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The Bee-Identification Problem: Bounds
on the Error Exponent

Anshoo Tandon
and Lav R. Varshney

Abstract— Consider the problem of identifying a massive
number of bees, uniquely labeled with barcodes, using noisy
measurements. We formally introduce this ‘bee-identification
problem”, define its error exponent, and derive efficiently com-
putable upper and lower bounds for this exponent. We show
that joint decoding of barcodes provides a significantly better
exponent compared to separate decoding followed by permutation
inference. For low rates, we prove that the lower bound on
the bee-identification exponent obtained using typical random
codes (TRC) is strictly better than the corresponding bound
obtained using a random code ensemble (RCE). Further, as the
rate approaches zero, we prove that the upper bound on the
bee-identification exponent meets the lower bound obtained using
TRC with joint barcode decoding.

Index Terms— Bee-identification problem, error exponent,
noisy channel, joint decoding, permutation recovery.

I. INTRODUCTION

ONSIDER a group of m different bees, in which each

bee is tagged with a unique barcode for identification
purposes in order to understand interaction patterns in honey-
bee social networks [1]. Assume that a camera is employed
to picture the beehive to study the interactions among bees.
The image output (see Fig. 1) can be considered as a noisy
and unordered set of m barcodes. We formally pose the
problem of bee-identification from a beehive image as an
information-theoretic problem (Sec. I-B).

The bee-identification problem has applications in identi-
fication of warehouse products (labeled with unique RFID
barcodes) using wide-area sensors. Other applications include
package-distribution to recipients from a batch of deliveries
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Fig. 1.

Bees tagged with barcodes (adapted from [1]).

with noisy address labels, and similar “bipartite matching”
settings. It also has potential applications in identification of
the mapping between signals and their meaning in “alien
communication” with extraterrestrials, and also in learning
communication protocols among robots, via the use of pilot
signals going through the alphabet.

We consider the scenario where the barcode for each bee
is represented as a binary vector of length n, and the bee
barcodes are collected in a codebook C' comprising m rows
and n columns, with each row corresponding to a bee barcode.
As shown in Fig. 2, the channel first permutes the rows of C'
with a random permutation 7 to produce C;. The entries of
C, are then subjected to noise (corresponding to a binary
symmetric channel (BSC) with crossover probability p), and
the channel output is denoted .. We assume that the decoder
has knowledge of codebook C, and its task is to recover the
row-permutation m introduced by the channel. Note that the
permutation 7 directly ascertains the identity of all the bees.

A. Related Work

In a related work motivated by an Internet of Things (IoT)
setting, the identification of users in strongly asynchronous
massive access channels was studied [2]. The identification of
the underlying distributions of a set of observed sequences
(where each sequence is generated i.i.d. by a distinct dis-
tribution) was analyzed in [3]. The bee-identification prob-
lem, on the other hand, allows codebooks where all barcode
sequences are generated using the same underlying distrib-
ution. Note that both the bee-identification problem and the
distribution identification problem in [3] can be equivalently
viewed as permutation recovery problems. Other applications
and models in different settings, where permutation recovery
arises naturally, are discussed in [4].

In another related work [5], the fundamental limits of data
storage via unordered DNA molecules was investigated. Here,
a DNA molecule corresponds to an /-length sequence over
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Fig. 2. Effective channel for the bee-identification problem.

an alphabet of size 4, and the information is written onto
m DNA molecules stored in an unordered way. The storage
capacity results in [5] were extended to noisy settings in [6]
where the channel adds noise and randomly permutes the m
DNA molecules used to store information. The capacity results
are obtained under the scenario where the length, ¢, of each
DNA molecule grows with m. Although the effective chan-
nel in [6] is closely related to the bee-identification channel
in Fig. 2, we note that the fundamental problem in [6] is
to quantify the data storage capacity, while the main issue
in the bee-identification problem is the identification of the
row-permutation induced by the channel.

Data communication over permutation channels with
impairments was analyzed in [7]. The authors of [7] presented
bounds on the size of optimal codes over a finite input
alphabet, when the channel randomly permutes the letters of
the input sequence in addition to causing impairments such as
insertions, deletions, and substitutions. The effective channel
for the bee-identification problem (see Fig. 2) differs from the
communication channel in [7] in two aspects: (i) The input
to the channel in the bee-identification problem is the entire
codebook, not just a codeword belonging to the codebook.
(i) The channel in Fig. 2 only permutes the rows of the
codebook, but does not permute the letters within a row.

B. Bee-Identification Problem Formulation

The channel output is a row-permuted and noisy ver-
sion of the codebook. If 7 denotes a given permutation
of m-letters, then the channel first permutes the m rows
of codebook C, based on 7, to produce C, (see Fig. 2).
Therefore, if j = 7(i) and the i-th row of codebook C' is
denoted ¢; = [¢;1 ¢i2 -+ ¢ip), then the j-th row of Cr is
equal to ¢;. The channel then applies noise on the permuted
codebook C to produce C’W, where noise is modeled by
a BSC with crossover probability p, denoted BSC(p), with
0 <p<0.5.If j = (i), and ¢r(;) denotes the j-th row of
C'ﬂ, then

Pr{éﬂ'(i)|ci7ﬂ-} = pd7(1 _p)n_di7 1 S Z S m,
N m m
Pr{CHC’,W} = HPr{éﬂ(Mci,w} = de"'(l —p)" T,
i=1 i=1

(1

where d; £ du(€x(;),ci) denotes the Hamming distance
between vectors Cr(; and c;. Let M = {1,2,...,m}, and
let the decoder correspond to a function ¢ which takes C,
as an input and produces a map v : M — M where
v(k) corresponds to the index of the transmitted codeword
which produced the received word ¢, for 1 < k < m.
In effect, the bee-identification problem is that the decoder has
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to recover the row-permutation 7 introduced by the channel,
by using the knowledge of codebook C' and the channel
output C..

C. Bee-Identification Error Exponent

The indicator for the bee-identification error is defined as

_ 1, ifv#r!
D( Cﬂ-,ﬂ'_l):D v,m ) 27T ’
9(Cr) ( ) 0, if v=m"1.
For a given codebook C' and decoding function ¢, the expected
bee-identification error probability over the BSC(p) is

D(Cp,¢) 2E, [E|D (¢(Cr)nt)]]. @

where the inner expectation is over the distribution of C; given
C and 7 (see (1)), and the outer expectation is over a uniform
distribution of 7 over all m-letter permutations. Note that (2)
can be equivalently expressed as

D(C,p,¢) = Pr{(ﬁ(@r) # w‘l} =Pr{v#7'}. 3

For a given R > 0, let the number of barcodes m scale
exponentially with blocklength n as m = 2" Now, for
given values of n and R, define the minimum expected
bee-identification error probability as

D(n,R,p) = Ig}qlg D(C,p,¢), “)

where the minimum is over all codebooks C' of size 2" x n,
and all decoding functions ¢.

Define, Ep (R, p), the exponent corresponding to the mini-
mum expected bee-identification error probability, as

1
ED (Rvp) = liminf —— logQ(n, Rap) (5)

- n—oo n
We introduce some notation that is used in the
rest of the paper. We will denote f(n) = g(n)
when lim,_, n.’llog (f(n)/g(n)) = 0. Similarly,

we write f(n) < g(n) (respectively, f(n) > g(n)) if
limsup,, ., n tlog(f(n)/g(n)) < 0 (respectively, > 0).
Unless stated otherwise, we will take all logarithms to base 2.

D. Our Contributions

The “bee-identification problem” is introduced and the cor-
responding bee-identification exponent Ep (R, p) is analyzed
in this paper. In particular, we provide the following explicit
bounds on this exponent.

A lower bound on Ep (R, p) using a random code ensem-
ble (RCE) with independent barcode decoding (Sec. II-A)
and joint barcode decoding (Sec. II-B).

e A lower bound on Ep(R,p) using typical ran-
dom codes (TRC) with independent barcode decoding
(Sec. III-A) and joint barcode decoding (Sec. III-B).

o An upper bound on Ep(R,p) which is applicable to all
possible codebook designs (Sec. IV).

We show that joint decoding of barcodes provides a signifi-
cantly better exponent compared to separate decoding followed
by decoding the permutation. For low rates, we prove that the
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lower bound obtained using TRC is strictly better than the
corresponding bound obtained using RCE. Further, as the rate
approaches zero, we prove that the upper bound meets the
lower bound obtained using TRC with joint barcode decoding.

II. RANDOM CODE ENSEMBLE

In this section, we present lower bounds on Ep (R, p) using
an RCE [8]. Let ¥ (n, R) denote the set of all binary matrices
with m = 2% rows and n columns. Assume that codebook
C'is uniformly distributed over € (n, R). It is immediate from
the definition of D(n, R,p) (4) that

! > D(Cp¢), (6

Q anap S Teo/ . N
DS R 2

where the expression on the right denotes the average perfor-
mance using RCE. We proceed by quantifying this expression
when the decoding function ¢ corresponds to: (i) independent
barcode decoding (Sec. II-A), and (ii) joint barcode decoding
(Sec. II-B). The main results in this section are as follows:
we present explicit lower bounds on Ep (R, p) using indepen-
dent barcode decoding (Thm. 1) and joint barcode decoding
(Thm. 2). It is shown (Prop. 2) that the bee-identification expo-
nent obtained using joint barcode decoding is strictly better
than the corresponding exponent obtained with independent
barcode decoding.

A. Independent Decoding for Each Barcode

Here, we analyze a naive decoding strategy where each
barcode is decoded independently. In this case, for 1 < 7 < m,
the decoder picks ¢;, the j-th row of CN’W, and then decodes
it to v(j) = argmin, du(¢&;, cx). If there is more than one
codeword at the same minimum Hamming distance from ¢;,
then any one of the corresponding codeword indices is chosen
at random. From (3) and the union bound, we have

D(C,p,¢) < ZPr v #7710G)}- )

Combining (6) and (7), we get

Ui r{v(j) £ 71
pmrpn<> [ ¥ = { ﬁ;)(f B DI s
j=1 \C€e%¥(n,R) ’
Now define
s 1 . 1.
P(n, Ryp) & S oPr{vG) £ G} ©)

CE%(n,R)

Note that P(n, R, p) is independent of index j due to the aver-
aging over the ensemble of codebooks uniformly distributed
over ¢ (n, R). For i = m1(j), the expression for P(n, R, p)
corresponds to the probability of error when the ¢-th codeword
is transmitted over BSC(p). From (8) and (9), we get

Q(n’R7p) S mP(n’R7p)'

Further, the bee-identification error probability D(n, R, p) is
upper bounded by 1, and so

D(n, R,p) < min{l, mP(n,R,p)}. (10)
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Fig. 3. Plot demonstrating Ro(p) < 2Rcr(p).

The following theorem uses (10) to present an explicit lower
bound on Ep(R,p).
Theorem 1: We have

Ep(R.p) = |Ro(p) — 2R|", (11
where |z|t £ max(0,z), and
Ro(p) 2 1~ 1og (1+ v/Ip(1 - p)). (12)

Proof: It is well known that the random cod-
ing exponent over BSC(p), defined as E.(R,p) =
liminf, . (1/n)log (1/P(n, R,p)), is given by [8], [9]

Ro(p) — R, 0 <R < R.(p)

0, R>1-H(p),

E(R,p) =

13)

where H(-) denotes the binary entropy function, dgv(R) is
the Gilbert-Varshamov (GV) distance [8] defined as the value
of § in the interval [0, 0.5] with H(§) = 1 — R, and R, (p) is

the critical rate given by Re;(p) =1— H TViss )’ and
T 1—x
D(z||y) £ xlog= + (1 — z)log .
(@ll) 2 log -+ (1 = ) log {—

Using the fact that m = 271 and combining (5), (10), and
the definition of E,(R,p), we get
Ep(R,p) > |E:(R,p) - R (14)
Using explicit numerical computation, it can be shown that
Ro(p) < 2R (p) (see Fig. 3). The proof is now complete
by combining (14) with the first clause of (13), and noting
that |E,(R,p) — R|T =0 when R > R..(p) as E:(R,p) is a
decreasing function of R. |
The lower bound on Ep(R,p) given by (11) was obtained
by applying a naive decoding strategy where each barcode was
decoded independently. In the next subsection, we analyze the
bee-identification exponent using joint barcode decoding.
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B. Joint Decoding of Barcodes

Let S,, denote the set of permutations of {1,...,m}.
For joint maximum likelihood (ML) decoding of barcodes,
the decoding function ¢ takes the noisy row-permuted code-
book C, as input, and produces permutation v = p~! as out-
put, where p = argmin,cg  du(Cr, Cy), and dg(Cr, Cy) £
1{(i,4) : Culisj) # Colirj)l < i < m1 < j < n}l
We aim to provide bounds on Pr{v # 7=} = Pr{p # 7}.

For any two permutations my,7my € S,,, the sets of
distances {du(Cxr,,Cs)}oes,, and {du(Cr,, Cs)}oes,, are
equal. Therefore, the performance of the joint ML decoder is
independent of the channel permutation m, and we assume,
without loss of generality, that the permutation induced by the
channel is the identity permutation, denoted .

For a given codebook C' at the transmitter, let C'm denote
the received noisy codebook at the output of the effective
channel, and for o € S, with o # 7, we define

Pr{my — o} £ Pr {dH(éﬁo, C,) < dy(Cry, cﬁo)},

where the event {my — o} is said to occur if dg(Cr,,Cs) <
di(Cry, Cry). From (3), we have

D(C,p,¢) =Pr ) {m—oa}y,
0ESm,0#mo
< Z Pr{my — o}, (15)
TESm ,0F£m0
where (15) follows from the union bound. Now define
1
Preg,e & 0 Pr{my — o}, (16)
|€'(n, R)| 2

Ce€(n,R)

which denotes the probability of the event {7y — o}, averaged

over the ensemble of random binary codebooks. Using (6),

(15), and (16), we get
D(n, R,p) <

Z PrcE,o-

0ESm,0#m0

a7

Now consider two codewords c;, ¢; at distance d from each
other. Given that ¢; is transmitted over BSC(p), the probability
that the Hamming distance of the received word from ¢; is not
more than its distance from ¢; is [8]

PI‘{C@ — Cj} < 2—dozp,
where
ap £ —log\/4p(1 — p).

Therefore, for a given codebook C' = Cr, and permutation
o € S, with o # g, if dy 2 dg(Cyr,,C,), then

(18)

Pr{my — o} < 9~ doap (19)

In the following, we quantify Prcg,, for different o € Sy,
via (16) and (19).
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1) o is a Transposition: We first consider the case where o
is a transposition, i.e. a permutation that interchanges only two
indices. For indices 7, ), with 1 < ¢ < 7 < m, the Hamming
distance between codewords ¢; and ¢; in a random codebook
satisfies [8]

Pr{du(c;, ¢;) = d} < 27 "(1-H@/m),

When o = (i j) is the permutation that only trans-
poses indices 7 and ), then dgg (CWO,C@ j)) = 2d if and
only if du(c;,¢;) = d. Thus, it follows from (20) that
Pr {dH (C’WU,C’@ j)) = 2d} < 9—n(1=H(d/n)) Fyrther, when
du (Cry» Ci ) = 2d, we have Pr{my — (2 )} < 2720,
Therefore, the probability Prcg,; 5 can be characterized
using (16), (19), and (20) as

(20)

Preg,g j) < Z g—n(l—H(d/n)+2(d/n)op)
d=0

21

If 6 = d/n is treated as a continuous variable, then the
exponent F5(8) = 1 — H(J) + 26c, is a convex function
with a unique minimum at § = 6,, where
¢ oA 4p(1 - p)
P14 4p(1—p)’
Therefore, for 0 < d < n, we have

g—n(1—H(d/n)+2(d/n)ap) < 9—n(1-H(4p)+2(5p)ap)

(22)

Now, if we define
¢ 2 (log(n +1)) /n,
then it follows from (21) that

PRCE o S 2—n(1—H(5p)+2((§p)ap—cn). (23)

Further, we have 1 — H(0,) 4 2(0,)a, = R1(p), where

Ri(p) =1 —log(1 +4p(1 — p)).
Hence, it follows from (23) and (24) that

(24)

Prep, <270, (25)

where o is a transposition.

2) o is a Product (Composition) of Disjoint Trans-
positions: We now consider the case where o =
0102, where o1 and o9 are disjoint transpositions with
o1 = (i j) and o2 = (i j). As the codewords
in a random codebook are independent, then using (20),
we have Pr{{du(ci,c;) =di}N{du(ci,¢;) =da}} <
Hle 2~n(1=H(di/n)) - Further, if dm(ei,c;) = di and
dH(Ci,Cj) = ds, then dy (CWO,CU) = 2(d1 + dg), and
Pr{my — o} < 272(di+d2)ap Therefore, if o is a product
of two disjoint transpositions, then

3 97, (1= H(di fm)+2(di/m)or,))

0<d1<n,
0<do<n

ﬁ <zn: 2n(1H(di/n)+2(di/n)ap)>7

i=1 \d;=0
S 272n(R1 (p)—cn) )

Pree,s <
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In general, when o is a product of s disjoint transpositions,
the above argument can be readily extended to show that

Prep,e < 27snfp)=cn), (26)

Now, define

3 7 2
where Ro(p) and R;(p) are defined in (12) and (24), respec-
tively. As 2\, < R;(p), it follows from (26) that

Prep,e < 2725w =en),

Ay 2 min{ZRo@) Ry (p) }

27)

We remark that when o is just a transposition, then from (25)
we have Prep, < 27(FiP)=en) < 97 n2(0%=¢n) - which is
only a special case of (27) with s = 1.

3) o is a k-Cycle With k > 2: Let 0 € S, be a k-cycle
(i1 42 -+ ix) where ij41 = o(iy) for 1 <1 < k—1, and
i1 = o(ir). We will apply the following proposition towards
characterizing PrcE,o-

Proposition 1: Let ¢;,, C;,, . .., c;, bek distinct rows in the
codebook C, and let d; satisfy 0 < d; < n for 1 <[ <
k — 1. When C' is uniformly distributed over € (n, R), then
the following inequality holds

{ ﬂ {dH Cuacu+1

Proof: See Appendix A. [ |
For a given codebook C, if du(c;,,¢i ) = d; for 1 <1 <
k —1, and du(c;,, ¢iy ) = di, then du(Cr,, Cy) = Zle d
and we have

(28)

} 1:[ n(1=H(di/n))

Pr{mg — o} < 9= (Ziydi)ay (29)

Further, if codebook C' is uniformly distributed over € (n, R),

{( ﬂ {du(ci, ciy)) = di} )ﬂ{dH Civriy) = dk}}

< 2—”(25,:11 (1—H(d:/n))) ., (30

where (30) follows from (28). Combining (29) and (30),
Prep.o < Z —n((Z{;l(dz/n)ap)Jr(Z;“;f(1—H(dz/n))))7

<d;<n,
Slfk
n k=1 n
— Z 2—dkap (H Z 2—n(1—H(dl/n)+(dl/n)ozp)>
d=0 =1 d;=
S 2ncn (H Z 2 n(l H(d;/n)Jr(d;/n)ap))’ (31)
=1 d;=

If § = d;/n is treated as a continuous variable, then the

exponent F1(6) £ 1 — H(6) + day, is a convex function with

a unique minimum at § = J,, where

. (1 —

5o ViU D) (32)
1+ /4p(1l —p)

We have

Ey(6p) =1 —log(1+ /4p(1 —p)) =

7409
and therefore
Z 9—n(1=H(di/n)+(di/n)ay) < 9—n(Ro(p)—cn)_ (33)
d;=0
Combining (31) and (33),
Prep.o < 9—n((k=1)Ro(p)—ken) (34)

As 2k/3 < k —1 for k > 2, we have kX, < 2kRy(p)/3 <
(k —1)Ro(p), and it follows from (34) that

2—nk(z\p—cn).

Preg,s < (35)

The above equation has been derived for the case where o is a
k-cycle with k£ > 2. However, a transposition is just a k-cycle
with £ = 2, and from the remark following (27), it follows
that (35) holds even for k = 2.

4) General o € Sy, With o # my: It is well known that any
permutation o # 7 can be written as a product (composition)
of ¢ disjoint cycles, for ¢ > 1 [10]. Consider a given ¢ which is
a product of ¢ disjoint cycles of length k1, . . ., k¢, respectively,
where k; > 2 for 1 < ¢ < t. Then, we can extend the result
in (35) to obtain

PRCE7U S 2—”(21 1 ki )(A —C,,) (36)

5) Putting it all Together: For 1 < j < m, if we define

Y& {0 € Sy : |{i:0(i)#i,1<i<m}|=35}, (37)
Prep,s, £ Z Prcg,o » (38)
ocy;
then (17) can be equivalently expressed as
D(n,R,p) <Y Prerys,. (39)

=2
Note that the set X; is empty, as the Hamming distance
between two distinct permutations is at least two. The set X
consists of all transpositions and || = (77') < 2725, For all

o € Yo, the value of PrcE,s is given by (25), and combining
this with (38), we get
Prep,x, < 27 "UAp)men=2R), (40)

For a given j > 2, if 0 € X, then from (36) it follows that
Prep,e < 27"Gw=e) For j > 2, the size of the set ¥;
satisfies |2, < [[/Z0 (m — i) < 2"9%. If we define

Bn A 2—n()\p—cn—R),

then we have Prcgx; < 53;. Now, if R < A, then because
¢n = o(1), there exists N such that for n > N, we have
R < A\, — ¢, and hence 3, < 1. Therefore, for n > N,

ZPRCEE <Zﬁn < 1_5n

As 6, — 0 and ¢, — 0 when n — oo, it follows from (41)
that

(41)

B3 3 = 9—3n(Ap—R)
ZPRCEE < =p,=2"
j=3 1_ﬂn

(42)
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Combining (39), (40), and (42), for R < A,

Q(an’p) § 2—n(R1(;D)—2R) + 2—n(3/\p—3R). (43)
Comparing (17) with (43), we observe that the error
probability D(n, R, p) is dominated by Prcg,, terms for o
corresponding to k-cycles with £ = 2 and & = 3. The next
theorem presents an explicit lower bound for Ep (R, p) when
the decoder jointly decodes all the barcodes using a maximum
likelihood approach.
Theorem 2: We have

EQ(Rap) Z |77P(R)|+a

where n,(R) = min {R; (p) — 2R, 2Ro(p) — 3R}.

Proof: If R < )y, then Ry(p) > 2X\, > 2R. Therefore,
from (43) it follows that if R < \,, then Ep(R,p) is lower
bounded by min {R;(p) — 2R, 3\, — 3R} = 1,(R). Further,
note that 7,(R) > 0 if and only if R < X,,. [

The following proposition shows that the lower bound (44)
(obtained using joint decoding of barcodes) is strictly better
than the bound given by (11) (obtained with independent
decoding of barcodes) in the interval where it is positive.

Proposition 2: When Ry(p) > 2R and 0 < p < 0.5, then
we have the strict inequality

(44)

np(R) > Ro(p) — 2R.

Proof: When 0 < p < 0.5, we have 0 < 4p(1 —p) <
4p(1 — p) < 1, and hence Ry(p) > Ro(p). If Ro(p) > 2R,
then 2Ry (p) — 3R = 2(Ro(p) —2R) + R > Ry(p) — 2R. The
proof is complete by combining these observations with the
definition of 7,(R). [ |
Note that |n,(R)|* = 0 for R > 0.5, because in this case
Np(R) < Ri(p) — 2R < Ri(p) —1 < 0. In the following
section, we present improved lower bounds on Ep(R,p) by
analyzing ftypical random codebooks.

III. TypicAL RANDOM CODE

TRCs are known to provide higher error exponents than
RCE over a BSC at low rates [8],[11]. Roughly speaking,
TRCs are characterized by the property that their relative
minimum distance is at least dgv (2R). Formally, for 0 < R <
0.5, 0 < € < dqv(2R), and indices 1 < i < 7 < m = 2",
the Hamming distance between codewords ¢; and c¢; in a TRC
satisfies [8]

<o-na-mE), L _5 <l 3
Pr {dH(Ci,Cj) = d} % %
= Z 5> =
0, I5-d1=5-4
(45)

where § = d/n, § £ dav(2R) + ¢, and § = dov(2R) — €.
Let 6rrc(n, R) denote the set of all codebooks of size
27 x n, with the property that the Himming distance between
a pair of codewords c; and c; satisfies the relation nd <
du(ei, ¢j) < n(l —9) for all i # j. Note that if codebook C
is uniformly distributed over rrc(n, R), then the Hamming
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distance between a pair of distinct codewords satisfies (45).
It is immediate from (4) that

1
Dn,R,p) < ————
DonRp) S iy 2

Ceérrc(n,R)

D(C,p,¢), (46)

where the expression on the right denotes the average perfor-
mance using TRCs.

In this section we provide lower bounds on the
bee-identification exponent Ep(R,p) using TRCs. The case
where each barcode is decoded independently is analyzed
in Sec. III-A while joint barcode decoding is analyzed in
Sec. III-B. It is shown that these lower bounds on Ep(R,p)
using TRCs outperform the corresponding bounds for RCEs
when the rate is smaller than a certain threshold.

A. Independent Decoding of Barcodes

With  independent barcode decoding, the decoder
picks ¢;, the j-th row of Cr, and then assigns
v(j) = argmin, du(¢;, i), for 1 < j < m. From the union
bound, we have D(C,p,¢) < Y7, Pr{v(j) # 7 '(j)},
and using (46) we get

Pr{v(j) # 7 (j)}
|¢rRC (1, R)|

D(n,R,p) < f:

j=1

>

Ceérre(n,R)
47

We now define

Pr {v(j) £ 7))

P L
'rrC (1, R, p) |CTrRC (N, R)|

>

Ceérrc(n,R)

Note that Prrc(n, R,p) is independent of the index j due
to the symmetry resulting from averaging over codebooks
uniformly distributed over érrc(n, R). For i = 7 1(j),
the expression for Prrc(n, R,p) corresponds to the proba-
bility of error when the i-th codeword is transmitted. From
(47), and the fact that D(n, R,p) < 1, we get

Q(TL, Rap) S min {17 mPTRC (’I’L, R;p)} (4’8)

The following theorem uses (48) to present an explicit lower
bound on Ep(R,p) when the rate is smaller than a certain
threshold.

Theorem 3: We have

Ep(R,p) > apdcv(2R), 0< R < Rrrc(p), (49)

where «, is defined in (18), and

4p(1 —p)

1+¢m>>' Y

Proof: 1t is known that for 0 < R < Rtrc(p) <
0.5, the error exponent using a TRC over BSC(p), defined
as Etrc(R,p) £ liminf, . (1/n)log(1/Prrc(n, R,p)),
is given by [8]

RTRC(p) 205 <1 —H (

Errc(R,p) = apdcv(2R) + R. (5D
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Using the fact that m = "R and combining (5), (48), with
the definition of Errc(R,p), we get

Ep(R,p) > |Etrc(R,p) — R|T. (52)

The proof is completed by applying (51) in (52). [ ]

It is well known that Ergc(R,p) > E;(R,p) for 0 < R <
Rrre(p) [8]. This implies that the lower bound on Ep (R, p)
for TRC given by (49) is strictly better than the corresponding
bound for RCE given by (11) when 0 < R < Rrrc(p). The
next subsection provides a more refined bound on Ep(R,p)
by analyzing joint decoding of barcodes using TRCs.

B. Joint Decoding of Barcodes

With joint barcode decoding, the decoder takes the
noisy row-permuted codebook C; as input, and pro-
duces the permutation v = p~! as output, where p =
argmin,cg du(Cr,C5). As in Sec. II-B, we assume, with-
out loss of generality, that the permutation induced by the
channel is the identity permutation 7. For a given codebook
C, we have D(C,p,¢) < >, cs. szm Primo — o} If we
define

Prre,o £ E[Pr{my — o}], (53)

where the expectation is over a uniform distribution of code-
book over rrc(n, R), then we have

D(n,R,p) < E[D(C,p, ¢)],

< Z Prro,o-

0ESm,0#m0

(54)

In the following, we quantify Prrc , for different o € S,,,
in order to bound D(n, R,p) via (54).

1) o is a Transposition: If o = (i 7) is the permutation
that only transposes indices ¢ and j, and du(c;, ¢;) = d, then
dy (Cﬂo, Ca j)) = 2d, and we have

Pr{my — (i j)} < 2729, (55)

When C is uniformly distributed in %trc(n, R), and
nd < d <n(l—J), then

Pr {dH (Cﬂo, C(,; j)) = Qd} = Pr {dH(Ci, Cj) = d},

é 2777,(17]‘[((1/71))7 (56)

where (56) follows from (45). Combining (53), (55), and (56),
we get

n(1-9)
PTRC7('Z j) é Z 27n(17H(d/n)+2(d/n)ap). (57)
d=nd
If § = d/n is treated as a continuous variable, then the

exponent E5(§) =1 — H(5) + 20a,, is a convex function of
0 with a unique minimum at ¢,, defined in (22). If we define

R, £0.5(1— H(5,)), (58)
then for 0 < R < Rp, we have

6av(2R) > dav(2R,) = 6,
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The exponent F5(8) increases monotonically in & for § > 4,,.
Therefore, if 0 < R < R, and € < dav(2R)—J,, the exponent
in (57) is minimized for d = nd, and we have

Prre, g < 2 "TH@TR =) g < R< R, (59)

where ¢, = (log(n + 1)) /n.

2) o is a k-Cycle: We now consider the case where o is a
k-cycle with & > 3. We will apply the following proposition
towards characterizing Prrc,o.

Proposition 3: Let ¢;,,¢i,,...,ci, be k distinct rows in
codebook C, and let d; satisfy nd < d; < n(1—9) for 1 <
1 < k-1 Let Qrrc {ﬂfz_ll {du(ci, ciry) = dl}} denote
the probability Pr {ﬂ;:ll {du(ei,, ciy) = dl}} when C' is
uniformly distributed over ¢rrc(n, R). Then, we have

k—1 =
_ —n(1—H(d;/n
QTRC{ﬂ {dH(ci“ci"“)dl}}Sa_nHQ (1—H(di/n)
=1 =1
(60)

where

a
tn = 2

(V157255 Ym ) ECTRC

and  Qrcr{Ni-{ci =7i}} denotes the probability
Pr{N",{ci="}} when C is uniformly distributed
over €(n, R).
Proof: See Appendix B. |
Now, given that o = (i1 i2 --- ix) and du(c;,, ¢, ) = di
for 1 < I < k-1, and du(c¢;,, ;) = di, we have
dy(Cr,,Cy) = Zle d;, and therefore

i=1

QRrcE {ﬂ{cz = %‘}}, (61)
(n,R)

Pr{m — o} < 2~ (Zizidi)es, (62)
If dy £ nd, then combining (60) and (62), we get
Prre.o < Z 9= (X1 (di/n)ay)
do<d;<n—do,
1<I<k
o L on(SE A Hd /m))
n ’
1 k—1
= 1T ¢ (63)
=1
where, for 1 <[ < k — 1, we have
G2 Z 9~ n(=H(di/n)+(di/n)ap) (64)
do<d;<n—do
and
s Y 2T her <gmnl@ermen), (65)

do<dr<n-—do

The function £ (§) = 1—H (d)+d, is a convex function of 4,
and has a unique minimum that occurs at 9, defined in (32).
From (50) we observe that Rtrc(p) = 0.5(1 — H(J,)). Thus,

if R < Rrrc(p), then we have dgv(2R) > §,. Further,
Ey(6) is an increasing function of ¢ for 6 > J,, and so if
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R < Rrre(p) and € < dgv(2R) — Sp, the exponent in (64)
is minimized when d; = dy = nd. Thus, we have

¢ <2 n-H@+p=cn) () < R < Rrpa(p).  (66)
Combining (63), (65), and (66), for 0 < R < Rrrc(p),
Prac.o < —o-n((=D(-H@)1+hGar=c.)) (67
; o
where o is a k-cycle with k > 2. As k < 2(k—1) for k > 2,
it follows from (67) that
Prnc.y < -2 mhO50-H@E) 480 —c) (< R< Rrno(p).
' (68)

Recall that 5 and R are given by (22) and (58), respectively.
Asx/(1 +x) is an increasing function of z, and 0 < p < 0.5,
it follows that 4, < &, < 0.5, which implies that Rrrc(p) <
R . Note that a transposition is simply a k-cycle with k = 2,
and comparing (59) with (68) we observe that the relation
given by (68) holds even when k = 2.

3) ois a Product (Composition) of Two Disjoint Cycles:
We now consider the case where 0 = o102, where o1 and
oo are disjoint cycles of length k; and ko, respectively. Let
or = (i1 d2 -+ dk,) and 02 = (k41 Ghit1 o Tkitks)-
Ifdy < dj <n—dyforl <1 < kj+ko, then a straightforward
extension of Prop. 3 shows that the probability

ki1—1
Pr{ m {dH(C"“ciHl) =di} ﬂ {dH(c’ikl ,Ciy) = dkl}
=1
ki+ko—1
ﬂ {dH(c’imciH_l) = dl}
l=k1+1

ﬂ {dH(cik1+k2 ) cik1+1) = dk’1+k2} }
is upper bounded by

Ly (Z @ m) | o

Qn

(SR A=H i /m)
(69)

Further, for a given codebook C, with du(c;;,c;,,) = di,
1<I<k—1, dH(Ciklacil) =dp,, dH(Ci“CiH_l) =d, k1+
1 <1 <ki+ky—1,du(ei, 1, Cir, (1) = diy+k,» We have
dy(Cry, Cy) = Zkﬁkz dy, and therefore

k1+k2
Pr{m — o} <2~ (S22 di)as (70)

Combining (69) and (70), we can upper bound Prgrc,, by

1 Z - ((z’“*k?(dz/nmp))
(0%

" do<d;<n—do,
1<1<ky +ko2

v (z’“ Y- H(dz/n>>+z§“:fi;1<1—H(dl/n)))>. 1)

The above expression can be equivalently written as

1 .
— 2 gt (72)
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where (; and 7, are defined in (64) and (65), respectively.
Now, applying (65), (66) in (72) for 0 < R < Rrrc(p),
we get

Prac.o < g n(lk+ks =2 (A—H(E)+(n+ka) Gay —cn))
o= )

n

(73)

where 0 = (i1 @2 -+ ik, ) (Fky+1 Thkyt+2 = Thyths ) AS k1 > 2
and ko > 2, we have 2(ky + k2 — 2) > k1 + ko, and therefore
for 0 < R < Rrrc(p), we have

< Lo n(hitha) (050 H(@) +ap—cn)

Prro,e < (74)

4) General o € Sy, With o # my: If permutation o is a
product of r disjoint cycles of length k1, .. ., k,, respectively,
then similar to (68), (74), we have for 0 < R < Rrrc(p),

Prncy < —o=n(Siiy k) O501-H@)+50,—c0).

n

(75)

5) Putting it all Together: For 1 < j < m, if we define
PTRC,EJ = dezj PTRC,m where Zj is given by (37),
then (54) can be equivalently expressed as

m
D(n,R,p) < Z Prre,s;-
=2

(76)

If o is a product of r disjoint cycles of length kq,..., k.,
respectively, and s = Y, k¢, then o belongs to the set X,
and Prrc, 1s given by (75). Equivalently, for a given j > 2,
if 0 € S,,, belongs to the set X, then for 0 < R < Rrrc(p),

1 )
PTRC,U < a—2_n3(0'5(1_H(é))+é0¢p_Cn). (77)

The size of X, satisfies |X;| < Hf:&(m — i) < 2ME,
Therefore, for 0 < R < Rrrc(p), we have

= Z Prro,o

oEN;

Prre s,

< L 5ni050-H©®)+d0y—ca) gniR

7%
— i2—"j(0~5(1—H(é))—R+é%—cn). (78)
7
Now, if we define &, £ 2 n(05(—H(8))-R+dap—cn)  thep

(78) can be equivalently expressed as Prreyy; < (1/ an)fj
As ¢, = o(1), there exists N such that for n > N, we have
¢n < 0.5(1—H(d)) — R+ day, and hence &, < 1. Therefore,
forn > N and 0 < R < Rrre (p), we have

1 < .
D(n, R < — J
D(n,R,p) < ~ jz_;fn

I
ap 1 — gn
2
B l f”g (79)
= ¢ (80)
_ 2—n(1—H(§)—2R+2§ap—20n)
- 2777,(17H(é)72R+2§Otp)7 (81)

where (79) follows because o, — 1 as n — oo [8], and (80)
follows because &, = o(l), while (81) follows because
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Fig. 4. Plot demonstrating 2Ry (p) > R1(p) + 2Rrrc (p).

¢n, = o(1). Note that 6 = dgv(2R) — ¢, and so lim._,0d =
dov(2R) and lim.o(1— H(0) — 2R+ 2dc,) =
20Gv(2R)ay,. As € can be made arbitrarily small, it follows
from (81) that for 0 < R < Rtrc(p), we have

D(n, R,p) < 27"(20avZRo), (82)

The following theorem encapsulates the main result of
this subsection on bounding the bee-identification exponent,
Ep(R,p), using joint decoding for TRC.

Theorem 4: We have

EQ(R,p) > 2(5(;\/(2]“2) Qp, 0 < R < Rtrc (p) (83)

Proof: Follows from (5) and (82). [ |
We note that the above lower bound for Ep(R,p) using
TRCs with joint barcode decoding is twice the correspond-
ing bound obtained using independent barcode decoding
(see (49)). The following proposition shows that the lower
bound given by Thm. 4 using TRC is strictly better than
corresponding bound using RCE (see Thm. 2) for 0 < R <
Rrre(p).

Proposition 4: The lower bound on Ep(R,p) in (83)
obtained for TRC is strictly better than the corresponding
bound in (44) obtained for RCE when 0 < R < Rrrc(p).

Proof: Tt is known that Errc(R,p) > FE:(R,p) when
0 < R < Rrrc(p) [8]. Further, using explicit numerical com-
putation, it can be shown that 2R (p) > Ri(p) + 2 Rrrc(p)
(see Fig. 4). Therefore, it follows that for 0 < R < Rrrc(p),
we have

20cv(2R) ap = 2 (Erre(R,p) — R)
> 2 (E(R,p) — R) = 2(Ro(p) — 2R)
> Ri(p) — 2R+ 2(Rrrc(p) — R)
> Ri(p) — 2R > n,(R). u

The next section presents an explicit upper bound for
Ep(R,p) which applies to all possible codebook designs.

IV. UPPER BOUND ON THE BEE-IDENTIFICATION
EXPONENT

This section presents an upper bound on the
bee-identification exponent Ep (R, p). Towards this, we define
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the following optimum minimum distance metrics

d*(n,R) =

max  min du(e,cj),

Ce€(n,R) ci,c; €C
ciFc;
§"(n,R) & d*(n, R)/n,
§*(R) = limsup 6*(n, R).

The upper bound on the bee-identification exponent, given by
Theorem 5, relies on the existence of a set consisting of at
least m/4 disjoint pairs of codeword indices (where m is
the total number of codewords in the codebook), such that
for every pair of indices, the corresponding codewords have
sufficiently small Hamming distance. In particular, for any
given codebook C' € % (n, R), we show that there exists a
set .Z¢ consisting of pairs of codeword indices (i,7),i # 7,
satisfying the following properties:

(i) If (i,5) € e, then du(c;, ¢;) < d*(n,R— 1).

(i) If (i,j) € Hc and (2,)) € Ho, then @ # i,i # j and

JF#FGH)F -

(iii) Size of set ¢ is at least m /4.
A set satisfying the above properties can be constructed
iteratively as follows.

o Step I: For a given codebook C' € €' (n, R), initialize .7¢
to be the empty set and let 7 = C.

o Step 2: As T contains at least m/2 = 2n(B=3) code-
words, it follows from the definition of d*(n, R— 1) that
there exists distinct ¢;,¢; € 7, satisfying du(c;, ¢j) <
d*(n,R — 1). Include the pair (i,j) to Jc, and let
T = T\ {Ci, Cj}.

o Step 3:If | Fc| < m/4, then go to Step 2, else stop.

Let the receiver employ ML decoding, and interpret each

pair (i, j) € F¢ as a transposition o = (¢ j) that interchanges
indices ¢ and j. Let A(; ;) denote the error event that the
receiver incorrectly decodes the channel induced permutation
to transposition (¢ j) (instead of the identity permutation o),
ie. Aq ;) = {mo — (i j)}. Then, the bee-identification error
probability D(C, p, ¢) can be lower bounded as

U 4w

(j)efc

D(C,p,¢) = Pr (84)

Using de Caen’s lower bound on the probability of a
union [12], the expression on the right side in (84) can itself
be lower bounded by

> (Pr{Au,})’
ihese Pr{Aupy+ Y Pr{Au;niay}
(L))eso
(D 9)
@) (Pr{A})°
ihese Pr{Aapnt+ D Pr{du;}Pr{du;}
(i.))eso
G 7)# ()
> Pr{duy}
(i:j)ejc
> , (85)
L+ Y Pridsy}
(ivj)Efc
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where (a) follows because events A(; ;y and A(; ;) are inde-
pendent when the sets {7, j} and {i, j} are disjoint. Now

()

(1,7)EFc

Z 2—n(26* (n,R—%)ap)

(i,5)EFc

- Z 27n(26*(n,R)ap),

(i,5)EFc

27n(25*(n,R)ap7(R7%))

= 92" (R)ay—F)

?

Y

(86)

where (b) follows from the fact that du(Cr,,C(; ;) <
2d*(n,R — L) for (i,j) € Jc, and (c) follows because
|Zc| > m/4. If Ryg(p) = sup{R : 26*(R)a, > R}, then
combining (84), (85), (86), and noting that :/(1+x) increases

with x, we have

2771(26* (R)ap—R)

D(Cvpa ¢) 2 1 + 2—n(25*(R)(){p—R)7
= 9@V Me=R) < R < Ryg(p). (87)
As (87) is true for all C' € €(n, R), we have
D(n,R,p) > 27727 (Wa=R) g« R < Ryg(p). (88)
The value §*(R) can be upper bounded as [13], [14]
* A 1
0" (R)<dLp(R)= 5~ Vioav(l —R)(1-bav(1—R)). (89)

The following theorem provides an upper bound on the
bee-identification exponent Ep (R, p).
Theorem 5: We have

Ep(R,p) < [258*(R)ay, — R|T < |26Lp(R)ay, — R|T. (90)

Proof: Follows immediately from (88) and (89). [ |
The following corollary shows that Ep (R, p) can be explic-
itly characterized with a rather simple expression when rate R
tends to zero.
Corollary 1: We have

zlginoEQ(R’p) = . 1)

Proof: As limp_,0 0Lp(R) = 0.5, we have from (90) that
. <1 oy
lelino Ep(R,p) < }1%1310 (20Lp(R)ap — R) = ap.  (92)

On the other hand, we have limp_,¢ dgv(R) = 0.5 and so it
follows from (83) that

}131310 Ep(R,p) > }131310 20av(2R) oy, = . (93)
The proof is completed by using (92) and (93). [ |

The above corollary shows that the lower bound on
Ep(R,p) given by (83), and the upper bound on Ep(R,p)
given by (90) become tight as R — 0.
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Fig. 5. Lower bounds on Ep (R, p) with independent decoding (ID) and
joint decoding (JD) using TRC and RCE. The upper bound holds for all
codebook designs.

0

V. A NUMERICAL EXAMPLE

Fig. 5 plots different bounds for the bee-identification
exponent Ep(R,p). The explicit lower bound for RCE with
independent decoding (ID) (respectively, joint decoding (JD))
is given by (11) (respectively, (44)). The performance with
JD is seen to be much better than with ID. When 0 <
R < Rrre(p), the explicit lower bound for TRC with
ID (respectively, JD) is given by (49) (respectively, (83)).
As shown in Prop. 4, the lower bound obtained using TRC
with joint decoding is better than the corresponding bound
using RCE. The upper bound is given by (90) and holds for
all possible codebook designs. Further, as shown in Cor. 1, it is
observed from Fig. 5 that limr_.o Ep(R,p) = oy = 2.33 for
p=0.01.

VI. DISCUSSION

We introduced the information-theoretic “bee-identification
problem” which arises naturally in different massive identifi-
cation settings. We derived explicit upper and lower bounds on
the bee-identification exponent, and showed that joint decod-
ing of barcodes provides a significantly better exponent than
separate decoding followed by permutation inference. For low
rates, we showed that the lower bound on the bee-identification
exponent obtained using TRC is strictly better than the cor-
responding bound obtained using RCE. Moreover, when the
rate approaches zero, we showed that the upper bound on the
bee-identification exponent coincides with the lower bound
obtained using TRC with joint barcode decoding.

Relative to the independent decoding of barcodes, the per-
formance improvement with joint decoding comes at a cost
of increased computational complexity. For joint decoding,
an exhaustive search entails comparing the received noisy &
permuted version of the codebook with m! row-permutations
of the codebook. This may be computationally prohibitive even
for moderate values of blocklength n when m scales exponen-
tially with n. In practice, intermediate performance between
the extremes of independent decoding and joint decoding may
be achieved with manageable complexity using ideas from
generalized minimum distance decoding [15]. In particular,
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the decoding process may proceed in two steps: The first
step involves independent decoding of each barcode where
an erasure is declared if the distance between the received
noisy barcode to the nearest barcode in the codebook exceeds
a threshold. The second step fixes the codebook row-indices
corresponding to the un-erased barcodes, and then decodes
the erased barcodes by jointly comparing their received noisy
version to different row-permutations of the codebook corre-
sponding to the non-fixed indices. This results in significant
reduction in complexity in case only a few barcodes are
declared as erasure in the first step. Therefore, we have a
tradeoff between performance and complexity via an appro-
priate choice of the distance threshold parameter for declaring
an erasure.

The work in this paper may be extended by considering
different variants of the bee-identification error metric, for
instance, where error is flagged only when the fraction of
incorrectly decoded barcodes exceeds a threshold. Another
interesting scenario for future analysis is the problem formula-
tion where some of the m rows in codebook C are deleted, due
to some bees being outside the hive when taking the picture.

APPENDIX A
PROOF OF PROP. 1

Proof: Let Fyn denote the space of all n-length binary vec-
tors, and let Yi_1, Y5_1 € Fon, and A £ ~v,_1 ® Fx_1, where
@ denotes modulo-2 addition. Note that when codebook C' is
uniformly distributed over & (n, R), then the rows ¢;,, for 1 <
l <k, are i.i.d. and uniformly distributed over Fo». We have
Pr {dH % 1,.¢,) = dip—1} = Pr{du(Gr-1,¢i, + A) =

dj.— 1} Pr {dH Vk—1, Cip,) = dj— 1} where (i) follows from
the fact that for a given A, the distribution of ¢;, +A is same as
the distribution of ¢;, . This implies that Pr {dH(cik_1 ,Cif) =

(ii)
dp— 1|Czk . = Vk— 1} = Pr {dH(Cik,UCik) = dk—l}' Then

Pr{ mz=1 {du(ci,, ¢, ,) = di}} can be expressed as

3 <Pr{ﬂ{cz—l —w}}
- k—1
ﬂ{cil = 'Yl}} )a
=1

Y1yeoesVk—1EFan
k—1
<Pr { m {ei, = ’Yz}} l{ﬂz 2{du(nman)=di}}

- ¥

V15 sVk—1

x Pr{du(ci,_,,ci,) = dp—1|ci_, =Vk-1} ),

k—1
(iii)
= Z (Pr { ﬂ {cil = 'Yl}} 1{ﬂ:,c;12{dH(’Yl,,’yl+1):dl}}

Vs Yh—1 =1

x Pr {dH(Cikfpcik) = dk—l} ),

k—1
X PI’{ ﬂ {dH(ci“cil+1) = dl}
=1

k—2
= Pr { ﬂ dH(Cil,CiHl)—dl}PI‘ {dH(Cik_lacik):dkfl}v

=1
(94)
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where 1, denotes the indicator function, and (iii) follows
from (ii). Recursively applying (94), we get

{ﬂ {dH cl,,cmrl } HPr {dH Cmcz;+1 dl}.

Now, (28) follows from the fact that

Pr {dH(CimCiH_l) = dl} < 2 n(-H(di/n))  \when c,

and ¢;,, are uniformly distributed over Fan [8]. |
APPENDIX B

PROOF OF PROP. 3

Proof: For 1 < ¢ < m = 2R et ¢; denote the
i-th row of codebook C. Let Fan denote the space of
all n-length binary vectors, and let v; € [Fon for 1 <
i < m. Let Qrre {(;~;{ci =7i}} denote the probability
Pr{N",{ci =7}} when C is uniformly distributed over
%rrc(n, R). Then, we have

%m{mm Z}

= _QRCE {ﬂ{cz = } 1{(71 Y2500 Ym ) EGTRC (1, R) } >
95)

where 1/, denotes the indicator function. Further, let
QRrcE {ﬂ;:ll {du(ei, ciyy) = dl}} denote the probability
Pr {ﬂ;:ll {du(ei, ciry) = dl}} when codebook C' is uni-
formly distributed over € (n, R). Then,

k-1
QTRC { ﬂ {du(ci,, eiy,) = dl}}

=1
- Z QTRC{H{C’ i }1{ﬂ;€11dH('Yil7’Yil+1)=dl}7
vi EFgn,
1<'L<m
(a) 1
= Z QrcE {m{Cz Vi } {ﬂ;:ll dH(’Ya‘,p’YiHl):dl}’
776117277
1<i<m

—QRCE { ﬂ {dul(ei, ciryy)

=1

:dl}},

where (a) follows from (95), and () follows from Prop. 1. ®

k—1
® 1 H2 n(1=H(d /),

Qn
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