
t
iÂ

t
( )( )

Vt+1i qi,0
( )

+1qi,0≥1{ }φ
t
iÂ

t
( )

rti+V
t+1
i qi,0−1
( )( )

Vt+1i qi,0
( )

+1qi,0≥1{ }φ
t
iÂ

t
( )

rti− V
t+1
i qi,0
( )

−Vt+1i qi,0−1
( ){ }( )

, (11)

with the boundary condition thatVT+1i 0. In thefirst
equality above, if we have on-hand units of producti
and a customer chooses producti,thenwehaveone
fewer on-hand unit at the next time period. The
second equality follows by arranging the terms. Be-
causethestatevariableqi,0in the recursion above is
scalar, we can efficiently compute the value functions
of the static policy under infinite usage durations. The
recursion in (11) is similar to the one in revenue
management problems with a single resource; see
section 2.6.2 in Talluri and van Ryzin (2005).
Thus, under both negative binomial and infinite

usage durations, we can efficiently perform rollout on
the static policy; in that case, we obtain a policy that
takes the inventory levels of the products into con-
sideration, while still obtaining at least 50% of the
optimal total expected revenue. It turns out that we

can further strengthen our performance guarantee
under infinite usage durations. In particular, we let
Cmin mini∈1Cito capture the smallest inventory of

a product. Also, we letR maxi∈1{
maxt∈7r

t
i

mint∈7r
t
i

}to capture

the largest relative deviation in the upfront fee for a
product over the selling horizon. In Theorem F.2 in
Online Appendix F, using a modified static policy
based on a solution of a linear program, we can con-
struct a tailored rollout policy that is guaranteed to

obtain at least max{12,1−
R

23̅
̅̅̅̅
Cmin
√ }fraction of the optimal

total expected revenue. Therefore, the tailored vari-
ant of our rollout approach always provides at least a
half-approximate performance guarantee, but it be-
comes near-optimal as the inventories of the products
become large. This performance guarantee is not an
asymptotic performance guarantee. It holds for any
value of the product inventories and the number of
time periods in the selling horizon. For example, if the
smallest product inventory is 100 and the upfront fees
are stationary so thatCmin 100 andR 1, then the
tailored variant of our rollout policy is guaranteed to
obtain at least 89% of the optimal total expected
revenue, regardless of the other problem parameters.
In addition, we consider a standard regime where the
inventories of the products and the number of time
periods in the selling horizon scale up linearly at the
same rateκ(Gallego and van Ryzin1994). In Theorem
F.7 in Online Appendix F, we also show that the
tailored variant of our rollout policy obtains at least
1−B̅̅

κ
√ fraction of the optimal total expected revenue,

whereBis a constant that is independent of the scaling
rateκ. Thus, the relative optimality gap of the tailored
variant of the rollout policy isO(1−1̅̅

κ
√)as the in-

ventories of the products and the number of time
periods scale up linearly at the same rateκ.Thesetwo
performance guarantees do not generalize to arbi-
trary usage duration distributions.

5. Extensions
We give extensions to the case in which we have
multiple customer types, we make pricing decisions
instead of assortment offer decisions, and we can solve
the assortment optimization problems only approxi-
mately. We show that our half-approximate perfor-
mance guarantee continues to hold when we have
multiple customer types and when we make pricing
decisions. Furthermore, we show that if we can solve
the assortment optimizationproblems approximately,
then our performance guarantees hold with appro-
priate modifications to reflect the solution accuracy in
the assortment problems. Some of these extensions
are used in our computational experiments.
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5.1. Heterogeneous Customer Types
We have m customer types indexed by} {1,
2,...,m}. At time periodt∈7,acustomeroftypej
arrives with probabilitypt,j, where we have

∑
j∈}

pt,j 1, so that each time period has exactly one
customer arrival. We observe the type of each arriving
customer. Each customer type has its own choice
model, reward structure, assortment constraints, and
usage duration. If we offer the subsetSof products,
then a customer of typejarriving at time periodt
chooses productiwith probabilityφ

t,j
i(S).Notethatif

we do not observe the type of each arriving customer,
then we can continue using the model in Section2,
where the choice probability φti(S)is obtained by
mixing the choice models corresponding to different
customer types. If a customer of typejselects product
iat time periodt, then she pays a one-time upfront fee
ofr

t,j
i. Furthermore, if she rents this product during time

periodt, then she pays a per-period rental fee ofπ
t,j
i.

The usage duration of productiby a customer of type
jis given by the random variableDuration

j
i. Welet

ρ
j
i,be the hazard rate of the usage duration of prod-
uctifor a customer of typej,whichisdefined by
ρ
j
i, Pr{Duration

j
i +1|Duration

j
i> }.Lastly,the

assortments offered to customers of different types
have different feasibility requirements. We use^jto
denote the set of feasible assortments that can be of-
fered to customers of typej.
We can extend all of our results to the case with

heterogeneous customer types. We will focus on the
essentials in this section; the details are included in
Online Appendix G. To capture the state of the sys-
tem, because each customer type has its own reward
structure and usage duration, we need to keep track of
thenumberofunitsthatarecurrentlyinusebyeach
customer type. We useqi,0to denote the number of
units of production-hand. For ≥1, we useq

j
i,to

denote the number of units of productithat have been
used for exactly time periods by a customer of typej.
Therefore, we can describe the state of the system by
usingq (qi,0,q

j
i,:i∈1,j∈},≥1).Usingqas the

state variable, we can give a dynamic-programming
formulation of the problem that resembles the one
in (2). In this case, we use value function approxi-
mations of the form

Ĵtq
() ∑

i∈1

θ̂tiqi,0+
∑

i∈1

∑

j∈}

∑∞

1

ν̂
t,j
i,q

j
i,,

where θ̂ticaptures the marginal value of a unit of
production-hand at time periodtand̂ν

t,j
i,captures the

marginal value of a unit of productithat has been in
use for periods by a customer of typejat time pe-
riodt. We propose computinĝθtiandν̂

t,j
i,recursively

as follows.
•Initialization:Setθ̂T+1i 0andν̂

T+1,j
i, 0forall

i∈1,j∈},≥1.

•Recursion:Fort T,T−1,...,1, we compute
θ̂tiand̂ν

t,j
i,by using{̂θ

t+1
i :i∈1}and{̂ν

t+1,j
i, :i∈1,j∈},

≥1}as follows. For eachj∈},letÂt,j∈̂ jbe such
that

Ât,j arg max
S∈̂ j

∑

i∈1

φ
t,j
i(S)

[

r
t,j
i+π

t,j
i− 1−ρ

j
i,0

( )
θ̂t+1i −ν̂

t+1,j
i,1

( )]

.

OnceÂt,jis computed for allj∈},foreachi∈1and
j∈},let

θ̂ti θ̂t+1i +
1

Ci

∑

j∈}

pt,jφ
t,j
i Â

t,j
( )

[

r
t,j
i+π

t,j
i− 1−ρ

j
i,0

( )
θ̂t+1i −ν̂

t+1,j
i,1

( )]

ν̂
t,j
i, π

t,j
i+ρ

j
i,θ̂

t+1
i + 1−ρ

j
i,

( )
ν̂
t+1,j
i,+1 ∀ 1,2,....

(12)

The above discussion completes the specification of
the approximate value function̂Jt. The computation
of the parameters{̂θti:i∈1,t∈7}and{̂ν

t,j
i,:i∈1,j∈},

≥1,t∈7}is similar to our approach in Section3.1.
Also, the intuition for the specification of the pa-
rameters above is similar to the one discussed in
Section3.1. Using an argument similar to the one
in the previous two sections, we can show that the
greedy policy with respect to the value function ap-
proximations{̂Jt:t∈7}obtainsatleast50%ofthe
optimal total expected revenue. We can also perform
rollout on a static policy to obtain a policy that takes
the inventory levels of the products into consider-
ation, while ensuring that we still obtain at least 50%
of the optimal total expected revenue. We describe
both of these results in Online Appendix G.
The use of heterogeneous customer types also al-
lows us to model the case where the usage duration is
revealed before offering an assortment. In our problem
formulation, we observe the type of a customer before
offering an assortment. Also, each customer type can
have its own usage duration distribution. Thus, by
associating different deterministic usage durations
with different customer types, noting that we observe
the type of a customer before offering an assortment,
wecanmodelthecasewheretheusagedurationis
revealed before we offer an assortment.

5.2. Price Optimization with Discrete Prices
So far in the paper, we have assumed that the upfront
and per-period rental fees for the products arefixed,
andwedecideontheassortmentofproductstomake
available to the customers. It is not difficult to adopt
our results to the case in which we decide the upfront
and per-period rental fees for the products and
the customers choose based on the prices we charge.
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In particular, we create multiple copies of each
producti, where the different copies correspond to
charging different prices for producti. We call each
copy of a product a virtual product. Let*denote the
setofpossiblecopiesofeachproduct.Wewrite(i,h)∈
1×*to denote copyhof producti.Thus,thepairs
{(i,h):i∈1,h∈*}are the set of all virtual products
that we can offer to the customers. Offering virtual
product(i,h)means that we offer productiat the price
level corresponding to copyhof this product. In this
case, the question becomes that of choosing an as-
sortment of virtual products to offer at each time
period to maximize the total expected revenue. As we
can offer a product at no more than one price level,
among all virtual copies of a particular product, we
canofferatmostonevirtualcopy.Thus,thesetof
possible assortments of virtual products that we can
offer at each time period is given by^ {S⊆1×*:
S∩({i}×*)| |≤1∀i∈1}.Usingrti,hto denote the upfront
feeattimeperiodtwhen we charge the price level
corresponding to copyhfor producti,andπti,hto denote
the per-period fee at time periodtwhen we charge the
price level corresponding to copyhof producti,we
can follow the same outline in the previous two sec-
tions to come up with a policy that obtains at least 50% of
the optimal total expected revenue. The only difference is
that we treat the virtual products1×*as the products.

5.3. Solving the Assortment Optimization
Problem Approximately

The maximization problem in (5)isacombinatorial
optimization problem. Under many choice models,
we can solve this problem tractably, but it is not
possible to solve this problem tractably under every
choice model. In this section, we discuss how we can
adapt our approach in principle to the case where we
have a fully polynomial-time approximation scheme
(FPTAS) for problem (5). For any >0, the FPTAS
returns a 1/(1+ )-approximate solution to problem (5),
and the running time to do so is polynomial innand
1/. It turns out that we can leverage the FPTAS to
obtain a 1/(2(1+ ))-approximate policy, and the run-
ning time to obtain and execute the approximate policy
is polynomial inn,1/andT. In particular, assume
that we have an FPTAS such that for any >0, the
FPTASfinds an assortmentÂtsatisfying

(1+ )
∑

i∈1

φtiÂ
t

( )
rti+π

t
i−1−ρi,0
( )

ν̂t+1i,0 −ν̂
t+1
i,1

( )[ ]

≥max
S∈̂

∑

i∈1

φti(S)r
t
i+π

t
i−1−ρi,0
( )

ν̂t+1i,0−ν̂
t+1
i,1

( )[ ]
,

in running time that is polynomial innand 1/.Inthe
next theorem, we show how to leverage this FPTAS to
find a 1/(2(1+ ))-approximate policy. The proof is
in Online Appendix H.

Theorem 5.1(Policies Through Approximate Solutions).

Assume that for any >0,we can find a1/(1+ )-
approximate solution to problem(5)in running time that is
polynomial in n and1/.Then,we can construct value-
function approximations{̂Jt:t∈7}such that the greedy pol-
icy with respect to these value function approximations is a
1/(2(1+ ))-approximate policy and the running time to obtain
and execute the greedy policy is polynomial in n,1/,and T.

A quick inspection of the proof of Theorem5.1shows
that if the running time to obtain a 1/(1+ )-
approximate solution to problem (5)isO(f(n,1))for
some functionfand the running time to compute the
probabilities{φti(S):i∈1}for afixed subsetSand
time periodtisO(g(n))for some functiong, then the
running time to obtain a 1/(2(1+ ))-approximate
policy isO(T×f(n,4T)+T×g(n)+T2n).Therefore,if
we have an FPTAS for problem (5)sothatf(n,1)is
polynomial in1,thenf(n,4T)is also a polynomial inn,
1/andT, which corresponds to the case discussed in
the theorem above. On the other hand, if we have only
a polynomial-time approximation scheme for prob-
lem (5)sothatf(n,1)is polynomial innbut expo-
nential in1,thenf(n,4T)is polynomial innbut
exponential in1andT.

6. Computational Experiments
We provide computational experiments to test the
performance of our policies. In Section6.1,wegivean
approach to obtain an upper bound on the optimal
total expected revenue, which is useful for assessing
the optimality gaps of our policies. In Sections6.2and
6.3, we give our computational results on retail as-
sortment management and pricing parking spaces in
the city of Seattle.

6.1. Upper Bound on the Optimal Total
Expected Revenue

To compute an upper bound on the optimal total
expected revenue, we formulate a linear program, in
which the choices of the customers and the transition
dynamics take on their expected values. We use the
decision variables(zt(A):A∈̂ ,t∈7)and(qti, :i∈
1,≥0,t∈7), wherezt(A)is the frequency with
which we offer assortmentAat time periodtandqti,is
the expected number of units of productithat have
been in use for exactly time periods at time periodt.
To construct the constraints in our linear program,
noting the dynamic-programming formulation in (2),
if the state of the system at the beginning of time
periodtisqt (qti, :i∈1,≥0)and the customer
arriving at this time period chooses producti, then the
stateofthesystematthebeginningofthenexttime
period is given by the random variableZ(ρi,0)X(q

t)+
(1−Z(ρi,0)) (X(q

t)−ei,0+ei,1),whereZ(ρ)is a Bernoulli
random variable with parameterρ.Ifthecustomer
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does not choose any of the products, then the state
of the system isX(qt).Furthermore,ifweofferthe
assortmentAat time periodtwith frequencyzt(A),
then the probability that a customer chooses producti
is
∑
A∈̂ φ

t
i(A)z

t(A). In this case, if the state of the
system at the beginning of time periodtisqtand we
offer assortmentAwith frequency zt(A), then the
expected state of the system at the beginning of the
next time period is given by

∑
i∈1{
∑
A∈̂ φ

t
i(A)z

t(A)}

EZ(ρi,0)X(q
t)+(1−Z(ρi,0)) (X(q

t)−ei,0+ei,1)
{ }

+ 1−{
∑
i∈1{
∑
A∈̂ φ

t
i(A)z

t(A)}}E{X(qt)}. Thus, using the fact

thatE{Z(ρi,0)} ρi,0, by arranging the terms, the ex-

pected state at the beginning of the next time period is

given byE{X(qt)} −
∑
i∈1{
∑
A∈̂ φ

t
i(A)z

t(A)} × (1−ρi,0)·

(ei,0−ei,1).By(1),E{Xi,0(q
t)} qti,0+

∑∞
s1ρi,sq

t
i,s,E{Xi,1·

(qt)} 0andE{Xi,(q
t)} qti,−1−ρi,−1q

t
i,−1for ≥2,

which implies that the expected next stateE{X(qt)}in
the last expression is linear in the decision variables
qt (qti,:i∈1,≥0). To obtain an upper bound on
the optimal total expected revenue in our dynamic
assortment problem, we use the linear program

max
∑

t∈7

∑

i∈1

∑

A∈̂

rti+π
t
i

( )
φti(A)z

t(A)+
∑

t∈7

∑

i∈1

πti
∑∞

1

qti,

s.t.qt+1 EXqt
(){ }

−
∑

i∈1

∑

A∈̂

φti(A)z
t(A)

{ }

1−ρi,0
( )

(ei,0−ei,1) ∀t∈7\{T}

q1
∑

i∈1

Ciei,0

∑

A∈̂

zt(A) 1 ∀t∈7

zt(A)≥0 ∀A∈̂ ,t∈7,qti,≥0 ∀i∈1,

≥0,t∈7.

(13)

From the discussion right before the above problem,
the objective function and the constraints are linear
in(zt(A):A∈̂ ,t∈7)and(qti, :i∈1,≥0,t∈7).
Therefore, the problem above is indeed a linear
program. Because

∑
A∈̂ φ

t
i(A)z

t(A)is the expected
number of customers that choose productiat time
periodt,and

∑∞
1q
t
i,is the expected number of units

of productithat are in use at time periodt,theob-
jective function computes the total expected revenue
over the selling horizon. Thefirst constraint keeps
track of the expected numbers of products with dif-
ferent durations of use. The second constraint ini-
tializes the state of the system. The third constraint
ensures that we offer an assortment at each time
period, but this assortment can be empty. By the same
argument in Section2, because the products are all
available on-hand at the beginning of the selling
horizon, we haveqti, 0forall ≥T+1 in a feasible

solution to the linear program above. Thus, we do not
need to define the decision variableqti,for ≥T+1,
which indicates that the numbers of decision variables
and constraints arefinite. In the next proposition, we
show that the optimal objective value of the linear
program above is an upper bound on the optimal total
expected revenue in our dynamic assortment prob-
lem. The proof follows from a standard argument
in the revenue management literature. We defer the
proof to Online Appendix I.

Proposition 6.1.Letting Z∗be the optimal objective value of
problem(13),we have Z∗≥J1(

∑
i∈1Ciei,0).

In problem (13), we have one decision variablezt(A)
for each assortmentA∈̂ .Therefore,thenumberof
decision variables increases exponentially with the
number of products. Nevertheless, we can solve prob-
lem (13) by using column generation. In particular,
noting thatqt+1in thefirstconstraintinproblem(13)
corresponds to the vectorqt+1 (qti,:i∈1,≥0),we
useα (αt+1i, :i∈1,≥0,t∈7\{T})to denote the
dual variables associated with thefirst constraint.
Similarly, noting thatq1in the second constraint
in problem (13) corresponds to the vectorq1 (q1i,:
i∈1,≥0), weuseδ (δi,:i∈1,≥0)to denote
the dual variables associated with the second con-
straint. Also, we useγ (γt:t∈7)to denote the dual
variables associated with the third constraint. In this
case, the constraint associated with the decision
variablezt(A)in the dual of problem (13)is

∑
i∈1φ

t
i·

(A)(1−ρi,0)(α
t+1
i,0−α

t+1
i,1)+γ

t≥
∑
i∈1φ

t
i(A)(r

t
i+π

t
i).If we

solve problem (13) with only a subset of the decision
variables(zt(A):A∈̂ ,t∈7)to obtain the dual solu-
tion(̂α,̂δ,̂γ),thenwecanfind which of the decision
variables(zt(A):A∈̂ ,t∈7)has the largest reduced
cost by solving the problem

max
A∈̂

∑

i∈1

φti(A)r
t
i+π

t
i

( )
−
∑

i∈1

φti(A)1−ρi,0
( )

{

α̂t+1i,0 −α̂
t+1
i,1

( )}

max
A∈̂

∑

i∈1

φti(A)r
t
i+π

t
i−1−ρi,0
( )

α̂t+1i,0−α̂
t+1
i,1

( )[ ]
,

for allt∈7. In the problem above, we follow the
convention thatαT+1i,0 αT+1i,1 0foralli∈1.The
problem above is known as the column generation
subproblem. The column generation subproblem above
has the same structure as the maximization problem
in (3). As discussed at the end of Section2,thisprob-
lem is tractable under a variety of choice models. Also,
if the customers choose according to the multino-
mial logit model and there are no constraints on the
assortments that we can offer, then we can build on
the work of Gallego et al. (2015)togiveanequiva-
lent formulation for problem (13), whose numbers of
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decision variables and constraints increase linearly with
the number of products. Therefore, we can directly solve
the equivalent formulation without resorting to column
generation. We discuss the equivalent formulation in
Online Appendix J.
We formulate problem (13) under the assumption

that there is a single customer type, and we make
assortment decisions. We can formulate analogues of
problem (13)whenwehavemultiplecustomertypes
and we makepricingdecisions, whichreflect the
extensions we provided.

6.2. Dynamic Assortment Management
In ourfirst set of computational experiments, the
products are not reusable. We have access to a set of
products with limited inventories. Customers arrive
over time. Based on the remaining inventories of the
products and the number of time periods left in the
selling horizon, we offer an assortment to each arriving
customer. The customer either purchases a product
within the assortment or leaves without making a
purchase. The purchased product is not returned, so
the usage durations are infinite. Our goal is tofind a
policy to decide which assortment of products to offer
to each customer so that we maximize the total ex-
pected revenue over the selling horizon.

Experimental Setup.In our test problems, we have six
products indexed by1 {1,...,6}and six customer
types indexed by} {1,...,6}.InSection5.1,we
discussed how to extend our model to the case with
multiple customer types. Recalling thatπ

t,j
iis the per-

period rental fee that a customer of typejpays for
productiat time periodt,becausethecustomers
purchase the products outright, we setπ

t,j
i 0. The

one-time upfront feer
t,j
ithat a customer of typejpays

for productiat time periodtdoes not depend on the
time period or the customer type. Thus, we userito
denote the upfront fee for producti.
To determine the upfront fees, we generaterifrom

the uniform distribution over[10,25].Aftergener-
ating the upfront fees for all of the products, we re-
order them so thatr1≥r2≥...≥rn.Thus,thefirst
product has the largest upfront fee and the last
product has the smallest upfront fee. The customers
choose among the products according to the multi-
nomial logit model. A customer of typejassociates the
preference weightv

j
iwith productiand the prefer-

ence weightv
j
0with the no-purchase option. If we

offer the assortmentS,thenacustomeroftypejar-
riving at time periodtchooses producti∈Swith

probabilityφ
t,j
i(S) v

j
i/(v

j
0+
∑
∈Sv

j
). Notethatthe

choice probabilities do not depend on the time period.
To come up with the preference weights, we set the
consideration set of customer typejas#j {1,...,j}.

Ifi∈#j, then we generatev
j
ifrom the uniform dis-

tribution over[0.9,1.1], whereasifi∈#j,then we
setv

j
i 0. Thus, a customer is interested in purchasing

only the products in her consideration set. Among
the products in her consideration set, she is some-
what indifferent. We calibrate the preference weight
of the no-purchase option so that if we offer all prod-
ucts, then a customer leaves without a purchase with
probability 0.1. Therefore, we calibratev

j
0to satisfy

v
j
0/(v

j
0+
∑
∈#jv

j
) 0.1. Golrezaei et al. (2014)usea

similar multinomial logit model with consideration
sets in their computational experiments. Note that a
customer of typenhas the largest consideration set
#n {1,...,n}, whereas a customer of type 1 has the
smallest consideration set#1 {1}.Therefore,cus-
tomers of typenare the least choosy, whereas cus-
tomers of type 1 are the most choosy.
In our test problems, the more choosy customers
tend to arrive later in the selling horizon so that we
need to carefully protect inventory for them. In par-
ticular, we choose equally spaced time periodsτn≤
τn−1≤...≤τ1over the selling horizon. The proba-
bilitypt,jthat a customer of typejarrives at time period
tis proportional toe−κ|t−τ

j|,whereκis a parameter that
we vary. That is, we havept,j e−κ|t−τ

j|/
∑
k∈}e

−κ|t−τk|.So,
the arrival probability for a customer of typejpeaks
at around time periodτj.Becauseτn≤τn−1≤...≤τ1,as
κ→∞, we obtain an arrival process where customers
of typenarrivefirst, followed by customers of type
n−1andsoon.Asκ→0, we havept,j→1/|}|, in which
case, different customer types arrive with equal proba-
bility at each time period. Thus, we control the arrival
order for the customer types through the parameterκ.
The selling horizon hasT 300 time periods. The
initial inventory of productiisCi 30/α,whereαis
another parameter that we vary to control the in-
ventory scarcity.
Varying the parameters (α, κ)over{0.7,0.8,0.9,
1.0}×{0,0.01,0.03},weobtain12testproblemsinour
experimental setup.

Benchmarks.In our computational experiments, we
compare the performance of the following seven
benchmark strategies.

Greedy Policy (GR).In this benchmark, we use the
greedy policy with respect to the linear value function
approximations{̂Jt:t∈7}, as discussed in Section3.

Rollout Policy (RO).This benchmark is the policy
obtained by applying rollout on the static policy, as
discussed in Section4.

Bid-Prices (BP).We use the classical bid-price policy
in this benchmark. We solve the linear program in (13)
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to estimate the value of a unit of inventory for each
product, called its bid-price. We offer the revenue-
maximizingsetofproductsateachtimeperiod,after
adjusting the revenues from the products by their bid-
prices; see section5.2in Zhang and Adelman (2009).

Offer Sets (OS).We solve the linear program in (13)to
obtain an optimal solution(̂zt(A):A∈̂ ,t∈7)and
(̂qti, :i∈1,≥0,t∈7).Because

∑
A∈̂ ẑ

t(A) 1, let-
tingNtbe the set of products with on-hand inventory
at time periodt, wesampleanassortmentSwith
respect to the probabilities(̂zt(A):A∈̂ )and offer the
assortmentS∩Ntat time periodt.Offeringtheas-
sortmentS∩Ntensures that we only offer products
that are currently available.

Decomposition (DC).This benchmark is the classical
dynamic-programming decomposition method. The
idea is to decompose the dynamic-programming for-
mulation of the problem by the products and to obtain
value function approximations by solving a separate
dynamic program for each product; see section6.2
in Liu and van Ryzin (2008). To our knowledge, this
benchmark is one of the strongest heuristics in practice,
but it does not have a performance guarantee.

Myopic Policy (MY). We can construct myopic policies
by ignoring the future customer arrivals altogether.
In particular, if we are at time periodtwithqti,0units of
production-hand, then the assortment that we offer
to a customer of typejis given by an optimal solution

to the problem maxS∈̂
∑
i∈11{qt

i,0
≥1}φ

t,j
i(S)ri. Weuse

this benchmark to demonstrate the importance of con-
sidering the future customer arrivals when choosing
an assortment to offer.

Inventory Balancing (IB).We implement the inventory-
balancing policy in Golrezaei et al. (2014). LettingΨ:
[0,1] →[0,1]be an increasing function withΨ(0) 0,
if we are at time periodtwithqti,0units of producti
on-hand, then the assortment that we offer to a cus-
tomer of typejis given by an optimal solution to
maxS∈̂

∑
i∈1Ψ(q

t
i,0/Ci)φ

t,j
i(S)ri. Following Golrezaei

et al. (2014), we useΨ(x) e
e−1(1−e

−x). This policy
has a half-approximation guarantee.
To further improve the performance of the bench-
marks, we divide the selling horizon into three equal
segments and recompute the policy parameters at the
beginning of each segment. For GR, for example, if the
remaining capacities of the products at the beginning
of a segment are(Ci:i∈1)and the set of remaining
time periods in the selling horizon is7 ⊆7,thenwe
apply the recursive computation at the beginning of
Section3.1after replacingCiwithCiand7with7,
which yields new value function approximations. We
use the new value function approximations until we
reach the next segment, at which point, we recompute
the policy parameters. We use a similar approach to
recompute the policy parameters for the other bench-
marks,exceptforMYandIB.MYdoesnothaveany
policy parameters to compute. The functionΨin IB
isfixed a priori.

Results.Table1shows our computational results. The
first column in this table labels the test problems by
using(α, κ),whereαandκare as discussed earlier in
this section. The second column shows the upper bound
on the optimal total expected revenue provided by the
optimal objective value of problem (13). The third
through ninth columns show the total expected rev-
enues obtained by GR, RO, BP, OS, DC, MY, and IB,

Table 1.Computational Results for Dynamic Assortment Management

Parameters Upper

bound

Total expected revenue % Gain of RO over

(α, κ) GR RO BP OS DC MY IB GR BP OS DC MY IB

(0.7,0) 4,364 4,229 4,292 4,188 4,234 4,292 3,746 4,046 1.5 2.4 1.4 0.0* 12.7 5.7
(0.7, 0.01) 3,955 3,753 3,893 3,707 3,828 3,861 3,091 3,432 3.6 4.8 1.7 0.8 20.6 11.8

(0.7, 0.03) 3,925 3,726 3,854 3,572 3,783 3,858 2,691 3,168 3.3 7.3 1.8−0.1* 30.2 17.8

(0.8,0) 4,026 3,924 3,959 3,865 3,907 3,951 3,510 3,763 0.9 2.4 1.3 0.2* 11.3 5.0

(0.8, 0.01) 3,937 3,790 3,873 3,668 3,820 3,882 3,051 3,454 2.1 5.3 1.4−0.2 21.2 10.8
(0.8, 0.03) 3,934 3,801 3,882 3,526 3,810 3,901 3,151 3,318 2.1 9.2 1.9−0.5 18.8 14.5

(0.9,0) 3,112 3,022 3,041 2,956 3,012 3,027 2,733 2,904 0.6 2.8 1.0 0.5 10.1 4.5

(0.9, 0.01) 2,809 2,718 2,773 2,645 2,732 2,779 2,325 2,487 2.0 4.6 1.5−0.2 16.2 10.3
(0.9, 0.03) 3,084 2,977 3,040 2,914 2,994 3,073 2,511 2,603 2.1 4.1 1.5−1.1 17.4 14.4

(1.0,0) 3,027 2,940 2,978 2,804 2,916 2,931 2,694 2,848 1.3 5.8 2.1 1.6 9.5 4.4

(1.0, 0.01) 2,483 2,415 2,467 2,389 2,425 2,463 2,070 2,212 2.1 3.2 1.7 0.2 16.1 10.3

(1.0, 0.03) 2,971 2,891 2,946 2,829 2,904 2,967 2,382 2,513 1.9 4.0 1.4−0.7 19.1 14.7
Average 2.0 4.7 1.5 0.0 16.9 10.4

Note.BP, bid-prices; DC, decomposition; GR, greedy policy; IB, inventory balancing; MY, myopic
policy; OS, offer sets; RO, rollout policy.
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which are estimated by simulating each benchmark
over 1,000 sample paths. The remaining columns
show the percent gaps between the total expected rev-
enues obtained by RO and every other benchmark.
The performance gaps except for those indicated with
a star are statistically significant at the 95% level.
Our computational results indicate that RO per-

forms quite well. By our use of separable and non-
linear value function approximations, RO noticeably
improves the performance of GR, which uses linear
value function approximations. Compared with BP
and OS, which are based on the linear program in (13),
RO provides average performance improvements
of 4.7% and 1.5%, respectively. RO and DC are
competitive, but to our knowledge, DC does not have
a theoretical performance guarantee. Ignoring the
future customer arrivals may result in inferior de-
cisions, as indicated by the 16.9% average perfor-
mance gap between RO and MY. The multiplicative
revenue modifierΨ(qti,0/Ci)used by IB does not de-
pend on the future customer arrivals either. As a
result, the average performance gap between RO and
IB is 10.4%. When we compare RO with MY and IB,
the performance gaps are particularly noticeable
whenκis large; the more choosy customers in that
case tend to arrive later, and we need to carefully
protect inventory for these customers.
For GR, it takes 1.8 seconds on average to simulate

its performance over one sample path. This compu-
tation time includes the time to recompute the policy
parameters three times over the selling horizon and to
solve problem (7)tofind an assortment to offer at each
time period. The same average computation time
per sample path for RO is 4.1 seconds. The average
computation times per sample path for BP, OS, and
DC are 147.3, 149.7, and 240.6 seconds, respectively.
The average computation times per sample path
for MY and IB are 0.8 and 0.7 seconds, respectively.
Thus,besideitsfavorablerevenues, RO has quite fast
computation times. In Online Appendix K, we give
the details of all computation times. Golrezaei et al.
(2014) discuss possible variants of IB. We experi-
mented with these variants, but they did not provide
qualitatively different results for our test problems.
In Online Appendix L, we give our computational
results on the variants of IB. In this section, the usage
durations were infinite. In Online Appendix M, we test
the performance of our policies under geometrically
distributed usage durations with different means.

6.3. Street Parking Pricing in the City of Seattle
In our second set of computational experiments, we
focus on the problem of dynamically pricing street-
parking spaces. We treat the parking spaces within
close proximity to each other as one product. After
having been used by a driver for a certain duration of

time, a parking space can be used by another driver,
so the parking spaces are reusable products. The dy-
namicsoftheproblemareasfollows. Whenadriver
arrives into the system with an intention to park in a
certain region, as a function of the remaining parking-
space inventory in the nearby regions, we decide on
thepricestochargefortheparkingspacesindifferent
regions. The driver is informed about the prices in real
time, possibly through a smartphone application. The
driver either parks at a particular parking space or
decides to leave the system. If the driver parks, then the
parking space generates revenue for a random usage
duration. Our goal is tofind a policy for deciding on
the parking spaces to offer and their prices so that
the total expected revenue is maximized.

Data.For brevity of discussion, we describe the es-
sential elements of the data that we use, the approach
that we use to augment the data for compliance with
our modeling assumptions and the methodology that
we use to estimate the model parameters. We defer
the details to Online Appendix N. We build on the
data provided by the Open Data Program in the city of
Seattle; see City of Seattle (2017). Seattle uses parking
rates that are dependent on the location and the time
of day. Through the Open Data Program, we have
transaction data on the use of the street parking spaces
during 20 weekdays of June 2017. Each transaction
record shows a parking event, documenting the start
time, duration, and location of the parking event, along
with the rate paid. We focus on 40 blocks in the down-
town area between the hours of 11 a.m. and 4 p.m. We
partition this area into 11-block clusters, each including
approximately 4 blocks arranged in a 2-by-2 configura-
tion. We refer to each 2-by-2 block cluster as a locale.
The street parking spaces in each locale correspond
to a different product in our model. Thus, we have
n 11 products. To comply with our modeling as-
sumptions, we augment the data from the Open Data
Program as follows. We assume that each driver ar-
rives into the system with the intention to park at a
particular locale. The intended locale of a driver
determines the type of the driver. In Section5.1,we
discussed the extension to multiple customer types.
Because the intended locale of a driver determines her
type, there arem 11 customer types. In the data, we
have access to the locale at which a driver actually
parked, but we do not have access to the intended
locale of a driver. For each driver, we randomly
sample one of thefive locales that are closest to the
locale where she actually parked. We set the intended
locale of the driver as this sampled locale. Once we
augment the data in this way, each transaction record
gives the start time, duration, intended locale, actual
parked locale, and per-hour rate for each parking
event. (The intended locale of a driver corresponds to
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thetypeofthecustomer,andthelocalewhereadriver
actually parks corresponds to the product the cus-
tomer has chosen. If we had set the intended locale
of a driver as the locale where she actually parked,
then customers of a certain type would always be
choosing the same product.) Because we augment the
data from the Open Data Program, we caution the
reader against comparing our results with the real
operations in the city of Seattle.
The set of feasible locales we can offer to a driver

are thefive locales that are closest to her intended one.
As a function of the remaining parking space invento-
ries in these locales, we decide on the prices to charge
for these locales. In Section5.2, we discussed the ex-
tension of our model to the case in which we make
pricing decisions. The driver either decides to park in
one of these locales or leaves the system. If the driver
parks, then we generate a certain revenue, depending
on the parking duration and the charged price. Al-
though we have discussed the extensions of our model
to multiple customer types and to pricing decisions
separately, it is not difficult to combine these exten-
sions and to come up with a variant of our model that
makes pricing decisions under multiple customer
types. It is also not difficult to extend the linear pro-
gram in (13) to the case in which we make pricing
decisions under multiple customer types.

Experimental Setup.As discussed in Section 5.2,
when making pricing decisions, we create multiple
copies of each product, whereby the different copies
correspond to charging different prices for the prod-
uct. As1corresponds to the set of possible parking
locales, using*to denote the set of possible prices
that we can charge for a parking space, offering product
copy(i,h)∈1×*represents charging price levelhfor
localei.Weuseπi,hto denote the per-period fee when
we charge the price levelhfor localei. We assume that
thechoicesofthedriversaregovernedbythemul-
tinomial logit model. So, if we offer the assortment
S⊆1×*of locale and price combinations to a driver
arriving at time periodtwith intended localej,then
she chooses to park in localeiwith probability

φ
t,j
i(S)

eα
j+βπi,h

1+
∑

,g()∈Se
αj+βπ,g

as long as(i,h)∈S.Theparameterβ, which captures
the price sensitivity of the drivers, is assumed to be
constant over all drivers.
Throughout the paper so far, we have assumed that

there is one customer arrival at each time period. This
assumption is not appropriate here because the ar-
rival rate of the drivers varies during the day, but
extending our model to the case in which there is at
most one customer arrival at each time period is

straightforward. We scale the time so that each time
period in our model corresponds to a time interval of 30
seconds. A time interval of 30 seconds is short enough to
ensure that there is at most one driver arrival in the
region of our focus. We usept,jto denote the probability
that a driver with intended localejarrives at time
periodt.Weestimatetheparametersβ,(αj:j∈})and
(pt,j:t∈7,j∈})by using maximum likelihood.
We model the parking duration in locale ias
1+NegBin(si,ηi),whereNegBin(si,ηi)is a negative
binomial random variable with parameterssi∈Z++
andηi∈[0,1]. As discussed in Section4.3,ifsiis small,
then we can perform rollout on the static policy in a
tractable fashion. For each localei,anegativebi-
nomial distribution with the parametersi 2pro-
vides a sensiblefit.
Ultimately, in our experimental setup, we vary
the length of the selling horizon over two values,
11 a.m.–2p.m.and11a.m.–4p.m.Toobtainproblems
with different congestion levels, we scale the arrival
rates with three different factors, 2.5, 3.0, and 3.5. Also,
we vary the number of parking spaces over two values,
55 and 79. This experimental setup yields 12 parameter
combinations for our test problems. From the rates
used by the city of Seattle, the possible rates that we can
charge are within the menu of $2, $4, and $6 per hour.

Benchmarks.We use the benchmarks greedy policy,
rollout policy, and offer sets, which are discussed in
Section6.2. We make the necessary modifications in
thesebenchmarkstoensurethatwecanhandlemul-
tiple customer types and we choose the prices of the
offered products. The performances of bid-prices and
myopic policy were not competitive. Decomposition
and inventory balancing do not extend to reusable
products. Thus, we drop these four benchmarks. We
also add the following benchmark.

Fixed Price (FP).Here, we charge onefixed price for
all locales at all time periods. We test the performance
of the rates $2, $4, and $6 per hour, which is the price
menu used by the other benchmarks. We select the
best constant price. This benchmark is not sophisti-
cated, but it serves as a baseline. In all test problems,
the rate $4 per hour provided the best performance.

Results.Table2shows our computational results.
Thefirst column in this table labels the test problems
by using(7,σ,C),where7∈{11 a.m.–2p.m.,11 a.m.–
4p.m.}is the selling horizon,σ∈{2.5,3.0,3.5}is the
multiplier for the arrival rates, andC∈{55,79}is the
total number of parking spaces. The organization of
the rest of the table closely mirrors that of Table1.All
of the performance gaps in Table2are statistically
significant. To get a feel for the congestion in our test
problems, noting thatE{Durationi}is the expected
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parking duration in localei, we can estimate the
number of times that we can turn over a parking
space in localeiasT/E{Durationi}. The total expected
demand for parking is

∑
t∈7
∑
j∈}p

t,j. Thus, withCi
parking spaces available in localei, the ratio between
the total expected demand and the total available ca-

pacity is
∑
t∈7

∑
j∈}p

t,j

∑
i∈1CiT/E{Durationi}

. For the test problems hav-

ing the smallest demand and the largest capacity with
σ 2.5andC 79, this ratio is 0.72, whereas for the test
problems having the largest demand and the smallest
capacity withσ 3.5andC 55, this ratio is 1.61.
Our results indicate that RO is consistently the

strongest benchmark, providing average performance
improvements of 2.0%, 2.1%, and 4.3% over GR, OS,
and FP, respectively. Comparing RO with OS and FP,
the performance gaps tend to be larger whenσis larger
andCis smaller so that the system is more congested
and the expected demand exceeds the available ca-
pacity by larger margins. For our test problems,
depending on the length of the selling horizon, the
time to compute the value functions{̂Jt:t∈7}for GR
ranges from 362 to 672 seconds. The time to compute
the value functions{Vti:i∈1,t∈7}for RO ranges
from 1,550 to 17,201 seconds. For OS, the time to solve
the linear program in (13) ranges from 894 to 6,535
seconds. A few preliminary runs indicated that the
performance did not noticeably improve for any of the
benchmarks when we recomputed the policy param-
eters. Because the run times were relatively long, we did
not recompute the policy parameters. Overall, the
computation times for RO are significantly longer, but
by using nonlinear value function approximations, RO
can provide significant revenue improvements.

7. Conclusions
We studied dynamic assortment problems with reusable
products and provided policies with half-approximate

performance guarantees. A natural question that arises
is what features of the rewards and transition dy-
namics make our half-approximation guarantees go
through. In Online Appendix O, we give conditions on
the rewards and transition dynamics that allow us to
obtain our half-approximation guarantees. Our con-
ditions on the transition dynamics, in particular, only
require the expected transition dynamics to be linear
in the state, along with a certain decoupling prop-
erty between the effects of the actions and the current
state on the transition dynamics. Considering future
research, our rollout approach decomposes the prob-
lem by the products, which is reminiscent of dynamic-
programming decomposition techniques in revenue
management. To our knowledge, existing decompo-
sition techniques do not provide any performance
guarantees. An exciting research area is to construct
decomposition techniques with performance guar-
antees for other revenue management problems. We
were able to give an improved performance guaran-
tee for a tailored variant of our rollout policy under
infinite usage durations. Our efforts to extend the
tailored variant to arbitrary usage duration distribu-
tions were not yet fruitful. It would be interesting to
give stronger performance guarantees for our rollout
approach under arbitrary usage duration distributions.
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