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Abstract. We provide an approximation algorithm for network revenue management prob-
lems. In our approximation algorithm, we construct an approximate policy using value
function approximations that are expressed as linear combinations of basis functions. We
use a backward recursion to compute the coefficients of the basis functions in the linear
combinations. If each product uses at most L resources, then the total expected revenue
obtained by our approximate policy is at least 1/(1 + L) of the optimal total expected
revenue. In many network revenue management settings, although the number of re-
sources and products can become large, the number of resources used by a product re-
mains bounded. In this case, our approximate policy provides a constant-factor perfor-
mance guarantee. Our approximate policy can handle nonstationarities in the customer
arrival process. To our knowledge, our approximate policy is the first approximation
algorithm for network revenue management problems under nonstationary arrivals. Our
approach can incorporate the customer choice behavior among the products, and allows
the products to use multiple units of a resource, while still maintaining the performance
guarantee. In our computational experiments, we demonstrate that our approximate
policy performs quite well, providing total expected revenues that are substantially better
than its theoretical performance guarantee.
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1. Introduction

In network revenue management problems, we man-
age the limited capacities for a collection of resources
to satisfy the requests for different products that arrive
randomly over time. Such problems find applications
in a variety of settings, including airlines, hospitality,
railways, and cloud computing. In airlines, for example,
the resources are the flight legs and the products are
the itineraries offered to customers that can consume
capacities on multiple flight legs. In hospitality, on the
other hand, the resources are the availabilities of hotel
rooms on each day and the products are the multiple
night stays offered to customers that can consume ca-
pacities on multiple days. The main tradeoff in network
revenue management problems involves keeping a
balance between accepting a product request that is
currently in the system to generate some immediate
revenue and reserving the resource capacities for a
potentially more profitable product request that can
arrive in the future. Nevertheless, the key difficulty in
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finding the optimal course of action arises from the fact
that serving a request for a product consumes the ca-
pacities of the different resources used by the product.
Thus, computing the optimal course of action requires
keeping track of the remaining capacities for all the
resources simultaneously, creating the curse of dimen-
sionality as the number of resources increases.

In this paper, we provide an approximation algo-
rithm for network revenue management problems.
Our problem setup follows the standard network reve-
nue management literature. We have resources with
limited capacities that can be used to serve the requests for
products arriving randomly over a finite selling horizon.
At each time period in the selling horizon, a customer
arrives with a request for a particular product. If we
accept the product request, then we generate a certain
revenue and consume the capacities of the different re-
sources used by the product. The arrivals of the product
requests can have arbitrary nonstationarities, but they are
independent between the time periods. The goal is to find


http://pubsonline.informs.org/journal/opre
mailto:ym367@cornell.edu
mailto:rusmevic@marshall.usc.edu
https://orcid.org/0000-0001-9584-4203
https://orcid.org/0000-0001-9584-4203
mailto:ms3268@cornell.edu
mailto:topaloglu@orie.cornell.edu
https://orcid.org/0000-0002-3049-6719
https://orcid.org/0000-0002-3049-6719
https://doi.org/10.1287/opre.2019.1931
https://doi.org/10.1287/opre.2019.1931

Ma et al.: Approximation Algorithm for Network Revenue Management
Operations Research, 2020, vol. 68, no. 3, pp. 834-855, © 2020 INFORMS

835

a policy to determine which product requests to accept
to maximize the total expected revenue over the selling
horizon. The dynamic programming formulation for this
problem requires a high-dimensional state variable that
keeps track of the remaining resource capacities. Thus, it
is intractable to compute the optimal policy.

1.1. Contributions

Letting L be the maximum number of resources used
by a product, we give an approximate policy that is
guaranteed to obtain at least 1/(1 + L) of the optimal
total expected revenue. In many network revenue
management settings, the number of resources and
products can become large, but the number of re-
sources used by a product remains bounded. In air-
lines, for example, L corresponds to the maximum
number of flight legs included in an itinerary, which
usually does not exceed two or three. When the num-
ber of resources used by a product is bounded, our
approximate policy provides a constant-factor perfor-
mance guarantee. To our knowledge, our approximate
policy is the first approximation algorithm that can
handle arbitrary nonstationarities in the arrivals of
the product request. Also, we note that our perfor-
mance guarantee is independent of the numbers of
resources and products, and it does not involve any
hidden constants that can potentially depend on
other input data.

The idea behind our approximate policy is to use
value function approximations that are expressed
as linear combinations of basis functions. The co-
efficients in the linear combinations are computed
through a backward recursion over the time periods in
the selling horizon. The approach that we use to con-
struct our approximate policy provides flexibility on
two important dimensions. First, our value function
approximations are a member of a relatively broad
class. In our value function approximations, we have
one basis function for each product. The basis function
associated with each product takes the value zero when
we do not have sufficient capacities to serve a request
for the product. Therefore, we refer to our basis func-
tions as availability-tracking basis functions. For any
choice of availability-tracking basis functions, we can
use our backward recursion over the time periods to
compute coefficients for the basis functions in the linear
combinations. In our backward recursion, we have a
tuning parameter 6 whose specific allowable values
are determined by the availability-tracking basis
functions that we use. We prove that if we construct
an approximate policy using the value functions
computed through our backward recursion, then the
approximate policy is guaranteed to obtain at least
1/(1 + 6L) of the optimal total expected revenue. This
result holds for any choice of availability-tracking ba-
sis functions. The performance guarantee of 1/(1 + 6L)

improves as 6 gets smaller. In our approach, the
tuning parameter 6 must be at least one, and there
exist availability-tracking basis functions that permit
choosing the smallest possible value of one for the tuning
parameter 6, in which case, we obtain the perfor-
mance guarantee of 1/(1 + L) discussed in the pre-
vious paragraph.

Second, we start with a network revenue manage-
ment setup where each customer arrives into the sys-
tem to purchase a particular product and each product
uses at most one unit of a resource. This setup allows
us to convey the key ideas without notational clutter,
but we can extend our approach to more general setups.
In particular, we show that we can extend our approach
to a case in which we offer a set of products to each
customer, and the customer chooses among the offered
products. Similarly, we show that we can extend our
approach to a case in which a product may use more than
one unit of a resource, which occurs, for example, in
airlines when group reservations are allowed. If the
customers choose among the offered products, then the
performance guarantee of our approximate policy is still
1/(1+L), whereas if a product uses at most M units
of a particular resource, then the performance guar-
antee of our approximate policy is 1/(1 + (2M - 1)L).
Lastly, our backward recursion is simple and does not
require solving any involved optimization problems,
but it can use the solution to a linear programming
approximation to construct our value function ap-
proximations, while retaining the performance guar-
antee of 1/(1 + L).

1.2. Literature Review

One approach to construct policies in network rev-
enue management problems is based on bid prices,
where we associate a bid price for each resource,
measuring the value of a unit of resource. In this case,
we accept the request for a product if the revenue
from the product exceeds the total value of the re-
sources consumed by the product. Simpson (1989) and
Williamson (1992) compute bid prices using a lin-
ear programming approximation that is constructed
under the assumption that the numbers of product
requests take on their expected values. They use the
optimal values of the dual variables associated with
certain capacity constraints to measure the value of a
unit of resource. Talluri and van Ryzin (1998) show
that such a bid price policy is asymptotically optimal,
as the expected numbers of product requests and the
capacities of the resources increase linearly with the
same rate. Talluriand van Ryzin (1999) use samples of
the product requests in the linear program to capture
information about the distributions of the product
requests. Bertsimas and Popescu (2003) measure the
value of a unit of resource directly by perturbing the
right side of a capacity constraint and resolving
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the linear program. A number of papers characterize
the loss in the optimal total expected revenue for the
policies derived from linear programming approxi-
mations; see Cooper (2002), Maglaras and Meissner
(2006), Jasin and Kumar (2012), and Jasin and Kumar
(2013). These papers focus on an asymptotic regime,
where the total expected demand and the capacities of
theresourcesincrease linearly with the same rate. The
characterization of the losses are additive and it de-
pends on the input data. In contrast, our performance
guarantee holds without an asymptotic regime. Also,
our performance guarantee of 1/(1+ L) is multipli-
cative and does not depend on the input data other
than L.

The value of a unit of resource should depend on
the time left in the selling horizon to utilize the re-
source, as well as the remaining capacity of the re-
source. Thus, bid prices should, in principle, be time
and capacity dependent. There is work on computing
such bid prices. Adelman (2007), Zhang and Adelman
(2009), Kunnumkal and Topaloglu (2010a), and
Kirshner and Nediak (2015) develop methods that
yield time-dependent bid prices, whereas Cooper
and Homem-de-Mello (2007), Topaloglu (2009), and
Zhang (2011) develop methods that yield capacity-
dependent bid prices. Tong and Topaloglu (2013),
Vossen and Zhang (2015a,b), and Kunnumkal and
Talluri (2016a) show that some of these approaches
are equivalent, although their derivations use seem-
ingly unrelated paths. There is also work on in-
corporating customer choice behavior into network
revenue management problems, where customers
choose among the offered products. Some of the work
extends and analyzes the linear programming ap-
proximation to incorporate customer choice behavior;
see Gallego et al. (2004), Liu and van Ryzin (2008),
Kunnumkal and Topaloglu (2008), Bront et al. (2009),
Mendez-Diaz et al. (2010), Meissner et al. (2012),
Talluri (2014), and Strauss and Talluri (2017). There is
also work on approximating the value functions under
customer choice behavior; see Zhang and Cooper
(2005, 2009), Zhang and Adelman (2009), Kunnumkal
and Topaloglu (2010b), and Kunnumkal and Talluri
(2016b). There are papers that use stochastic ap-
proximation to compute booking limits and bid pri-
ces; see van Ryzin and Vulcano (2008a, b), Topaloglu
(2008), and Chaneton and Vulcano (2011). These pa-
pers do not give performance guarantees.

Online packing problems are closely related to
network revenue management problems, as each
packing constraint may capture the capacity of a
resource and each arriving item may capture the re-
quest for a product. Working with the random-order
arrival model for the product requests, Kesselheim

et al. (2014) give a policy with a competitive ratio
of 1-0(+/(logL)/cmin), Wwhere cmin is the smallest

resource capacity. The authors also give an upper
bound of 1-Q(1—1/LYmin=1)) on the competitive
ratio. Thus, their competitive ratio approaches one
as the capacities of the resources become large. The
strong competitive ratio in Kesselheim et al. (2014)
comes at the cost of having to work with the random-
order arrival model, which is restrictive for the net-
work revenue management setting. In the random-order
arrival model, the set of product requests that are to arrive
over the selling horizon is fixed a priori, possibly by an
adversary. Once the set of product requests that are to
arrive is fixed, these product requests arrive according
to a random permutation. A competitive ratio under the
random-order arrival model implies the same competi-
tive ratio under independent and identically distributed
arrivals. However, the competitive ratio in Kesselheim
et al. (2014) does not hold under nonstationary ar-
rivals. Indeed, in Appendix E in the e-companion, we
give a simple example to show that the policy pro-
posed by Kesselheim et al. (2014) performs arbitrarily
poorly under nonstationary arrivals. Online packing
problems are often motivated by the adwords setting,
where assuming stationary arrivals is reasonable, be-
cause the users doing a search today may not be too dif-
ferent from those doing a search tomorrow. However,
assuming stationary arrivals is not reasonable in the
network revenue management setting, because the
customers booking airline tickets close to the departure
time are clearly different from those booking early. We
also tested the policy in Kesselheim et al. (2014) in our
computational experiments under both stationary
and nonstationary arrivals, though it does not have a
competitive ratio in the latter case. The policy in
Kesselheim et al. (2014) noticeably lags behind our
approximate policy in both cases. Much of the other
work on online packing problems also uses the random-
order arrival model; see Devanur and Hayes (2009),
Molinaro and Ravi (2014), Agrawal et al. (2014).
Devanur et al. (2011) work with stationary or ad-
versarial arrivals, but with restrictions on choices
of the adversary. Tan and Srikant (2012) use non-
stationary arrivals, but allow violations of capac-
ity constraints.

The adwords problem is a special case of the online
packing problem, where the revenue and resource
consumption of a product request are both dictated
by the bid that an advertiser places for a keyword.
A number of papers use the primal-dual framework to
design algorithms for the adwords problem; see Mehta
et al. (2007), Buchbinder and Naor (2009), and Goel
etal. (2010). In the primal-dual framework, a tradeoff
function is used to prioritize the bidders for receiv-
ing keywords. For example, the tradeoff function
may prioritize the bidders with the larger remaining
budgets for receiving keywords. After making de-
cisions over the selling horizon by following the
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tradeoff function, one uses the decisions to constructa
primal-dual solution pair for a linear program that
provides an upper bound on the optimal total expected
revenue, in which case, studying the optimality gap of
this solution yields the competitive ratio.

Motivated by product assortment personalization,
Golrezaei et al. (2014) study a problem involving
multiple products with limited inventories. The firm
offers a set of products to an arriving customer. The
customer makes a choice among the offered products
according to a choice model. The goal is to find a
policy to determine which set of products to offer to
each customer to maximize the total expected reve-
nue over the selling horizon. If each product uses
exactly one resource so that L = 1, then our network
revenue management problem under the customer
choice behavior corresponds to the problem studied
by Golrezaei et al. (2014). The authors use the primal-
dual framework to construct a policy with a 50%
competitive ratio. The tradeoff function used by
Golrezaei et al. (2014) adjusts the revenue of each
product as a function of its remaining inventory,
prioritizing the products with larger inventories.
Their policy offers a set of products to maximize the
immediate expected adjusted-revenue from each cus-
tomer. Our availability-tracking basis functions are
somewhat analogous to the tradeoff functions in the
primal-dual framework in the sense that our basis
functions also adjust the revenue of each productasa
function of the remaining inventories of the re-
sources, in which case, we accept a product request
only if the immediate adjusted-revenue from the
product is nonnegative. However, our basis functions,
by themselves, are not sufficient to obtain a perfor-
mance guarantee. To obtain our performance guar-
antee, we need to weigh our basis functions with
coefficients and the computation of the coefficients
requires designing a backward recursion over the
time periods.

Recently, Rusmevichientong et al. (2020) consider
dynamic assortment problems with random usage
durations. In their problem setting, each customer
uses a product for a random duration of time, before
returning it. The authors use linear value function
approximations to obtain a policy with a 50% per-
formance guarantee. The slopes of the linear value
function approximations are computed by using a
backward recursion that resembles ours on the sur-
face, but both papers tackle rather different chal-
lenges. In Rusmevichientong et al. (2020), there is
no resource network. If a customer chooses a prod-
uct, the customer consumes only the inventory of
this product. In the absence of a resource network,
linear value function approximations are sufficient
to get a performance guarantee, but under a resource
network, linear approximations were not sufficient

for us. When we use nonlinear basis functions, the
opportunity cost of the resource capacities used by a
product becomes dependent on the system’s state.
Furthermore, since different products may use the
same resource, it is difficult to account for the op-
portunity cost of each resource separately. We get
around these difficulties by constructing a state-
independent upper bound on the opportunity cost
and constructing a backward recursion over the
time periods that accounts for the optimal total ex-
pected revenue from a particular product. Neverthe-
less, we cannotclaim that our work is a generalization of
Rusmevichientong et al. (2020) either, because in-
corporating random usage durations in the presence
of a resource network brings its own complications.

There is work in dynamic optimization with im-
plications on revenue management. Chan and Farias
(2009) give approximation algorithms for a certain
class of stochastic control problems. Their work im-
plies that if each product uses only one resource, then
a myopic policy provides a 50% performance guar-
antee even under customer choice behavior. Asadpour
and Nazerzadeh (2016) give algorithms for maxi-
mizing random monotone submodular functions.
Their nonadaptive algorithm implies that if there
is a single resource, then a static algorithm that a
priori chooses the product requests to accept provides
a performance guarantee of (e — 1)/(2e). Lastly, Wang
etal. (2016) and Gallego et al. (2016) give algorithms
with performance guarantees for dynamic resource
allocation problems, but they also consider the case
where each product uses one resource.

1.3. Organization

In Section 2, we give a dynamic programming for-
mulation for the network revenue management prob-
lem. In Section 3, we construct our approximate policy,
provide a performance guarantee, and show that this
guarantee is tight. In Section 4, we give extensions of
our approximate policy to the cases where the cus-
tomers choose among the products and a product
may consume more than one unit of a resource. We
also discuss how to leverage a linear programming
approximation when constructing our approximate
policies. In Section 5, we provide computational ex-
periments. In Section 6, we conclude.

2. Problem Formulation

The set of resources is £ and the set of products is §.
The capacity of resource i is C;. If we accept a request
for product j, then we consume one unit of capacity of
each resource in the set A/ C £. We use L to denote the
maximum number of resources that can be used by a
product, so L = maxjeg |A/|. Accepting a request for
product j generates a revenue of 7;. We have T time
periods in the selling horizon indexed by 7 = {1,..., T}.
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Each time period corresponds to a sufficiently small
interval of time so that there is at most one product
request at each time period. We get a request for
product j at time period ¢ with probability A]. With
the remaining probability 1 - Tjcq 4], there 15 no re-
quest for a product at time period t

Our goal is to find a policy to determine which
product requests to accept at each time period to
maximize the total expected revenue over the sell-
ing horizon, while adhering to the capacity avail-
abilities of the resources. To capture the system’s
state, we let x; be the remaining capacity of resource i
at the beginning of a generic time peru)d Therefore,
we can use the vector x = (x;:i € ¥) € ZL' to capture
the state of the resources. The set of possible states
is 9 = {er' L x <C;Vie £}. We can accept a re-
quest for product j when we have at least one unit
of capacity for each resource used by product j.
Therefore, letting 1} be the indicator function, we
can accept a request for product j if and only if
[Tieas Lig>1y = 1.

We use Vi(x) to denote the maximum total ex-
pected revenue over time periodst, t+1,...,T, given
that the s?fstem is in state x at time perlod t. Let-
ting e; € Z" be the unit vector with a one in the ith
component and defining [a4]* = max{a, 0}, we can
find the optimal policy by computing the optimal
value functions {V*(x) : x € 2, t € I} through the dy-
namic program

Vi) = D A (I—l ]1{:,-21})
jeF i€Al
. max{rj + v (x - Z e
icAi

VHI(x)}

(1 24 +Z Al (1 [Ty |V ()
€A/
= V!+1(x) + Z /1; (I—l ]1{,;1.21})
je¢ " \ieAl
+
rj— V&*(x) + VI* (x - Z e; l , (1)
ieA
with the boundary condition that VT*! = (. In this

dynamic program, if wehavearequest for product jat
time period t and we have capacities on all resources
used by product j, then we have a choice to accept or
reject the request. If we accept, then we generate a
revenue of 7;, and the state of the resources at the next
time period is x — Yc4 €. If we reject, then we do not
generate revenue and the state of the resources at the
next time period remains at x. Also, if there is no
request at time period t or there is a request for some

product, but we do not have capacity on some re-
source used by the product, then we do not accept a
request, in which case, the state of the resources at the
next time period remains at x. The second equality in
Equation (1) follows by arranging the terms. Letting
C=(C;:i€e %) be the vector of initial resource ca-
pacities, the optimal total expected revenue is V!(C).
By Equation (1), given that the state of the resources
at time period t is x, if r; > V"*!(x) - V*'(x — Ziew @),
then it is optimal to accept a request for product j as
long as we have capacity on all resources used by
product j. Here, we can view V/*1(x) — V/*1(x— 3,4 €;)
as the opportunity cost of the capacities used by
product j.

The size of the state space is |2| = O([T;e¢ C;), which
increases exponentially with the number of resources,
making the computation of the optimal value func-
tions intractable.

3. Approximate Policy

We construct approximations to the optimal value
functions using a linear combination of basis func-
tions. We use the following outline. In Section 3.1, we
describe our basis functions. In Section 3.2, we show
how to compute the coefficient of each basis function
in the value function approximations. In Section 3.3,
we show the performance guarantee for our approxi-
mate policy. In Section 3.4, we show that this per-
formance guarantee is tight.

3.1. Requirements for Basis Functions

We approximate the optimal value function V' using
the value function approximation H'. To construct the
value function approximation H', we use a linear
combination of basis functions. In particular, for each
product j, we have a basis function ¢, : 2 — [0,1]. In
this case, the value function approxunahon H' is
given by

H'(x) = > 7} ¢,(x), (2)
jes

where % = {p;:j € $} is a prespecified collection of
basis functions and {yj:j€$,t€ T} are adjustable
coefficients. To construct our approximate policy, we
replace V**! on the right side of Equation (1) with H'*1.
Therefore, given that the state of the resources at time
period tis x, our approximate policy accepts a request
for product j as long as r; > H'*(x) — H"*'(x — Zicqs &)
and we have capacity on all resources used by product j.
We refer to our basis functions as awilability-tracking
basis functions because we will impose the condition
that qoj(x) takes the value of zero if the vector of resource
capacities x does not provide enough availability to
serve a request for product j. Following is the full
definition of availability-tracking basis functions.
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Definition 1 (Availability-Tracking Bases). The collection
% ={p;:] € $} iscalled a collection of availability-tracking
basis functions if it satisfies the following conditions:

a. Availability tracking: Foreachj € § and x € 2, we
have ¢,(x) = 0whenever x; = 0 for some i € Al. Thatis,
@;(x) ‘*’- [Tiea Lixz1y-

b. Limited dependence: Foreachj € § and x € 2, the
basis function ¢,(x) only depends on (x; : i € A). That
is, for any x,y € 91 with x;=y; foralli e Al, we have
@,(x) = @,(y).

C. Normahzatlon For each je ¢, we have
¢, (C) = 1.

As discussed right before the definition, the range
of @, is the interval [0, 1]. The first property ensures
that ?; (x) takes the value zero if the resource capacities
xarenot sufficient to serve a request for productj. The
second property ensures that ¢, (x) is independent of
the capacities of the resources that are not used by
product j. The third property ensures that ¢;(x) is one
when the resource capacities x are at their largest
possible values. For example, the minimum basis
function ¢,(x) = min;.y & and the polynomial basis
function qo (x) = naeA; & satisfy the three proper-
ties in the beﬁmhon 1. One can check that if ®; (x)
is linear in x, then it cannot satisfy the three proper—
ties. Therefore, linear basis functions are not avail-
ability tracking.

Given a collection # = {@; :j € §} of availability-
tracking basis functions, we c{eﬁne the maximum scaled
incremental contribution Az from a unit of resource as

Az = max max C; X
jeF il xed:x;=1

( @(x) - (x—e) )

A collection with a smaller value of Ag will yield an
approximate policy with a better performance guar-
antee, but A z can never be smaller than one, as shown
in the next lemma.

Lemma 1 (Bound on Change in the Value of Bases). If
2 ={p; :j € $} is a collection of awilability-tracking basis
functions, then we must have Ag > 1.

Proof. Forany product j and resourcei € A/, by parts (a)
and (c) of Definition 1, we have qo(C Cie;) =0 and
qoj(C) = 1. Therefore, a telescoping sum yields

1= QOI(C) - qoj(C - Cej) =

G
®; (Z Cees + hes)
h=1 s#
S Az
@[ 2 Ce + (-1 | < Z?= Az,
s# h=1 1

where the inequality holds because Ay > C; X (ﬁ";
(Es#i Cses +he;) — @I(Es# Cses + (h—1)e;)) by the def-
inition of A%. O

As shown in the next two examples, the lower
bound in Lemma 1 is tight.

Example 1 (Minimum). Let @;(x) = min;ey &. It is simple
to verify that 2 = {@ : j € $} satisfies the three properties
in Definition 1, so &gg >1 by Lemma 1. Moreover,

@,(x) - ,(x — e;) = min '{Cf] 12?{%]

1 4=
J’_(_J','—l = Xi 1'{’}1'1
Ampw wEmpiak
0 if &l>minZ.
J teAl

The quantity in all three cases on the right side of the

equation is no larger than 1/C; so that G (qo (%) -
qoj(x ¢;)) <1, in which case, we get Ag < 1. Thus, we
must have Ag = 1.

Example 2 (Polynomial). Let ¢, (%) = TTieas & 1t is sim-
ple to verify that 2 = {g, ;e $} satisfies the three
properties in Definition 1, so Az > 1by Lemma 1. Also,

P;(x) — ¢;(x — &)

— Xe) _[xi-1 *
(DMC") (C‘ re];\l{s}cf)

1 xf 1
C! FeAT\{i} Ct’ C!

where the last inequality follows because x; < Cy.
Therefore, we have Ci(¢/(x) - ¢;(x — &;)) <1, indicat-
ing that Az < 1. So, we get Az = 1.

By the discussion so far, if we set qoj(x) = mingy &or
?; (x) = [Tiew Zfor all j € §, then the collection of basis
functions % = {qo’i j € $}is availability tracking with
Ag = 1. There are many other availability-tracking
basis functions. In Appendix A in the e-companion,
we give three results that allow us to construct rich
collections of availability-tracking basis functions
and guide us to choose a collection of availability-
tracking basis functions. First, we show that if % =
{@; : j € $}is a collection of availability-tracking basis
funchons andf : [0,1] — [0, 1] is anondecreasing and
differentiable function withf(0) = 0and f(1) = 1, then
letting p;(x) = f(¢;(x)) for all j € §, the collection of
basis functions Z = {p;:j€ $} is also availability
tracking and Ag < Agmax,gqo, 11 f (a). For example,
using this result with ¢ (%) = Tliea gand f(a) =(1 —€™)/
(1—e™),itfollows that thecollechonofbasw functions
2 ={p;j:j € $} with

—e l_[w x:/C;
— e—l

pi(x) = f(p,(x)) =

is availability tracking. It might be difficult to see
at a first glance that the previous basis function is
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availability tracking. Second, we show thatif, for each
ie¥, gi:[0,1] = [0,1] is a nondecreasing and dif-
ferentiable function with g;(0) = 0 and g;(1) =1, then
letting p;(x) = mine4s gi(xi/Ci) or pj(x) = ITiew gi(xi/Ci)
for all j € ¢, the collection of basis functions Z = {p; :
j € $} is also availability-tracking and Ay < maxiey -
maXaeo,1] & (@). For example, using this result with
gi(@) = (1 —e)/(1 —e™), it follows that the collection
of basis functions {p; :j € $} with p;(x) = min;.(1 -
e ) /(1 ~e™) or pj(x) = Miea(l — e/ /(1 —€7) is
availability tracking. By using these two results, we
can construct rich collections of availability-tracking
basis functions. Third, Definition 1 does not require
the availability-tracking basis functions to be non-
decreasing, but we show that if Z = {p, : j € $}isany
collection of availability-tracking basis functions,
then we can always construct a collection of non-
decreasing availability-tracking basis functions 2 =
{pj :j € $} such that Ay < Ag. Since a collection of
basis functions % = {qaj :j€ $} with a smaller value
of Az will yield an approximate policy with a better
performance guarantee, this result indicates that it is
preferable to use nondecreasing basis functions. In
Appendix A in the e-companion, we also give an
example of a nonmonotone basis function.

The discussion so far focuses on the basis functions
{p;:j€ $} in the value function approximations in
Equation (2). Next, we discuss computing the co-
efficients {y}:je §,t € T}.

3.2. Tuning the Coefficients

To compute the coefficients {y]:j€ $,t€ T} in the
value function approximations in Equation (2), we
use the following backward recursion over the time
periods:

* Initialization: Let 2 = {p; : j € §} be any collec-
tion of availability-tracking basis functions and 6 >
Az be a tuning parameter. Initialize y{*! = 0 for all
jed.

¢ Coefficient computation: For each t=T,T-
1,...,1, use the coefficients {y}“ :j € $} to compute

{rj:jeg}tas

+

1
Vi=Alni—0 25 2 Yy vk | 41T )
i keg

e Al

We shortly provide an intuitive interpretation for the
presented algorithm. The algorithm allows us to com-
pute {yj:j€ §,t € T}, which specifies the value func-
tion approximations {H’ : t € 7} given in Equation (2).
In our approximate policy, we make the decisions for
the product request at time period t by replacing the
optimal value function V**! on the right side of Equa-
tion (1) with H**!. Thus, given that the state of the system
at time period t is x, if 7; > H™*'(x) - H*'(x — Z;ew ),

then our approximate policy accepts a request for
product jas long as we have capacity on all resources
used by product j. Next, we give an intuitive in-
terpretation for the coefficients {y;:j € §,t € 7} and
the backward recursion in Equation (3) that we use to
compute these coefficients.

To give an intuitive interpretation for the coeffi-
cients {y} : j € $,t € T}, we note that the optimal total
expected revenue over the selling horizon is given
by V!(C). Therefore, H'(C) is our approximation to the
optimal total expected revenue over the selling ho-
rizon. Since ¢,(C) =1 for all je § by part (c) of
Definition 1, we have H'(C) = Zjeg y} qoj.(C) = Yjes y},
which implies that Ty ] is our approximation to the
optimal total expected revenue over the selling ho-
rizon. Thus, we can interpret y} as our approximation
to the optimal total expected revenue that we can ex-
tract from the requests for product j over the selling
horizon. In this case, extending the argument in-
tuitively to a generic time period, we will also in-
terpret y} as our approximation to the optimal total
expected revenue that we can extract from the re-
quests for product j over time periods t,t+1,...,T.
Since y; is our approximation to the optimal total
expected revenue that we can extract from the re-
quests for product j over time periods t,t+1,...,T,
whereas y}” is our approximation to the optimal
total expected revenue that we can extract from
the requests for product j over time periods t+1,
t+2,...,T, wenaturally expect that y! > y*1. Noting
that [a]* > 0 for anya € R, by Equation (3), we indeed
have yf > i+l

To understand the intuitive idea behind the back-
ward recursion in Equation (3), recall that we view
Vi*(x) — V"*(x — Ticai &) as the opportunity cost of
the capacities that are used by a request for product j
that we accept at time period t. Using our value
function approximations, we can approximate this
opportunity cost by H"*!(x) — H*!(x — X, €;). Con-
sidering the value function approximation H"*!(x) =
Tjes 7;" @;(x) with any collection of availability-
tracking basis functions # = {¢, : j € §}, it is possi-
ble to show that we can upper bound the opportunity
cost H*(x) - H*!(x — Zicw &) as H™(x) —H*'(x—
Sicai€i) <0 Ficai Clizkeg Ljicay yi"’l, aslong as 6 > Ag.
We show this result in Lemma 3 when we analyze
the performance of our approximate policy. Note
that the upper bound 6 ey & Skeg Lijeary Vi does
not depend on the system state. Thus, we use
0 Tiea & Zkeg Ljjeary yy™! as a state-independent ap-
proximation to the opportunity cost of the capac-
ities that are used by a request for product j that we
accept at time period t. In this case, going back to
Equation (3), if we accept a request for product j at
time period ¢, then we obtain a revenue of rjand we
approximate the opportunity cost of the capacities
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that we consume by using 6 Zicu & Skeg Ljeayy Vi
We accept a request for product j only if the reve-
nue from the product exceeds the opportunity cost
of the capacities consumed by product j. Thus, [r;—
6 Tien & Skeg Leayy V4] is our approximation to the
net revenue contribution from a request for product j
at time period t. By the discussion in the previous
paragraph, y} is an approximation to the optimal total
expected revenue from product j over time periods
t,t+1,...,T. Since we have a request for product j at
time period t with probability A!, the recursion in
Equation (3) states the following. 'i"he approximation
to the optimal total expected revenue from product j
over time periods t,t+1,...,T is given by the ap-
proximation to the expected net revenue contribution
fromproduct jattime period t plus theapproximation
to the optimal total expected revenue from product j
over time periods t+ 1,t+2,...,T.

In the next section, we show that our approximate
policy is guaranteed to obtainatleast 1/(1 + 6L) fraction
of the optimal total expected revenue. The proof of
this performance guarantee involves two steps. In the
first step, we use a linear program whose objective
value provides an upper bound on the optimal total
expected revenue. In particular, assuming that the
total number of requests for each product takes on its
expected value, this linear program finds the number
of requests to accept for each product. The total expected
number of requests for product j over the selling hori-
zon is Yieg Aj. Letting A; = g Aj for notational
brevity and using the decision variable z; to capture
the number of requests for product j that we plan to
accept over the selling horizon, the linear program
has the form

Zip= max{z rizi: > Lgeanzj <G Vied,
¥ jeg

ngngj V}Gg’} (4)

The objective function accounts for the total revenue
over the selling horizon. The first constraint ensures that
the total capacity consumptions of the resources do not
exceed the initial capacities. The second constraint en-
sures that the numbers of requests that we serve for the
products do not exceed the expected demands. We
show that we can use the coefficients {y} : j € §,t € T}
that are computed through Equation (3) to construct a
feasible solution to the dual of the previous linear pro-
gram and this feasible solution provides an objective
value of at most (1+6L) Sjeg ;. Since the dual is a
minimization problem, we get (1 + 6L) Zjeg ¥} > Zjp >
V1(C), where the second inequality uses the fact that
the optimal objective value of the linear programis an
upper bound on the optimal total expected revenue.

In the second step, we use backward induction over
the time periods to show that the total expected
revenue obtained by our approximate policy is at
least Tjegy;. The intuition behind this result is that
the recursion in Equation (3) uses the upper bound
0 Ziew C%Ekeg Licayy 7! on the opportunity cost of the
capacities used by each product j. So, intuitively
speaking, y] computed through the recursion in
Equation (3) turns out to be a pessimistic approxi-
mation to the optimal total expected revenue ob-
tained from product j over the selling horizon. In this
case, we will show that the total expected revenue
obtained by our approximate policy is at leastas large
as the pessimistic approximation of the optimal total
expected revenue Yjegy;. Thus, letting APP be the
total expected revenue oijtained by our approximate
policy, we have APP > 3;c5;. Using the chain of
inequalities at the end of the previous paragraph, we
get APP > S5 y) > 7 Zip > 17 V'(C), establishing
that the total expected revenue obtained by our ap-
proximate policy is guaranteed to be at least 1/(1 + L)
fraction of the optimal total expected revenue.

In the next section, we follow the two steps dis-
cussed in the previous two paragraphs to show this
performance guarantee for our approximate policy.

3.3. Performance Guarantee for the
Approximate Policy

Recall that once we compute the coefficients {y}: j € ¢,
t € I} using Equation (3), in our approximate policy,
given that the state of the resources at time period ¢
is x, we accept a request for product jas long as r; >
H'"l(x) — H*!(x — X,cu ;) and we have capacity onall
resources used by product j. To formally state our
approximate policy, we use u?pp’t :9 — {0,1} to de-
note the decision function of our approximate policy
at time period t. Given that the state of the resources
at time period ¢ is x, we have u?pp’t(x) =1 if our ap-
proximate policy accepts a request for product j at
time period t. Otherwise, we have u?pp" (x)=0.

Therefore, u/*(x) is given by

1

u;\pp,t(x) — I—l ﬂ{x,-zl} ifrj > HHI(J:) —H* (x - Z 8;‘),
ieA ieAl
0 otherwise.

€

In the next theorem, we give a performance guarantee
for this policy as a function of the tuning parameter 6
in Equation (3) and the maximum number of re-
sources L used by a product.

Theorem 1 (Performance). If the tuning parameter O
satisfies @ > Ag, then the total expected revenue obtained
by the approximate policy is at least 1/(1 + 6L) fraction of
the optimal.
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We devote the rest of this section to giving a proof of
Theorem 1, but before we go into the proof, we make
three remarks on this theorem. First, to obtain the best
performance guarantee, we need to choose the tuning
parameter 6 as small as possible and the smallest
possible value of 0 in the theorem is Ag. By Lemma 1,
we have Az > 1, but as shown in Examples 1 and 2,
there are choices of basis functions under which
Az = 1. Therefore, working with these basis func-
tions, we can choose the tuning parameter 6 as one
and obtain an approximate policy whose total ex-
pected revenue is at least 1/(1+L) fraction of the
optimal total expected revenue. In many network rev-
enue management problems arising in settings such as
airlines and hotels, each product uses only a small
number of resources. Therefore, even though the num-
ber of resources can be large, as long as the number
of resources used by a product is uniformly bounded,
we obtain a constant-factor approximation guarantee.
Second, although we obtain the best performance
guarantee by choosing € at its smallest possible value
of Ag, our computational experiments indicate that
increasing 8 beyond Az can improve the total ex-
pected revenue of the approximate policy. We view
the tuning parameter 6 as a knob that provides
flexibility in the implementation of our approximate
policy. Third, as is the case for most constant-factor
approximation algorithms, the performance guar-
antee in Theorem 1 is a worst-case guarantee. In our
computational experiments, we compare the total
expected revenue obtained by our approximate pol-
icy with a computationally tractable upper bound on
the optimal total expected revenue, and demonstrate
that the approximate policy performs substantially
better than its worst-case performance guarantee.
Next, we turn to the proof of Theorem 1. The proof uses
a sequence of lemmas.

In the next lemma, we show that (1 + 6L) Sjeg )} is
an upper bound on V!(C). The proof isbased on using
{yj :j € $,t € T} to construct a feasible solution to the
dual of problem (4).

Lemma 2 (Upper Bound on the Optimal Total Expected
Revenue). If the coefficients {y;:j€ $,t €T} are com-
puted through Equation (3), then we have V1(C) < (1 + 6L)

Zies V-

Proof. It is a well-known result in the network revenue
management literature that the optimal objective value
of problem (4) is an upper bound on the optimal total
expected revenue; see Bertsimas and Popescu (2003).
Thus, we have Z;p > V!(C). Problem (4) is feasible and
bounded because setting z; = 0 for all j € § provides a
feasible solution and the decision variables have upper
bounds. Thus, the optimal objective value of the dual
of problem (4) is also Zj . Using the vectors of dual

variables p = (y;:i€ ¥) and ¢ = (0 : j € §), the dual
of problem (4) is min ,a)E]R?HJl{E“EE Ci M + Zieg Ajoj:
e ]l{;@a‘;} i +0j = T (C/j‘ € g’} The decision variable
oj has a nonnegative objective function coefficient, so
it takes on its smallest possible value in an optimal
solution. Writing the constraints in the dual problem
as 0j > 1 — Yiey Lgeanpi for all j € $ and noting that
the decision variable o; is nonnegative, the smallest
possible value of 0; is [r; — Tjce 1 jeanpti] ™ In this case,
replacing the decision variable o; by its value in an op-
timal solution, we can write the dual of problem (4) as

ri— % ﬂ{sm}ﬁgl } (6)

Z,= fgm%{g Cipi + % A

We define the solution fi = (f1; : i € £) to the problem
in Equation (6) by setting fI; = & Steg Ljjear; yx for all
i € £. Noting Equation (3), since [a]* > Oforanya € R,
we have y} >9)7>...2y 2y/* =0 for all j€§,
which implies that fii>0 for all i€ £. Thus, i is a
feasible solution to problem (6). In this case, the ob-
jective value provided by this solution is at least Z] p,
yielding

+
Z < D G+ D A =2 ]l{ieAf}pfl
ie¥ jeg ie¥

G
= é Ci G ;} ﬂ{seAt} ]Vflc

+ 24

+
0
Ti— Z Lican C Z ]l{seAt} ]Vflcl
i3 e i keg

=0 Z Z ]l{a‘eA*} :Vflc

kes €2

DWW

+
1
=0 Z C Z ]l{ieA"} ]Vflcl
j€g teT icAl 1 keg

DN EDIPIWY
keg

jEF teT

+
1
H=0> = S 1. y‘“l
! ieAfokeg {EA} k

= 9Lé n+ -7

jEF teT
=(1+6L) > y},
j<¥

where the second equality uses the fact that A; = 3eq A,
the second inequality uses the fact that Yice Ljcaq =
AN <L and yp>y2>...2yf >y[*! for all ke g,
the third equality holds because y! — /! = [r; = 0 Siew & -
ke Liean 7i' 1" by Equation (3), and the fourth
equality follows by noting that Zreg[y}— yi*'] =}
Thus, we have (1 + 6L) Sjcg y} >Z; »,in which case, the
desired result follows from the factthat Z; , > V1(C). O
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In the next lemma, we bound the opportunity cost
of the capacities that are consumed by product junder
our value function approximations.

Lemma 3 (Bound on the Opportunity Cost). For a collection
of availability-tracking basis functions % = {qoj 1je $}, let
H'(x) = Zieg Vi @, (x), where the coefficients {y} : k € $}
satisfy i > 0 for all k € §. Then, for each j€ § and x € 2
such that x — Ycq i 2 0, we have

H'(x)—H' (x - ; e| <Az ; ékezg ]l{ieA’f}y;c'

Proof. We prove the result using induction on the
cardinality of A’. Consider the base case where |A/| = 1
so that we have A/ = {i} for some i € £. In this case,
we get

H(x)-H(x-e) = ggﬂ{smt}yi(ﬂ(x) - plx—er))

Az ;
< ?5:3 % ]l{seAt} Vir ?)

where the equality holds because ¢,(x) — ¢, (x — &) =
0 whenever i ¢ A¥ by part (b) of Definition 1 and the
inequality follows from the definition of Ag. Thus, the
base case holds. Suppose that the result holds for any
|A/] < s. Consider a case in which |A| =s+ 1, so A/ =
BuU {¢} for some BC & with |B|=s and ¢ € £ with
{ ¢ B. Letting y = x — Y;cp e;, we obtain

H'(x) - H' (x -2 e;)
icAl
= H'(x) - H' (x -6 —ef)

ieB

- 109 (x-S 4 (s~ el

ieB i€B

—H‘(x—Ze;—ef)

i€B

< A.@Z%Z Uiy i + Hy) - H(y — e)

i€B ~1 keg
1 Aa
<Az > => 1y +— >, 1 :
“;a% (ieat} Vi QEZ} (eerr) Vi
1
=A.‘B = ]]-; t}/t,
SE T et

where the first inequality follows from the induction
assumption, the second inequality follows from the
base case, and the last equality is by the fact that
Al =BU{f}. O

We obtain the term 1,44 on the right side of
Equation (7) due to part (b) of Definition 1, which, in
turn, yields the term Tc.q on the right side of
Equation (3). Without this term, the upper bound in
Lemma 2 would involve (1 + 0|¥]) rather than (1 + 6L).
Next, we use this lemma to show that the total ex-
pected revenue obtained by our approximate policy
is at least Tjegy;. Let U'(x) be the total expected
revenue obtained by our approximate policy over
time periods t,t+1,...,T given that the state of
the resources at time period t is x. Noting the deci-
sion function for the approximate policy in Equa-
tion (5), we can compute {U':te J} through the
dynamic program

U'(x)= > A u?pp"(x)
jeg

-]

icAl
+ (1 - A+ DA (1 - u?pp"(x))) u*(x)
j<¥ j<¥

= U*(x) + % AL PP ()
I

= U (x) + U™ (x -3 e;) l (®)

e Al

with the boundary condition that U™! = 0. In the
dynamic program in Equation (8), we have a request
for product j at time period ¢ with probability A}, in
which case, if we have u?pp" (x) =1 so that the ap-
proximate policy accepts this request, then we obtain
arevenueofr;and the state of the resources at the next
time period is x — X €. If there is a request for
product j at time period £, but we have u?pp’t (x)=0,
then the state of the resources at the next time period
remains at x. With probability 1 - X;cg A}, there is no
request, in which case, the state of the resources at
the next time period also remains at x. The second
equality is by arranging the terms.

The total expected revenue obtained by our ap-

proximate policy is U'(C). In the next lemma, we
show that this total expected revenue is at least
Zjes ¥j-
Lemma 4 (Lower Bound on Performance). If the tuning
parameter O satisfies 0 > Az and the coefficients {y; 1jey,
t € T} are computed through Equation (3), then we have
uic) = Zjeg y}.

Proof. We use induction over the time periods to
show that U(x) > H'(x) for allx € 2 and t € J, where
H'(x) = Sjeg yj @;(x) with {y}:j€ $,t € T} computed
through Equation (3). Consider the base case at time
period T +1. Since U™ =0 and y/*! =0, the base
case holds. Suppose that the result holds at time
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period t+ 1, so U (x) > H*!(x) for all x € 9. On the
right side of Equahon (8), the coefficients of U*1(x)
and U"™'(x— Xea ) are, respectively, 1— Sjcg A
u?pp ‘(x) and Al ?pp" (x), which are normegahve
Since U1 > Hi" by the induction assumption,
replacing U on the right side of Equation (8) with
H™1, the right side of Equation (8) gets smaller. Thus,
we have

U'(x) 2 ')+ D0 A 1P (x)

jeg

. [rj - H"*'(x) + H*! (x -3 e;) l
€Al
— HHI(x) + Z Al (l_l ]l{x,>1})

ieAS

. [rj - H"*'(x) + H*! (x -3 e;) l
icA
> H*(x) + Z 3} (l_l ]1{:,-21})
i3 \ie
1 |
) [rf -0 ;aé ]l{seAt}]Vk ll
= H'Hl(x) + Z (l_l 11{1'121}) (:Vj :V;-H)

je§ \ieAi

> H!+1(x) + Z (pj(x) (:VI f+1) Ht(x)_ (9)

Here, the first equality follows by the definition of the
decision function in Equation (5) as we have u?pp"(x) =
1 if and only if [Tiea Ly =1 and r;— H*'(x)+
H"'(x— 3;ea€) > 0. The second inequality follows
from Lemma 3 and the fact that 8 > Ag. The second
equality uses the definition of y} in Equation (3). The
third inequality follows from part (a) of Definition 1,

along with the fact that y} — y“l 2 0. The last equality

holds because we have H“l(x) Zies Vi @,(x). So,
U'(x) > H'(x), completing the induction argument.
This inequality at =1 and x = C, along with part ()
of Definition 1, yields U'(C) > H'(C) = Zjes 7} @
(C) 2 jeF :Vj O

Note that due to part (a) of Definition 1, we can use
P (x) in the last inequality in Equation (9) as a lower
bouncl substitute on the feasibility condition [Ties -
1,51} for accepting a request for product j. The proof of
Theorem 1 directly follows by combining Lemmas2 and 4.

Proof of Theorem 1. The optimal total expected revenue
is V1(C), whereas the total expected revenue obtained by
our approximate policy is U'(C). In this case, by Lem-
mas2and 4, wehave U'(C)>Zjegy; > V'(C)/(1+6L).

3.4. Tightness of the Analysis
In this section, we give a class of problem instances
to demonstrate that the performance guarantee in
Theorem 1 is tight for any L. Fix two positive integers
K and B. We consider a problem instance with K re-
sources and K + 1 products. We index the resources
by £ ={1,...,K} and the products by $ ={1,...,K,
K + 1}. The initial capacities of the resources are C; =
B+1lforallie £ Forj=1,...,K, product j uses only
one unit of resource j. Product K + 1 uses all of the K
resources. That is, A/ = {j} for all j=1,...,K and
A®*1 = £ Note that L = max;eg lAr’| K. The revenues
of the products are given by 7; = zi7(1 - ) for all j =
.,Kand rxs1 = 1. Thereare K§ +1 hme periods in
the selhng horizon indexedby J = {1,..., KB + 1}. For
j=1,...,K, the requests for product j arrive only at
time periods (j —1)f+1,(j—1)f+2,...,jB. Atthelast
time period, we have a request of product K+ 1. In
particular, for j=1,...,K, we have

1 if —1)B+1<t<jB,
Y ={ (-1 B4
7|0 otherwise,
. _{1 if t=KB+1,
K17 10 otherwise.

Even if we accept all of the product requests, we do
not run out of the capacities of any of the resources.
Thus, the optimal policy accepts all requests, in which
case, the total expected revenue of the optimal policy
is OPT = KIB r+rke1 = ,6+1 (1 ,6) +1.

We consider our approximate policy using the col-
lection of avaﬂabﬂlty-trackmg basis functions 2 = {g, :
j € $} with ¢,(x) = min;.; Zforallj € §. In Example 1,
we show that we have Ag =1 for this collection of basis
functions. Therefore, we can choose 6 =1 in the re-
cursion in Equation (3). We proceed to computmg the
coefficients {y} :j € §,t € T}. Since yer? = 0, by Equa-
tion (3), we have vl = A rgar = 1. Also, notmg
that A}Gl =0forall te T\ {Kﬁ +1}, we have y,, =

= _yi‘f_l =1.Forj=1,...,K, byEquation (3),

we have
t+1 t+1 1+
= A =T g
i
t+1 t+1 1+
el - Ml "
i B+1 i
Since y;7*? =0, noting that ;""" =0, we obtam
yf‘gﬂ =0 by the earlier recursion. Also, since yk,, =
Ve ==Yy =1 forallt e T\ {Kp+1}, wehave

y§”+?5<++11(, yih _ 1 ( 1) 1

Uy L s | L] B
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Therefore, we get
+

=0

H+1

e ]V;H + Vka
! p+1

forallt € J \ {KB + 1}, in which case, noting the earlier
v 1 2 Kp+1

recursion, wehavey; =y; =...=y;7 = 0.Thus, by

the discussion in this paragraph, we have y,; = 1for

allt€J. Also, forj=1,...,K, we have y! = 0 for all

t€J. In this case, we get H'(x) = Xcg Y] mmsm‘%ﬁ=

Vs MiNjeg & = gi7 - minieg x; for allt € J.

Consider the decisions made by our approxi-
mate policy. Initially, the capacities of the resources
are C; = B+ 1 for alli € £. At the first time period, we
have a request for product 1. Since 11 = g5(1 - ) <
ﬁ = H%(C) — H%(C - e1), we do not accept the request.
Sincer; =1 =... = rg, asimilar argument shows that
we reject all of the requests at time periods 1,2,. .., KB.
However, we accept the request for product K+1 at
the last time period, because H***?(x) = 0, and thus,
rger=1>0= HK‘S"-Z(C) - HK‘S"-Z(C — Yicax+ €j). There-
fore, the total expected revenue from our approxi-
mate policy is APP =rg,1 = 1. So, the ratio between
the total expected revenues of our approximate policy
and the optimal policy is 455 = 1/(1 + 5{% (1-9).If we
choose B arbitrarily large, then 5B% becomes arbi-

trarily close to 1/(1 + K), which is equal to 1/(1 +L).

4. Extensions

We extend our approximate policy to the cases in
which the customers choose among the offered
products, and a product can use more than one unit
of the capacity of a resource. We also discuss
leveraging a linear program to build value func-
tion approximations.

4.1. Customer Choice Behavior

In the model in Section 2, each customer enters the
system with a request for a particular product. We
decide whether to accept or reject the request for this
product. In this section, we extend our model and
performance guarantee to a case in which we offer a
subset of products to each arriving customer, and the
customer chooses among the offered products or
decides to leave without a purchase. Therefore, the
customer does not arrive with a request for a par-
ticular product, and the product that the customer
ends up choosing may depend on the subset of
products that we offer. The notation that we use
closely follows the one introduced in Section 2. We
only discuss the additional notation that we need. If
we offer the subset S C $ of products to a customer
arriving at time period ¢, then the customer chooses
product j € S with probability ¢;(S). Naturally, we
have qb;(S) = 0forallj ¢ S. Note that the choices of the
customers at different time periods may be governed

by different purchase probabilities. Therefore, we
allow nonstationarities in the choice process of the
customers. We refer to a subset of products that we
offer to the customers as an assortment. We use % C 24
to denote the set of feasible assortments that we can
offer to an arriving customer. We impose the fol-
lowing mild assumption on the choice probabilities
and the set of feasible assortments that we can offer
to the customers.

Assumption 1 (Substitutability and Feasibility). For all
ted,SeF,je S andk ¢ S, wehave ¢i(S) > ¢;(S U {k}).
Also, if S € F, then we have R€ ¥ forallRC S

The first part of the assumption ensures that if we
introduce an additional product into the assortment S,
then the choice probability of a product thatisalready
in the assortment S does not increase. This property
holds for all choice models that are based on the
random utility maximization principle. The second
part of the assumption ensures that if we remove
products from a feasible assortment, then the assort-
ment remains feasible. To formulate the problem as a
dynamic program, we let V(x) be the optimal total
expected revenue over time periods t,t+1,...,T
given that the capacities of the resources at time period ¢
is x. We can compute the optimal value functions
{Vi(x)x € 2,t € T} using the dynamic program

Vix) = Igléagx{z ¢;(S) (I—l ]1{:,-21})
j<¥ ieAi
rp+ Vi (x -3 e;)l
icA
: (1 -6+ 2406) (1 T n{m}))
i€ i€ ieAl

A VH'I(:\:)}

= V() + rg:gx{% cﬁ);(S) (I—l ]1{3:,-21})
i ieAl
. (rj - V*(x) 4+ V1 (x -3 e;) ) }, (10)
icAl

with the boundary condition that VT*1 = 0. If |A/| = 1
for all j€ $ so that each product uses exactly one
resource, then our model becomes equivalent to the
one in Golrezaei et al. (2014). In Golrezaei et al. (2014),
there are multiple customer types, but multiple cus-
tomer types do not bring any complication. Under
multiple customer types, the result of the max op-
erator in Equation (10) depends on the customer type
and we simply take an expectation over the arriving
customer type.
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In the first equality in Equation (10), if we offer the
assortment S at time period ¢, then the arriving cus-
tomer chooses product j with probability ¢}(S). If we
have sufficient resource capacities to serve procluct s
s0 that [Tiear Ijx,51) = 1, then the customer purchases
product j, in which case, we generate a revenue of ;
and the state of the resources at the next time period is
X — Zjeq €. On the other hand, the arriving customer
does not choose any product and decides to leave
without a purchase with probability 1 — Sjeg ¢}(S), in
which case, the state of the resources at the next
time period remains at x. Lastly, the arriving custo-
mer chooses product j with probability ¢/(S), but if we
do not have sufficient resource capacmes to serve
product j, so that [Tjcai 1,513 = 0, then the customer
leaves without a purchase, in which case, the state of
the resources at the next time period remains at x as
well. In Equation (10), we allow offering a product for
which we lack sufficient resource capacities to serve.
If the customer ends up choosing such a product, then
the customer leaves without a purchase. Offering a
product for which we lack sufficient resource ca-
pacities to serve may not sound realistic, but it is
simple to argue that there exists an optimal policy that
never offers such a product anyway. To establish this
result, note that in the optimal solution to the second
maximization problem in Equation (10), if we attempt
to offer products for which we do not have enough
resource capacity to serve, then we can drop all
such products from the assortment, along with each
product j such that r; — V*1(x) + V*(x — Zicni€) <0,
in which case, by Assumption 1, the choice proba-
bilities of all remaining products in the assortment
do not decrease, yielding another assortment that
provides an objective value that is as large as the
original one.

Similar to our earlier model, computing the optimal
value functions {V':t € J} is intractable. We use a
value function approximation of the form H'(x) =
Yjeg 7 @;(x), where # ={¢, :j € $} is a collection of
availability-tracking basis functions. We compute
the coefficients {yj:j€ $,t€ J} in the value func-
tion approximations using a slight variation of our
earlier algorithm.

* Initialization: Let # = {g; : j € §} be any collec-
tion of availability-tracking basis functions and 6 >
Az be a tuning parameter. Initialize yT” =0 for all
jeS.

¢ Coefficient computation: Foreacht=T,T-1,...,1,
use the coefficients {yj*! :j € #} to compute the as-
sortment &' € ¥ at time period t as

S—argmax{Zcﬁ)I(S)(rJ 92 kezgﬂ{imt}y;‘ﬂ)}' (11)

SeF e} aeAJ

Then, use the coefficients {y{*' : j € §} and the assort-
ment 5’ computed prevmusly to compute {y; : j € §} as

~ 1
= (8) (- 0 5 & 3 L] +24 (12)
iedi —t ke

The algorithm in Equation (12) specifies the coeffi-
cients {y} : j € §,t € T}, which, in turn, specify the ap-
proximate value functions {H' : t € J}.

Given that the state of the resources at time period ¢
is x, we solve the maximization problem on the right
side of the second equality in Equation (10) to find the
optimal assortment to offer. We construct our ap-
proximate policy by replacing V'*! in this problem
with H*1. Thus, given that the state of the resources
at time period ¢ is x, our approximate policy offers
the assortment

SAPP(x) = argmax{z ¢ (S (I—l ]1{::>1})

SeF ieAl
. (rj - H*'(x) + H'*! (x -2 es) ) } (13)
ieA

An optimal solution to this problem can be viewed as
the decision function of our approximate policy under
customer choice behavior. By the next theorem, our
approximate policy enjoys the same performance
guarantee as in Theorem 1. The proof of this theorem
uses a technique similar to the one in Section 3.3. We
defer the proof to Appendix B in the e-companion.

Theorem 2 (Performance under Choice). If the choice
probabilities and the feasible assortments satisfy Assump-
tion 1 and the tuning parameter 0 satisfies 0 > A g, then the
total expected revenue obtained by the approximate policy is
at least 1/(1 + 6L) fraction of the optimal.

4.2. Multiple Units of Capacity Consumption

In this section, we extend our approach to allow prod-
ucts to use multiple units of a resource. Once again,
the notation that we use closely follows the one in-
troduced in Section 2. We only discuss the additional
notation that we need. For each product j and resource i,
we use a;; to denote the number of units of resource i
used by product j. In our earlier model, we have a;; €
{0,1}foralli € £,j € $. In thissection, we consider the
case where a;; can be any nonnegative integer. As
before, A/ ={i€ £ : a;; > 1} denotes the set of re-
sources used by product j, and L = max;eg |A/| denotes
the maximum number of resources used by a prod-
uct. We use m; = maxjeg a;; to denote the maximum
number of units of resource i that is used by any
product. Without loss of generality, we assume that
the initial capacity of each resource i satisfies C; > m;.
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Otherwise, there is a product that uses more units
than the initial capacity of a resource, in which case,
we can drop such a product. To find the optimal
policy, we can use a dynamic program that is similar
to the one in Equation (1). Allwe need to dois to replace
all occurrences of [Tieas Liz>1y With [Tiea Lix;2q,) and
all occurrences of s e; with s ai€; in the dy-
namic program.

We modify our basis functions as follows. For each
product j € §, let G; : 2 — 2 be a mapping such that
for each x € 2, Gj(x) = (xiLxz2q; : i € ). Thus, Gi(x)
leaves the ith component of x unchanged when the
value of the component exceeds the amount of re-
source i consumed by product j; otherwise, Gj(x) sets
the component to zero. For a collection of availability-
tracking basis functions & = {@, :j € $}, we use the

value function approximation H' given by
H'(x) = 37} ¢,(6(x))- (14)
€3

We compute the coefficients {y] :j€ §,t € T} in the
previous value function approximation using the
following algorithm:

* Initialization: Let 2 = {p; : j € §} be any collec-
tion of availability-tracking basis functions and 6 > Az
be a tuning parameter. Initialize y/*' = 0 for all j € §.

¢ Coefficient computation: For each t=T,T-

1,...,1, use the coefficients {y{*! : j € $} to compute
{y,, Jeff} as
N
Vi =Ajlri—62] zmé,_ = L |+ (15)
icAl I keg

To construct our approximate policy, we use the decision
function in Equation (5) after replacing [Ticar Lx>1
with [Tieas 1 i>q, i} and Yes e with Yicu aij €;. This
decision function provides the decisions made by our
approximate policy given that the state of the re-
sources at time period t is x. The following theorem
gives a performance guarantee for our approximate
policy when a product can consume multiple units
of a resource. The proof is in Appendix C in the
e-companion.

Theorem 3 (Performance under Multiple Units Consumption).
Let M = maxicy,jeg ajj be the maximum number of units of a
resource used by a product. If the tuning parameter 0 satisfies
0 > A, then the total expected revenue obtained by the ap-
proximate policy is at least 1/(1 + 6(2M —1)L) fraction of
the optimal.

To intuitively see the origin of the term 2M -1,
assume that all products use one unit of a resource. If the
capacity of the resource goes down to one, then we can
accept at most one unit of any product. In contrast,

assume that all products use M units of a resource. If the
capacity of the resource goes down to2M — 1, then we
can accept at most one unit of any product.

4.3. Leveraging a Linear Programming Approximation
Noting that Aj = ez A} in the second constraint in
problem (4) corresponds to the total expected number
of requests for product j over the selling horizon, we
can view the linear program in Equation (4) as an
approximation to the network revenue management
problem thatis formulated under theassumption that
the numbers of requests for the products take on their
expected values. It is well-known that the optimal
objective value of the linear program in Equation (4)
provides an upper bound on the optimal total ex-
pected revenue; see Bertsimas and Popescu (2003).
In practice, this upper bound becomes useful when
assessing the optimality gaps of various heuristics. In
this section, we show that we can leverage an optimal
solution to the linear program in Equation (4) when
constructing our value function approximations. We
explain the idea using the model in Section 2, but we
can incorporate customer choice behavior as shown
in Section 4.1, and allow for products consuming mul-
tiple units of a resource as shown in Section 4.2. For
a collection of availability-tracking basis functions
% ={¢;:j € $}, we approximate the optimal value
functions {V!:t € T} using value function appr0x1-
mations {H': t € T} of the form H'(x) = Zjeq 7} ¢;(x).

To compute the coefficients {y}:j € §,t € T}, we use
the following algorithm.

* Initialization: Let # = {p, : j € §} be any collec-
tion of availability-tracking basis functions, 6 > A zbe
a tuning parameter, and (zjj € §) be an optimal so-
lution to the linear program in Equation (4). Initialize
y[*' =0forallje §.

e Coefficient computation: For each t=T,T—-

1,...,1, use the coefficients {y}*' : j € $} to compute
{ Jeé’*} as
'l 1 +
I t 1
:V-Z—A- ri—0 =~ ]1; 1| FYs (16)
Y Ve g C}% {ieAT} yy i

Once we construct the value function approximations
{H': t € T} using the previous algorithm, we use the
same decision function in Equation (5) in our ap-
proximate policy. The following theorem gives a per-
formance guarantee for our approximate policy. The
proof is in Appendix D in the e-companion.

Theorem 4 (Performance with Linear Programming Ap-
proximation). If the tuning parameter O satisfies 0 > Az,
then the total expected revenue obtained by the ap-
proximate policy is at least 1/(1+ OL) fraction of the
optimal.
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Intuitively, if product j is unlikely to contribute
to the optimal total expected revenue, then we expect
z; to be close to zero. In this case, noting Equa-
tion (16), the coefficients {y}:t € J} for this prod-
uct do not contribute significantly to the value func-
tion approximation.

5. Computational Experiments

In this section, we discuss computational experiments
that we conducted to assess the numerical performance
of our approximate policy. During the course of our
computational experiments, we also experiment with
different availability-tracking basis functions.

5.1. Experimental Setup

In our computational experiments, we use the test
problems in Topaloglu (2009). A number of other
papers, including Hu et al. (2013), Brown and Smith
(2014), Vossen and Zhang (2015a, b), and Kunnumkal
and Talluri (2016a), used these test problems in their
computational experiments as well. The test problems
in Topaloglu (2009) originate from the airline setting,
where the resources correspond to the flight legs and
the products correspond to the itineraries. In our test
problems, the airline network has N + 1 locations.
One location is the hub and the remaining N locations
are the spokes. There is a flight leg from each spoke to
the hub and a flight leg from the hub to each spoke.
Therefore, the number of flight legs is 2N. In Figure 1,
we show the structure of the airline network with
N =6. We vary N in our computational experiments.
Note that there are N origin-destination pairs that
connect the hub to a spoke, N origin-destination pairs
that connect a spoke to the hub, and N(N - 1) origin-
destination pairs that connect a spoke to another
spoke, resulting in 2N + N(N — 1) origin-destination
pairs. There is a high-fare and a low-fare itinerary
that connects each origin-destination pair. Thus, the
number of itineraries is 2 (2N + N(N —1)). For a cer-
tain origin-destination pair, the revenue associated
with the high-fare itinerary connecting this origin-
destination pair is k times the revenue associated
with the corresponding low-fare itinerary, where «
captures therevenue differencebetween the high-fare
and low-fare itineraries. We vary « in our computa-
tional experiments as well.

The arrival probabilities for the itinerary requests
are generated in such a way that the requests for the
high-fare itineraries tend to arrive later in the selling
horizon. To generate the arrival probabilities {1} :j € §,
t e J} for the itinerary requests, for each origin-
destination pair (0,d), we sample B,; from the uni-
form distribution over [0,1] and 7,4 from the uniform
distribution over {3T,...,%T}. In this case, the prob-
ability that we have a request for an itinerary that

Figure 1. Structure of the Airline Network with
N =6 Spokes

connects the origin-destination pair (o,d) is propor-
tional to B, ;. The probability that we have a request
for the low-fare itinerary that connects the origin-
destination pair (o, d) decreases over time, whereas
the probability that we have a request for the corre-
sponding high-fare itinerary is zero until time pe-
riod 7,4, but this probability increases over time after
time period 7,4. Therefore, the requests for the high-
fare itinerary start appearing only after time period
T,4. To be precise, after generating B, ; and 17,4, for all

teJ, wesetno" and 0" as
r]”°“' B, T +; —t d
thigh _ 0 ift <74
Mo By T_?‘: otherwise.

Letting % be the set of all origin-destination pairs,
if itinerary j is the low-fare itinerary for origin-
destination pair (o,d), then we set A} = qtﬂfw/ 2s e
(nHow + n¥'9"), but if itinerary j is the corresponding
high-fare itinerary, then we set A] = q‘D:.'gh | Znea-
(Yo% + p¥7'9"). Since the requests for the high-fare
itineraries tend to arrive later in the selling horizon,
it becomes important to reserve the capacities for
the high-fare itinerary requests by rejecting the re-
quests early in the selling horizon. The total ex-
pected demand for the capacity on flight leg i is
Zteg Tjeg Lijea A}, so the initial capacity of flight
leg iis settobe Ci =1 Teq Sjeg Ljjea A. Thus, larger
values for a yield tighter capacities. We vary a in our
computational experiments.

Letting N, «k, and a be as previously, and recalling
that T is the length of the selling horizon, we vary
T € {200,600}, N € {4,5,6,8}, « € {2,4}, and a € {10,
1.2,1.6}, to get 48 test problems.
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5.2. Benchmark Methods

In our computational experiments, we work with six
benchmarks, one of which is our approximate policy.
We proceed to describing our benchmarks.

5.2.1. Approximate Policy (APP). This benchmark is
our approximate policy with the decision function in
Equation (5). We experimented with different basis
functions. The basis function ¢,(x) = minjes; (1 — e~lG)/
(1—e7'), which is availability tracking by the dis-
cussion in Section 3.1, provided consistent im-
provements over the others that we experimented
with. Thus, we use this basis function. One can check
that Az = 1/(1 —e™!) for this basis function. In our
computational results, we discuss our experimenta-
tion with different basis functions. Note that our ba-
sis function resembles the tradeoff function W(x) =
(1-¢e%)/(1 —e™') in Golrezaei et al. (2014).

In our practical implementation of APP, we make
twomodifications. First, we divide the selling horizon
into five equal segments and reconstruct our value
function approximations at the beginning of each
segment. In particular, the beginning of segment k
corresponds to time period (k—1) £+ 1. If the re-
maining capacities on the flight legs at the beginning
of segment k are given by the vector x, then wereplace
C; in the recursion in Equation (3) with x; and use
this recursion over time periods T,T - 1,...,(k—-1) £+
1 to compute the coefficients {y}:je §,t=(k - 1)
T+1,...,T}. These coefficients specify the value
function approximations that we use when making
the decisions over segment k. When we reach the
beginning of the next segment, we reconstruct our
value function approximations in a similar fashion.
Second, we calibrate the value for the tuning pa-
rameter 0 at the beginning of each segment. The
values of the coefficients {y;:j € §,t € J} in Equa-
tion (3) depend on 6, which, in turn, implies that
the total expected revenue obtained by APP also de-
pends on 6. When reconstructing our value function
approximations at the beginning of each segment, we
search for the best tuning parameter over the interval
$ =[1/(1 -¢e),15] with a precision of 0.01. Given
that we use the tuning parameter 8 when recon-
structing our value function approximations at the
beginning of segment k, let U*%(x) be the total ex-
pected revenue obtained by APP over time periods
(k—=1)L+1,...,T starting with the capacities x for
the flight legs. Computing the total expected revenue
U*P(x) exactly is intractable, because computing this
quantity requires solving a dynamic program simi-
lar to the one in Equation (8), but we estimate this
quantity using simulation. At the beginning of segment
k, we choose the value of the tuning parameter 6 as
argmax{U"%(x): 0 € $N{0.01x¢:£=0,1,...}}. We

use this value for the tuning parameter until we reach
the beginning of the next segment. The theoretical
performance guarantee that we give in Theorem 1 will
be the strongest when we use the smallest possible
value for 8 with 8 > Az, but choosing a different value
for the tuning parameter may actually provide better
practical performance for APP.

5.2.2. Bid Price Policy (BPP). This benchmark is the
well-known bid price policy; see section 3.3 in Talluri
and van Ryzin (2005). The idea behind BPP is to use
the optimal values of the dual variables associated
with the first constraint in the linear program in
Equation (4) to estimate the value of a unit of capacity
on each flight leg. In this case, if the revenue from a
certain itinerary exceeds the value of the capacities
used by this itinerary, then we accept the request for
the itinerary. To be specific, letting (i : i € £) be the
optimal values of the dual variables associated with
the first constraint in problem (4), BPP accepts a re-
quest for itinerary jif and only if 7; > ¥,c4 y4j and there
are sufficient capacities to serve a request for itinerary j.
In our practical implementation of BPP, we divide
the selling horizon into five equal segments and re-
solve problem (4) at the beginning of each segment.
In particular, if the remaining capacities on the flight
legs at the beginning of segment k are given by the
vector x, then we replace C; with x; and A; with
Sz A in problem (4). Letting (u;:i€ <) be
the optfmal values of the dual variables associated
with the first constraint, we use these values of the
dual variables during segment k. Using a similar
approach, we recompute the policy parameters for all
other benchmarks at the beginning of each segment,
but for economy of space, we do not discuss recom-
putation any longer.

5.2.3. Randomized Linear Program (RLP). In this
benchmark, we use the realizations of the total num-
bers of itinerary requests over the selling horizon, as
opposed to their expected values, to capture the dis-
tribution information for the total numbers of itinerary
requests. Using the random variable D; to denote the
total number of requests for itinerary j over the selling
horizon, we replace A; on the right side of the second
constraint in problem (4) with D;. As a function of
D = (D;:je ), letting (uj(D) :i € £) be the optimal
values of the dual variables associated with the first
constraint in problem (4), we use the E{u*(D)} to
estimate the value of a unit of capacity on flight leg i.
In this case, RLP accepts a request for itinerary j as
long as r; > ;e 4 E{u" (D)}; see Talluri and van Ryzin
(1999). Computing the expectation E{u*(D)} exactly
is intractable, so we estimate this expectation us-
ing simulation.
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5.2.4. Finite Differences (DIF). Here, we use the opti-
mal objective value of problem (4) to estimate the
value of the capacities used by an itinerary. As a
function of C = (C;: i € £), we let Z],(C) be the opti-
mal objective value of problem (4), in which case, we
estimate the value of the capacities used by itinerary j
as Zj,(C) = Z;p(C — Zjca €). Thus, DIF accepts a re-
quest for itinerary j as long as r; > Zjp(C) — Z;p(C—
Yicai €); see Bertsimas and Popescu (2003).

5.2.5. Dynamic Programming Decomposition (DEC). The
idea behind this benchmark is to decompose the
dynamic programming formulation of the problem
by the flight legs, in which case, we can solve dynamic
programs with scalar state variables to obtain value
function approximations; see section 4.2 in Zhang
and Adelman (2009). To our knowledge, DEC is one of
the strongest heuristics in practice, but it does not
have a performance guarantee.

5.2.6. Online Packing Policy (OPP). This benchmark
uses a linear program similar to the one in Equa-
tion (4) to construct a policy for online packing
problems; see Kesselheim et al. (2014). If the arrivals
are stationary, then this policy has the competitive
ratio of 1 —0O(+/(logL)/cmin) that we discuss in the
introduction section, but in Appendix E in the e-
companion, we give a simple example to show that

this policy can perform arbitrarily poorly under non-
stationary arrivals.

5.3. Computational Resulis

Table 1 shows our computational results on the test
problems with T =200 time periods in the selling
horizon, whereas Table 2 shows our computational
results on the test problems with T = 600. The layouts
of the two tables are identical. In the first column,
we show the parameter configuration for each test
problem using the tuple (T, N, x, @), where N, «, and
a are as discussed in our experimental setup. In
the second column, we show the upper bound on
the optimal total expected revenue provided by the
optimal objective value of problem (4). In the third to
eighth columns, we show the total expected reve-
nues obtained by APP, BPP, RLP, DIF, DEC, and
OPP. We estimate these total expected revenues
by simulating the performance of each benchmark
over 100 sample paths. In the ninth to thirteenth
columns, we give the percent gaps between the total
expected revenues obtained by APP and the remaining
five benchmarks.

Considering the results in Table 1, the performance
of APP is better than that of BPP with a substantial
margin. RLP and DIF both perform better than BPP,
but this improvement is not enough to catch up with
APP. We underline two trends by comparing the

Table 1. Computational Results for the Test Problems with T = 200 Time Periods in the Selling Horizon

Total expected revenue Percent gap with APP

Parameters

(T,N,x,a) Upper bound APP BPP RLP DEC OPP BPP RLP  DIF DEC OPP
(200,4,4,1.0) 21,531 20,013 19377 19,937 19,608 20,076 19,601 318 038 202 -032 2.06
(200,4,4,1.2) 19,882 18,386 17,140 17,964 17,529 18538 17,276 678 229 466  -0.82 6.04
(200,4,4,1.6) 17,530 15993 14474 15712 14,99 16,185 13,507 950 176 624 -120 1555
(200,4,8,1.0) 34,571 32655 30,692 32,447 31,305 32,845 31,858 601  0.64 414 058 2.4
(200,4,8,1.2) 32,922 31,020 27324 30,310 28,384 31,284 28025 1191 229 850  -0.85 9.65
(200,4,8,1.6) 30,570 28,704 24062 27,890 25461 28861 21901 1617 283 1130 -055 23.70
(200,5,4,1.0) 22,144 20984 20,197 20,796 20488 21,139 20478 375 090 236 074 2.41
(200,5,4,1.2) 21,263 19,565 18462 19,225 18,933 19,716 18,463 564 173 323 -077 5.63
(200,5,4,1.6) 18,870 17,037 15406 16,676 16,090 17,260 14,925 957 212 556 -1.31 1239
(200,5,8,1.0) 35,387 33943 31,844 33,519 32491 34219 33,048 618 125 428 -0.81 2.63
(200,5,8,1.2) 34,495 32318 29232 31,551 30,395 32653 29,702 955 237 595  -1.04 8.10
(200,5,8,1.6) 32,081 29666 24971 28,943 26,800 30068 24074 1582 244 966 -136  18.85
(200, 6,4,1.0) 22,300 20595 19819 20,49 20,110 20,699 19943 377 048 235 =051 3.17
(200,6,4,1.2) 20,932 19,049 17,927 18,753 18,463 19,174 17,793 589 155 308 -065 6.60
(200,6,4,1.6) 18,592 16595 15220 16,302 15,863 16,786 14,235 829 176 441 -115 1422
(200,6,8,1.0) 35,544 33338 31,132 33205 31946 33644 32,186 662 040 417 -0.92 3.46
(200,6,8,1.2) 34,172 31,623 28504 31,107 29,737 32,004 28,603 986 163 59  -1.21 9.55
(200,6,8,1.6) 31,824 29,191 24923 28,459 26,702 29551 22880 1462 251 853 -123 2162
(200,8,4,1.0) 20,052 18359 17508 17,875 17,742 18421 17,634 463 263 33 -0.34 3.95
(200,8,4,1.2) 18,952 16936 15753 16,354 16,188 17,0564 15728 698 343 441 -0.70 7.13
(200,8,4,1.6) 16,833 14676 13,371 14,161 14,019 14,831 12,439 889 351 448 -1.05 1524
(200,8,8,1.0) 31,835 29,742 27378 28,779 28,058 29,890 28346 795 324 566  -0.50 4.69
(200,8,8,1.2) 30,727 28,232 24793 27,116 25956 28412 25218 1218  3.95 806 -0.64 10.68
(200,8,8,1.6) 28,608 25913 21,844 24,837 23616 26116 19869 1570 415 887 -078 23.32
Average 873 209 547  -0.83 9.71
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Table 2. Computational Results for the Test Problems with T = 600 Time Periods in the Selling Horizon
Total expected revenue Percent gap with APP

Parameters Upper

(TN, «, @) bound  APP BPP RLP DIF DEC OPP BPP RLP  DIF DEC  OPP
(600,4,4,1.0) 32,409 30,596 29,751 30,209 29,969 30,724 29,988 2.76 127 2.05 -042 1.99
(600,4,4,1.2) 29,852 27,990 26,100 27,455 26,546 28,233 26,138 6.75 191 5.16 -0.87 6.62
(600,4,4,1.6) 26,324 24,414 22,009 24,060 22,567 24,668 20,474 9.85 145 757 -1.04 16.14
(600,4,8,1.0) 52,086 49,909 47249 49,168 47,796 50,194 48,553 533 149 423 057 2.72
(600,4,8,1.2) 49,529 47,214 41,751 46,069 43,748 47,677 42,223 11.57 243 7.34 -0.98 10.57
(600,4,8,1.6) 46,001 43,637 36,632 42941 38,256 44,008 33,108 16.05 159 12.33 -0.85 2413
(600,5,4,1.0) 33,299 31,928 30,763 31,592 31,027 32,095 31,217 3.65 1.05 2.82 -0.52 2.23
(600,5,4,1.2) 31,943 29,813 28,290 29,473 28,832 30,147 28,206 511 1.14 3.29 -1.12 5.39
(600,5,4,1.6) 28,343 25,903 23,847 25,713 24,582 26,405 22,724 7.94 0.73 5.10 -1.94 12.27
(600,5,8,1.0) 53,285 51,563 48,653 50,871 49,263 51,923 50,250 5.64 134 446 -0.70 2.55
(600,5,8,1.2) 51,904 49,207 44,958 48,639 46,078 49,737 45,280 8.64 115 6.36 -1.08 7.98
(600,5,8,1.6) 48,283 45,221 38,966 44 582 40,784 45911 36,476 13.83 141 9.81 -1.52 19.34
(600, 6,4,1.0) 26,873 25,369 24,405 24,777 24,576 25445 24,661 3.80 233 313 -0.30 2.79
(600,6,4,1.2) 25,184 23,325 21,945 22,553 22,455 23,517 21,841 592 3.31 3.73 -0.82 6.36
(600,6,4,1.6) 22,274 20,327 18,542 19,622 19,259 20,571 17,466 8.78 347 525 -1.20 14.07
(600, 6,8,1.0) 42,865 41,102 38411 39,830 38,935 41,305 39,768 6.55 3.09 527 -0.49 3.24
(600, 6,8,1.2) 41,166 38,936 34,848 37,267 36,205 39,238 35,128 10.50 429 7.02 -0.77 9.78
(600,6,8,1.6) 38,252 35,845 30,536 34,430 32492 36,238 28,181 14.81 3.95 9.35 -1.09 21.38
(600,8,4,1.0) 24,167 22,332 21,241 21,601 21,616 22,466 21,546 4.89 3.27 3.20 -0.60 3.52
(600,8,4,1.2) 22,755 20,539 19,074 19,726 19,668 20,710 19,077 713 3.96 424 -0.83 7.12
(600,8,4,1.6) 20,228 17,852 16411 17,221 17,083 18,076 15,002 8.07 3.53 431 -1.25 15.97
(600,8,8,1.0) 38,395 36,299 33,270 34,870 34,159 36,521 34,599 8.34 394 5.89 -0.61 4.68
(600,8,8,1.2) 36,976 34,376 30,063 32,791 31,831 34,614 30,603 12.55 461 740 -0.69 10.97
(600,8,8,1.6) 34,449 31,589 26,876 30,209 28,856 31,840 23,875 1492 4.37 8.65 -0.79 2442
Average 847 2.55 5.75 -0.88 9.84

performance of APP with that of RLP, but similar
observations hold when we compare the performance
of APP with that of BPP or DIF. We focus on com-
paring APP with RLP, because RLP already performs
noticeably better than BPP and DIFF, which are the
two other benchmarks that are based on the linear
program in Equation (4). The first trend is that as the
parameter a increases and the capacities on the flight
legs get tighter, the performance gaps between APP
and RLP get larger. Considering the test problems
with a = 1.0, @ =1.2, and a = 1.6 separately, the av-
erage percent gaps between the total expected reve-
nues obtained by APP and RLP are, respectively,
1.24%,2.41%, and 2.64%. As the capacities on the flight
legs get tighter, it becomes more important to protect
the capacity for the high-fare itinerary requests that
tend to arrive later in the selling horizon. It appears
that APP does a better job of capturing this tradeoff.
The second trend is that as the parameter x increases
and the revenue difference between the high-fare and
low-fare itineraries increases, the performance gap
between APP and RLP increases as well. Considering
the test problems with ¥ = 2 and x = 4 separately, the
average percent gaps between the total expected
revenues obtained by APP and RLP are, respectively,
1.88% and 2.31%. When the revenue difference be-
tween thehigh-fare and low-fareitineraries increases,
the opportunity cost of not having the capacity to
serve a high-fare itinerary request also increases and

APP seems to do a better job of reserving the capacity
for high-fare itinerary requests. APP lags behind DEC
with a small but consistent margin. Over all test
problems, the average gap between the performance of
APP and DEC is 0.83%. As mentioned earlier, to our
knowledge, DEC is one of the strongest heuristics for
network revenue management problems in practice,
but we emphasize that DEC does not have a theoret-
ical performance guarantee. Similar to the trends dis-
cussed earlier in this paragraph, the performance gap
between APP and DEC gets larger as the capacities on
the flight legs get tighter or the revenue difference
between the high-fare and low-fare itineraries increases.
Theperformance of OPPisnot competitive to APP, which
is not surprising because OPP is designed to deal with
stationary arrivals. Similar observations hold for the re-
sultsin Table 2. APP consistently performs better than
BPP. Although RLP and DIF both perform better than
BPP, they do not catch up with APP. APP lags behind
DEC by a small but consistent margin. OPP signifi-
cantly lags behind APP.

The calibrated value of the tuning parameter 0 that
we use for APP depends on the problem parameters.
In Table 3, we show the value of the tuning parameter
for all of our test problems when we calibrate the
tuning parameter at the beginning of the selling ho-
rizon. Our results indicate that the calibrated value of
the tuning parameter gets smaller as a increases and
the capacities on the flight legs get tighter. Intuitively
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speaking, as the capacities on the flightlegs get tighter
and the resources become more scarce, we expect the
value of a unit of capacity to increase. Indeed, we
numerically observed that if we decrease the value of
6 in the recursion in Equation (3), then values of the
coefficients {y;:j€ §,t € T} computed through this
recursion tend to increase, in which case, the value of a
unit of capacity also increases. We carried out all of
our computational experiments using Java 1.8.0 on
2.8 GHz Intel Xeon E5-2680 CPU with 1 GB of RAM.

Table 3. Calibrated Values of the Tuning Parameter 0

Parameters

(T,N,x,a) 6
(200,4,4,1.0) 191
(200,4,4,1.2) 1.60
(200,4,4,1.6) 1.59
(200,4,8,1.0) 5.50
(200,4,8,1.2) 475
(200,4,8,1.6) 3.76
(200,5,4,1.0) 223
(200,5,4,1.2) 1.65
(200,5,4,1.6) 1.59
(200,5,8,1.0) 6.33
(200,5,8,1.2) 484
(200,5,8,1.6) 3.99
(200,6,4,1.0) 1.78
(200,6,4,1.2) 1.62
(200,6,4,1.6) 1.59
(200, 6,8,1.0) 5.64
(200,6,8,1.2) 475
(200, 6,8,1.6) 3.98
(200,8,4,1.0) 161
(200,8,4,1.2) 1.59
(200,8,4,1.6) 1.59
(200,8,8,1.0) 5.03
(200,8,8,1.2) 4.37
(200,8,8,1.6) 340
(600,4,4,1.0) 1.82
(600,4,4,1.2) 1.62
(600,4,4,1.6) 1.59
(600,4,8,1.0) 5.66
(600,4,8,1.2) 4.86
(600,4,8,1.6) 3.69
(600,5,4,1.0) 1.97
(600,5,4,1.2) 1.60
(600,5,4,1.6) 1.60
(600,5,8,1.0) 6.20
(600,5,8,1.2) 484
(600,5,8,1.6) 3.93
(600,6,4,1.0) 1.60
(600,6,4,1.2) 1.59
(600,6,4,1.6) 1.60
(600, 6,8,1.0) 5.65
(600,6,8,1.2) 481
(600, 6,8,1.6) 3.93
(600,8,4,1.0) 1.71
(600,8,4,1.2) 1.59
(600,8,4,1.6) 1.59
(600, 8,8,1.0) 5.50
(600,8,8,1.2) 4.38
(600, 8,8,1.6) 345

For the largest test problems with T = 600 time pe-
riods and N =8 spokes, the average CPU time to
compute the coefficients {y}:j € §,t € T} for a fixed
value of 6 was about 0.05 seconds.

In our implementation of APP, we experimented
with five other availability-tracking basis functions:

1— e x/G
o) = Q((—l_e-l))'

mm Xi
(x) I};ﬂat
() = Q c
ex sum Cf
UM (x) =exp (; . (1 - x_;)) and

recip-sum _ lA‘il
?; (x) =
! 2ieal %

In Table 4, for economy of space, we consider a subset
of our test problems and show the performance of
APP with the five basis functions, along with
qo?'”n ®®P(x) = min,y(1 — e™/C)/(1—e1) used in our
earlier computational results. In the first column, we
show the parameter configuration for each test
problem. In the second to seventh columns, we show
the total expected revenues obtained by APP with the
six basis functions. In the eighth to twelfth columns,
we show the percent gap between the performance of
APP with the basis function @™ **®(x) = minjex (1 —

e/C)/(1-e7!) and the remaining five basis func-
tions. Our results indicate that the performance of
APP is somewhat robust to the choice of basis func-
tions, but by experimenting with different basis
functions, we can improve the performance by about
1.20% on average.

In all of our test problems, the maximum number
of resources used by a product is two. The theoreti-
cal performance guarantee that we give for APP
in Theorem 1 depends on the maximum number of
resources used by a product. In Appendix F in the
e-companion, we provide computational experi-
ments in the hotel network revenue management
setting, where we systematically vary the maximum
number of resources used by a product. Our results
demonstrate that APP maintains its edge over BPP,
RLP, DIF, and OPP, and the performance gap between
APP and DEC remains stable. Lastly, in our compu-
tational experiments, the arrivals for the product re-
quests are nonstationary. OPP has a competitive
ratio under stationary arrivals. In Appendix G in the e-
companion, we provide computational experiments to
test the performance of OPP under stationary arrivals.
Under stationary arrivals, the performance of OPP gets
better, but APP still provides significant improvements
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Table 4. Performance of APP with Different Basis Functions

Total expected revenue Percent gap with Min-Exp

Parameters

(T,N,x,a) Min-Exp  Prd-Exp Min Prd Exp-Sum  Recip-Sum  Prd-Exp Min Prd Exp-Sum Recip-Sum
(200, 6,4,1.0) 20,595 20,420 20447 20,086 20,284 20,427 0.85 072 247 1.51 0.82
(200,6,4,1.2) 19,049 18,847 18820 18,341 18,586 18,874 1.06 120 372 243 0.92
(200,6,4,1.6) 16,595 16,621 16,459 16,149 16,337 16,539 -0.16 082  2.69 1.56 0.33
(200, 6,8,1.0) 33,338 33,248 33,123 32544 32914 33,088 0.27 064 238 1.27 0.75
(200,6,8,1.2) 31,623 31,619 31425 30816 31,059 31,192 0.01 063 255 1.78 1.36
(200,6,8,1.6) 29,191 29,265 28928 28,654 29,046 29,090 -0.25 090 1.84 0.50 0.34

over OPP. An examination of Theorem 3 and Lemma 7
in Kesselheim et al. (2014) shows that the competi-
tive ratio of OPP is max{1 — 45+/(1 + log, L)/cmin, 1/
(8¢ (2L)YCmn=D)} for cpin > 2, which, although it ap-
proaches one as the capacities of the resource get
large, can be substantially less than one for practical
instances. For example, for cmin = 100 and L = 2, this
competitiveratio is about0.045, which is significantly
less than the performance guaranteeof1/(1 +L) =1/3
for APP. Note that OPP does not use forecasts of the
numbers of requests for different products, which can
partly explain its poor performance. The practical
performance of OPP is not competitive, but it is re-
markable that OPP has an asymptotic performance
guarantee without using forecasts.

In all of our computational experiments, we re-
compute the policy parameters five times over the
selling horizon. In Appendix H in the e-companion,
we test the performance of the benchmarks when we
compute the policy parameters only once at the be-
ginning of the selling horizon. Lastly, we also im-
plemented the approach in Section 4.3, which uses an
optimal solution to problem (4) to compute the co-
efficients {y} : j € §,t € T}. For our test problems, this
approach did not provide noticeable improvements
in the performance of APP.

6. Conclusion

We developed an approximate policy with a per-
formance guarantee for network revenue manage-
ment problems, which, to our knowledge, is unique as
it works under nonstationary arrivals. In the paper,
we pointed out several extensions of our approximate
policy, but there are still other extensions that are
possible. For example, in some papers in the online
packing literature, there are multiple service modes
with different revenues and resource consumptions.
If we choose to accept a product request, then we
decide whichmode to use to serve the request; see, for
example, Feldman et al. (2010) and Kesselheim et al.
(2014). We can incorporate multiple service modes
into our approximate policy by using our extension
to the customer choice behavior given in Section 4.1.
In particular, we use ¥ to denote the set of service modes.

At time period t, we have a request for product j with
probability A. If we use mode k to serve a request for
product j, then we generate a revenue of rj; and
consume one unit of capacity for each resource in the
set A’¥ C £. We can reformulate the problem with mul-
tiple service modes equivalently as an instance of the
problem in Section 4.1. In our reformulation, we refer
to each product and service mode combination as a meta-
product. At each time period, we choose a subset of meta-
products to offer to the customers. Offering meta-product
(j,k) € $ XK corresponds to being willing to use
mode k to serve a request for product j. Not offering
any of the meta-products {(j,k) : k € }} corresponds
to not being willing to accept a request for product j.
The feasible subsets of meta-products that we can
offer to the customers at a particular time period is
given by F={SCFxIH:|SN{(j,k):keK}|<1VjeF},
meaning that for each product j, we can offer at most
one meta-product of the form (j, k). In this way, we
ensure that if we are willing to accept a request for
product j, then we choose one mode to serve it. If we
offer the subset S of meta-products at time period ¢
such that (j, k) € S for service mode k and we have a
request for product j, then the arriving customer
chooses meta-product (j, k). Therefore, we have the
choice probability ¢;,(S) = A; if (j,k) € S. Otherwise,
cﬁ);tk(S ) = 0. The revenue of meta-product (j,k) is rj;. If
we sell one unit of meta-product (j,k), then we con-
sume the capacities of the resources in the set A/X.
Thus, replacing the products in the formulation in
Section 4.1 with the meta-products, we can check
that the feasible subsets of meta-products and the
choice probabilities given previously satisfy As-
sumption 1. So, we can use the formulation in Sec-
tion 4.1 to come up with an approximate policy to
decide which meta-products to offer at each time period
to maximize the total expected revenue, which, in
turn, yields an approximate policy to decide which
product requests to accept and which mode to use
for the accepted requests.

By the preceding discussion, the extension in Sec-
tion 4.1 allows us to incorporate multiple service modes,
but there are other variants of the network revenue
management problem that are difficult to address using
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our approach. For example, if overbooking is allowed,
then the dynamic programming formulation of the
problem is fundamentally different from the one that
we use, because the state variable needs to keep track
of the number of accepted bookings for each prod-
uct, which ultimately may or may not show up. Thus,
extending our work to handle overbooking is not
straightforward. Also, the choice of our basis func-
tions and the algorithm that we use to construct the
coefficients of the basis functions strictly exploit the
structure of the network revenue management prob-
lem. Extending our approach to a broader class of
dynamic programs is certainly worthwhile, but such
extensions appear to be nontrivial to us at this point.
Another important point is that our choice of the basis
functions was based on experimentation. The definition
of availability-tracking basis functions provides some
guidance on the choice of the basis functions, buta more
systematic approach for choosing the basis functions is
a useful research direction. Moreover, although our
approach has a performance guarantee, this perfor-
mance guarantee stays away from one. It would be
useful if we can establish that our approach becomes
asymptotically optimal in some regime, such as the
one where the resource capacities and the expected
demands for the products increase linearly with the
same rate. Lastly, the dynamic programming de-
composition approach, which we used as a bench-
mark in our computational experiments, is one of the
strongest heuristics for network revenue manage-
ment problems. To our knowledge, however, this
approach does not have a performance guarantee. It
would be useful to understand whether it is possible
to give a performance guarantee for this approach.
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