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Beliefs in Decision-Making Cascades
Daewon Seo , Ravi Kiran Raman , Joong Bum Rhim, Vivek K Goyal , and Lav R. Varshney

Abstract—This work explores a social learning problem with
agents having nonidentical noise variances and mismatched beliefs.
We consider an N -agent binary hypothesis test in which each
agent sequentially makes a decision based not only on a private
observation, but also on preceding agents’ decisions. In addition,
the agents have their own beliefs instead of the true prior, and have
nonidentical noise variances in the private signal. We focus on the
Bayes risk of the last agent, where preceding agents are selfish. We
first derive the optimal decision rule by recursive belief update and
conclude, counterintuitively, that beliefs deviating from the true
prior could be optimal in this setting. The effect of nonidentical
noise levels in the two-agent case is also considered and analytical
properties of the optimal belief curves are given. Next, we consider
a predecessor selection problem wherein the subsequent agent of a
certain belief chooses a predecessor from a set of candidates with
varying beliefs. We characterize the decision region for choosing
such a predecessor and argue that a subsequent agent with beliefs
varying from the true prior often ends up selecting a suboptimal
predecessor, indicating the need for a social planner. Lastly, we dis-
cuss an augmented intelligence design problem that uses a model of
human behavior from cumulative prospect theory and investigate
its near-optimality and suboptimality.

Index Terms—Social learning, cascading binary hypothesis test,
cumulative prospect theory, augmented intelligence.

I. INTRODUCTION

T EAM decision-making typically involves individual deci-
sions that are influenced by private observations and the

opinions of the rest of the team. The social learning setting is one
such context where decisions of individual agents are influenced
by preceding agents in the team [3], [4]. We consider the setting
in which individual agents are selfish and aim to minimize their
perceived Bayes risk, according to their beliefs as reinforced by
the decisions of preceding agents.

Social learning, also referred to as observational learning, has
been widely studied and we provide a non-exhaustive listing
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of some of the relevant works. Aspects of conformism and
“herding” were studied in [5]–[7], where an incorrect decision
may cascade for the rest of the agents once agents at the
beginning make incorrect decisions. The concept of herding
is a consequence of boundedly informative private signals [8].
For example, assume the private signals are binary and give true
or false information, each with positive probability. It can happen
that a couple of the first agents receive false private signals and
thus choose wrong actions. Then, the effect of these actions
on the beliefs of subsequent agents can be so great as to cause
them to ignore their private signals and follow their predecessors.
The private signals are bounded so that they are not strong
enough to overcome the effect of the wrong actions. Further
convergence properties of actions taken under social learning
have been explored under imperfect information [9]. The notion
of sequential social learning has been generalized to learning
from neighbors in networks [10], and explored in generality
[11]. Social learning has also been explored under quantiza-
tion of priors [12], and distributed detection with symmetric
fusion [13].

Such social learning problems have also been studied as
distributed inference or learning. The traditional setting assumes
a central fusion node that aggregates all information from dis-
tributed nodes and makes the final decision [14], [15], where
the links between distributed nodes and fusion center could be
rate-limited [16] or imperfect [17]–[19]. It is also common to
consider such learning over networks. The network setting could
be the simplest tandem network (in particular, this is called serial
detection) [20]–[23] and extended to a general network, in which
all nodes can identify the hypothesis by repeatedly updating local
beliefs without complete knowledge of network connectivity
[24]–[26]. Independent works [27] and [28] propose similar
update rules and convergence results for fixed networks and
time-varying networks, respectively. In [29], binary hypothesis
testing in the presence of Gaussian process noise is studied
and minimal expected stopping times are derived. In [30], the
setup where the entire hypotheses are locally indistinguishable,
but globally identifiable by belief update is considered and
convergence rate is provided.

This paper differs from the literature in the sense that we
consider unbounded private signals so that there is no herding
behavior. Unlike typical decision-making cascades (e.g., [31])
where all agents know the true prior, we assume agents may
have beliefs that do not necessarily match the true prior. Fur-
ther, private signal strengths of agents could be different, i.e.,
noise variances are not necessarily identical. Information is only
propagated along the chain once so there is no iterative belief
update. We focus largely on the effects of initial belief and private
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signal strength. The decision-making of individual agents is also
different in that agents make locally Bayes-optimal decisions,
i.e., decisions that minimize their individual Bayes risk. This is
different from the context of collectively optimizing the team’s
risk [13] or decision-making that maximizes a personal reward
based on the last agent’s decision [32].

We study cascading binary hypothesis testing (or sequential
social learning following the notion of [10]) and characterize
optimal beliefs of agents that minimize the Bayes risk of the
last-acting agent. In general, it counterintuitively turns out that
agents using beliefs that do not match the true prior are op-
timal, i.e., each agent has a perceived belief of the prior. For
instance, in the two-agent system with equal noise levels, the
optimal predecessor is one who overweights the belief for small
prior, and underweights when it is large. On the other hand,
the corresponding optimal last agent is one who behaves in
the opposite way to the predecessor. For concise description,
we refer to these two modes of operation as open-minded and
closed-minded, respectively.1 We describe analytical character-
istics of the optimal beliefs and also show how the nature of
such behaviors of agents change when noise levels differ in the
private signals.

We are ultimately interested in the Bayes risk of the last-acting
agent, and thus it is important that the last agent uses the correct
set of preceding agents for the task. To this end, we consider a
team construction problem for such cascading hypothesis test-
ing, and characterize the criterion used for predecessor selection.
We observe that self-organized teams may have suboptimal
compositions, emphasizing the importance of a social planner
that is aware of the true prior.

We also consider a collaborative decision-making system with
human and AI (Artificial Intelligence or Augmented Intelli-
gence). A cascading decision-making model captures the nature
of collaboration in human-AI teams with either the AI system
advising the human who makes the final decision or less typically
a human advising an AI system that makes the final decision [34,
p. 56]. Examples of the first kind include AI-assisted physicians,
and of the second kind, human-in-the-loop AI systems such as
crowdsourcing.

Note that in human-AI systems, human actions are affected
by individual perceptions of the underlying context that cannot
be tuned/controlled like machine agents (e.g. sensor nodes). Cu-
mulative prospect theory [35]–[37] seeks to describe boundedly
rational human behavior under risk by introducing probability
reweighting functions. Among reweighting functions, the Prelec
reweighting function [38] has significant empirical support and
satisfies a majority of the axioms of prospect theory. We first
show the Prelec model does not capture all patterns of optimal
beliefs of agents in the case of diverse noise levels. Next we
show that a team of suboptimal human-AI agents could out-
perform a team of standalone optimal human-AI agents, if it is
well-composed.

The rest of this paper is organized as follows. Sec. II
describes the cascading binary hypothesis testing problem.
Sec. III proposes a recursive belief update equation that

1As far as we know, these terms were first introduced in [33].

Fig. 1. A cascading decision making model with N agents.

transforms the cascading hypothesis testing problem into a
single-agent binary hypothesis testing problem. Sec. IV shows
the optimal beliefs that minimize the last agent’s Bayes risk
and Sec. V evaluates them for Gaussian likelihoods. Sec. VI
considers a two-agent team construction problem and Sec. VII
discusses design principles of AI-human collaboration systems.
Sec. VIII concludes.

This cascading decision-making problem with identically
noisy agents was first presented in [1] and in particular two-agent
systems with varying noise levels were investigated in [2].
This paper integrates and generalizes our previous results, and
also, significantly improves analytic understanding on optimal
beliefs in cascading decision-making. In addition, we provide a
novel interpretation of Prelec-like beliefs in terms of AI-human
collaboration systems.

II. PROBLEM DESCRIPTION

Consider an N -agent cascading decision making problem, as
illustrated in Fig. 1. The underlying hypothesis, H ∈ {0, 1}, is a
binary signal with prior PH = 0 = p0 and PH = 1 = 1− p0.
There are N agents that sequentially detect the state in a prede-
termined order. The nth agent has a private signal Yn generated
according to the likelihood fYn|H , which is not necessarily
identical for all n. Let the decision made by the nth agent be
Ĥn. In addition to the private signal, the nth agent also observes
the decisions made by preceding agents, {Ĥ1, . . . , Ĥn−1}, to
make a decision Ĥn.

However, the nth agent believes the prior probability of the
null hypothesis is qn ∈ (0, 1) as against the true prior probability
p0. We call this the belief of the agent in order to distinguish it
from the prior. Agentn is also aware of her own likelihood fYn |H
that defines her private signal. However, she also perceives the
likelihoods and beliefs of the other agents to be the same as
hers, i.e., she thinks fYj |H = fYn|H , qj = qn for all j �= n, even
though they could be different and unknown to her. We assume
that the likelihood ratio of each agent is an increasing function
in y,2 i.e., for all agents

Ln(y) :=
fYn|H(y|1)
fYn|H(y|0)

is an increasing function of y.

2This property is particularly useful in uniformly most powerful (UMP) tests.
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Several numerical examples are given for private signals
defined with independent additive Gaussian noise. The desired
monotonicity also holds for many non-additive models, such
as exponential distribution with mean H−1, H ∈ R+, binomial
distribution with success probability H ∈ [0, 1], and Poisson
distribution with rate H ∈ R+ are members of such family,
where H could take two values.

Our performance analysis focuses on the last agent (N th
agent, Norah) and her decision ĤN . Upon observing her private
signal YN and the (N − 1) preceding decisions, she determines
her decision rule. The relative importance of correct decisions
and errors can be abstracted as a cost function. For simplicity, we
assume correct decisions have zero cost and use the shorthand
notations c10 = c(1, 0) as the cost for false alarm or Type I error
(choosing Ĥ = 1 when H = 0), and c01 = c(0, 1) as the cost
for missed detection or Type II error (choosing Ĥ = 0 when
H = 1). In addition, we assume that agents have the same costs;
they are a team in the sense of Radner [33]. Then the Bayes risk
is

RN = c10p0pĤN |H(1|0) + c01(1− p0)pĤN |H(0|1). (1)

As Ĥn depends on the previous decisions, the computation of
(1) also depends on (Ĥ1, . . . , ĤN−1), and the Bayes risk can be
expanded as

RN =
∑

ĥ1,...,ĥN−1

c10p0pĤN ,ĤN−1,...,Ĥ1|H(1, ĥN−1, . . . , ĥ1|0)

+ c01(1− p0)pĤN ,ĤN−1,...,Ĥ1|H(0, ĥN−1, . . . , ĥ1|1).
(2)

We determine the optimal set of beliefs of the agents {q∗n}Nn=1

that minimize (2).
In our model, the nth agent minimizes her perceived Bayes

risk, which is the Bayes risk with prior probability p0 replaced by
her belief qn. In other words, for all n = 1, . . . , N , the nth agent
adopts the decision rule that minimizes her perceived Bayes risk
Rn, and her decision is revealed to other agents as a public sig-
nal. The decisions {Ĥ1, . . . , Ĥn−1} of the earlier-acting agents
reveal information aboutH and thus should be incorporated into
the decision-making process by agent n. As mentioned earlier,
since she believes qn is the true prior, she aggregates information
under the assumption that q1 = q2 = · · · = qn.

It is important to note that every agent is selfish and rational;
the agents do not adjust their decision rules for Norah’s sake.
The novelty in the model (and hence in the conclusions) comes
from agentn having the limitation of using a private initial belief
qn in place of the true prior probability p0.

A. Prospect Theory

Let us also formally introduce the Prelec reweighting function
from cumulative prospect-theoretic models of human behavior.
It spans a family of open- and closed-minded beliefs (will
be clarified later) and thus the optimal beliefs that emerge in
following sections could be approximated by a function in the
Prelec family.

Definition 1 ([38]): For α, β > 0, the Prelec reweighting
function w : [0, 1] �→ [0, 1] is

w(p;α, β) = exp(−β(− log p)α).

The function satisfies several properties such as:
1) w(p;α, β) is strictly increasing;
2) has a unique fixed point w(p;α, β) = p at p∗ =

exp(− exp(log β/(1− α))); and
3) spans a class of open-minded beliefs when α < 1, i.e.,

overweights (underweights) small (high) probability, and
vice versa when α > 1.

A more generic form, termed composite Prelec weighting func-
tion, has been defined in [39].

B. Notations

Throughout the paper, we use f for continuous probability
density functions and p for discrete probability mass functions.
All logarithms are natural logarithms. We use N (μ, σ2) to
denote a Gaussian distribution with mean μ and variance σ2,
and φ(x;μ, σ2) to denote its density function, i.e.,

φ(x;μ, σ2) =
1√
2πσ2

e−
(x−μ)2

2σ2 .

Also in the case of the standard Gaussian, φ(x) := φ(x; 0, 1)
for simplicity.Q(x) is defined as the complementary cumulative
distribution function of the standard Gaussian,

Q(x) =

∫ ∞

x

φ(t)dt.

III. BELIEF UPDATE AND SEQUENTIAL DECISION MAKING

Our model assumes unbounded private signals. Thus, unlike
in [5], [6], it is always possible that a subsequent agent may not
follow previous decisions; that is, herding happens with arbitrar-
ily low probability. We now discuss using both a decision history
and private signals for Bayesian binary hypothesis testing. The
decision rule can be interpreted as each agent updating her
posterior belief based on the decision history and then applying
a likelihood ratio test to her private signal.

A. Alexis, the First Agent

Since Alexis has no prior decision history, she follows usual
binary hypothesis testing. She uses the following likelihood ratio
test with her initial belief q1, with ties broken arbitrarily:

L1(y1) =
fY1|H(y1|1)
fY1|H(y1|0)

Ĥ1=1

≷
Ĥ1=0

c10q1
c01(1− q1)

. (3)

Since we assume the likelihood ratio is increasing in y1, the rule
simplifies to comparing the private signal with an appropriate
decision threshold:

y1
Ĥ1=1

≷
Ĥ1=0

λ1(q1), (4)
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where λi(q) denotes the decision threshold λ that satisfies

Li(λ) =
fYi|H(λ|1)
fYi|H(λ|0) =

c10q

c01(1− q)
. (5)

B. Blake, the Second Agent

Blake observes Alexis’s decision Ĥ1 = ĥ1 and evaluates the
likelihood ratio for (Ĥ1, Y2), using his initial belief q2 as

fY2,Ĥ1|H(y2, ĥ1|1)
fY2,Ĥ1|H(y2, ĥ1|0)

Ĥ2=1

≷
Ĥ2=0

c10q2
c01(1− q2)

. (6)

The private signals Y1 and Y2 are independent conditioned on
H , so Ĥ1 and Y2 are also independent conditioned onH . Hence,
the left side of (6) is

fY2,Ĥ1|H(y2, ĥ1|h) = fY2|H(y2|h)pĤ1|H(ĥ1|h).
So we can rewrite (6) as3

fY2|H(y2|1)
fY2|H(y2|0)

Ĥ2=1

≷
Ĥ2=0

c10q2
c01(1− q2)

pĤ1|H(ĥ1|0)[2]
pĤ1|H(ĥ1|1)[2]

. (7)

The likelihood ratio test (7) can be interpreted as Blake
updating his initial belief upon observing Alexis’s decision Ĥ1.
Combined with q2, his initial belief is updated according to

pĤ1|H(ĥ1|h)[2], from q2 to qĥ1
2 :

qĥ1
2

1− qĥ1
2

=
q2

1− q2

pĤ1|H(ĥ1|0)[2]
pĤ1|H(ĥ1|1)[2]

. (8)

The posterior belief is

qĥ1
2 =

q2pĤ1|H(ĥ1|0)[2]
q2pĤ1|H(ĥ1|0)[2] + (1− q2)pĤ1|H(ĥ1|1)[2]

=
pĤ1,H

(ĥ1, 0)[2]

pĤ1,H
(ĥ1, 0)[2] + pĤ1,H

(ĥ1, 1)[2]

= pH|Ĥ1
(0|ĥ1)[2]. (9)

It should be noted that the true pĤ1|H(ĥ1|h) is given by

pĤ1|H(0|h) = pĤ1|H(0|h)[1] = P [Y1 ≤ λ1(q1)|H = h]

=

∫ λ1(q1)

−∞
fY1|H(y|h)dy,

pĤ1|H(1|h) =
∫ ∞

λ1(q1)

fY1|H(y|h)dy.

3The subscript [2] in p
Ĥ1|H

(̂h1|h)[2] indicates the value of p
Ĥ1|H

(̂h1|h)
that Blake (the second agent) thinks. We specify this because Blake does not
know Alexis’s belief q1. Thus, he interprets her decision based on his belief q2.

The value is different from the true value of p
Ĥ1|H

(̂h1|h) = p
Ĥ1|H

(̂h1|h)[1].
Of course, it will also be different from what Chuck, the third agent, perceives,

which is denoted by p
Ĥ1 |H

(̂h1|h)[3]. This will be explained in the next

subsection.

But Blake evaluates Alexis’s decision Ĥ1 as if it were made
based on q2 and the likelihood fY2|H(·), as against q1, fY1|H(·)
respectively. Thus the probability pĤ1|H(ĥ1|h) is computed
based on λ2(q2), instead of λ1(q2):

pĤ1|H(0|h)[2] =
∫ λ2(q2)

−∞
fY2|H(y|h)dy, (10a)

pĤ1|H(1|h)[2] =
∫ ∞

λ2(q2)

fY2|H(y|h)dy. (10b)

An interesting observation is that Alexis’s belief q1 does not
affect Blake’s belief update as observed in (9) and (10). That is,
for any belief q1 that Alexis might hold, Blake, who does not
know this belief, presumes that the conditional probabilities are
computed according to (10) and updates his belief as in (9) which
depends only on Blake’s initial belief and Alexis’s decision.

However, Alexis’s initial belief implicitly affects Blake’s per-
formance since her biased belief changes the resulting decisions
whose probabilities are embedded in the probability of Blake’s
decision:

pĤ2|H(ĥ2|h) =
∑

ĥ1∈{0,1}
pĤ2,Ĥ1|H(ĥ2, ĥ1|h)

= pĤ2|Ĥ1,H
(ĥ2|0, h)[2] × pĤ1|H(0|h)[1]

+ pĤ2|Ĥ1,H
(ĥ2|1, h)[2] × pĤ1|H(1|h)[1].

Thus, Alexis’s biased belief changes the probability of not only
her decision but also of Blake’s decision.

C. Chuck, the Third Agent

Chuck’s detection process is similar to Blake’s. He observes
both Alexis’s and Blake’s decisions and also updates his initial
belief q3 like in (8):

qĥ1,ĥ2

3

1− qĥ1,ĥ2

3

=
q3

1− q3

pĤ2,Ĥ1|H(ĥ2, ĥ1|0)[3]
pĤ2,Ĥ1|H(ĥ2, ĥ1|1)[3]

=

(
q3

1− q3

pĤ1|H(ĥ1|0)[3]
pĤ1|H(ĥ1|1)[3]

)
pĤ2|Ĥ1,H

(ĥ2|ĥ1, 0)[3]

pĤ2|Ĥ1,H
(ĥ2|ĥ1, 1)[3]

.

(11)

Note that Ĥ1 and Ĥ2 are not conditionally independent given
H as Blake’s decision Ĥ2 depends on Alexis’s decision Ĥ1.

Chuck’s belief update can be understood as a two-step pro-
cess. The first step is to update his belief according to Alexis’s
decision:

qĥ1
3

1− qĥ1
3

=
q3

1− q3

pĤ1|H(ĥ1|0)[3]
pĤ1|H(ĥ1|1)[3]

. (12)

The second step is to update it from qĥ1
3 based on Blake’s

decision:

qĥ1,ĥ2

3

1− qĥ1,ĥ2

3

=
qĥ1
3

1− qĥ1
3

pĤ2|Ĥ1,H
(ĥ2|ĥ1, 0)[3]

pĤ2|Ĥ1,H
(ĥ2|ĥ1, 1)[3]

. (13)
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Again, Chuck is not aware of neither Alexis’s nor Blake’s initial
beliefs or likelihoods. Thus, Chuck computes all probabilities
based on his own belief q3 and likelihood fY3|H , which is
indicated by the subscript [3] in (12) and (13).

Details of computations of (12) and (13) are as follows:

pĤ1|H(0|h)[3] =
∫ λ3(q3)

−∞
fY3|H(y|h)dy,

pĤ1|H(1|h)[3] =
∫ ∞

λ3(q3)

fY3|H(y|h)dy.

Similar to Blake (8), Chuck computes qĥ1
3 for Ĥ1 = 0 and

Ĥ1 = 1 respectively as:

q03 =
q3

q3 + (1− q3)
∫ λ3(q3)
−∞ fY3 |H(y|1)dy∫ λ3(q3)
−∞ fY3 |H(y|0)dy

, (14a)

q13 =
q3

q3 + (1− q3)

∫ ∞
λ3(q3) fY3 |H(y|1)dy∫ ∞
λ3(q3) fY3 |H(y|0)dy

. (14b)

Then,

pĤ2|Ĥ1,H
(0|ĥ1, h)[3] =

∫ λ3(q
ĥ1
3 )

−∞
fY3|H(y|h)dy, (15a)

pĤ2|Ĥ1,H
(1|ĥ1, h)[3] =

∫ ∞

λ3(q
ĥ1
3 )

fY3|H(y|h)dy. (15b)

Even though the value of ĥ1 does not appear in (15), it is

implicit in qĥ1
3 and affects the computation results. Chuck’s

posterior belief qĥ1,ĥ2

3 is obtained by substituting (14) and (15)
in (13).

D. Norah, the N th Agent

Norah, the N th agent, observes YN and {Ĥ1, . . . , ĤN−1}.
Paralleling the arguments in the preceding subsections, her ini-
tial belief update is a function of qN as well as {Ĥ1, . . . , ĤN−1},
but not of {q1, . . . , qN−1}. Generalizing (11), we have

qĥ1,...ĥN−1

N

1− qĥ1,...ĥN−1

N

=
qN

1− qN

pĤ1|H(ĥ1|0)[N ]

pĤ1|H(ĥ1|1)[N ]

×
N−1∏
n=2

pĤn|Ĥn−1,...,Ĥ1,H
(ĥn|ĥn−1, . . . , ĥ1, 0)[N ]

pĤn|Ĥn−1,...,Ĥ1,H
(ĥn|ĥn−1, . . . , ĥ1, 1)[N ]

.

(16)
Combining all observations, we obtain the following theorem.

Define the initial belief update function for N th agent, UN as

qĥ1...ĥN−1

N = UN (qN , ĥ1, ĥ2, . . . , ĥN−1;N).

Theorem 1: The function Un, n ≤ N yielding the posterior
belief of N th agent has the following recurrence relation:
� For n = 1, U1(q;N) = q.
� For n > 1,

Un(q, ĥ1, . . . , ĥn−2, 0;N)

=
q̃

q̃ + (1− q̃)
∫ λN (q̃)
−∞ fYN |H(y|1)dy∫ λN (q̃)
−∞ fYN |H(y|0)dy

, (17a)

Un(q,N, ĥ1, . . . , ĥn−2, 1;N)

=
q̃

q̃ + (1− q̃)

∫ ∞
λN (q̃) fYN |H(y|1)dy∫ ∞
λN (q̃) fYN |H(y|0)dy

, (17b)

where q̃ = Un−1(q, ĥ1, . . . , ĥn−2;N).
Note that capital N in (17a) and (17b) indicate the recursive
updates are computed from the value that the N th agent thinks.

Fig. 2 depicts the function U4(q4, ĥ1, ĥ2, ĥ3; 4) forN = 4 for
eight possible combinations of Alexis’s, Blake’s, and Chuck’s
decisions (ĥ1, ĥ2, ĥ3). An interesting property of UN is that the
posterior belief is much more dependent on the most recent de-
cision ĥN−1 than on the earlier decisions (ĥ1, . . . , ĥN−2). This
is because later acting agents consider more previous decisions,
and hence more information than the first agents, their decisions
should carry more weight. In this sense, we can say that recent
decisions give more information than earlier decisions. This is
especially the case when the (N−1)th agent has not followed
precedent. This is because the N th agent rationally concludes
that the (N−1)th agent observed strong evidence to justify a
deviation from precedent. For example, if the decision history
of the first five agents is (0,0,0,0,1) then the sixth agent takes
the last decision 1 seriously even though the first four agents
chose 0. A reversal of an arbitrarily long precedent sequence
may occur because we assume unbounded private signals; if
private signals are bounded [5], [6], then the influence of the
precedent can reach a point where agents cannot receive a signal
strong enough to justify a decision running counter to precedent.
Another interesting point is that smaller noise variance changes
beliefs more. It is clear from (17), but also reasonable that when
the variance is smaller, the N th agent trusts and is more inclined
towards previous decisions. Note even though the prior updates
of Norah in Fig. 2 do not depend on {q1, . . . , qN−1} and their
corresponding likelihoods, the probability of prior decisions
depends on them and implicitly, so does Norah’s decision.

As we can see in Fig. 2, the dominant previous decision for
agent N is the decision of agent (N−1). We can prove that
observing the (N−1)th agent’s decision 0 (or decision 1), the
N th agent’s posterior belief becomes larger (or smaller), which
in turn implies that the decision threshold of N th agent becomes
larger (or smaller) so that she is more likely to declare decision
0 (or 1) as well.

Theorem 2: Suppose that noises are independent and addi-
tive, and have continuous densities. Fix some prior decisions
{ĥ1, . . . , ĥN−2} and let q̃N , q̃0N , q̃1N denote the posterior be-
liefs of the N th agent given the (N − 2) decisions only, the
(N − 2) decisions with ĥN−1 = 0, and the (N − 2) decisions
with ĥN−1 = 1. Then,

q̃1N < q̃N < q̃0N .
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Fig. 2. The function U4(q4, ĥ1, ĥ2, ĥ3; 4)—posterior belief of the fourth

agent (qĥ1,ĥ2,ĥ3
4 )—for each possible combination of Alexis’s, Blake’s, and

Chuck’s decisions [̂h1, ĥ2, ĥ3] when c10 = c01 = 1 and private signals are
distorted by additive Gaussian noise with two noise levels. The posterior belief

is mostly dependent on Chuck’s decision; the top four curves are for ĥ3 = 0

and the bottom four curves are for ĥ3 = 1.

Proof: We know that q̃N , q̃0N , q̃1N differ only by the last
multiplicative term of (16). Since q

1−q is monotone increasing,
the statement is equivalent to showing:∫∞

λN (q̃N ) fYN |H(y|0)dy∫∞
λN (q̃N ) fYN |H(y|1)dy < 1 <

∫ λN (q̃N )

−∞ fYN |H(y|0)dy∫ λN (q̃N )

−∞ fYN |H(y|1)dy
.

Since the noise is independent and additive, fYN |H(y|1) =
fYN |H(y − 1|0) so the term on the left side∫∞

λN (q̃N ) fYN |H(y|0)dy∫∞
λN (q̃N ) fYN |H(y|1)dy =

∫∞
λn(q̃N ) fYN |H(y|0)dy∫∞

λN (q̃N )−1 fYN |H(y|0)dy

=

∫∞
λN (q̃N ) fYN |H(y|0)dy∫ λN (q̃N )

λN (q̃N )−1 fYN |H(y|0)dy +
∫∞
λN (q̃N ) fYN |H(y|0)dy

< 1.

The right inequality can be shown similarly. �
Considering the complicated relationships that individual

decisions have on the evolution of initial beliefs, it is also
important to verify if the belief evolution preserves the or-
dering, given the same set of subsequent decisions. That is,
given two beliefs qL < qR at some point of the recursive up-
date and the same sequence of following d decisions, then it
is important to characterize the likelihoods for which the the
ordering is preserved in the resulting posterior beliefs, given
the sequence of decisions, which is described in the following
theorem.

Theorem 3: Suppose that noise is independent and additive,
and has a continuous density. Consider two beliefs qL < qR.
Then, for any given later-acting decisions d, the posterior belief
satisfies qdL < qdR if and only if

g1(q) :=
q

1− q

∫ λN (q)

−∞ fYN |H(y|0)dy∫ λN (q)

−∞ fYN |H(y|1)dy
, (18)

g2(q) :=
q

1− q

∫∞
λN (q) fYN |H(y|0)dy∫∞
λN (q) fYN |H(y|1)dy (19)

are both increasing in q.
Proof: Note that once observing decision 0, beliefs are up-

dated as

q0L
1− q0L

=
qL

1− qL

∫ λN (qL)

−∞ fYN |H(y|0)dy∫ λN (qL)

−∞ fYN |H(y|1)dy
,

q0R
1− q0R

=
qR

1− qR

∫ λN (qR)

−∞ fYN |H(y|0)dy∫ λN (qR)

−∞ fYN |H(y|1)dy
,

and so if (18) holds, q0L < q0R. Similarly, (19) can be shown by
updating after decision 1. �

Let us state some properties of Mills ratio [40], [41], which
is about Gaussian distribution, and we will see that g1(q), g2(q)
are both increasing if likelihood is Gaussian.

Lemma 1 ([41]): Define η(x) := φ(x)/Q(x), the inverse of
Mills ratio. Then, for any x ∈ R, it is true that 0 < η′(x) < 1
and η′′(x) > 0.

Corollary 1: Consider a Gaussian likelihood, i.e., YN =
H + ZN , where ZN are independent and identically drawn
from N (0, σ2), for some σ2 > 0. Then g1(q), g2(q) are both
increasing in q.

Proof: Let us consider g2(q) first. For the binary hypothesis
test with Gaussian noise, we know that the decision threshold
for the likelihood ratio test is given by

λN (q) =
1

2
+ σ2 log

(
c10q

c01(1− q)

)
.

Then, we have

g2(q) =
q

1− q

Q
(
λN (q)

σ

)
Q
(
λN (q)−1

σ

) .
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Letting x := log c10q
c01(1−q) , it is sufficient to show that

g̃(x) := log

(
c10
c01

g2(q)

)
= x+ log

(
Q
(
σx+ 1

2σ

))− log
(
Q
(
σx− 1

2σ

))
,

is increasing in x since c10, c01 are positive constants, log(·) is a
monotonically increasing function, and x is a strictly increasing
function of q.

The first derivative of g̃ is given by

g̃′(x) = 1− ση
(
σx+ 1

2σ

)
+ ση

(
σx− 1

2σ

)
. (20)

Since η(·) is a continuous function, using the mean value theo-
rem, there exists y ∈ (

σx− 1
2σ , σx+ 1

2σ

)
, such that

ση
(
σx+ 1

2σ

)− ση
(
σx− 1

2σ

)
= ση′(y)

1

σ
= η′(y). (21)

From the first property of Lem. 1, 0 < η′(y) < 1, we have

η
(
σx+ 1

2σ

)− η
(
σx− 1

2σ

)
< 1.

Thus, from (20), it follows that g̃′(x) > 0 for all x, indicating
that g̃(·) is an increasing function of x. This in turn implies that
g2(·) is also an increasing function.

To prove the result for g1, it is sufficient to observe that by the
symmetry of error probabilities:

g1(q) =
1

g2(1− q)
.

�

IV. OPTIMAL BELIEF

We described the initial belief evolution and decision-making
model in Sec. III. In this section, we investigate the set of
initial beliefs that minimize the Bayes risk. We consider the
case of two agents for analytical tractability although the broad
nature of the arguments extend to multi-agent systems. Note
that the Bayes risk of the system with N = 2 is the same as
Blake’s Bayes risk because his decision is adopted as the final
decision.

Let us recapitulate the computation of Blake’s Bayes risk.
Alexis chooses her decision threshold as λ1 := λ1(q1). Her
probabilities of error are given by

P I
e,1 = pĤ1|H(1|0) =

∫ ∞

λ1

fY1|H(y|0)dy,

P II
e,1 = pĤ1|H(0|1) =

∫ λ1

−∞
fY1|H(y|1)dy.

Blake however presumes Alexis uses the decision thresh-
old λ1,[2] := λ2(q2) and computes her probabilities of error
accordingly4:

P I
e,1,[2] = pĤ1|H(1|0)[2] =

∫ ∞

λ1,[2]

fY2|H(y|0)dy,

P II
e,1,[2] = pĤ1|H(0|1)[2] =

∫ λ1,[2]

−∞
fY2|H(y|1)dy.

4Recall that the subscript [2] denotes the quantity ‘seen by’ Blake.

When Alexis decides Ĥ1 = 0, Blake updates his belief q2 to
the posterior q02 :

q02
1− q02

=
q2

1− q2

1− P I
e,1,[2]

P II
e,1,[2]

=⇒ q02 =
q2(1− P I

e,1,[2])

q2(1− P I
e,1,[2]) + (1− q2)P II

e,1,[2]

, (22)

his decision threshold is λ0
2 := λ2(q

0
2), and the probabilities of

error are

P I0
e,2 = pĤ2|Ĥ1,H

(1|0, 0) =
∫ ∞

λ0
2

fY2|H(y|0)dy,

P II0
e,2 = pĤ2|Ĥ1,H

(0|0, 1) =
∫ λ0

2

−∞
fY2|H(y|1)dy.

Likewise, when Alexis decides Ĥ1 = 1, Blake updates his
belief q2 to the posterior q12 :

q12
1− q12

=
q2

1− q2

P I
e,1,[2]

1− P II
e,1,[2]

=⇒ q12 =
q2P

I
e,1,[2]

q2P I
e,1,[2] + (1− q2)(1− P II

e,1,[2])
, (23)

his decision threshold is λ1
2 := λ2(q

1
2), and the probabilities of

error are

P I1
e,2 = pĤ2|Ĥ1,H

(1|1, 0) =
∫ ∞

λ1
2

fY2|H(y|0)dy,

P II1
e,2 = pĤ2|Ĥ1,H

(0|1, 1) =
∫ λ1

2

−∞
fY2|H(y|1)dy.

Now we compute the system’s Bayes risk (or Blake’s Bayes
risk) R2:

R2 = c10pĤ2,H
(1, 0) + c01pĤ2,H

(0, 1)

= c10
∑

ĥ1∈{0,1}
pĤ2|Ĥ1,H

(1|ĥ1, 0)pĤ1|H(ĥ1|0)pH(0)

+ c01
∑

ĥ1∈{0,1}
pĤ2|Ĥ1,H

(0|ĥ1, 1)pĤ1|H(ĥ1|1)pH(1)

= c10
[
P I0
e,2(1− P I

e,1) + P I1
e,2P

I
e,1

]
p0

+ c01
[
P II0
e,2P

II
e,1 + P II1

e,2(1− P II
e,1)

]
(1− p0). (24)

Note that the Bayes risk R2 in (24) is a function of q1 and q2.
One might think that R2 is minimum at q1 = q2 = p0 as Alexis
makes the best decision for the true prior and Blake does not
misunderstand her decision. Surprisingly, however, this turns
out to not be true. We prove this by studying Alexis’s optimal
belief q∗1 that minimizes R2.
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Theorem 4: Alexis’s and Blake’s optimal beliefs q∗1, q
∗
2 that

minimize R2 satisfy

q∗1
1− q∗1

=
p0(P

I1
e,2 − P I0

e,2)

(1− p0)(P
II0
e,2 − P II1

e,2)
. (25)

Before proceeding to the proof, note that error probability
terms in the right-side are dependent on q2, but not on q1. Fur-
thermore, the value of (P I1

e,2 − P I0
e,2)/(P

II0
e,2 − P II1

e,2) is generally
not 1, i.e., in general q1 = q2 = p0 is not the optimal belief.
For example, for the additive Gaussian noise model considered
in the next section, the ratio is not equal to 1 except when
p0 = c01/(c10 + c01).

Proof of Thm. 4: Let us consider the first derivative of (24)
with respect to q1:

∂R2

∂q1
= c10p0(P

I1
e,2 − P I0

e,2)
∂P I

e,1

∂q1

+ c01(1− p0)(P
II0
e,2 − P II1

e,2)
∂P II

e,1

∂q1
.

We want to find q1 that minimizes R2, i.e., q1 makes the first
derivative zero. Using

dP I
e,1

dq1
=

dP I
e,1

dλ1

dλ1

dq1
= −fY1|H(λ1|0)dλ1

dq1
,

dP II
e,1

dq1
=

dP II
e,1

dλ1

dλ1

dq1
= fY1|H(λ1|1)dλ1

dq1
;

this occurs when

c10p0(P
I1
e,2 − P I0

e,2)fY1|H(λ1|0)
= c01(1− p0)(P

II0
e,2 − P II1

e,2)fY1|H(λ1|1)

⇔ fY1|H(λ1|1)
fY1|H(λ1|0) =

c10p0(P
I1
e,2 − P I0

e,2)

c01(1− p0)(P
II0
e,2 − P II1

e,2)
. (26)

Note that λ1 = λ1(q1) is the solution to (4),

fY1|H(λ1|1)
fY1|H(λ1|0) =

c10q1
c01(1− q1)

. (27)

Equating (26) and (27) completes the proof. �
The theorem considers general continuous likelihoods

{fYn|H} with the monotonicity assumption on λ(q). It is in-
teresting to evaluate the optimal beliefs in the case of Gaussian
likelihoods (i.e., additive Gaussian noise) and obtain insights
into optimality in the sequential decision-making problem.

V. GAUSSIAN LIKELIHOODS

We now focus on Gaussian likelihoods and study their optimal
beliefs in this section. Suppose the nth agent receives the signal
Yn = H + Zn, where Zn is an independent additive Gaussian
noise with zero mean and variance σ2

n > 0. Thus, the received
signal probability densities for H = h are

fYn|H(yn|h) = φ(yn;h, σ
2
n).

Fig. 3. The Bayes risk for q1, q2 ∈ (0, 1) with p0 = 0.3, c10 = c01 = 1,
and additive standard Gaussian noise. The pair of optimal beliefs (�) yields
R2 = 0.2186, while the true prior (•) yields R2 = 0.2214.

Fig. 4. The trend of the optimal beliefs for N = 2 (Alexis, Blake). Z1, Z2

are standard Gaussian.

For a belief qn, the decision threshold is then determined by the
likelihood ratio test,

Ln(yn) =
fYn|H(yn|1)
fYn|H(yn|0)

Ĥ1=1

≷
Ĥ1=0

c10qn
c01(1− qn)

,

that simplifies to the following simple threshold condition for
Gaussian likelihoods:

yn
Ĥ1=1

≷
Ĥ1=0

λn(qn) =
1

2
+ σ2

n log

(
c10qn

c01(1− qn)

)
. (28)

Here the index n represents the nth agent in the system, as the
belief and variance of the agent varies along the chain.

Using the recursive update in Sec. III and decision threshold
(28), it is possible to obtain the Bayes risk of Blake (i.e.,
N = 2) for given beliefs q1, q2. Fig. 3 depicts Blake’s Bayes
risk for q1, q2 ∈ (0, 1), and explicitly shows that knowing true
prior probability is not optimal. The social learning problem
with Bayes costs c10 = c01 = 1, prior p0 = 0.3, and additive
Gaussian noise with zero mean and unit variance results in a
Bayes risk that is minimum when Alexis’s belief is 0.38 and
Blake’s belief is 0.23, shown in the figure (triangle) and is
compared to the true prior (circle).
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Fig. 5. The trend of the optimal beliefs forN = 3 (Alexis, Blake, and Chuck).
Z1, Z2, Z3 are standard Gaussian.

Fig. 6. Optimal beliefs when the preceding agent has smaller noise, where
σ2
1 = 0.8 and σ2

2 = 1.

Figs. 4 and 5 show the trend of optimal belief pair that mini-
mizes the last agent’s Bayes risk, when all agents have the same
noise levels for the case of two and three agents respectively.
We can observe several common characteristics. First, the non-
terminal agents (i.e., Alexis for N = 2 and Alexis and Blake for
N = 3) overweight their beliefs if p0 is small and underweight
it if p0 is large. We call this open-minded behavior as it enhances
less likely events. Second, the last agent (i.e., Blake for N = 2
and Chuck for N = 3) underweights the belief if p0 is small
and overweights it if p0 is large, implicitly compensating for the
biases of the preceding agents. Such behavior is referred to as
being closed-minded as it represents a cautious outlook to the
decision-making problem. Lastly, there is a unique, non-trivial
prior, p0 ∈ (0, 1), where all agents’ optimal beliefs are identical
to the true prior.

However, the case of nonidentical noise variances of agents
results in a very different behavior of optimal beliefs, especially
when the last agent has smaller noise. The optimal beliefs for
N = 2 and the case of the preceding agent having smaller noise,
and that of the last agent having smaller noise respectively are
shown in Figs. 6 and 7. As can be observed, the optimal belief
curves are markedly different when the last agent has smaller
noise, and we now derive some analytical properties of q∗1, q

∗
2.

Fig. 7. Optimal beliefs when the later-acting agent has smaller noise, where
σ2
1 = 1 and σ2

2 = 0.25.

Theorem 5: For any σ2
1 and σ2

2 , q∗1 and q∗2 satisfy:
1) for p0 ∈ (0, 1), q∗1 ≤ p0 if and only if q∗2 ≥ c01

c01+c10
, with

equality for q∗2 = c01
c01+c10

.
2) p0 = q∗1 = q∗2 if and only if p0 ∈ {0, c01

c01+c10
, 1}.

Proof: Given in App. A. �
Thm. 5 highlights the fact that if the last agent believes the

null hypothesis is more likely, then the ideal predecessor under-
weights the prior, and vice versa. Additionally, for p0 near zero
(near one) the optimal predecessor overweights (underweights)
the prior.

In particular, let us consider two cases separately. First, let
the predecessor have smaller noise. Then the curves for optimal
beliefs and the corresponding Bayes risk are as shown in Fig. 6.
The behavior here is similar to the case with equal noise,
indicating that the reducing noise of the predecessor does not
alter the overall behaviors of beliefs, as the last agent is unaware
of this improved signal quality.

On the other hand, when the last agent has smaller noise, we
notice that the nature of curves changes, as shown in Fig. 7. The
behavior of the ideal agents indicates that when the predecessor
has significantly larger noise than the last agent, the last agent
stays open-minded. In addition, q∗1 has multiple crossings with
p0, but q∗2 has a single crossing at q∗2 = c01/(c01 + c10).

As expected, the ideal predecessor is open-minded for near-
deterministic priors (p0 close to zero or one). However, when
the prior uncertainty in the hypotheses is high (p0 near 1/2),
we note that the ideal last agent with less noise favors the less
likely hypothesis. This can be attributed to the fact that the last
agent stays open-minded to the less likely hypothesis when the
predecessor with larger noise is more likely to make errors.
To further understand the nature of such an predecessor, we
characterize the crossings of the optimal belief curve with the
prior q∗1 = p0 .

Theorem 6: The set of all p0 such that q∗1 = p0, q∗2 = c01
c01+c10

is given by the solutions to

ex =
1− βQ(−α+ σ1x)

1− βQ(−α− σ1x)
, (29)
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where

x = log

(
c10p0

c01(1− p0)

)
, α =

1

2σ1
, β = 1− Q (1/2σ2)

Q (−1/2σ2)
.

Proof: Given in App. B. �
We note that p∗ = c01

c01+c10
is always a solution to (29). The

case of multiple solutions to (29) is of particular interest and a
sufficient condition is given in the following corollary.

Corollary 2: If

2βσ1φ(α)

1− βQ(−α)
> 1, (30)

then, (29) has at least 3 solutions in (0,1).
Proof: Sincex is a monotonic function of p0, it is sufficient to

show that (29) has at least 3 solutions in x. From the symmetry
in (29), since x = 0 is always a root, it suffices to show the
existence of at least one more root in x > 0. First note the ranges
of variables, x ∈ (−∞,∞), α ∈ (0,∞), β ∈ (0, 1).

Letting r(x) be the right side of (29), since 0 ≤ Q(·) ≤ 1, we
have

1− β ≤ r(x) :=
1− βQ(−α+ σ1x)

1− βQ(−α− σ1x)
≤ 1

1− β
,

indicating that r(x) ∈ [1− β, 1
1−β ]. However, note that ex

monotonically increases in (1,∞) for x > 0. Since ex, r(x)
coincide at x = 0, it follows that they cross at least once on
(0,∞) and also on (−∞, 0), if r′(x) > d

dxe
x at x = 0 by

the intermediate value theorem. Thus, the sufficient condition
follows:

r′(0) =
2σ1βφ(α; 0, 1)

1− βQ(−α)
> 1 =

d

dx
ex

∣∣∣∣∣
x=0

.

�
Cor. 2 provides a sufficient condition on the noise level of

agents under which there exists multiple crossings of the curves
q∗1(p0) and p0. The range of standard deviations of the additive
Gaussian noise of the preceding and last agents that satisfy the
sufficient condition of Cor. 2 is shown in Fig. 8. Note from
the figure that the area below the red dotted contour in Fig. 8
has multiple solutions to q∗1 = p0, i.e., when the last agent has
comparatively smaller than the preceding agent.

This is important as the crossings indicate a change in the
perceived bias of the predecessor and also indicates the regions
in which the last agent overweights the unlikely hypothesis as
in Fig. 7.

VI. TEAM CONSTRUCTION CRITERION

Having studied the mathematical conditions for optimal
reweighting of initial beliefs, we now investigate team selection
for social learning. Naturally, a social planner who is aware of
the context p0 can pick the optimal agent pairs to minimize
Bayes risk. However, it is not clear if agents are capable of
organizing themselves into ideal teams in the absence of con-
textual knowledge. Thus, we now identify the criterion for the
last agent to identify the optimal predecessors among a set of
given predecessors.

Fig. 8. Contour plot of (30) with values for various σ1, σ2. The red dotted
contour shows the contour that results in 1 so that the area below it satisfies (30)
and therefore has multiple solutions to (29).

Theorem 7: Consider two predecessors with q1 < q1′ . Let
λ1, λ1′ be the decision thresholds of the respective predecessors.
Then, the predecessor with belief q1 is the optimal choice if and
only if

P1

[
Y1 ∈ [λ1, λ1′ ], Y2 ∈ [λ1

2, λ
0
2]
]

P0

[
Y1 ∈ [λ1, λ1′ ], Y2 ∈ [λ1

2, λ
0
2]
] ≥ c10p0

c01(1− p0)
. (31)

Proof: Given in App. C. �
In other words, by rewriting (31) in a likelihood ratio form,

we observe that the criterion for picking the predecessor with a
smaller belief is given by the likelihood ratio test

L
[
Ĥ1 = Ĥ2 = 1, Ĥ1′ = Ĥ2′ = 0

]
≥ c10p0

c01(1− p0)
,

where Ĥ2′ is the decision made by the last agent following the
decision of the predecessor with belief q1′ .

Thus selecting an ideal predecessor requires a social planner
who is aware of the context p0. Without this, the last agent
selects an predecessor according to his personal belief q2. That
is, the last agent verifies condition (31) by replacing p0 by
q2. Such a choice of predecessor might not always conform
to the optimal choice when the belief of the last agent devi-
ates significantly from the prior. To illustrate, we consider the
problem of choosing between two predecessors with beliefs
q1(p0) = q∗1(p0) and q1′(p0) = p0. Let q(p0, q2) be the belief
of the optimal predecessor choice for a given pair (p0, q2).
We identify the region of correct selection by shading, S =
{(p0, q2) : q(p0, q2) = q(q2, q2)}.

First, when noise levels are equal, the region in which the last
agent picks the correct preceding agent is shown in Fig. 9(a).
We note that the correct region is relatively small and does
not include q∗2. In particular, the last agent with optimal be-
lief chooses the wrong predecessor always, whereas a subop-
timal last agent with beliefs in the shaded region picks the
correct one.
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Fig. 9. Context-unaware team selection.

On the other hand, when the last agent has smaller noise
than the predecessor, the corresponding region is as shown in
Fig. 9(b). Here we note that the last agent with optimal belief
picks the correct preceding agent always.

Thus, we note that knowledge of the mathematically optimal
beliefs does not guarantee selection of the right preceding agent.
Further, we also observe that the diversity of noise levels may
increase the feasibility of selecting the right preceding agent
when the last agent has optimal belief.

We also explore the optimal choice of predecessor for the
given optimal last agent in the absence of knowledge of the
prior probability. From (25), the belief of the optimal preceding
agent, q̃1 chosen by an last agent, in the absence of context (prior
probability p0) satisfies

q̃1
1− q̃1

=
p0

1− p0

P I1
e,2 − P I0

e,2

P II0
e,2 − P II1

e,2

. (32)

The last agent’s behavior with belief q∗2 is as shown in Fig. 9(c).
We note that the preceding agent chosen by the last agent
differs from the optimal choice. Further, it is also evident that
this choice consequently results in an increased Bayes risk.
Such behavior in team selection highlights the significance
of context and thus a social planner for identifying the right
team.

VII. HUMAN-AI COLLABORATION SYSTEMS

In this section, we use mathematical results from previous
sections to study the engineering design problem of construct-
ing human-AI collaborative systems. To do so, we make the
following assumptions from the behavioral sciences: Human
agents perform Bayesian decision-making [42]–[45] and their
perceptions follow the Prelec reweighting function [38]. In
addition, agents experience varying observational noise which is
additive and Gaussian (as it is a common model in human signal
perception [46], [47]). As usual in sequential social learning
setup, all agents make selfish decisions [6], [10].

Fig. 10. Optimal beliefs as compared to Prelec-weighted beliefs.

A. Approximation by Prelec Family

To design human-AI collaborative systems, we first determine
whether optimal belief functions from previous sections are
close to human behavior as modeled by cumulative prospect
theory [35], [38].5

We approximate the optimal belief curves q∗n by the Prelec
function and study the resulting increase in the Bayes risk. We
restrict to the Prelec family whose fixed point is identical to p∗ =

c10
c01+c10

, and then find best parameters (αn, βn) in the minimax
absolute error sense, i.e.,

(αn, βn) = argmin
α,β:w(p∗;α,β)=p∗

‖q∗n(·)− w(·;α, β)‖∞.

Let the Prelec function approximations be (q1,Pre, q2,Pre).
The Prelec approximations for the two-agent case are shown

in dotted curves in Fig. 10. When the preceding agent has smaller
noise as in Fig. 10(a), the Prelec function approximates the

5Bounded rationality models have been categorized into two main classes—
costly bounded rationality and truly bounded rationality [48]. Costly rationality
considers the emergence of boundedly irrational behavior as optimization under
some costs of decision-making such as computation and communication. On the
other hand, truly bounded rationality is not based on an optimization framework.
Though not the focus of the present paper, one might wonder whether people
are (approximately) naturally optimal for social learning. That is, do cumulative
prospect-theoretic models emerge from a costly rationality framework for social
learning, since the optimal belief curves result from limitations in computation
(selfish decision-making) and communication (public signal quantization).
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Fig. 11. Models of AI-human collaboration, where a machine provides input
for human judgement or vice versa.

optimal beliefs well and the Bayes risk does not increase by
much. To evaluate the loss from the approximation, consider the
set of correct beliefs q1 = q2 = p0, that result in a Bayes risk
of R2,corr. The maximal loss in terms of Bayes risk from using
the correct beliefs is maxp0

(R2,corr −R2,min) ≈ 0.0039. On the
other hand, the maximal loss from the best Prelec approximation
is ≈ 0.0009. This indicates that the natural cognitive biases of
humans (i.e., Prelec reweighting) are effective for social learning
when the preceding agent has smaller noise.

On the other hand, when the last agent has smaller noise as in
Fig. 10(b), the Prelec approximation does not accurately mimic
the optimal behavior of agents. Recall that the Prelec function is
always increasing and has only one crossing with unit slope line
in (0,1). Therefore, the Prelec function fails to account for all the
variations in the optimal belief. Moreover, while the additional
loss of Bayes risk by the Prelec fitting is ≈ 0.0187, the loss
from using the correct beliefs, p0 = q1 = q2, is ≈ 0.0060. This
indicates that even though the Prelec weighting functions serve
as good approximations with predecessors having less noisy
observations, they do not model the optimal behavior in the
case of predecessors having noisier observations. These results
suggest that human agents following cumulative prospect theory
models [35] yield small Bayes risk when predecessors have
smaller noise.

B. Human-AI Teams

The previous subsection informs the design of AI-human
collaboration structures [34]. In many human-AI joint teams,
a human agent makes the final decision based on the advice
of an AI component as depicted in Fig. 11(a), but the opposite
structure of Fig. 11(b) is also possible. It is thus important to
identify the best team configuration [48]. Indeed, D. Kahneman
recently stated that “You can combine humans and machines,
provided the machine has the last word” [49].

Our results indicate that an AI assistant with smaller noise
could be an effective predecessor to the human decision-maker.
In particular, an open-minded AI predecessor and a closed-
minded human final decision-maker with appropriate Prelec

reweighted beliefs work well together, as in Fig. 6. However, an
AI component with greater noise might not be a good predeces-
sor to the human last agent who does not have beliefs that mimic
the optimal behavior in Fig. 7 and so perhaps counterintuitively,
the architecture of Fig. 11(b) should be adopted, with the AI
agent having larger noise making the global decision.

Additionally, these results along with those of Sec. VI provide
some insight into human-AI teams when the human agent picks
an AI predecessor, given a choice among different agents. In
particular, consider the AI-human team where the human, who
has a Prelec-weighted belief, chooses one of two possible AI
predecessors—one that has the optimal belief q∗1 and the other
that is aware of the true prior p0. In case the human agent has
larger noise, and a closed-minded Prelec belief as in Fig. 9(a),
she unfortunately picks the AI predecessor with q1 = p0 and
the team becomes suboptimal. However, if the human agent
has smaller noise, and an open-minded Prelec belief, she picks
the optimal AI component q1 = q∗1 and therefore can make the
optimal decision as in Fig. 9(b). Thus it is evident that optimal
team organization is feasible when the human has smaller noise
and the appropriate open-minded belief.

VIII. CONCLUSION

We discussed the sequential social learning problem with
individual biased beliefs. Unlike previous works on herding,
we focused on the Bayes risk of the last-acting agent. We first
derived the optimal belief update rule for general likelihoods and
evaluated for Gaussian likelihoods. Counterintuitively, optimal
beliefs that yield minimum Bayes risk are in general different
from the true prior. Under equal noise levels, we observed that
optimal preceding agents have open-minded beliefs, that is,
overweight small priors and underweight large priors, while
the optimal last agent has closed-minded belief. However, the
trend may change depending on varying noise levels such that
especially when the last agent has much smaller noise, optimal
belief of the last agent is inverted as she becomes open-minded.

We also showed that the Prelec reweighting function from
cumulative prospect theory approximates the behavior of the
optimal beliefs under specific levels of noise, however, when
the last agent has much smaller noise, it fails to capture all the
behavioral traits of the optimal beliefs.

Finally, we considered the ability of agents to organize them-
selves into optimal teams and showed that in the absence of
a social planner, the last agent can get paired with the wrong
predecessor when the individual belief deviates significantly
from the underlying prior value. The setup arises from the
consideration of AI and it tells us without knowing the true prior,
our human-machine team construction could be misorganized.

APPENDIX A
PROOF OF THEOREM 5

Let us prove Thm. 5 starting with the premise that q∗1 ≥ p0.
First, from (25), we have

q∗1 ≥ p0 ⇔ P II1
e,2 − P II0

e,2

P I1
e,2 − P I0

e,2

≥ −1. (33)
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Fig. 12. The point B0 always exists between points B1 and B̄1.

To study the ratio in (33), consider the Type I vs. Type II
error curve for binary hypothesis testing under additive Gaussian
noise.6 This is shown in Fig. 12, and as seen here is a convex
function [50]. Note that on the curve, the Type I and Type II
error probabilities, (P I

e, P
II
e ), are the points on the curve that

have tangents with slope matching −( c10q
c01(1−q) ), where q is the

corresponding probability, and σ2 is the variance of the additive
Gaussian noise.

First, from Thm. 2, we know that q02 ≥ q12 which in turn
implies that λ0

2 ≥ λ1
2. This in turn indicates that

P I0
e,2 = Q

(
λ

0

2

σ2

)
≤ Q

(
λ

1

2

σ2

)
= P I1

e,2.

Similarly,P II0
e,2 ≥ P II1

e,2, and thus, as shown in the figure, the point

B0 = (P I0
e,2, P

II0
e,2) lies to the left of B1 = (P I1

e,2, P
II1
e,2).

Further, since B1 lies on the curve, so does the point B̄1 =
(P II1

e,2, P
I1
e,2) as it caters to the error probabilities corresponding

to the probability of the null hypothesis P [H = 0] = 1− q12 .
Thus, the line B1B̄1 has a slope of −1.

Note that the condition (33) translates to the slope of the line
B0B1 is greater than −1. Observe that if B̄1 lies to the right
of B1 then it implies that the slope of B0B1 is less than −1,
violating (33). Similarly, if B0 lies to the left of B̄1, then again
the (33) is violated.

On the other hand, if B0 lies between B̄1 and B1, then we
know that the slope ofB0B1 is greater than that ofB1B̄1, therein
satisfying (33). Thus, (33) is true if and only if the point B0 lies
between the two points B1 and B̄1.

From the convexity of the curve and comparing coordinates
of B0 and B̄1, we have

q∗1 ≥ p0

⇔ P I0
e,2 ≥ P II1

e,2 and P II0
e,2 ≤ P I1

e,2

6It is also called Receiver Operating Characteristic (ROC) curve [50], [51]
when the curve is vertically inverted.

(a)⇔ Q

(
λ0
2

σ2

)
≥ 1−Q

(
λ1
2 − 1

σ2

)
and Q

(
λ1
2

σ2

)
≥ 1−Q

(
λ0
2 − 1

σ2

)
(b)⇔ λ0

2 + λ1
2 ≤ 1

(c)⇔ 2λ1,[2] + σ2
2 log

⎛⎝P I
e,1,[2]

(
1− P I

e,1,[2]

)
P II
e,1,[2]

(
1− P II

e,1,[2]

)
⎞⎠ ≤ 1, (34)

where (a) follows from the false alarm and missed detection
probabilities in terms of theQ-function of the standard Gaussian
random variable; (b) follows from the fact that the Q-function
is monotonically decreasing and that 1−Q(x) = Q(−x); and
(c) follows from (22), (23), and λ1,[2] = λ2(q2).

From (28), we have

λ1,[2] =
1

2
+ σ2

2 log

(
c10q

∗
2

c01(1− q∗2)

)
.

Substituting in (34), we have

q∗1 ≥ p0 ⇔ 2 log

(
c10q

∗
2

c01(1− q∗2)

)

≤ log

⎛⎝P II
e,1,[2]

(
1− P II

e,1,[2]

)
P I
e,1,[2]

(
1− P I

e,1,[2]

)
⎞⎠ .

Letting x := log(
c10q

∗
2

c01(1−q∗2)
) = 1

σ2
2
(λ2 − 1

2 ) and using Q(·)
representation of error probabilities, we have

q∗1 ≥ p0 ⇔ 2x ≤ log

⎛⎝Q
(
σ2x− 1

2σ2

)
Q
(
−σ2x+ 1

2σ2

)
Q
(
σ2x+ 1

2σ2

)
Q
(
−σ2x− 1

2σ2

)
⎞⎠.

(35)

From Cor. 1, we know that the function

g̃(x) = x+ log

(
Q
(
σx+ 1

2σ

)
Q
(
σx− 1

2σ

))
is an increasing function of x. Thus, reformulating (35) using
g̃(·),

q∗1 ≥ p0 ⇔ g̃(x) ≤ g̃(−x)

⇔ x ≤ 0 ⇔ q∗2 ≤ c01
c01 + c10

.

The condition for equality follows from observing the condition
for equality at all the inequalities, proving the first part of the
result.

The second part follows directly from the first, taking into
account the trivial cases of p0 ∈ {0, 1}.

APPENDIX B
PROOF OF THEOREM 6

We will consider the case of c01 = c10 = 1 for convenience.
The proof extends directly by a simple scaling argument.

Authorized licensed use limited to: University of Illinois. Downloaded on July 17,2020 at 06:39:11 UTC from IEEE Xplore.  Restrictions apply. 



5116 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 19, OCTOBER 1, 2019

The optimal belief of worker two satisfies ∂R2

∂q2
= 0. Thus,

differentiating (24) with respect to q2 and rearranging,

p0

[
(1− P I

e,1)fY2|H(λ0
2|0)

∂λ0
2

∂q2
+ P I

e,1fY2|H(λ1
2|0)

∂λ1
2

∂q2

]
=(1− p0)

[
P II
e,1fY2|H(λ0

2|1)
∂λ0

2

∂q2
+ (1− P II

e,1)fY2|H(λ1
2|1)

∂λ1
2

∂q2

]
.

Let x = log
(

p0

1−p0

)
. For q∗2 = 1/2 and q∗1 = p0, we have

λ1 =
1

2
+ σ2

1x and λ1,[2] =
1

2
.

It implies P I
e,1,[2] = P II

e,1,[2] = Q(1/2σ2). Then,

L(λ0
2) =

fY2|H(λ0
2|1)

fY2|H(λ0
2|0)

=
q2

1− q2

(1− P I
e,1,[2])

P II
e,1,[2]

=
Q(−1/2σ2)

Q(1/2σ2)
=:

1

c
,

L(λ1
2) =

fY2|H(λ1
2|1)

fY2|H(λ1
2|0)

=
q2

1− q2

P I
e,1,[2]

(1− P II
e,1,[2])

=
Q(1/2σ2)

Q(−1/2σ2)
= c.

Equivalently, this implies that

λ0
2 =

1

2
+ σ2 log

(
1

c

)
, λ1

2 =
1

2
− σ2 log

(
1

c

)
.

Thus, λ0
2 + λ1

2 = 1, and so,

fY2|H(λ1
2|1) =

1√
2πσ2

exp

(
− (λ

1

2−1)2

2σ2
2

)
=

1√
2πσ2

exp

(
− (λ

0

2)
2

2σ2
2

)
= fY2|H(λ0

2|0).
Similarly, we also have

fY2|H(λ1
2|0) = fY2|H(λ0

2|1).
Further, from (22) and (23), we have

dλ0
2

dq2
=

dλ0
2

dλ1,[2]

dλ1,[2]

dq2

=

⎡⎢⎢⎣1 + σ2
2φ

(
λ1,[2]

σ2

)
1− P I

e,1,[2]

−
σ2
2φ

(
λ1,[2]−1

σ2

)
P II
e,1,[2]

⎤⎥⎥⎦ dλ1,[2]

dq2
,

dλ1
2

dq2
=

dλ1
2

dλ1,[2]

dλ1,[2]

dq2

=

⎡⎢⎢⎣1− σ2
2φ

(
λ1,[2]

σ2

)
P I
e,1,[2]

+

σ2
2φ

(
λ1,[2]−1

σ2

)
1− P II

e,1,[2]

⎤⎥⎥⎦ dλ1,[2]

dq2
.

When,λ1,[2] =
1
2 ,P I

e,1,[2] = P II
e,1,[2] = Q( 1

2σ2
), andφ(

λ1,[2]

σ2
) =

φ(
λ1,[2]−1

σ2
). Thus, dλ

0

2

dq2
= dλ

1

2

dq2
.

Using these, the values of prior for which q∗1 = p0, q
∗
2 = 1/2

are given by

p0
1− p0

=
Q
(

−1
2σ2

)
Q
(

−1
2σ1

− σ1x
)
+Q

(
1

2σ2

)
Q
(

1
2σ1

+ σ1x
)

Q
(

−1
2σ2

)
Q
(

−1
2σ2

+ σ1x
)
+Q

(
1

2σ2

)
Q
(

1
2σ1

− σ1x
).

(36)

Using the definitions of x, α, β in (36), and the fact that
Q(−y) = 1−Q(y), the result follows.

APPENDIX C
PROOF OF THEOREM 7

From (1), we note that the Bayes risk for social learning with
beliefs (q1, q2) is

R2(q1, q2) = c10p0
[
P I0
e,2(1− P I

e,1) + P I1
e,2P

I
e,1

]
+ c01(1− p0)

[
P II0
e,2P

II
e,1 + P II1

e,2(1− P II
e,1)

]
.

Then, the difference in Bayes risk between the two choices of
advisors is given by

ΔR2 = R2(q1, q2)−R2(q1′ , q2)

= c10p0(P
I
e,1 − P I

e,1′)(P
I1
e,2 − P I0

e,2)

+ c01(1− p0)(P
II
e,1 − P II

e,1′)(P
II0
e,2 − P II1

e,2). (37)

Since q1 < q1′ , the decision thresholds satisfyλ1 < λ1′ . Thus,
from (37) and independence of Y1, Y2 given H , we see that
ΔR2 ≤ 0 if and only if (31) holds.
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