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The Bee-Identification Problem: Bounds
on the Error Exponent

Anshoo Tandon , Member, IEEE, Vincent Y. F. Tan , Senior Member, IEEE,
and Lav R. Varshney , Senior Member, IEEE

Abstract— Consider the problem of identifying a massive
number of bees, uniquely labeled with barcodes, using noisy
measurements. We formally introduce this “bee-identification
problem”, define its error exponent, and derive efficiently com-
putable upper and lower bounds for this exponent. We show
that joint decoding of barcodes provides a significantly better
exponent compared to separate decoding followed by permutation
inference. For low rates, we prove that the lower bound on
the bee-identification exponent obtained using typical random
codes (TRC) is strictly better than the corresponding bound
obtained using a random code ensemble (RCE). Further, as the
rate approaches zero, we prove that the upper bound on the
bee-identification exponent meets the lower bound obtained using
TRC with joint barcode decoding.

Index Terms— Bee-identification problem, error exponent,
noisy channel, joint decoding, permutation recovery.

I. INTRODUCTION

CONSIDER a group of m different bees, in which each
bee is tagged with a unique barcode for identification

purposes in order to understand interaction patterns in honey-
bee social networks [1]. Assume that a camera is employed
to picture the beehive to study the interactions among bees.
The image output (see Fig. 1) can be considered as a noisy
and unordered set of m barcodes. We formally pose the
problem of bee-identification from a beehive image as an
information-theoretic problem (Sec. I-B).
The bee-identification problem has applications in identi-

fication of warehouse products (labeled with unique RFID
barcodes) using wide-area sensors. Other applications include
package-distribution to recipients from a batch of deliveries
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Fig. 1. Bees tagged with barcodes (adapted from [1]).

with noisy address labels, and similar “bipartite matching”
settings. It also has potential applications in identification of
the mapping between signals and their meaning in “alien
communication” with extraterrestrials, and also in learning
communication protocols among robots, via the use of pilot
signals going through the alphabet.
We consider the scenario where the barcode for each bee

is represented as a binary vector of length n, and the bee
barcodes are collected in a codebook C comprising m rows
and n columns, with each row corresponding to a bee barcode.
As shown in Fig. 2, the channel first permutes the rows of C
with a random permutation π to produce Cπ . The entries of
Cπ are then subjected to noise (corresponding to a binary
symmetric channel (BSC) with crossover probability p), and
the channel output is denoted C̃π . We assume that the decoder
has knowledge of codebook C, and its task is to recover the
row-permutation π introduced by the channel. Note that the
permutation π directly ascertains the identity of all the bees.

A. Related Work

In a related work motivated by an Internet of Things (IoT)
setting, the identification of users in strongly asynchronous
massive access channels was studied [2]. The identification of
the underlying distributions of a set of observed sequences
(where each sequence is generated i.i.d. by a distinct dis-
tribution) was analyzed in [3]. The bee-identification prob-
lem, on the other hand, allows codebooks where all barcode
sequences are generated using the same underlying distrib-
ution. Note that both the bee-identification problem and the
distribution identification problem in [3] can be equivalently
viewed as permutation recovery problems. Other applications
and models in different settings, where permutation recovery
arises naturally, are discussed in [4].
In another related work [5], the fundamental limits of data

storage via unordered DNA molecules was investigated. Here,
a DNA molecule corresponds to an �-length sequence over
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Fig. 2. Effective channel for the bee-identification problem.

an alphabet of size 4, and the information is written onto
m DNA molecules stored in an unordered way. The storage
capacity results in [5] were extended to noisy settings in [6]
where the channel adds noise and randomly permutes the m
DNA molecules used to store information. The capacity results
are obtained under the scenario where the length, �, of each
DNA molecule grows with m. Although the effective chan-
nel in [6] is closely related to the bee-identification channel
in Fig. 2, we note that the fundamental problem in [6] is
to quantify the data storage capacity, while the main issue
in the bee-identification problem is the identification of the
row-permutation induced by the channel.
Data communication over permutation channels with

impairments was analyzed in [7]. The authors of [7] presented
bounds on the size of optimal codes over a finite input
alphabet, when the channel randomly permutes the letters of
the input sequence in addition to causing impairments such as
insertions, deletions, and substitutions. The effective channel
for the bee-identification problem (see Fig. 2) differs from the
communication channel in [7] in two aspects: (i) The input
to the channel in the bee-identification problem is the entire
codebook, not just a codeword belonging to the codebook.
(ii) The channel in Fig. 2 only permutes the rows of the
codebook, but does not permute the letters within a row.

B. Bee-Identification Problem Formulation

The channel output is a row-permuted and noisy ver-
sion of the codebook. If π denotes a given permutation
of m-letters, then the channel first permutes the m rows
of codebook C, based on π, to produce Cπ (see Fig. 2).
Therefore, if j = π(i) and the i-th row of codebook C is
denoted ci = [ci,1 ci,2 · · · ci,n], then the j-th row of Cπ is
equal to ci. The channel then applies noise on the permuted
codebook Cπ to produce C̃π , where noise is modeled by
a BSC with crossover probability p, denoted BSC(p), with
0 < p < 0.5. If j = π(i), and c̃π(i) denotes the j-th row of
C̃π, then

Pr{c̃π(i)|ci, π} = pdi(1 − p)n−di , 1 ≤ i ≤ m,

Pr
{

C̃π|C, π
}

=
m∏

i=1

Pr{c̃π(i)|ci, π} =
m∏

i=1

pdi(1 − p)n−di ,

(1)

where di � dH(c̃π(i), ci) denotes the Hamming distance
between vectors c̃π(i) and ci. Let M � {1, 2, . . . , m}, and
let the decoder correspond to a function φ which takes C̃π

as an input and produces a map ν : M → M where
ν(k) corresponds to the index of the transmitted codeword
which produced the received word c̃k, for 1 ≤ k ≤ m.
In effect, the bee-identification problem is that the decoder has

to recover the row-permutation π introduced by the channel,
by using the knowledge of codebook C and the channel
output C̃π.

C. Bee-Identification Error Exponent

The indicator for the bee-identification error is defined as

D
(
φ(C̃π), π−1

)
= D

(
ν, π−1

)
�
{

1, if ν �= π−1,

0, if ν = π−1.

For a given codebookC and decoding function φ, the expected
bee-identification error probability over the BSC(p) is

D(C, p, φ) � Eπ

[
E

[
D
(
φ(C̃π), π−1

)]]
, (2)

where the inner expectation is over the distribution of C̃π given
C and π (see (1)), and the outer expectation is over a uniform
distribution of π over all m-letter permutations. Note that (2)
can be equivalently expressed as

D(C, p, φ) = Pr
{

φ(C̃π) �= π−1
}

= Pr
{
ν �= π−1

}
. (3)

For a given R > 0, let the number of barcodes m scale
exponentially with blocklength n as m = 2nR. Now, for
given values of n and R, define the minimum expected
bee-identification error probability as

D(n, R, p) � min
C,φ

D(C, p, φ), (4)

where the minimum is over all codebooks C of size 2nR ×n,
and all decoding functions φ.
Define, ED(R, p), the exponent corresponding to the mini-

mum expected bee-identification error probability, as

ED(R, p) = lim inf
n→∞ − 1

n
log D(n, R, p). (5)

We introduce some notation that is used in the
rest of the paper. We will denote f(n) .= g(n)
when limn→∞ n−1 log (f(n)/g(n)) = 0. Similarly,
we write f(n) ≤̇ g(n) (respectively, f(n) ≥̇ g(n)) if
lim supn→∞ n−1 log (f(n)/g(n)) ≤ 0 (respectively, ≥ 0).
Unless stated otherwise, we will take all logarithms to base 2.

D. Our Contributions

The “bee-identification problem” is introduced and the cor-
responding bee-identification exponent ED(R, p) is analyzed
in this paper. In particular, we provide the following explicit
bounds on this exponent.

• A lower bound on ED(R, p) using a random code ensem-
ble (RCE) with independent barcode decoding (Sec. II-A)
and joint barcode decoding (Sec. II-B).

• A lower bound on ED(R, p) using typical ran-
dom codes (TRC) with independent barcode decoding
(Sec. III-A) and joint barcode decoding (Sec. III-B).

• An upper bound on ED(R, p) which is applicable to all
possible codebook designs (Sec. IV).

We show that joint decoding of barcodes provides a signifi-
cantly better exponent compared to separate decoding followed
by decoding the permutation. For low rates, we prove that the
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lower bound obtained using TRC is strictly better than the
corresponding bound obtained using RCE. Further, as the rate
approaches zero, we prove that the upper bound meets the
lower bound obtained using TRC with joint barcode decoding.

II. RANDOM CODE ENSEMBLE

In this section, we present lower bounds on ED(R, p) using
an RCE [8]. Let C (n, R) denote the set of all binary matrices
with m = 2nR rows and n columns. Assume that codebook
C is uniformly distributed over C (n, R). It is immediate from
the definition of D(n, R, p) (4) that

D(n, R, p) ≤ 1
|C (n, R)|

∑
C∈C (n,R)

D(C, p, φ), (6)

where the expression on the right denotes the average perfor-
mance using RCE. We proceed by quantifying this expression
when the decoding function φ corresponds to: (i) independent
barcode decoding (Sec. II-A), and (ii) joint barcode decoding
(Sec. II-B). The main results in this section are as follows:
we present explicit lower bounds on ED(R, p) using indepen-
dent barcode decoding (Thm. 1) and joint barcode decoding
(Thm. 2). It is shown (Prop. 2) that the bee-identification expo-
nent obtained using joint barcode decoding is strictly better
than the corresponding exponent obtained with independent
barcode decoding.

A. Independent Decoding for Each Barcode

Here, we analyze a naïve decoding strategy where each
barcode is decoded independently. In this case, for 1 ≤ j ≤ m,
the decoder picks c̃j , the j-th row of C̃π, and then decodes
it to ν(j) = argmink dH(c̃j , ck). If there is more than one
codeword at the same minimum Hamming distance from c̃j ,
then any one of the corresponding codeword indices is chosen
at random. From (3) and the union bound, we have

D(C, p, φ) ≤
m∑

j=1

Pr
{
ν(j) �= π−1(j)

}
. (7)

Combining (6) and (7), we get

D(n, R, p) ≤
m∑

j=1

⎛
⎝ ∑

C∈C (n,R)

Pr
{
ν(j) �= π−1(j)

}
|C (n, R)|

⎞
⎠. (8)

Now define

P (n, R, p) � 1
|C (n, R)|

∑
C∈C (n,R)

Pr
{
ν(j) �= π−1(j)

}
. (9)

Note that P (n, R, p) is independent of index j due to the aver-
aging over the ensemble of codebooks uniformly distributed
over C (n, R). For i = π−1(j), the expression for P (n, R, p)
corresponds to the probability of error when the i-th codeword
is transmitted over BSC(p). From (8) and (9), we get

D(n, R, p) ≤ mP (n, R, p).

Further, the bee-identification error probability D(n, R, p) is
upper bounded by 1, and so

D(n, R, p) ≤ min {1, mP (n, R, p)} . (10)

Fig. 3. Plot demonstrating R0(p) ≤ 2Rcr(p).

The following theorem uses (10) to present an explicit lower
bound on ED(R, p).

Theorem 1: We have

ED(R, p) ≥ |R0(p) − 2R|+, (11)

where |x|+ � max(0, x), and

R0(p) � 1 − log
(
1 +

√
4p(1 − p)

)
. (12)

Proof: It is well known that the random cod-
ing exponent over BSC(p), defined as Er(R, p) �
lim infn→∞(1/n) log (1/P (n, R, p)), is given by [8], [9]

Er(R, p) =

⎧⎪⎨
⎪⎩

R0(p) − R, 0 < R ≤ Rcr(p)
D(δGV(R)‖p), Rcr(p) ≤ R ≤ 1 − H(p)
0, R ≥ 1 − H(p),

(13)

where H(·) denotes the binary entropy function, δGV(R) is
the Gilbert-Varshamov (GV) distance [8] defined as the value
of δ in the interval [0, 0.5] with H(δ) = 1−R, and Rcr(p) is
the critical rate given by Rcr(p) = 1 − H

( √
p√

p+
√

1−p

)
, and

D(x‖y) � x log
x

y
+ (1 − x) log

1 − x

1 − y
.

Using the fact that m = 2nR, and combining (5), (10), and
the definition of Er(R, p), we get

ED(R, p) ≥ |Er(R, p) − R|+. (14)

Using explicit numerical computation, it can be shown that
R0(p) ≤ 2Rcr(p) (see Fig. 3). The proof is now complete
by combining (14) with the first clause of (13), and noting
that |Er(R, p) − R|+ = 0 when R ≥ Rcr(p) as Er(R, p) is a
decreasing function of R.
The lower bound on ED(R, p) given by (11) was obtained

by applying a naïve decoding strategy where each barcode was
decoded independently. In the next subsection, we analyze the
bee-identification exponent using joint barcode decoding.
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B. Joint Decoding of Barcodes

Let Sm denote the set of permutations of {1, . . . , m}.
For joint maximum likelihood (ML) decoding of barcodes,
the decoding function φ takes the noisy row-permuted code-
book C̃π as input, and produces permutation ν = ρ−1 as out-
put, where ρ = arg minσ∈Sm

dH(C̃π, Cσ), and dH(C̃π, Cσ) �
|{(i, j) : C̃π(i, j) �= Cσ(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n}|.
We aim to provide bounds on Pr{ν �= π−1} = Pr{ρ �= π}.
For any two permutations π1, π2 ∈ Sm, the sets of

distances {dH(C̃π1 , Cσ)}σ∈Sm and {dH(C̃π2 , Cσ)}σ∈Sm are
equal. Therefore, the performance of the joint ML decoder is
independent of the channel permutation π, and we assume,
without loss of generality, that the permutation induced by the
channel is the identity permutation, denoted π0.
For a given codebook C at the transmitter, let C̃π0 denote

the received noisy codebook at the output of the effective
channel, and for σ ∈ Sm with σ �= π0, we define

Pr{π0 → σ} � Pr
{
dH(C̃π0 , Cσ) ≤ dH(C̃π0 , Cπ0)

}
,

where the event {π0 → σ} is said to occur if dH(C̃π0 , Cσ) ≤
dH(C̃π0 , Cπ0). From (3), we have

D(C, p, φ) = Pr

⎧⎨
⎩

⋃
σ∈Sm,σ �=π0

{π0 → σ}

⎫⎬
⎭,

≤
∑

σ∈Sm,σ �=π0

Pr{π0 → σ}, (15)

where (15) follows from the union bound. Now define

PRCE,σ � 1
|C (n, R)|

∑
C∈C (n,R)

Pr{π0 → σ}, (16)

which denotes the probability of the event {π0 → σ}, averaged
over the ensemble of random binary codebooks. Using (6),
(15), and (16), we get

D(n, R, p) ≤
∑

σ∈Sm,σ �=π0

PRCE,σ. (17)

Now consider two codewords cı̂, cĵ at distance d from each
other. Given that cı̂ is transmitted over BSC(p), the probability
that the Hamming distance of the received word from cĵ is not
more than its distance from cı̂ is [8]

Pr{cı̂ → cĵ} ≤ 2−d αp ,

where

αp � − log
√

4p(1 − p). (18)

Therefore, for a given codebook C = Cπ0 and permutation
σ ∈ Sm with σ �= π0, if dσ � dH(Cπ0 , Cσ), then

Pr{π0 → σ} ≤ 2−dσαp . (19)

In the following, we quantify PRCE,σ for different σ ∈ Sm,
via (16) and (19).

1) σ is a Transposition: We first consider the case where σ
is a transposition, i.e. a permutation that interchanges only two
indices. For indices ı̂, ĵ, with 1 ≤ ı̂ < ĵ ≤ m, the Hamming
distance between codewords cı̂ and cĵ in a random codebook
satisfies [8]

Pr {dH(cı̂, cĵ) = d} ≤ 2−n(1−H(d/n)). (20)

When σ = (̂ı ĵ) is the permutation that only trans-
poses indices ı̂ and ĵ, then dH

(
Cπ0 , C(ı̂ ĵ)

)
= 2d if and

only if dH(cı̂, cĵ) = d. Thus, it follows from (20) that
Pr
{
dH

(
Cπ0 , C(ı̂ ĵ)

)
= 2d

}
≤ 2−n(1−H(d/n)). Further, when

dH

(
Cπ0 , C(ı̂ ĵ)

)
= 2d, we have Pr{π0 → (̂ı ĵ)} ≤ 2−2d αp .

Therefore, the probability PRCE,(ı̂ ĵ) can be characterized
using (16), (19), and (20) as

PRCE,(ı̂ ĵ) ≤
n∑

d=0

2−n(1−H(d/n)+2(d/n)αp). (21)

If δ = d/n is treated as a continuous variable, then the
exponent E2(δ) � 1 − H(δ) + 2δαp is a convex function
with a unique minimum at δ = δ̂p where

δ̂p � 4p(1 − p)
1 + 4p(1 − p)

. (22)

Therefore, for 0 ≤ d ≤ n, we have

2−n(1−H(d/n)+2(d/n)αp) ≤ 2−n(1−H(δ̂p)+2(δ̂p)αp).

Now, if we define

cn � (log(n + 1)) /n,

then it follows from (21) that

PRCE,σ ≤ 2−n(1−H(δ̂p)+2(δ̂p)αp−cn). (23)

Further, we have 1 − H(δ̂p) + 2(δ̂p)αp = R1(p), where

R1(p) � 1 − log(1 + 4p(1 − p)). (24)

Hence, it follows from (23) and (24) that

PRCE,σ ≤ 2−n(R1(p)−cn), (25)

where σ is a transposition.
2) σ is a Product (Composition) of Disjoint Trans-

positions: We now consider the case where σ =
σ1σ2, where σ1 and σ2 are disjoint transpositions with
σ1 = (i j) and σ2 = (̂ı ĵ). As the codewords
in a random codebook are independent, then using (20),
we have Pr {{dH(ci, cj) = d1} ∩ {dH(cı̂, cĵ) = d2}} ≤∏2

i=1 2−n(1−H(di/n)). Further, if dH(ci, cj) = d1 and
dH(cı̂, cĵ) = d2, then dH (Cπ0 , Cσ) = 2(d1 + d2), and
Pr{π0 → σ} ≤ 2−2(d1+d2)αp . Therefore, if σ is a product
of two disjoint transpositions, then

PRCE,σ ≤
∑

0≤d1≤n,
0≤d2≤n

2−n(�2
i=1(1−H(di/n)+2(di/n)αp)),

=
2∏

i=1

(
n∑

di=0

2−n(1−H(di/n)+2(di/n)αp)

)
,

≤ 2−2n(R1(p)−cn).
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In general, when σ is a product of s disjoint transpositions,
the above argument can be readily extended to show that

PRCE,σ ≤ 2−sn(R1(p)−cn). (26)

Now, define

λp � min
{

2R0(p)
3

,
R1(p)

2

}
,

where R0(p) and R1(p) are defined in (12) and (24), respec-
tively. As 2λp ≤ R1(p), it follows from (26) that

PRCE,σ ≤ 2−n2s(λp−cn). (27)

We remark that when σ is just a transposition, then from (25)
we have PRCE,σ ≤ 2−n(R1(p)−cn) ≤ 2−n2(λp−cn), which is
only a special case of (27) with s = 1.

3) σ is a k-Cycle With k > 2: Let σ ∈ Sm be a k-cycle
(i1 i2 · · · ik) where il+1 = σ(il) for 1 ≤ l ≤ k − 1, and
i1 = σ(ik). We will apply the following proposition towards
characterizing PRCE,σ.

Proposition 1: Let ci1 , ci2 , . . . , cik
be k distinct rows in the

codebook C, and let dl satisfy 0 ≤ dl ≤ n for 1 ≤ l ≤
k − 1. When C is uniformly distributed over C (n, R), then
the following inequality holds

Pr

{
k−1⋂
l=1

{
dH(cil

, cil+1)=dl

}}
≤

k−1∏
l=1

2−n(1−H(dl/n)). (28)

Proof: See Appendix A.
For a given codebook C, if dH(cil

, cil+1) = dl for 1 ≤ l ≤
k − 1, and dH(cik

, ci1) = dk , then dH(Cπ0 , Cσ) =
∑k

l=1 dl,
and we have

Pr{π0 → σ} ≤ 2−(�k
l=1 dl)αp . (29)

Further, if codebook C is uniformly distributed over C (n, R),

Pr
{( k−1⋂

l=1

{
dH(cil

, cil+1) = dl

})⋂
{dH(cik

, ci1) = dk}
}

≤ 2−n(�k−1
l=1 (1−H(dl/n))), (30)

where (30) follows from (28). Combining (29) and (30),

PRCE,σ ≤
∑

0≤dl≤n,
1≤l≤k

2−n((�k
l=1(dl/n)αp)+(

�k−1
l=1 (1−H(dl/n)))),

=
n∑

dk=0

2−dkαp

(
k−1∏
l=1

n∑
dl=0

2−n(1−H(dl/n)+(dl/n)αp)

)

≤ 2ncn

(
k−1∏
l=1

n∑
dl=0

2−n(1−H(dl/n)+(dl/n)αp)

)
, (31)

If δ = dl/n is treated as a continuous variable, then the
exponent E1(δ) � 1 − H(δ) + δαp is a convex function with
a unique minimum at δ = δ̃p, where

δ̃p �
√

4p(1 − p)

1 +
√

4p(1 − p)
. (32)

We have

E1(δ̃p) = 1 − log(1 +
√

4p(1 − p)) = R0(p),

and therefore
n∑

dl=0

2−n(1−H(dl/n)+(dl/n)αp) ≤ 2−n(R0(p)−cn). (33)

Combining (31) and (33),

PRCE,σ ≤ 2−n((k−1)R0(p)−kcn). (34)

As 2k/3 ≤ k − 1 for k > 2, we have kλp ≤ 2kR0(p)/3 ≤
(k − 1)R0(p), and it follows from (34) that

PRCE,σ ≤ 2−nk(λp−cn). (35)

The above equation has been derived for the case where σ is a
k-cycle with k > 2. However, a transposition is just a k-cycle
with k = 2, and from the remark following (27), it follows
that (35) holds even for k = 2.

4) General σ ∈ Sm With σ �= π0: It is well known that any
permutation σ �= π0 can be written as a product (composition)
of t disjoint cycles, for t ≥ 1 [10]. Consider a given σ which is
a product of t disjoint cycles of length k1, . . . , kt, respectively,
where ki ≥ 2 for 1 ≤ i ≤ t. Then, we can extend the result
in (35) to obtain

PRCE,σ ≤ 2−n(�t
i=1 ki)(λp−cn). (36)

5) Putting it all Together: For 1 ≤ j ≤ m, if we define

Σj � {σ ∈ Sm : |{i : σ(i) �= i, 1≤ i≤m}|=j}, (37)

PRCE,Σj �
∑

σ∈Σj

PRCE,σ , (38)

then (17) can be equivalently expressed as

D(n, R, p) ≤
m∑

j=2

PRCE,Σj . (39)

Note that the set Σ1 is empty, as the Hamming distance
between two distinct permutations is at least two. The set Σ2

consists of all transpositions and |Σ2| =
(
m
2

)
≤ 2n(2R). For all

σ ∈ Σ2, the value of PRCE,σ is given by (25), and combining
this with (38), we get

PRCE,Σ2 ≤ 2−n(R1(p)−cn−2R). (40)

For a given j > 2, if σ ∈ Σj , then from (36) it follows that
PRCE,σ ≤ 2−nj(λp−cn). For j > 2, the size of the set Σj

satisfies |Σj | <
∏j−1

i=0 (m − i) < 2njR. If we define

βn � 2−n(λp−cn−R),

then we have PRCE,Σj ≤ βj
n. Now, if R < λp, then because

cn = o(1), there exists N such that for n ≥ N , we have
R < λp − cn and hence βn < 1. Therefore, for n ≥ N ,

m∑
j=3

PRCE,Σj ≤
m∑

j=3

βj
n ≤ β3

n

1 − βn
. (41)

As βn → 0 and cn → 0 when n → ∞, it follows from (41)
that

m∑
j=3

PRCE,Σj ≤ β3
n

1 − βn

.= β3
n

.= 2−3n(λp−R). (42)
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Combining (39), (40), and (42), for R < λp,

D(n, R, p) ≤̇ 2−n(R1(p)−2R) + 2−n(3λp−3R). (43)

Comparing (17) with (43), we observe that the error
probability D(n, R, p) is dominated by PRCE,σ terms for σ
corresponding to k-cycles with k = 2 and k = 3. The next
theorem presents an explicit lower bound for ED(R, p) when
the decoder jointly decodes all the barcodes using a maximum
likelihood approach.

Theorem 2: We have

ED(R, p) ≥ |ηp(R)|+, (44)

where ηp(R) � min {R1(p) − 2R, 2R0(p) − 3R}.
Proof: If R < λp, then R1(p) ≥ 2λp > 2R. Therefore,

from (43) it follows that if R < λp, then ED(R, p) is lower
bounded by min {R1(p) − 2R, 3λp − 3R} = ηp(R). Further,
note that ηp(R) > 0 if and only if R < λp.
The following proposition shows that the lower bound (44)

(obtained using joint decoding of barcodes) is strictly better
than the bound given by (11) (obtained with independent
decoding of barcodes) in the interval where it is positive.

Proposition 2: When R0(p) > 2R and 0 < p < 0.5, then
we have the strict inequality

ηp(R) > R0(p) − 2R.

Proof: When 0 < p < 0.5, we have 0 < 4p(1 − p) <√
4p(1 − p) < 1, and hence R1(p) > R0(p). If R0(p) > 2R,

then 2R0(p)− 3R = 2(R0(p)− 2R)+ R > R0(p)− 2R. The
proof is complete by combining these observations with the
definition of ηp(R).
Note that |ηp(R)|+ = 0 for R ≥ 0.5, because in this case

ηp(R) ≤ R1(p) − 2R ≤ R1(p) − 1 ≤ 0. In the following
section, we present improved lower bounds on ED(R, p) by
analyzing typical random codebooks.

III. TYPICAL RANDOM CODE

TRCs are known to provide higher error exponents than
RCE over a BSC at low rates [8],[11]. Roughly speaking,
TRCs are characterized by the property that their relative
minimum distance is at least δGV(2R). Formally, for 0 < R <
0.5, 0 < ε < δGV(2R), and indices 1 ≤ ı̂ < ĵ ≤ m = 2nR,
the Hamming distance between codewords cı̂ and cĵ in a TRC
satisfies [8]

Pr {dH(cı̂, cĵ) = d}

⎧⎪⎨
⎪⎩
≤ 2−n(1−H(δ)), |1

2
− δ| ≤ 1

2
− δ

= 0, |1
2
− δ| ≥ 1

2
− δ,

(45)

where δ = d/n, δ � δGV(2R) + ε, and δ � δGV(2R) − ε.
Let CTRC(n, R) denote the set of all codebooks of size

2nR×n, with the property that the Hamming distance between
a pair of codewords ci and cj satisfies the relation nδ <
dH(ci, cj) < n(1 − δ) for all i �= j. Note that if codebook C
is uniformly distributed over CTRC(n, R), then the Hamming

distance between a pair of distinct codewords satisfies (45).
It is immediate from (4) that

D(n, R, p) ≤ 1
|CTRC(n, R)|

∑
C∈CTRC(n,R)

D(C, p, φ), (46)

where the expression on the right denotes the average perfor-
mance using TRCs.
In this section we provide lower bounds on the

bee-identification exponent ED(R, p) using TRCs. The case
where each barcode is decoded independently is analyzed
in Sec. III-A while joint barcode decoding is analyzed in
Sec. III-B. It is shown that these lower bounds on ED(R, p)
using TRCs outperform the corresponding bounds for RCEs
when the rate is smaller than a certain threshold.

A. Independent Decoding of Barcodes

With independent barcode decoding, the decoder
picks c̃j , the j-th row of C̃π , and then assigns
ν(j) = arg mink dH(c̃j , ck), for 1 ≤ j ≤ m. From the union
bound, we have D(C, p, φ) ≤ ∑m

j=1 Pr
{
ν(j) �= π−1(j)

}
,

and using (46) we get

D(n, R, p) ≤
m∑

j=1

⎛
⎝ ∑

C∈CTRC(n,R)

Pr
{
ν(j) �= π−1(j)

}
|CTRC(n, R)|

⎞
⎠.

(47)

We now define

PTRC(n, R, p) �
∑

C∈CTRC(n,R)

Pr
{
ν(j) �= π−1(j)

}
|CTRC(n, R)| .

Note that PTRC(n, R, p) is independent of the index j due
to the symmetry resulting from averaging over codebooks
uniformly distributed over CTRC(n, R). For i = π−1(j),
the expression for PTRC(n, R, p) corresponds to the proba-
bility of error when the i-th codeword is transmitted. From
(47), and the fact that D(n, R, p) ≤ 1, we get

D(n, R, p) ≤ min {1, mPTRC(n, R, p)}. (48)

The following theorem uses (48) to present an explicit lower
bound on ED(R, p) when the rate is smaller than a certain
threshold.

Theorem 3: We have

ED(R, p) ≥ αpδGV(2R), 0 < R < RTRC(p), (49)

where αp is defined in (18), and

RTRC(p) � 0.5

(
1 − H

( √
4p(1 − p)

1 +
√

4p(1 − p)

))
. (50)

Proof: It is known that for 0 < R < RTRC(p) ≤
0.5, the error exponent using a TRC over BSC(p), defined
as ETRC(R, p) � lim infn→∞(1/n) log (1/PTRC(n, R, p)),
is given by [8]

ETRC(R, p) = αpδGV(2R) + R. (51)
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Using the fact that m = 2nR, and combining (5), (48), with
the definition of ETRC(R, p), we get

ED(R, p) ≥ |ETRC(R, p) − R|+. (52)

The proof is completed by applying (51) in (52).
It is well known that ETRC(R, p) > Er(R, p) for 0 < R <

RTRC(p) [8]. This implies that the lower bound on ED(R, p)
for TRC given by (49) is strictly better than the corresponding
bound for RCE given by (11) when 0 < R < RTRC(p). The
next subsection provides a more refined bound on ED(R, p)
by analyzing joint decoding of barcodes using TRCs.

B. Joint Decoding of Barcodes

With joint barcode decoding, the decoder takes the
noisy row-permuted codebook C̃π as input, and pro-
duces the permutation ν = ρ−1 as output, where ρ =
arg minσ∈Sm

dH(C̃π , Cσ). As in Sec. II-B, we assume, with-
out loss of generality, that the permutation induced by the
channel is the identity permutation π0. For a given codebook
C, we have D(C, p, φ) ≤ ∑

σ∈Sm,σ �=π0
Pr{π0 → σ}. If we

define

PTRC,σ � E [Pr{π0 → σ}], (53)

where the expectation is over a uniform distribution of code-
book over CTRC(n, R), then we have

D(n, R, p) ≤ E [D(C, p, φ)],

≤
∑

σ∈Sm,σ �=π0

PTRC,σ. (54)

In the following, we quantify PTRC,σ for different σ ∈ Sm,
in order to bound D(n, R, p) via (54).

1) σ is a Transposition: If σ = (̂ı ĵ) is the permutation
that only transposes indices ı̂ and ĵ, and dH(cı̂, cĵ) = d, then
dH

(
Cπ0 , C(ı̂ ĵ)

)
= 2d, and we have

Pr{π0 → (̂ı ĵ)} ≤ 2−2dαp . (55)

When C is uniformly distributed in CTRC(n, R), and
nδ ≤ d ≤ n(1 − δ), then

Pr
{
dH

(
Cπ0 , C(ı̂ ĵ)

)
= 2d

}
= Pr {dH(cı̂, cĵ) = d},
≤ 2−n(1−H(d/n)), (56)

where (56) follows from (45). Combining (53), (55), and (56),
we get

PTRC,(ı̂ ĵ) ≤
n(1−δ)∑
d=nδ

2−n(1−H(d/n)+2(d/n)αp). (57)

If δ = d/n is treated as a continuous variable, then the
exponent E2(δ) = 1 − H(δ) + 2δαp is a convex function of
δ with a unique minimum at δ̂p defined in (22). If we define

R̂p � 0.5(1 − H(δ̂p)), (58)

then for 0 < R < R̂p, we have

δGV(2R) > δGV(2R̂p) = δ̂p.

The exponent E2(δ) increases monotonically in δ for δ ≥ δ̂p.
Therefore, if 0 < R < R̂p and ε < δGV(2R)−δ̂p, the exponent
in (57) is minimized for d = nδ, and we have

PTRC,(ı̂ ĵ) ≤ 2−n(1−H(δ)+2δαp−cn), 0 < R < R̂p, (59)

where cn = (log(n + 1)) /n.
2) σ is a k-Cycle: We now consider the case where σ is a

k-cycle with k ≥ 3. We will apply the following proposition
towards characterizing PTRC,σ.

Proposition 3: Let ci1 , ci2 , . . . , cik
be k distinct rows in

codebook C, and let dl satisfy nδ ≤ dl ≤ n (1 − δ) for 1 ≤
l ≤ k − 1. Let QTRC

{⋂k−1
l=1

{
dH(cil

, cil+1) = dl

}}
denote

the probability Pr
{⋂k−1

l=1

{
dH(cil

, cil+1) = dl

}}
when C is

uniformly distributed over CTRC(n, R). Then, we have

QTRC

{
k−1⋂
l=1

{
dH(cil

, cil+1)=dl

}}
≤ 1

αn

k−1∏
l=1

2−n(1−H(dl/n)),

(60)

where

αn �
∑

(γ1,γ2,...,γm)∈CTRC(n,R)

QRCE

{
m⋂

i=1

{ci = γi}
}

, (61)

and QRCE {⋂m
i=1{ci = γi}} denotes the probability

Pr {
⋂m

i=1{ci = γi}} when C is uniformly distributed
over C (n, R).

Proof: See Appendix B.
Now, given that σ = (i1 i2 · · · ik) and dH(cil

, cil+1) = dl

for 1 ≤ l ≤ k − 1, and dH(cik
, ci1) = dk, we have

dH(Cπ0 , Cσ) =
∑k

l=1 dl, and therefore

Pr{π0 → σ} ≤ 2−(�k
l=1 dl)αp . (62)

If d0 � nδ, then combining (60) and (62), we get

PTRC,σ ≤
∑

d0≤dl≤n−d0,
1≤l≤k

(
2−n(

�k
l=1(dl/n)αp)

× 1
αn

2−n(
�k−1

l=1 (1−H(dl/n)))

)
,

=
1

αn
ηk

k−1∏
l=1

ζl, (63)

where, for 1 ≤ l ≤ k − 1, we have

ζl �
∑

d0≤dl≤n−d0

2−n(1−H(dl/n)+(dl/n)αp), (64)

and

ηk �
∑

d0≤dk≤n−d0

2−dkαp ≤ 2−n(δαp−cn). (65)

The functionE1(δ) = 1−H(δ)+δαp is a convex function of δ,
and has a unique minimum that occurs at δ̃p defined in (32).
From (50) we observe that RTRC(p) = 0.5(1−H(δ̃p)). Thus,
if R < RTRC(p), then we have δGV(2R) > δ̃p. Further,
E1(δ) is an increasing function of δ for δ ≥ δ̃p, and so if
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R < RTRC(p) and ε < δGV(2R) − δ̃p, the exponent in (64)
is minimized when dl = d0 = nδ. Thus, we have

ζl ≤ 2−n(1−H(δ)+δαp−cn), 0 < R < RTRC(p). (66)

Combining (63), (65), and (66), for 0 < R < RTRC(p),

PTRC,σ ≤ 1
αn

2−n((k−1)(1−H(δ))+k(δαp−cn)), (67)

where σ is a k-cycle with k > 2. As k < 2(k − 1) for k > 2,
it follows from (67) that

PTRC,σ ≤
1

αn
2−nk(0.5(1−H(δ))+δαp−cn), 0<R<RTRC(p).

(68)

Recall that δ̂p and R̂p are given by (22) and (58), respectively.
As x/(1+x) is an increasing function of x, and 0 < p < 0.5,
it follows that δ̂p < δ̃p < 0.5, which implies that RTRC(p) <
R̂p. Note that a transposition is simply a k-cycle with k = 2,
and comparing (59) with (68) we observe that the relation
given by (68) holds even when k = 2.

3) σ is a Product (Composition) of Two Disjoint Cycles:
We now consider the case where σ = σ1σ2, where σ1 and
σ2 are disjoint cycles of length k1 and k2, respectively. Let
σ1 = (i1 i2 · · · ik1) and σ2 = (ik1+1 ik1+1 · · · ik1+k2).
If d0 ≤ dl ≤ n−d0 for 1 ≤ l ≤ k1+k2, then a straightforward
extension of Prop. 3 shows that the probability

Pr
{ k1−1⋂

l=1

{dH(cil
, cil+1) = dl}

⋂{
dH(cik1

, ci1) = dk1

}
k1+k2−1⋂
l=k1+1

{
dH(cil

, cil+1) = dl

}
⋂{

dH(cik1+k2
, cik1+1) = dk1+k2

}}
is upper bounded by

1
αn

2−n
��k1−1

l=1 (1−H(dl/n))
�
× 2−n

��k1+k2−1
l=k1+1 (1−H(dl/n))

�
.

(69)

Further, for a given codebook C, with dH(cil
, cil+1) = dl,

1 ≤ l ≤ k1−1, dH(cik1
, ci1) = dk1 , dH(cil

, cil+1) = dl, k1 +
1 ≤ l ≤ k1 + k2 − 1, dH(cik1+k2

, cik1+1) = dk1+k2 , we have

dH(Cπ0 , Cσ) =
∑k1+k2

l=1 dl, and therefore

Pr{π0 → σ} ≤ 2−
��k1+k2

l=1 dl

�
αp . (70)

Combining (69) and (70), we can upper bound PTRC,σ by

1
αn

∑
d0≤dl≤n−d0,
1≤l≤k1+k2

(
2
−n

(
(
�k1+k2

l=1 (dl/n)αp)

)

× 2
−n

(�k1−1
l=1 (1−H(dl/n))+

�k1+k2−1
l=k1+1 (1−H(dl/n))

))
. (71)

The above expression can be equivalently written as

1
αn

ηk
2 ζl

k1+k2−2, (72)

where ζl and ηk are defined in (64) and (65), respectively.
Now, applying (65), (66) in (72) for 0 < R < RTRC(p),
we get

PTRC,σ ≤
1

αn
2−n((k1+k2−2)(1−H(δ))+(k1+k2)(δαp−cn)), (73)

where σ = (i1 i2 · · · ik1)(ik1+1 ik1+2 · · · ik1+k2). As k1 ≥ 2
and k2 ≥ 2, we have 2(k1 + k2 − 2) ≥ k1 + k2, and therefore
for 0 < R < RTRC(p), we have

PTRC,σ ≤ 1
αn

2−n(k1+k2)(0.5(1−H(δ))+δαp−cn). (74)

4) General σ ∈ Sm With σ �= π0: If permutation σ is a
product of r disjoint cycles of length k1, . . . , kr, respectively,
then similar to (68), (74), we have for 0 < R ≤ RTRC(p),

PTRC,σ ≤ 1
αn

2−n(�r
t=1 kt)(0.5(1−H(δ))+δαp−cn). (75)

5) Putting it all Together: For 1 ≤ j ≤ m, if we define
PTRC,Σj �

∑
σ∈Σj

PTRC,σ, where Σj is given by (37),
then (54) can be equivalently expressed as

D(n, R, p) ≤
m∑

j=2

PTRC,Σj . (76)

If σ is a product of r disjoint cycles of length k1, . . . , kr,
respectively, and s =

∑r
t=1 kt, then σ belongs to the set Σs,

and PTRC,σ is given by (75). Equivalently, for a given j ≥ 2,
if σ ∈ Sm belongs to the set Σj , then for 0 < R < RTRC(p),

PTRC,σ ≤ 1
αn

2−nj(0.5(1−H(δ))+δαp−cn). (77)

The size of Σj satisfies |Σj | <
∏j−1

i=0 (m − i) < 2njR.
Therefore, for 0 < R < RTRC(p), we have

PTRC,Σj =
∑

σ∈Σj

PTRC,σ

≤ 1
αn

2−nj(0.5(1−H(δ))+δαp−cn) 2njR

=
1

αn
2−nj(0.5(1−H(δ))−R+δαp−cn). (78)

Now, if we define ξn � 2−n(0.5(1−H(δ))−R+δαp−cn), then
(78) can be equivalently expressed as PTRC,Σj ≤ (1/αn)ξj

n.
As cn = o(1), there exists N̂ such that for n ≥ N̂ , we have
cn < 0.5(1−H(δ))−R + δαp and hence ξn < 1. Therefore,
for n ≥ N̂ and 0 < R < RTRC(p), we have

D(n, R, p) ≤ 1
αn

m∑
j=2

ξj
n

<
1

αn

ξ2
n

1 − ξn

.=
ξ2
n

1 − ξn
(79)

.= ξ2
n (80)

= 2−n(1−H(δ)−2R+2δαp−2cn)

.= 2−n(1−H(δ)−2R+2δαp), (81)

where (79) follows because αn → 1 as n → ∞ [8], and (80)
follows because ξn = o(1), while (81) follows because
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Fig. 4. Plot demonstrating 2R0(p) ≥ R1(p) + 2RTRC(p).

cn = o(1). Note that δ = δGV(2R) − ε, and so limε→0 δ =
δGV(2R) and limε→0 (1 − H(δ) − 2R + 2δαp) =
2δGV(2R)αp. As ε can be made arbitrarily small, it follows
from (81) that for 0 < R < RTRC(p), we have

D(n, R, p) ≤̇ 2−n(2δGV(2R)αp). (82)

The following theorem encapsulates the main result of
this subsection on bounding the bee-identification exponent,
ED(R, p), using joint decoding for TRC.

Theorem 4: We have

ED(R, p) ≥ 2δGV(2R)αp, 0 < R < RTRC(p). (83)

Proof: Follows from (5) and (82).
We note that the above lower bound for ED(R, p) using

TRCs with joint barcode decoding is twice the correspond-
ing bound obtained using independent barcode decoding
(see (49)). The following proposition shows that the lower
bound given by Thm. 4 using TRC is strictly better than
corresponding bound using RCE (see Thm. 2) for 0 < R <
RTRC(p).

Proposition 4: The lower bound on ED(R, p) in (83)
obtained for TRC is strictly better than the corresponding
bound in (44) obtained for RCE when 0 < R < RTRC(p).

Proof: It is known that ETRC(R, p) > Er(R, p) when
0 < R < RTRC(p) [8]. Further, using explicit numerical com-
putation, it can be shown that 2R0(p) ≥ R1(p) + 2 RTRC(p)
(see Fig. 4). Therefore, it follows that for 0 < R < RTRC(p),
we have

2δGV(2R)αp = 2 (ETRC(R, p) − R)
> 2 (Er(R, p) − R) = 2(R0(p) − 2R)
≥ R1(p) − 2R + 2(RTRC(p) − R)
> R1(p) − 2R ≥ ηp(R). �

The next section presents an explicit upper bound for
ED(R, p) which applies to all possible codebook designs.

IV. UPPER BOUND ON THE BEE-IDENTIFICATION
EXPONENT

This section presents an upper bound on the
bee-identification exponent ED(R, p). Towards this, we define

the following optimum minimum distance metrics

d∗(n, R) � max
C∈C (n,R)

min
ci,cj∈C
ci �=cj

dH(ci, cj),

δ∗(n, R) � d∗(n, R)/n,

δ∗(R) � lim sup
n→∞

δ∗(n, R).

The upper bound on the bee-identification exponent, given by
Theorem 5, relies on the existence of a set consisting of at
least m/4 disjoint pairs of codeword indices (where m is
the total number of codewords in the codebook), such that
for every pair of indices, the corresponding codewords have
sufficiently small Hamming distance. In particular, for any
given codebook C ∈ C (n, R), we show that there exists a
set IC consisting of pairs of codeword indices (i, j), i �= j,
satisfying the following properties:
(i) If (i, j) ∈ IC , then dH(ci, cj) ≤ d∗(n, R − 1

n ).
(ii) If (i, j) ∈ IC and (̂ı, ĵ) ∈ IC , then ı̂ �= i, ı̂ �= j and

ĵ �= i, ĵ �= j.
(iii) Size of set IC is at least m/4.
A set satisfying the above properties can be constructed
iteratively as follows.

• Step 1: For a given codebook C ∈ C (n, R), initialize IC

to be the empty set and let T = C.
• Step 2: As T contains at least m/2 = 2n(R− 1

n ) code-
words, it follows from the definition of d∗(n, R− 1

n ) that
there exists distinct ci, cj ∈ T , satisfying dH(ci, cj) ≤
d∗(n, R − 1

n ). Include the pair (i, j) to IC , and let
T = T \ {ci, cj}.

• Step 3: If |IC | < m/4, then go to Step 2, else stop.
Let the receiver employ ML decoding, and interpret each

pair (i, j) ∈ IC as a transposition σ = (i j) that interchanges
indices i and j. Let A(i,j) denote the error event that the
receiver incorrectly decodes the channel induced permutation
to transposition (i j) (instead of the identity permutation π0),
i.e. A(i,j) = {π0 → (i j)}. Then, the bee-identification error
probability D(C, p, φ) can be lower bounded as

D(C, p, φ) ≥ Pr

⎧⎨
⎩

⋃
(i,j)∈IC

A(i,j)

⎫⎬
⎭. (84)

Using de Caen’s lower bound on the probability of a
union [12], the expression on the right side in (84) can itself
be lower bounded by

∑
(i,j)∈IC

(
Pr{A(i,j)}

)2
Pr{A(i,j)} +

∑
(ı̂,ĵ)∈IC

(ı̂,ĵ) �=(i,j)

Pr
{
A(i,j) ∩ A(ı̂,ĵ)

} ,

(a)
=

∑
(i,j)∈IC

(
Pr{A(i,j)}

)2
Pr{A(i,j)} +

∑
(ı̂,ĵ)∈IC

(ı̂,ĵ) �=(i,j)

Pr
{
A(i,j)

}
Pr
{
A(ı̂,ĵ)

} ,

≥

∑
(i,j)∈IC

Pr{A(i,j)}

1 +
∑

(ı̂,ĵ)∈IC

Pr
{
A(ı̂,ĵ)

} , (85)
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where (a) follows because events A(i,j) and A(ı̂,ĵ) are inde-
pendent when the sets {i, j} and {ı̂, ĵ} are disjoint. Now

∑
(i,j)∈IC

Pr{A(i,j)}
(b)

≥̇
∑

(i,j)∈IC

2−n(2δ∗(n,R− 1
n )αp),

.=
∑

(i,j)∈IC

2−n(2δ∗(n,R)αp),

(c)

≥ 2−n(2δ∗(n,R)αp−(R− 2
n )),

.= 2−n(2δ∗(R)αp−R), (86)

where (b) follows from the fact that dH(Cπ0 , C(i,j)) ≤
2 d∗(n, R − 1

n ) for (i, j) ∈ IC , and (c) follows because
|IC | ≥ m/4. If RUB(p) � sup{R : 2δ∗(R)αp > R}, then
combining (84), (85), (86), and noting that x/(1+x) increases
with x, we have

D(C, p, φ) ≥̇ 2−n(2δ∗(R)αp−R)

1 + 2−n(2δ∗(R)αp−R)
,

.= 2−n(2δ∗(R)αp−R), 0 < R < RUB(p). (87)

As (87) is true for all C ∈ C (n, R), we have

D(n, R, p) ≥̇ 2−n(2δ∗(R)αp−R), 0 < R < RUB(p). (88)

The value δ∗(R) can be upper bounded as [13], [14]

δ∗(R)≤δLP(R)� 1
2
−
√

δGV(1 −R)(1−δGV(1−R)). (89)

The following theorem provides an upper bound on the
bee-identification exponent ED(R, p).

Theorem 5: We have

ED(R, p) ≤ |2δ∗(R)αp − R|+ ≤ |2δLP(R)αp − R|+. (90)

Proof: Follows immediately from (88) and (89).
The following corollary shows that ED(R, p) can be explic-

itly characterized with a rather simple expression when rate R
tends to zero.

Corollary 1: We have

lim
R→0

ED(R, p) = αp. (91)

Proof: As limR→0 δLP(R) = 0.5, we have from (90) that

lim
R→0

ED(R, p) ≤ lim
R→0

(2δLP(R)αp − R) = αp. (92)

On the other hand, we have limR→0 δGV(R) = 0.5 and so it
follows from (83) that

lim
R→0

ED(R, p) ≥ lim
R→0

2δGV(2R)αp = αp. (93)

The proof is completed by using (92) and (93).
The above corollary shows that the lower bound on

ED(R, p) given by (83), and the upper bound on ED(R, p)
given by (90) become tight as R → 0.

Fig. 5. Lower bounds on ED(R, p) with independent decoding (ID) and
joint decoding (JD) using TRC and RCE. The upper bound holds for all
codebook designs.

V. A NUMERICAL EXAMPLE

Fig. 5 plots different bounds for the bee-identification
exponent ED(R, p). The explicit lower bound for RCE with
independent decoding (ID) (respectively, joint decoding (JD))
is given by (11) (respectively, (44)). The performance with
JD is seen to be much better than with ID. When 0 <
R < RTRC(p), the explicit lower bound for TRC with
ID (respectively, JD) is given by (49) (respectively, (83)).
As shown in Prop. 4, the lower bound obtained using TRC
with joint decoding is better than the corresponding bound
using RCE. The upper bound is given by (90) and holds for
all possible codebook designs. Further, as shown in Cor. 1, it is
observed from Fig. 5 that limR→0 ED(R, p) = αp = 2.33 for
p = 0.01.

VI. DISCUSSION

We introduced the information-theoretic “bee-identification
problem” which arises naturally in different massive identifi-
cation settings. We derived explicit upper and lower bounds on
the bee-identification exponent, and showed that joint decod-
ing of barcodes provides a significantly better exponent than
separate decoding followed by permutation inference. For low
rates, we showed that the lower bound on the bee-identification
exponent obtained using TRC is strictly better than the cor-
responding bound obtained using RCE. Moreover, when the
rate approaches zero, we showed that the upper bound on the
bee-identification exponent coincides with the lower bound
obtained using TRC with joint barcode decoding.
Relative to the independent decoding of barcodes, the per-

formance improvement with joint decoding comes at a cost
of increased computational complexity. For joint decoding,
an exhaustive search entails comparing the received noisy &
permuted version of the codebook with m! row-permutations
of the codebook. This may be computationally prohibitive even
for moderate values of blocklength n when m scales exponen-
tially with n. In practice, intermediate performance between
the extremes of independent decoding and joint decoding may
be achieved with manageable complexity using ideas from
generalized minimum distance decoding [15]. In particular,
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the decoding process may proceed in two steps: The first
step involves independent decoding of each barcode where
an erasure is declared if the distance between the received
noisy barcode to the nearest barcode in the codebook exceeds
a threshold. The second step fixes the codebook row-indices
corresponding to the un-erased barcodes, and then decodes
the erased barcodes by jointly comparing their received noisy
version to different row-permutations of the codebook corre-
sponding to the non-fixed indices. This results in significant
reduction in complexity in case only a few barcodes are
declared as erasure in the first step. Therefore, we have a
tradeoff between performance and complexity via an appro-
priate choice of the distance threshold parameter for declaring
an erasure.
The work in this paper may be extended by considering

different variants of the bee-identification error metric, for
instance, where error is flagged only when the fraction of
incorrectly decoded barcodes exceeds a threshold. Another
interesting scenario for future analysis is the problem formula-
tion where some of them rows in codebookC are deleted, due
to some bees being outside the hive when taking the picture.

APPENDIX A
PROOF OF PROP. 1

Proof: Let F2n denote the space of all n-length binary vec-
tors, and let γk−1, γ̃k−1 ∈ F2n , and Δ � γk−1 ⊕ γ̃k−1, where
⊕ denotes modulo-2 addition. Note that when codebook C is
uniformly distributed over C (n, R), then the rows cil

, for 1 ≤
l ≤ k, are i.i.d. and uniformly distributed over F2n . We have
Pr
{
dH(γk−1, cik

) = dk−1

}
= Pr

{
dH(γ̃k−1, cik

+ Δ) =

dk−1

} (i)
= Pr

{
dH(γ̃k−1, cik

) = dk−1

}
, where (i) follows from

the fact that for a givenΔ, the distribution of cik
+Δ is same as

the distribution of cik
. This implies that Pr

{
dH(cik−1 , cik

) =

dk−1|cik−1 = γk−1

} (ii)
= Pr

{
dH(cik−1 , cik

) = dk−1

}
. Then

Pr
{⋂k−1

l=1 {dH(cil
, cil+1) = dl}

}
can be expressed as

∑
γ1,...,γk−1∈F2n

(
Pr

{
k−1⋂
l=1

{cil
= γl}

}

× Pr

{
k−1⋂
l=1

{
dH(cil

, cil+1) = dl

} ∣∣∣∣
k−1⋂
l=1

{cil
= γl}

})
,

=
∑

γ1,...,γk−1

(
Pr

{
k−1⋂
l=1

{cil
= γi}

}
1{�k−2

l=1 {dH(γl,γl+1)=dl}}

× Pr
{
dH(cik−1 , cik

) = dk−1

∣∣cik−1 = γk−1

})
,

(iii)
=

∑
γ1,...,γk−1

(
Pr

{
k−1⋂
l=1

{cil
= γl}

}
1{�k−2

l=1 {dH(γl,γl+1)=dl}}

× Pr
{
dH(cik−1 , cik

) = dk−1

})
,

= Pr

{
k−2⋂
l=1

dH(cil
, cil+1)=dl

}
Pr
{
dH(cik−1 , cik

)=dk−1

}
,

(94)

where 1{·} denotes the indicator function, and (iii) follows
from (ii). Recursively applying (94), we get

Pr

{
k−1⋂
l=1

{
dH(cil

, cil+1)=dl

}}
=

k−1∏
l=1

Pr
{
dH(cil

, cil+1)=dl

}
.

Now, (28) follows from the fact that
Pr
{
dH(cil

, cil+1) = dl

}
≤ 2−n(1−H(dl/n)) when cil

and cil+1 are uniformly distributed over F2n [8].

APPENDIX B
PROOF OF PROP. 3

Proof: For 1 ≤ i ≤ m = 2nR, let ci denote the
i-th row of codebook C. Let F2n denote the space of
all n-length binary vectors, and let γi ∈ F2n for 1 ≤
i ≤ m. Let QTRC {⋂m

i=1{ci = γi}} denote the probability
Pr {

⋂m
i=1{ci = γi}} when C is uniformly distributed over

CTRC(n, R). Then, we have

QTRC

{
m⋂

i=1

{ci = γi}
}

=
1

αn
QRCE

{
m⋂

i=1

{ci = γi}
}

1{(γ1,γ2,...,γm)∈CTRC(n,R)},

(95)

where 1{·} denotes the indicator function. Further, let

QRCE

{⋂k−1
l=1

{
dH(cil

, cil+1) = dl

}}
denote the probability

Pr
{⋂k−1

l=1

{
dH(cil

, cil+1) = dl

}}
when codebook C is uni-

formly distributed over C (n, R). Then,

QTRC

{
k−1⋂
l=1

{
dH(cil

, cil+1) = dl

}}

=
∑

γi∈F2n ,
1≤i≤m

QTRC

{
m⋂

i=1

{ci = γi}
}

1{�k−1
l=1 dH(γil

,γil+1)=dl},

(a)

≤ 1
αn

∑
γi∈F2n ,
1≤i≤m

QRCE

{
m⋂

i=1

{ci =γi}
}

1{�k−1
l=1 dH(γil

,γil+1)=dl},

=
1

αn
QRCE

{
k−1⋂
l=1

{
dH(cil

, cil+1) = dl

}}
,

(b)

≤ 1
αn

k−1∏
l=1

2−n(1−H(dl/n)),

where (a) follows from (95), and (b) follows from Prop. 1.

ACKNOWLEDGMENT

The authors acknowledge discussions with Ting-Yi Wu,
Tim Gernat, and Prof. Gene Robinson on the bee-identification
problem formulation. The authors would also like to thank
Prof. Neri Merhav (Technion) for suggesting several improve-
ments to the manuscript and, in particular, to refine the
asymptotic statements herein.

Authorized licensed use limited to: University of Illinois. Downloaded on July 17,2020 at 06:51:16 UTC from IEEE Xplore.  Restrictions apply. 



7416 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 11, NOVEMBER 2019

REFERENCES

[1] T. Gernat, V. D. Rao, M. Middendorf, H. Dankowicz, N. Goldenfeld,
and G. E. Robinson, “Automated monitoring of behavior reveals bursty
interaction patterns and rapid spreading dynamics in honeybee social
networks,” Proc. Nat. Acad. Sci. USA, vol. 115, no. 7, pp. 1433–1438,
Feb. 2018.

[2] S. Shahi, D. Tuninetti, and N. Devroye, “The strongly asynchronous
massive access channel,” Jul. 2018, arXiv:1807.09934. [Online]. Avail-
able: https://arxiv.org/abs/1807.09934

[3] S. Shahi, D. Tuninetti, and N. Devroye, “On identifying a massive
number of distributions,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2018, pp. 331–335.

[4] A. Pananjady, M. J. Wainwright, and T. A. Courtade, “Linear regression
with shuffled data: Statistical and computational limits of permutation
recovery,” IEEE Trans. Inf. Theory, vol. 64, no. 5, pp. 3286–3300,
May 2018.

[5] R. Heckel, I. Shomorony, K. Ramchandran, and D. N. C. Tse, “Funda-
mental limits of DNA storage systems,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2017, pp. 3130–3134.

[6] I. Shomorony and R. Heckel, “Capacity results for the noisy shuffling
channel,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2019, pp. 762–766.
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